Sample records for wasa wave hindcast

  1. The propagation of wind errors through ocean wave hindcasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holthuijsen, L.H.; Booij, N.; Bertotti, L.

    1996-08-01

    To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.

  2. Boulder-based wave hindcasting underestimates storm size

    NASA Astrophysics Data System (ADS)

    Kennedy, David; Woods, Joesphine; Rosser, Nick; Hansom, James; Naylor, Larissa

    2017-04-01

    Large boulder-size clasts represent an important archive of erosion and wave activity on the coast. From tropical coral reefs to eroding cliffs in the high-latitudes, boulders have been used to hindcast the frequency and magnitude of cyclones and tsunami. Such reconstructions are based on the balance between the hydrodynamic forces acting on individual clasts and the counteracting resistive forces of friction and gravity. Here we test the three principle hindcasting relationships on nearly 1000 intertidal boulders in North Yorkshire, U.K using a combination of field and airborne terrestrial LiDAR data. We quantify the predicted versus actual rates of movement and the degree to which local geomorphology can retard or accelerate transport. Actual clast movement is significantly less than predicted values, regardless of boulder volume, shape or location. In situ cementation of clasts to the substrate by marine organisms and clustering of clasts increases friction thereby preventing transport. The implication is that boulders do not always provide a reliable estimation of wave height on the coast and reliance solely on hindcasting relationships leads to an under prediction of the frequency and magnitude of past storm wave activity. The crucial need for process field studies to refine boulder transport models is thus demonstrated.

  3. A multi-decadal wind-wave hindcast for the North Sea 1949-2014: coastDat2

    NASA Astrophysics Data System (ADS)

    Groll, Nikolaus; Weisse, Ralf

    2017-12-01

    Long and consistent wave data are important for analysing wave climate variability and change. Moreover, such wave data are also needed in coastal and offshore design and for addressing safety-related issues at sea. Using the third-generation spectral wave model WAM a multi-decadal wind-wave hindcast for the North Sea covering the period 1949-2014 was produced. The hindcast is part of the coastDat database representing a consistent and homogeneous met-ocean data set. It is shown that despite not being perfect, data from the wave hindcast are generally suitable for wave climate analysis. In particular, comparisons of hindcast data with in situ and satellite observations show on average a reasonable agreement, while a tendency towards overestimation of the highest waves could be inferred. Despite these limitations, the wave hindcast still provides useful data for assessing wave climate variability and change as well as for risk analysis, in particular when conservative estimates are needed. Hindcast data are stored at the World Data Center for Climate (WDCC) and can be freely accessed using the doi:10.1594/WDCC/coastDat-2_WAM-North_Sea Groll and Weisse(2016) or via the coastDat web-page http://www.coastdat.de.

  4. Steps towards a consistent Climate Forecast System Reanalysis wave hindcast (1979-2016)

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Ardhuin, Fabrice; Huchet, Marion; Accensi, Mickael

    2017-04-01

    Surface gravity waves are being increasingly recognized as playing an important role within the climate system. Wave hindcasts and reanalysis products of long time series (>30 years) have been instrumental in understanding and describing the wave climate for the past several decades and have allowed a better understanding of extreme waves and inter-annual variability. Wave hindcasts have the advantage of covering the oceans in higher space-time resolution than possible with conventional observations from satellites and buoys. Wave reanalysis systems like ECWMF's ERA-Interim directly included a wave model that is coupled to the ocean and atmosphere, otherwise reanalysis wind fields are used to drive a wave model to reproduce the wave field in long time series. The ERA Interim dataset is consistent in time, but cannot adequately resolve extreme waves. On the other hand, the NCEP Climate Forecast System (CFSR) wind field better resolves the extreme wind speeds, but suffers from discontinuous features in time which are due to the quantity and quality of the remote sensing data incorporated into the product. Therefore, a consistent hindcast that resolves the extreme waves still alludes us limiting our understanding of the wave climate. In this study, we systematically correct the CFSR wind field to reproduce a homogeneous wave field in time. To verify the homogeneity of our hindcast we compute error metrics on a monthly basis using the observations from a merged altimeter wave database which has been calibrated and quality controlled from 1985-2016. Before 1985 only few wave observations exist and are limited to a select number of wave buoys mostly in the North Hemisphere. Therefore we supplement our wave observations with seismic data which responds to nonlinear wave interactions created by opposing waves with nearly equal wavenumbers. Within the CFSR wave hindcast, we find both spatial and temporal discontinuities in the error metrics. The Southern Hemisphere often

  5. Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick

    2016-04-01

    The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.

  6. The international workshop on wave hindcasting and forecasting and the coastal hazards symposium

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin

    2015-05-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  7. GOW2.0: A global wave hindcast of high resolution

    NASA Astrophysics Data System (ADS)

    Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    The information provided by reconstructions of historical wind generated waves is of paramount importance for a variety of coastal and offshore purposes (e.g. risk assessment, design of costal structures and coastal management). Here, a new global wave hindcast (GOW2.0) is presented. This hindcast is an update of GOW1.0 (Reguero et al. 2012) motivated by the emergence of new settings and atmospheric information from reanalysis during recent years. GOW2.0 is based on version 4.18 of WaveWatch III numerical model (Tolman, 2014). Main features of the model set-up are the analysis and selection of recent source terms concerning wave generation and dissipation (Ardhuin et al. 2010, Zieger et al., 2015) and the implementation of obstruction grids to improve the modeling of wave shadowing effects in line with the approach described in Chawla and Tolman (2007). This has been complemented by a multigrid system and the use of the hourly wind and ice coverage from the Climate Forecast System Reanalysis, CFSR (30km spatial resolution approximately). The multigrid scheme consists of a series of "two-way" nested domains covering the whole ocean basins at a 0.5° spatial resolution and continental shelfs worldwide at a 0.25° spatial resolution. In addition, a technique to reconstruct wave 3D spectra for any grid-point is implemented from spectral partitioning information. A validation analysis of GOW2.0 outcomes has been undertaken considering wave spectral information from surface buoy stations and multi-mission satellite data for a spatial validation. GOW2.0 shows a substantial improvement over its predecessor for all the analyzed variables. In summary, GOW2.0 reconstructs historical wave spectral data and climate information from 1979 to present at hourly resolution providing higher spatial resolution over regions where local generated wind seas, bimodal-spectral behaviour and relevant swell transformations across the continental shelf are important. Ardhuin F, Rogers E

  8. On the improvement of wave and storm surge hindcasts by downscaled atmospheric forcing: application to historical storms

    NASA Astrophysics Data System (ADS)

    Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence

    2018-04-01

    Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).

  9. A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979-2012). Present wave climate and energy resource assessment

    NASA Astrophysics Data System (ADS)

    Gallagher, Sarah; Tiron, Roxana; Dias, Frédéric

    2014-08-01

    The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.

  10. Evaluation and adjustment of altimeter measurement and numerical hindcast in wave height trend estimation in China's coastal seas

    NASA Astrophysics Data System (ADS)

    Li, Shuiqing; Guan, Shoude; Hou, Yijun; Liu, Yahao; Bi, Fan

    2018-05-01

    A long-term trend of significant wave height (SWH) in China's coastal seas was examined based on three datasets derived from satellite measurements and numerical hindcasts. One set of altimeter data were obtained from the GlobWave, while the other two datasets of numerical hindcasts were obtained from the third-generation wind wave model, WAVEWATCH III, forced by wind fields from the Cross-Calibrated Multi-Platform (CCMP) and NCEP's Climate Forecast System Reanalysis (CFSR). The mean and extreme wave trends were estimated for the period 1992-2010 with respect to the annual mean and the 99th-percentile values of SWH, respectively. The altimeter wave trend estimates feature considerable uncertainties owing to the sparse sampling rate. Furthermore, the extreme wave trend tends to be overestimated because of the increasing sampling rate over time. Numerical wave trends strongly depend on the quality of the wind fields, as the CCMP waves significantly overestimate the wave trend, whereas the CFSR waves tend to underestimate the trend. Corresponding adjustments were applied which effectively improved the trend estimates from the altimeter and numerical data. The adjusted results show generally increasing mean wave trends, while the extreme wave trends are more spatially-varied, from decreasing trends prevailing in the South China Sea to significant increasing trends mainly in the East China Sea.

  11. Physics with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadmand, Susan

    2010-12-28

    The WASA detector facility is an internal experiment at the COoler SYnchrotron COSY in Juelich, Germany. The COSY accelerator provides proton and deuteron beams with momenta up to 3.7 GeV/c giving access to hadron physics including the strange quark sector. The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions. Goals and status are reported with special emphasis on the meson Dalitz decays.

  12. Hindcast of extreme sea states in North Atlantic extratropical storms

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  13. Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Bettencourt, João H.; Dias, Frederic

    2017-01-01

    Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013-2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.

  14. Neutral decays of {eta}{sup '} at WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duniec, David; Jany, Benedykt R.; IKP-2 Forschungszentrum Juelich, 52428 Juelich

    2007-11-07

    The status and some of the goals of the {eta}{sup '} physics program at WASA-at-COSY with regards to neutral hadronic decays are presented. Very preliminary results of a test run from WASA-at-COSY in May 2007 are presented.

  15. The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Alves, Jose Henrique; Greenslade, Diana; Horsburgh, Kevin; Swail, Val

    2017-04-01

    Following the 14th International Workshop on Wave Hindcasting and Forecasting and 5th Coastal Hazards Symposium in November 2014 in Key West, Florida, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 16 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. A general trend in the field has been towards closer integration between the wave and ocean modelling communities. This is also seen in this topical collection, with several papers exploring the interaction between surface waves and mixed layer dynamics and sea ice.

  16. Search for {eta}-mesic helium using WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskal, P.; Institut fuer Kernphysik and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich

    2010-08-05

    The installation of the WASA detector at the cooler synchrotron COSY opened the possibility to search for {eta}-mesic helium with high statistics and high acceptance. A search for the {sup 4}He--{eta} bound state is conducted via an exclusive measurement of the excitation function for the dd{yields}{sup 3}Hep{pi}{sup -} reaction varying continuously the beam momentum around the threshold for the dd{yields}{sup 4}He{eta} reaction. Ramping of the beam momentum and taking advantage of the large acceptance of the WASA detector allows to minimize systematical uncertainities.

  17. Assessing wave climate trends in the Bay of Biscay through an intercomparison of wave hindcasts and reanalyses

    NASA Astrophysics Data System (ADS)

    Paris, F.; Lecacheux, S.; Idier, D.; Charles, E.

    2014-09-01

    The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade's evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970-2001) as well as a southerly shift of wave directions (around -0.4° year-1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year-1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958-2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer

  18. Application of Bayesian Networks to hindcast barrier island morphodynamics

    USGS Publications Warehouse

    Wilson, Kathleen E.; Adams, Peter N.; Hapke, Cheryl J.; Lentz, Erika E.; Brenner, Owen T.

    2015-01-01

    We refine a preliminary Bayesian Network by 1) increasing model experience through additional observations, 2) including anthropogenic modification history, and 3) replacing parameterized wave impact values with maximum run-up elevation. Further, we develop and train a pair of generalized models with an additional dataset encompassing a different storm event, which expands the observations beyond our hindcast objective. We compare the skill of the generalized models against the Nor'Ida specific model formulation, balancing the reduced skill with an expectation of increased transferability. Results of Nor'Ida hindcasts ranged in skill from 0.37 to 0.51 and accuracy of 65.0 to 81.9%.

  19. Hindcasting Storm-Induced Erosional Hazards for the Outer Banks, NC.

    NASA Astrophysics Data System (ADS)

    Wetzell, L. M.; Howd, P. A.; Sallenger, A. H.

    2002-12-01

    The spatial variability of dune response along a section of the NC Outer Banks has been examined for the 1999 Hurricane Dennis. Dennis generated some of the largest wave heights recorded in the past 20 years along the Outer Banks of North Carolina, reaching 6.3 meters (measured at the U.S. Army Corps of Engineers Field Research Facility at Duck, North Carolina). Pre and post-storm topography was measured as part of a joint USGS-NASA program using lidar technology. These data were used to calculate changes in the elevation and location of the dune crest and dune base (Dhi and Dlo). Roughly 66% of the region from Cape Hatteras to Ocracoke Inlet experienced some dune erosion. The spatial variability in dune response is compared to hindcast erosion hazard predictions. Observations of maximum wave conditions are used as input to SWAN, a 3rd generation and shoaling wave model, output from which is used to drive empirical relationships for wave runup. Estimates of hazard potential are derived from Sallenger's recently proposed storm impact scale. The hindcast hazard potentials are then compared to direct observations.

  20. Recent results from WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejny, V.

    2010-12-28

    WASA--a 4{pi} spectrometer for detection of charged and neutral particles--started operation at the cooler synchrotron COSY-Juelich in 2007. A number of experiments on meson production and decays have been carried out since then. The status of the analysis and preliminary results of some selected topics from the physics program are discussed.

  1. Meson Production and Decays with WASA at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schadmand, Susan

    2011-10-21

    The WASA-at-COSY physics program focuses on light meson decays where rare decays are used to scrutinize symmetries and symmetry breaking. The structure of hadrons is probed with transition form factors and hadron spectroscopy while hadron dynamics is studied via reaction dynamics and few body reactions.

  2. Calculating Depth of Closure Using WIS Hindcast Data

    DTIC Science & Technology

    2016-03-01

    revised the Hallermeier (1978, 1981) equations using data from the Duck , NC, U.S. Army Corps of Engineers (USACE) Field Research Facility. Many studies ... Study (WIS) hindcast stations along the United States coastlines. The results summarized in this CHETN are available in the form of a spreadsheet on...theoretical definition of DOC came from a study by Hallermeier (1978, 1981) using wave tank and field data. Initially, the DOC was related to the critical

  3. Study of charge symmetry breaking in dd collisions with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronska, Aleksandra

    2011-10-24

    Charge symmetry is an approximate symmetry of the strong interaction. Studies of its breaking can yield information on the u and d quark mass difference. A theoretical collaboration is currently working on the description of charge symmetry breaking mechanisms for dd{yields}{alpha}{pi}{sup 0} and np{yields}d{pi}{sup 0} within Chiral Perturbation Theory, using the data from TRI-UMF and IUCF. One of the items in the program of the WASA-at-COSY collaboration is to extend the data base for the dd{yields}{alpha}{pi}{sup 0} reaction to higher energies, which would allow the extraction of the information on the p-wave. Status of the analysis of experimental data alongmore » with the preliminary results from the pilot run will be presented here.« less

  4. Hindcasting of Storm Surges, Currents, and Waves at Lower Delaware Bay during Hurricane Isabel

    NASA Astrophysics Data System (ADS)

    Salehi, M.

    2017-12-01

    Hurricanes are a major threat to coastal communities and infrastructures including nuclear power plants located in low-lying coastal zones. In response, their sensitive elements should be protected by smart design to withstand against drastic impact of such natural phenomena. Accurate and reliable estimate of hurricane attributes is the first step to that effort. Numerical models have extensively grown over the past few years and are effective tools in modeling large scale natural events such as hurricane. The impact of low probability hurricanes on the lower Delaware Bay is investigated using dynamically coupled meteorological, hydrodynamic, and wave components of Delft3D software. Efforts are made to significantly reduce the computational overburden of performing such analysis for the industry, yet keeping the same level of accuracy at the area of study (AOS). The model is comprised of overall and nested domains. The overall model domain includes portion of Atlantic Ocean, Delaware, and Chesapeake bays. The nested model domain includes Delaware Bay, its floodplain, and portion of the continental shelf. This study is portion of a larger modeling effort to study the impact of low probability hurricanes on sensitive infrastructures located at the coastal zones prone to hurricane activity. The AOS is located on the east bank of Delaware Bay almost 16 miles upstream of its mouth. Model generated wind speed, significant wave height, water surface elevation, and current are calibrated for hurricane Isabel (2003). The model calibration results agreed reasonably well with field observations. Furthermore, sensitivity of surge and wave responses to various hurricane parameters was tested. In line with findings from other researchers, accuracy of wind field played a major role in hindcasting the hurricane attributes.

  5. Recent Results from the WASA-at-COSY Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupsc, Andrzej

    2011-10-24

    Studies of light meson decays are the key experiments for the WASA detector at COSY-Juelich. One of the world largest data samples of the {eta} meson decays have been recently collected in the pd {yields}{sup 3}He{eta} and in the pp {yields} pp{eta} reactions. The status of the analysis of various decay channels and the further plans for the light meson decay program are presented.

  6. Experimental study of relativistic effects in the dp breakup reaction using the WASA detector

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Jamróz, B.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.

    2014-03-01

    An experiment to investigate the 1H(overrightarrow d , pp)n breakup reaction at 340 MeV, 360 MeV and 400 MeV deuteron beam energy has been performed at the Cooler Synchrotron COSY-Jülich with the WASA detector. The main goal was to study of various aspects of few-nucleon dynamics in the medium energy region, with a particular emphasis on relativistic effects and their interplay with three nucelon forces. The almost 4π geometry of the WASA detector gives an unique possibility to study the different aspects of nucleon-nucleon dynamics in the three nucleon system. The preliminary analysis of the collected data is presented.

  7. Coastal Wave Studies

    DTIC Science & Technology

    2011-09-30

    Directional wave spectra analysis from a cross-shore array of acoustic Doppler profilers, accepted paper, 12th International Workshop on Wave Hindcasting and Forecasting, 30 October – 4 November 2011, Hilo , Hawaii .

  8. U.S. Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: Mediterranean Sea

    DTIC Science & Technology

    1990-01-01

    8217 (total) were obtained by summing the percent frequencies across each row. Rounding may cause minor differences between printed totals and total cell counts...34c9 3 N6 l7 4, i 5E F TI + e "t1- 4TI 3- ’$69"- -’ - + el4 𔄃 t 14 t , + t. -. ----- + 13,, 6 6 , 4- +0 2 4 9,: o . ;.. .;,+ + 5 ., 𔃿 6.--’ r’ ---- ’p...The SOWM generates ’en-.!rgy ’ariaLLcb’ cell within the 180 element matrix f The output from a SOWM hindcast includes a wind fields. There is a

  9. Measurement of the transition form factor of {eta} meson with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, H.

    2011-10-24

    Reaction {eta}{yields}e{sup +}e{sup -}{gamma} is used to investigate the transition form factor of {eta} meson with WASA detector at COSY. Where the {eta} meson is produced in pp collision at 1.4 GeV. We present the analysis techniques and preliminary results of {eta} Dalitz decays.

  10. Study of light mesons with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Prencipe, Elisabetta

    2014-06-01

    The WASA detector, operating at the COSY facility in Jülich (Germany) has been collecting data since 2007. The experiment allows to perform studies of light mesons, such as π0, η and ω rare decay processes, in order to perform precise measurements of branching ratios, determine Dalitz plot parameters, test symmetry and symmetry breaking, and evaluate transition form factors. In the experiments a proton or deuteron beam impinged on a pellet target of hydrogen or deuterium, which allows the reactions proton-proton (pp) or proton-deuteron (pd). A high-statistics sample of η mesons has been collected: in the reaction pd →3He η, 3×107η mesons were tagged at a beam energy of 1.0 GeV, while 5×108η mesons were produced in the reaction pp → ppη at 1.4 GeV. This corresponds to the production of 10 η/s and 100 η/s, respectively, for the two reaction processes. In the pp dataset a higher background level is found compared to the pd data set. In both cases, we identify the η mesons by means of the missing mass derived from the recoil particles. A kinematic fit largely rejects the background in our analysis. The advantage in using the pp dataset is that the production of η mesons is almost a factor of 10 higher than in the pd fusion to 3He. As we plan to measure the branching ratios of very rare processes, high statistics is needed. A summary of the recent activity on the study of light mesons with WASA-at-COSY here is given.

  11. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  12. Extreme wind-wave modeling and analysis in the south Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.

    2018-04-01

    A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.

  13. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Düsterhus, André; Pohlmann, Holger; Müller, Wolfgang A.; Baehr, Johanna

    2017-11-01

    We analyze the time dependency of decadal hindcast skill in the North Atlantic subpolar gyre within the time period 1961-2013. We compare anomaly correlation coefficients and temporal interquartile ranges of total upper ocean heat content and sea surface temperature for three differently initialized sets of hindcast simulations with the global coupled model MPI-ESM. All initializations use weakly coupled assimilation with the same full value nudging in the atmospheric component and different assimilation techniques for oceanic temperature and salinity: (1) ensemble Kalman filter assimilating EN4 observations and HadISST data, (2) nudging of anomalies to ORAS4 reanalysis, (3) nudging of full values to ORAS4 reanalysis. We find that hindcast skill depends strongly on the evaluation time period, with higher hindcast skill during strong multiyear trends, especially during the warming in the 1990s and lower hindcast skill in the absence of such trends. Differences between the prediction systems are more pronounced when investigating any 20-year subperiod within the entire hindcast period. In the ensemble Kalman filter initialized hindcasts, we find significant correlation skill for up to 5-8 lead years, albeit along with an overestimation of the temporal interquartile range. In the hindcasts initialized by anomaly nudging, significant correlation skill for lead years greater than two is only found in the 1980s and 1990s. In the hindcasts initialized by full value nudging, correlation skill is consistently lower than in the hindcasts initialized by anomaly nudging in the first lead years with re-emerging skill thereafter. The Atlantic meridional overturning circulation reacts on the density changes introduced by oceanic nudging, this limits the predictability in the subpolar gyre in the first lead years. Overall, we find that a model-consistent assimilation technique can improve hindcast skill. Further, the evaluation of 20 year subperiods within the full hindcast period

  14. Impact of hindcast length on estimates of seasonal climate predictability.

    PubMed

    Shi, W; Schaller, N; MacLeod, D; Palmer, T N; Weisheimer, A

    2015-03-16

    It has recently been argued that single-model seasonal forecast ensembles are overdispersive, implying that the real world is more predictable than indicated by estimates of so-called perfect model predictability, particularly over the North Atlantic. However, such estimates are based on relatively short forecast data sets comprising just 20 years of seasonal predictions. Here we study longer 40 year seasonal forecast data sets from multimodel seasonal forecast ensemble projects and show that sampling uncertainty due to the length of the hindcast periods is large. The skill of forecasting the North Atlantic Oscillation during winter varies within the 40 year data sets with high levels of skill found for some subperiods. It is demonstrated that while 20 year estimates of seasonal reliability can show evidence of overdispersive behavior, the 40 year estimates are more stable and show no evidence of overdispersion. Instead, the predominant feature on these longer time scales is underdispersion, particularly in the tropics. Predictions can appear overdispersive due to hindcast length sampling errorLonger hindcasts are more robust and underdispersive, especially in the tropicsTwenty hindcasts are an inadequate sample size to assess seasonal forecast skill.

  15. Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts with MPI-ESM

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Düsterhus, Andre; Pohlmann, Holger; Müller, Wolfgang; Baehr, Johanna

    2017-04-01

    We analyze the time dependency of decadal hindcast skill in the North Atlantic subpolar gyre within the time period 1961-2013. We compare anomaly correlation coefficients and interquartile ranges of total upper ocean heat content and sea surface temperature for three differently initialized sets of hindcast simulations with the global coupled model MPI-ESM. All initializations use weakly coupled assimilation with the same full-field nudging in the atmospheric component and different assimilation techniques for oceanic temperature and salinity: (1) ensemble Kalman filter assimilating EN4 and HadISST observations, (2) nudging of anomalies to ORAS4 reanalysis, (3) nudging of full values to ORAS4 reanalysis. We find that hindcast skill depends strongly on the evaluation time period, with higher hindcast skill during strong multiyear trends and lower hindcast skill in the absence of such trends. While there may only be small differences between the prediction systems in the analysis focusing on the entire hindcast period, these differences between the hindcast systems are much more pronounced when investigating any 20-year subperiod within the entire hindcast period. For the ensemble Kalman filter high skill in the assimilation experiment is generally linked to high skill in the initialized hindcasts. Such direct link does not seem to exist in the hindcasts initialized by either nudged system. In the ensemble Kalman filter initialized hindcasts, we find significant hindcast skill for up to 5 to 8 lead years, except for the 1970s. In the nudged system initialized hindcasts, hindcast skill is consistently diminished in lead years 2 and 3 with lowest skill in the 1970s as well. Overall, we find that a model-consistent assimilation technique can improve hindcast skill. Further, the evaluation of 20 year subperiods within the full hindcast period provides essential insights to judge the success of both the assimilation and the subsequent hindcast skill.

  16. Experimental Study of Three-Nucleon Dynamics in the Dp Breakup Collisions Using the WASA Detector

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Jamróz, B.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.

    2017-03-01

    Until recently, all calculations of breakup observables were carried out in a non-relativistic regime. The relativistic treatment of the breakup reaction in 3 N system is quite a new achievement. The detailed study of various aspects of few-nucleon system dynamics in medium energy region, with a particular emphasis on investigation of relativistic effects and their interplay with three nucleon force (3NF) becomes feasible with increasing available energy in the three nucleon system. Therefore an experiment to investigate the ^1H(d, pp)n breakup cross section using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at COSY-Jülich. The almost 4π geometry of the WASA detector gives an unique possibility to study variety of kinematic configurations, which reveal different sensitivity to aspects of dynamics of the three nucleon system. The main steps of the analysis, including energy calibration, PID, normalization and efficiency studies, and their impact on the final accuracy of the result, are discussed.

  17. Hindcast Wave Information for the Great Lakes: Lake Ontario

    DTIC Science & Technology

    1991-12-01

    an elevation of 10 m for input into the wave model. 10 PART III: WAVE MODEL 18. The wave model used in this study, DWAVE , was developed by Dr. Donald...from the Wave Information Study (WIS) Project Office. 19. DWAVE is a FORTRAN computer code that simulates wave growth, dissipation, and propagation...partitioned in a directional spectrum within DWAVE . As seen there, each frequency-direction increment is envisioned as a "bin," and these "bins" are centered

  18. Partial-wave analysis of nucleon-nucleon elastic scattering data

    DOE PAGES

    Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.

    2016-12-19

    Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.

  19. Hindcast Wave Information for the Great Lakes. Lake Michigan

    DTIC Science & Technology

    1991-10-01

    winds to an elevation of 10 m for input into the wave model. 9 PART III: WAVE MODEL 18. The wave model used in this study, DWAVE , was developed by Dr...available from the WIS Project Office. 19. DWAVE is a FORTRAN computer code that simulates wave growth, dissipation, and propagation in deep water. The...spectrum within DWAVE . As seen there, each frequency-direction increment is envisioned as a "bin," and these "bins" are centered on specified

  20. Continuously on-going hindcast simulations for impact applications

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Geyer, Beate

    2016-04-01

    Observations for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. In this study two projects are presented where hindcast-simulations optimized for a region of interest are performed continuously. The hindcast simulation performed by HZG covering Europe includes the EURO-CORDEX domain with a wider extend to the north to cover the ice edge. The simulation under consideration of the coastDat-experiences is available for the period of 1979 - 2015, prolonged ongoing and fulfills the customer's needs with respect of output variables, levels, intervals and statistical measures. CoastDat - customers are dealing e.g. with naval architecture, renewable energies, offshore wind farming, shipping emissions, coastal flood risk and others. The evaluation of the hindcast is done for Europe by using the EVAL-tool of the CCLM community and by comparison with HYRAS - data for Germany and neighbouring countries. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation is forced by ERA-interim and optimized for the Alpine Region. One of the main tasks is to capture strong precipitation events which often occur during summer when

  1. Boreal Summer ISO hindcast experiment: preliminary results from SNU

    NASA Astrophysics Data System (ADS)

    Heo, S.; Kang, I.; Kim, D.; Ham, Y.

    2010-12-01

    As a part of internationally coordinated research program, hindcast experiments with focus on boreal summer intraseasonal oscillation (ISO) have been done in Seoul National University (SNU). This study aims to show preliminary results from SNU’s efforts. The ISO prediction system used in the hindcast experiment consists of SNU coupled model and SNU initialization method. The SNU coupled model is an ocean-atmosphere coupled model which couples the SNU Atmospheric GCM (SNU AGCM) to the Modular Ocean Model ver.2.2 (MOM2.2) Ocean GCM developed at Geophysical Fluid Dynamics Laboratory (GFDL). In the SNU initialization method, both atmospheric and oceanic states are nudged toward reanalysis data (ERAinterim and GODAS) before prediction starting date. For the results here, 2 ensemble members are generated by using different nudging period, 8 and 9 days, respectively. The initial dates of 45-day predictions are the 1st, 11th, 21st of months during boreal summer season (May to October). Prediction skills and its dependency on the initial amplitude, the initial phase, and the number of ensemble members are investigated using the Real-time Multivariate MJO (RMM) index suggested by Wheeler and Hendon (2004). It is shown in our hindcast experiment that, after 13 forecast lead days (the forecast skill is about 0.7), the prediction skill does not depend on the strength of the initial state. Also, we found that the prediction skill has a phase dependency. The prediction skill is particularly low when the convective center related to the MJO is over the Indian Ocean (phase 2). The ensemble prediction has more improved correlation skill than each member. To better understand the phase dependency, we compared the observed and predicted behavior of the MJO that propagates from different starting phases. The phase speed of the prediction is slower than the observation. The MJO in the hindcast experiment propagates with weaker amplitudes than observed except for initial phase 3. Also

  2. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    NASA Astrophysics Data System (ADS)

    Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim

    2018-02-01

    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.

  3. Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California, 1856-1887

    USGS Publications Warehouse

    van der Wegen, M.; Jaffe, B.E.; Roelvink, J.A.

    2011-01-01

    This study investigates the possibility of hindcasting-observed decadal-scale morphologic change in San Pablo Bay, a subembayment of the San Francisco Estuary, California, USA, by means of a 3-D numerical model (Delft3D). The hindcast period, 1856-1887, is characterized by upstream hydraulic mining that resulted in a high sediment input to the estuary. The model includes wind waves, salt water and fresh water interactions, and graded sediment transport, among others. Simplified initial conditions and hydrodynamic forcing were necessary because detailed historic descriptions were lacking. Model results show significant skill. The river discharge and sediment concentration have a strong positive influence on deposition volumes. Waves decrease deposition rates and have, together with tidal movement, the greatest effect on sediment distribution within San Pablo Bay. The applied process-based (or reductionist) modeling approach is valuable once reasonable values for model parameters and hydrodynamic forcing are obtained. Sensitivity analysis reveals the dominant forcing of the system and suggests that the model planform plays a dominant role in the morphodynamic development. A detailed physical explanation of the model outcomes is difficult because of the high nonlinearity of the processes. Process formulation refinement, a more detailed description of the forcing, or further model parameter variations may lead to an enhanced model performance, albeit to a limited extent. The approach potentially provides a sound basis for prediction of future developments. Parallel use of highly schematized box models and a process-based approach as described in the present work is probably the most valuable method to assess decadal morphodynamic development. Copyright ?? 2011 by the American Geophysical Union.

  4. Assessment of Arctic and Antarctic Sea Ice Predictability in CMIP5 Decadal Hindcasts

    NASA Technical Reports Server (NTRS)

    Yang, Chao-Yuan; Liu, Jiping (Inventor); Hu, Yongyun; Horton, Radley M.; Chen, Liqi; Cheng, Xiao

    2016-01-01

    This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Decadal hindcasts exhibit a large multimodel spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3-7 years), but there is a reemerging predictive skill in the North Atlantic at a lead time of 6-8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.

  5. Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Superior

    DTIC Science & Technology

    1992-01-01

    to an elevation of 10 m for input into the wave model. 10 PART III: WAVE MODEL 16. The wave model used in this study, DWAVE , was developed by Dr...available from the Wave Information Study (WIS) Project Office. 17. DWAVE is a FORTRAN computer code that simulates wave growth, dissipation, and piopagation...partitioned in a directional spectrum within DWAVE . As seen there, each frequency-direction increment is envisioned as a "bin," and these "bins" are

  6. Wind waves climatology of the Southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Aguirre, Catalina; Rutllant, José; Falvey, Mark

    2017-04-01

    The Southeast Pacific coast still lacks a high-resolution wave hindcast and a detailed description of its wave climatology. Since buoy wave measurements are particularly scarce along the coast of South America, a model hindcast forced with wind information derived from atmospheric Reanalysis seems an attractive way to generate a wave climatology in this poorly studied region, providing far better spatial and temporal coverage than can be achieved using observational data alone. Here, the climatology of wind waves over the Southeast Pacific is analyzed using a 32-year hindcast from the WaveWatch III model, complemented by satellite-derived Significant Wave Height (SWH) and buoy measurements for validation. Using partitioned spectral data, a regional climatology of wind sea and swell parameters was constructed. In general, the simulated SWH shows a good agreement with satellite and in-situ SWH measurements. The spatial pattern of SWH is clearly influenced by the meridional variation of mean surface wind speed, where the stronger winds over the Southern Ocean play a significant role generating higher waves at higher latitudes. Nevertheless, regional features are observed in the annual variability of SWH, which are associated with the existence of atmospheric coastal low-level jets off the coast of Peru and central Chile. In particular, the seasonal variation of these synoptic scale jets shows a direct relationship with the annual variability of SWH. Off the coast of Peru at 15°S the coastal low-level jet is strongest during austral winter, increasing the wind sea SWH. In contrast, off central Chile, there is an important increase of wind sea SWH during summer. The seasonal variation of the wind sea component leads to a contrasting seasonal variation of the total SWH at these locations: off Peru the coastal jet amplifies the annual variability of SWH, while off Central Chile the annual variability of SWH is suppressed by the presence of the coastal jet.

  7. Wave Data Acquisition and Hindcast for Saginaw Bay, Michigan.

    DTIC Science & Technology

    1983-06-01

    Bretschneider (1952) and Mitsuyasu and Kimura (1965) for f the peak fre- %m quency (where fm = f g/U) while the total energy decay rate follows that mm...Spectra of Wind-Generated Gravity Waves," Journal of Physical Oceanography, Vol 5, pp 410-420. Mitsuyasu, Hisashi . 1968. "On the Growth of the...8217 . , / . - . ’ -’ -. .. ’ . .. _..- -’ - Mitsuyasu, Hisashi , and Kirmura, Hisao. 1965. "Wind Wave in Decay Area," Coastal Engineering in Japan, Vol 8, pp 221-35. Ou, Shan-Hwei. 1980 (Sep

  8. A spurious warming trend in the NMME equatorial Pacific SST hindcasts

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2017-06-01

    Using seasonal hindcasts of six different models participating in the North American Multimodel Ensemble project, the trend of the predicted sea surface temperature (SST) in the tropical Pacific for 1982-2014 at each lead month and its temporal evolution with respect to the lead month are investigated for all individual models. Since the coupled models are initialized with the observed ocean, atmosphere, land states from observation-based reanalysis, some of them using their own data assimilation process, one would expect that the observed SST trend is reasonably well captured in their seasonal predictions. However, although the observed SST features a weak-cooling trend for the 33-year period with La Niña-like spatial pattern in the tropical central-eastern Pacific all year round, it is demonstrated that all models having a time-dependent realistic concentration of greenhouse gases (GHG) display a warming trend in the equatorial Pacific that amplifies as the lead-time increases. In addition, these models' behaviors are nearly independent of the starting month of the hindcasts although the growth rates of the trend vary with the lead month. This key characteristic of the forecasted SST trend in the equatorial Pacific is also identified in the NCAR CCSM3 hindcasts that have the GHG concentration for a fixed year. This suggests that a global warming forcing may not play a significant role in generating the spurious warming trend of the coupled models' SST hindcasts in the tropical Pacific. This model SST trend in the tropical central-eastern Pacific, which is opposite to the observed one, causes a developing El Niño-like warming bias in the forecasted SST with its peak in boreal winter. Its implications for seasonal prediction are discussed.

  9. Wave simulation for the design of an innovative quay wall: the case of Vlorë Harbour

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Archetti, Renata; Lamberti, Alberto

    2017-01-01

    Sea states and environmental conditions are basic data for the design of marine structures. Hindcasted wave data have been applied here with the aim of identifying the proper design conditions for an innovative quay wall concept. In this paper, the results of a computational fluid dynamics model are used to optimise the new absorbing quay wall of Vlorë Harbour (Republic of Albania) and define the design loads under extreme wave conditions. The design wave states at the harbour entrance have been estimated analysing 31 years of hindcasted wave data simulated through the application of WaveWatch III. Due to the particular geography and topography of the Bay of Vlorë, wave conditions generated from the north-west are transferred to the harbour entrance with the application of a 2-D spectral wave module, whereas southern wave states, which are also the most critical for the port structures, are defined by means of a wave generation model, according to the available wind measurements. Finally, the identified extreme events have been used, through the NewWave approach, as boundary conditions for the numerical analysis of the interaction between the quay wall and the extreme events. The results show that the proposed method, based on numerical modelling at different scales from macro to meso and to micro, allows for the identification of the best site-specific solutions, also for a location devoid of any wave measurement. In this light, the objectives of the paper are two-fold. First, they show the application of sea condition estimations through the use of wave hindcasted data in order to properly define the design wave conditions for a new harbour structure. Second, they present a new approach for investigating an innovative absorbing quay wall based on CFD modelling and the NewWave theory.

  10. Resolution dependence of precipitation statistical fidelity in hindcast simulations

    DOE PAGES

    O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...

    2016-06-19

    This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less

  11. Resolution dependence of precipitation statistical fidelity in hindcast simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik

    This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less

  12. Wave resource variability: Impacts on wave power supply over regional to international scales

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian

    2017-04-01

    The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the

  13. Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.

    2018-04-01

    The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.

  14. Deterministic Wave Predictions from the WaMoS II

    DTIC Science & Technology

    2014-10-23

    Monitoring System WaMoS II as input to a wave pre- diction system . The utility of wave prediction is primarily ves- sel motion prediction. Specific...successful prediction. The envisioned prediction system may provide graphical output in the form of a decision support system (Fig. 1). Predictions are...quality and accuracy of WaMoS as input to a deterministic wave prediction system . In the context of this paper, the Time Now Forecast H e a v e Hindcast

  15. Wave Hindcast

    Science.gov Websites

    Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify publications or software that incorporate or use the data. Access to and use of the GIS data shall further with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR

  16. Experimental study of pp{eta} dynamics with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Neha

    2011-10-24

    To investigate the interaction of {eta}-meson with the nucleons, its production, near the kinematical threshold, in proton-proton collisions has been studied with the WASA detector at COSY storage ring in Juelich, Germany. The data has been taken at beam energy 1400 MeV (corresponding to excess energy (Q = 57 MeV). The {eta}-meson was detected via its 3{pi}{sup 0} decay in nearly 4{pi} detector and two protons were measured in forward direction. The determination of four vectors of both protons and the {eta}-meson in the final state allowed to derive complete kinematical information of the pp{eta}-system. The analysis resulted in 9x10{supmore » 6} events of {eta}{yields}3{pi}{sup 0} giving total production cross-section (8.87{+-}0.03{sub stat}{+-}2.57{sub sys}){mu}b. The angular distribution of {eta}-meson in the center of mass frame is anisotropic and squared invariant mass distributions for proton-proton and proton-{eta} shows deviation from pure phase space.« less

  17. Hindcast of breaking waves and its impact at an island sheltered coast, Karwar

    NASA Astrophysics Data System (ADS)

    Dora, G. Udhaba; Kumar, V. Sanil

    2018-01-01

    Variability in the characteristics of depth-induced wave breakers along a non-uniform coastal topography and its impact on the morpho-sedimentary processes is examined at the island sheltered wave-dominated micro-tidal coast, Karwar, west coast of India. Waves are simulated using the coupled wind wave model, SWAN nested in WAVEWATCH III, forced by the reanalysis winds from different sources (NCEP/NCAR, ECMWF, and NCEP/CFSR). Impact of the wave breakers is evaluated through mean longshore current and sediment transport for various wave energy conditions across different coastal morphology. Study revealed that the NCEP/CFSR wind is comparatively reasonable in simulation of nearshore waves using the SWAN model nested by 2D wave spectra generated from WAVEWATCH III. The Galvin formula for estimating mean longshore current using the crest wave period and the Kamphuis approximation for longshore sediment transport is observed realistically at the sheltered coastal environment while the coast interacts with spilling and plunging breakers.

  18. Wave climate simulation for southern region of the South China Sea

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil

    2013-08-01

    This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.

  19. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  20. Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1984-01-01

    The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.

  1. Observation-based source terms in the third-generation wave model WAVEWATCH

    NASA Astrophysics Data System (ADS)

    Zieger, Stefan; Babanin, Alexander V.; Erick Rogers, W.; Young, Ian R.

    2015-12-01

    Measurements collected during the AUSWEX field campaign, at Lake George (Australia), resulted in new insights into the processes of wind wave interaction and whitecapping dissipation, and consequently new parameterizations of the input and dissipation source terms. The new nonlinear wind input term developed accounts for dependence of the growth on wave steepness, airflow separation, and for negative growth rate under adverse winds. The new dissipation terms feature the inherent breaking term, a cumulative dissipation term and a term due to production of turbulence by waves, which is particularly relevant for decaying seas and for swell. The latter is consistent with the observed decay rate of ocean swell. This paper describes these source terms implemented in WAVEWATCH III ®and evaluates the performance against existing source terms in academic duration-limited tests, against buoy measurements for windsea-dominated conditions, under conditions of extreme wind forcing (Hurricane Katrina), and against altimeter data in global hindcasts. Results show agreement by means of growth curves as well as integral and spectral parameters in the simulations and hindcast.

  2. Development of a satellite SAR image spectra and altimeter wave height data assimilation system for ERS-1

    NASA Technical Reports Server (NTRS)

    Hasselmann, Klaus; Hasselmann, Susanne; Bauer, Eva; Bruening, Claus; Lehner, Susanne; Graber, Hans; Lionello, Piero

    1988-01-01

    The applicability of ERS-1 wind and wave data for wave models was studied using the WAM third generation wave model and SEASAT altimeter, scatterometer and SAR data. A series of global wave hindcasts is made for the surface stress and surface wind fields by assimilation of scatterometer data for the full 96-day SEASAT and also for two wind field analyses for shorter periods by assimilation with the higher resolution ECMWF T63 model and by subjective analysis methods. It is found that wave models respond very sensitively to inconsistencies in wind field analyses and therefore provide a valuable data validation tool. Comparisons between SEASAT SAR image spectra and theoretical SAR spectra derived from the hindcast wave spectra by Monte Carlo simulations yield good overall agreement for 32 cases representing a wide variety of wave conditions. It is concluded that SAR wave imaging is sufficiently well understood to apply SAR image spectra with confidence for wave studies if supported by realistic wave models and theoretical computations of the strongly nonlinear mapping of the wave spectrum into the SAR image spectrum. A closed nonlinear integral expression for this spectral mapping relation is derived which avoids the inherent statistical errors of Monte Carlo computations and may prove to be more efficient numerically.

  3. Comprehensive Condition Survey and Storm Waves, Circulation, and Sedimentation Study, Dana Point Harbor, California

    DTIC Science & Technology

    2011-07-01

    Tide on January 5, 2010 Figure 3-1 CMS-Wave Model Domain and Grid System Figure 3-2 CDIP 096 Wave and NOAA 9410660 Water Levels Figure 3-3 NDBC...Figure 3-10 Scatter plot of Observed CDIP and Hindcast Significant Wave Heights Figure 3-11 Comparison of Significant Wave Heights during the Month...obtained from the Coastal Data Information Program ( CDIP ) at Dana Point (Buoy 096) as well as the predicted tides at Newport Beach, CA (Station 9410580

  4. Building a Pre-Competitive Knowledge Base to Support Australia's Wave Energy Industry

    NASA Astrophysics Data System (ADS)

    Hoeke, R. K.; Hemer, M. A.; Symonds, G.; Rosebrock, U.; Kenyon, R.; Zieger, S.; Durrant, T.; Contardo, S.; O'Grady, J.; Mcinnes, K. L.

    2016-02-01

    A pre-competitive, query-able and openly available spatio-temporal atlas of Australia's wind-wave energy resource and marine management uses is being delivered. To provide the best representation of wave energy resource information, accounting for both spatial and temporal characteristics of the resource, a 34+yr numerical hindcast of wave conditions in the Australian region has been developed. Considerable in situ and remotely sensed data have been collected to support calibration and validation of the hindcast, resulting in a high-quality characterisation of the available wave resource in the Australian domain. Planning for wave energy projects is also subject to other spatial constraints. Spatial information on alternative uses of the marine domain including, for example, fisheries and aquaculture, oil and gas, shipping, navigation and ports, marine parks and reserves, sub-sea cables and infrastructure, shipwrecks and sites of cultural significance, have been compiled to complement the spatial characterisation of resource and support spatial planning of future wave energy projects. Both resource and spatial constraint information are being disseminated via a state-of-the-art portal, designed to meet the needs of all industry stakeholders. Another aspect currently impeding the industry in Australia is the limited evidence-base of impacts of wave energy extraction on adjacent marine and coastal environments. To build this evidence base, a network of in situ wave measurement devices have been deployed surrounding the 3 wave energy converters of Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to calibrate and validate numerical simulations of the project site. Early stage results will be presented.

  5. Process-based, morphodynamic hindcast of decadal deposition (1856-1887) and erosion (1951-1983) patterns in San Pablo Bay, California

    NASA Astrophysics Data System (ADS)

    Wegen, M. V.; Jaffe, B. E.; Roelvink, J.

    2009-12-01

    The objective of the current research is to hindcast decadal morphodynamic development in San Pablo Bay, California, USA using a process-based, numerical model, Delft3D. Experience gained in the current research will be ultimately used to model future morphodynamic changes in San Pablo Bay under different scenarios of climate change. Delft3D is run in 3D mode including wind waves, salt and fresh water interaction, sand and mud fractions and applies a sophisticated morphodynamic update scheme [Roelvink (2006)]. Model outcomes are evaluated against measured bathymetric developments [Cappiella (1999), Jaffe et al (2007)] and include an extensive sensitivity analysis on model parameter settings. In the 19th century more than 250 million cubic meters of sediment was deposited in San Pablo Bay because of the increased sediment load associated with hydraulic gold mining activities. When mining stopped and dam construction regulated river flows and trapped sediment upstream early 20th century, San Pablo Bay showed an eroding trend. Focus of the hindcast is on the 1856 to 1887 depositional period and on the 1951 to 1983 erosional period. The results of the model heavily depend on parameter settings related to sediment transport, bed composition and boundary conditions schematization. A major handicap is that the (historic) values of these parameters are not known in detail. Recommendations by Ganju et al. (2008) are used to overcome this problem. The results show, however, that applying best-guess model parameter settings can predict decadal morphodynamic developments reasonably well in San Pablo Bay. From all varied settings sediment concentration, river discharge and waves have the most significant effect on deposition volumes, whereas waves have the most impact on sediment distribution within San Pablo Bay. For the depositional period Brier Skill Scores have values around 0.25 with a maximum of 0.43 (qualified as ‘good’) although higher values (up to 0.65) were

  6. Wave climate and nearshore lakebed response, Illinois Beach State Park, Lake Michigan

    USGS Publications Warehouse

    Booth, J.S.

    1994-01-01

    Only under these major storm conditions is there a realistic potential for wave-lakebed interaction (and associated wind-driven currents) to cause a significant net modification to the outer nearshore lakebed which, in turn, may promulgate change in the inner nearshore (surf) zone. Analysis of bathymetric and sediment grain-size data, used in conjuction with published wave hindcast data, wave propagation modeling, and previous studies in the area, indicates that this potential occurs, most likely, on a scale of years. -from Author

  7. Wave climate and trends along the eastern Chukchi Arctic Alaska coast

    USGS Publications Warehouse

    Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.

    2011-01-01

    Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.

  8. Electromagnetic Transition Form Factor of the η meson with WASA-at-COSY

    NASA Astrophysics Data System (ADS)

    Goswami, A.

    2016-11-01

    In this work we present a study of the Dalitz decay η → γe+e-. The aim of this work is to measure the transition form factor of the η meson. The transition form factor of the η meson describes the electromagnetic structure of the meson. The study of the Dalitz decay helps to calculate the transition form factor of the η meson. When a particle is point-like it's decay rate can be calculated within QED. However, the complex structure of the meson modifies its decay rate. The transition form factor is determined by comparing the lepton-antilepton invariant mass distribution with QED. For this study data on proton-proton reaction at a beam energy of 1.4 GeV has been collected with WASA-at-COSY detector at Forschungszentrum Juelich, Germany. In the higher invariant mass region recent theoretical calculations slightly deviate from the fit to the data. We expect better results in the higher invariant mass region than previous measurements. The preliminary results of the analysis will be presented.

  9. Model Errors in Simulating Precipitation and Radiation fields in the NARCCAP Hindcast Experiment

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Mearns, L. O.; Mattmann, C. A.; McGinnis, S. A.; Goodale, C. E.; Hart, A. F.; Crichton, D. J.

    2012-12-01

    The relationship between the model errors in simulating precipitation and radiation fields including the surface insolation and OLR, is examined from the multi-RCM NARCCAP hindcast experiment for the conterminous U.S. region. Findings in this study suggest that the RCM biases in simulating precipitation are related with those in simulating radiation fields. For a majority of RCMs participated in the NARCCAP hindcast experiment as well as their ensemble, the spatial pattern of the insolation bias is negatively correlated with that of the precipitation bias, suggesting that the biases in precipitation and surface insolation are systematically related, most likely via the cloud fields. The relationship varies according to seasons as well with stronger relationship between the simulated precipitation and surface insolation during winter. This suggests that the RCM biases in precipitation and radiation are related via cloud fields. Additional analysis on the RCM errors in OLR is underway to examine more details of this relationship.

  10. Consequences of systematic model drift in DYNAMO MJO hindcasts with SP-CAM and CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannah, Walter M.; Maloney, Eric D.; Pritchard, Michael S.

    Hindcast simulations of MJO events during the dynamics of the MJO (DYNAMO) field campaign are conducted with two models, one with conventional parameterization (CAM5) and a comparable model that utilizes superparameterization (SP–CAM). SP–CAM is shown to produce a qualitatively better reproduction of the fluctuations of precipitation and low–level zonal wind associated with the first two DYNAMO MJO events compared to CAM5. Interestingly, skill metrics using the real–time multivariate MJO index (RMM) suggest the opposite conclusion that CAM5 has more skill than SP–CAM. This inconsistency can be explained by a systematic increase of RMM amplitude with lead time, which results frommore » a drift of the large–scale wind field in SP–CAM that projects strongly onto the RMM index. CAM5 hindcasts exhibit a contraction of the moisture distribution, in which extreme wet and dry conditions become less frequent with lead time. SP–CAM hindcasts better reproduce the observed moisture distribution, but also have stronger drift patterns of moisture budget terms, such as an increase in drying by meridional advection in SP–CAM. This advection tendency in SP–CAM appears to be associated with enhanced off–equatorial synoptic eddy activity with lead time. In conclusion, systematic drift moisture tendencies in SP–CAM are of similar magnitude to intraseasonal moisture tendencies, and therefore are important for understanding MJO prediction skill.« less

  11. Operational wave now- and forecast in the German Bight as a basis for the assessment of wave-induced hydrodynamic loads on coastal dikes

    NASA Astrophysics Data System (ADS)

    Dreier, Norman; Fröhle, Peter

    2017-12-01

    The knowledge of the wave-induced hydrodynamic loads on coastal dikes including their temporal and spatial resolution on the dike in combination with actual water levels is of crucial importance of any risk-based early warning system. As a basis for the assessment of the wave-induced hydrodynamic loads, an operational wave now- and forecast system is set up that consists of i) available field measurements from the federal and local authorities and ii) data from numerical simulation of waves in the German Bight using the SWAN wave model. In this study, results of the hindcast of deep water wave conditions during the winter storm on 5-6 December, 2013 (German name `Xaver') are shown and compared with available measurements. Moreover field measurements of wave run-up from the local authorities at a sea dike on the German North Sea Island of Pellworm are presented and compared against calculated wave run-up using the EurOtop (2016) approach.

  12. Hindcasting and forecasting of climatology for Gilbert Bay, Labrador: A marine protected area

    NASA Astrophysics Data System (ADS)

    Best, Sara J.

    Gilbert Bay is a marine protected area (MPA) on the southeastern coast of Labrador, Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. Future climate change in the region is expected to have an impact on the coastal marine environment and local communities in the future. This thesis presents results from a hindcast and forecasts study of physical oceanographic conditions for Gilbert Bay. The first section of this thesis examines the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. The seasonal and interannual variability of the near surface atmospheric parameters are described. Seawater temperature, salinity and sea-ice thickness in winter are simulated with a physical ocean model, the General Ocean Turbulence Model (GOTM). The results of the hindcast model suggest that the atmospheric interannual variability of the Gilbert Bay region is linked to the North Atlantic Oscillation (NAO). A warming trend observed in the subpolar North Atlantic was influenced by the local climate of coastal Labrador during the recent decade of 1995-2005. The second section of this thesis presents a model forecast of the impact of climate change on the physical conditions within Gilbert Bay over the next century. Climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment and the US Climate Change Science Program Project (US CCSP), specifically the Special Report on Emission Scenarios (SRES), were used. Atmospheric parameters and related changes in seawater temperature, salinity and sea-ice thickness in winter for three SRES are simulated with the GOTM, and are then compared to the hindcast study results. The results suggest that the water column during future winters will become warmer in the second half of the 21st century. In the summer the atmosphere will be warmer and more humid. Cloudiness and precipitation are

  13. An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models

    DOE PAGES

    Ma, H. -Y.; Chuang, C. C.; Klein, S. A.; ...

    2015-11-06

    Here, we present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two-step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge onlymore » the model horizontal velocities towards operational analysis/reanalysis values, given a 6-hour relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an offline land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modelled cloud-associated processes relative to observations.« less

  14. An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models

    NASA Astrophysics Data System (ADS)

    Ma, H.-Y.; Chuang, C. C.; Klein, S. A.; Lo, M.-H.; Zhang, Y.; Xie, S.; Zheng, X.; Ma, P.-L.; Zhang, Y.; Phillips, T. J.

    2015-12-01

    We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two-step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off-line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a "Core" integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud-associated processes relative to observations.

  15. Hindcast Wave Information for the Great Lakes: Lake Huron. Wave Information Studies of US Coastlines

    DTIC Science & Technology

    1991-12-01

    model used in this study, DWAVE , was developed by Dr. Donald T. Resio of Offshore and Coastal Technologies, Inc. It is described in Resio and Perrie...1989) and in an unpublished contractor’s report* available from the Wave Information Study (WIS) Project Office. 17. DWAVE is a FORTRAN computer code...discrete elements. Figure 4 shows how energy is partitioned in a directional spectrum within DWAVE . As seen there, each frequency-direction increment

  16. Wind wave prediction in shallow water: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavaleri, L.; Rizzoli, P.M.

    1981-11-20

    A wind wave forecasting model is described, based upon the ray technique, which is specifically designed for shallow water areas. The model explicitly includes wave generation, refraction, and shoaling, while nonlinear dissipative processes (breaking and bottom fricton) are introduced through a suitable parametrization. The forecast is provided at a specified time and target position, in terms of a directional spectrum, from which the one-dimensional spectrum and the significant wave height are derived. The model has been used to hindcast storms both in shallow water (Northern Adriatic Sea) and in deep water conditions (Tyrrhenian Sea). The results have been compared withmore » local measurements, and the rms error for the significant wave height is between 10 and 20%. A major problems has been found in the correct evaluation of the wind field.« less

  17. Measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with WASA-at-COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalwani, Kavita

    2011-10-24

    In this paper we present the preliminary results on the measurement of the branching ratio of a rare decay {eta}{yields}{pi}{sup 0}{gamma}{gamma} with the WASA Detector at COSY. We have used a sample of 10{sup 7}{eta} mesons produced at the COSY ring using the pd{yields}{sup 3}He{eta} reaction close to threshold. We detail the intricate extraction of the signal, which has about 360{+-}70(stat){eta}{yields}{pi}{sup 0}{gamma}{gamma} events, from the overwhelming background channels for example {eta}{yields}3{pi}{sup 0}, pd{yields}{sup 3}He 3{pi}{sup 0} and pd{yields}{sup 3}He 2{pi}{sup 0}.

  18. The use of remote sensing and linear wave theory to model local wave energy around Alphonse Atoll, Seychelles

    NASA Astrophysics Data System (ADS)

    Hamylton, S.

    2011-12-01

    This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).

  19. Importance of d-wave contributions in the charge symmetry breaking reaction dd →4Heπ0

    NASA Astrophysics Data System (ADS)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Hanhart, C.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Parol, W.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; WASA-at-COSY Collaboration

    2018-06-01

    This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction dd →4Heπ0 using the WASA-at-COSY detector setup at an excess energy of Q = 60MeV. The determined differential cross section can be parametrized as d σ /d Ω = a + bcos2 ⁡θ*, where θ* is the production angle of the pion in the center-of-mass coordinate system, and the results for the parameters are a = (1.55 ± 0.46(stat) + 0.32 - 0.8 (syst)) pb /sr and b = (13.1 ± 2.1 (stat)-2.7+1.0 (syst)) pb /sr. The data are compatible with vanishing p-waves and a sizable d-wave contribution. This finding should strongly constrain the contribution of the Δ isobar to the dd →4Heπ0 reaction and is, therefore, crucial for a quantitative understanding of quark mass effects in nuclear production reactions.

  20. Wave directional spreading from point field measurements.

    PubMed

    McAllister, M L; Venugopal, V; Borthwick, A G L

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465 , 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  1. U.S. IOOS coastal and ocean modeling testbed: Inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kerr, P. C.; Donahue, A. S.; Westerink, J. J.; Luettich, R. A.; Zheng, L. Y.; Weisberg, R. H.; Huang, Y.; Wang, H. V.; Teng, Y.; Forrest, D. R.; Roland, A.; Haase, A. T.; Kramer, A. W.; Taylor, A. A.; Rhome, J. R.; Feyen, J. C.; Signell, R. P.; Hanson, J. L.; Hope, M. E.; Estes, R. M.; Dominguez, R. A.; Dunbar, R. P.; Semeraro, L. N.; Westerink, H. J.; Kennedy, A. B.; Smith, J. M.; Powell, M. D.; Cardone, V. J.; Cox, A. T.

    2013-10-01

    A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA's official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH's local meshes failed to capture regional processes such as Ike's forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH's internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed.

  2. Wave directional spreading from point field measurements

    PubMed Central

    Venugopal, V.; Borthwick, A. G. L.

    2017-01-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices. PMID:28484326

  3. Stability Study of the 1978 Jetty Rehabilitation, Yaquina Bay, Oregon, in Response to 1979-1980 Storm Season Waves

    DTIC Science & Technology

    1994-08-01

    n.m.) (11 -km) grid of the Pacific Ocean between latitude 20ON to 60WN and longi- tude 1 10*W to 200*W using the WIS deepwater numerical model DWAVE ...represents a wave travelling towards the north). Comparisons with the DWAVE wind and wave results (Tracy and Payne 1990) were made with NOAA buoy...hindcast using the WIS numerical model DWAVE to the deepwater depth corresponding to the location of the NOAA buoy. Directional spectral infor- mation was

  4. Evaluation of decadal hindcasts by application of a satellite simulator for SSM/I & SSMIS

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Glowienka-Hense, R.; Hense, A.; Bodas-Salcedo, A.; Hollmann, R.

    2017-12-01

    A satellite simulator for the Special Sensor Microwave Imager (SSM/I) and for the Special Sensor Microwave Imager and Sounder (SSMIS) is developed and applied to decadal hindcast simulations performed within the MiKlip project (http://fona-miklip.de, funded by the Federal Ministry of Education and Research in Germany). The aim is to evaluate the climatological and predictive skill of the hindcasts focusing on water cycle components. Classical evaluation approaches commonly focus on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis as reference. The employment of the satellite simulator enables an evaluation in the instrument's parameter and thereby reduces uncertainties on the reference side. The simulators are developed utilizing the CFMIP Observation Simulator Package (COSP, http://cfmip.metoffice.com/COSP.html). On the reference side the SSM/I & SSMIS Fundamental Climate Data Record (FCDR) provided by the CM SAF (DOI: 10.5676/EUM_SAF_CM/FCDR_MWI/V003) is used which constitutes a quality controlled, recalibrated and intercalibrated record of brightness temperatures for the period from 1978 to 2015. Simulated brightness temperatures for selected channels which are sensitive to either water vapor content (22 GHz) or hydrometeor content (85 GHz, vertical minus horizontal polarization) as an indicator for precipitation are used. For lead year 1 analysis of variance (ANOVA) reveals potential predictability for large parts of the tropical ocean areas for both water vapor and precipitation related channels. Furthermore, the Conditional Ranked Probability Skill Score (CRPSS) indicates predictive skill for large parts of the tropical/sub-tropical Pacific, parts of the tropical/sub-tropical Atlantic and the equatorial Indian Ocean. For lead years 2-3 ANOVA still indicates potential predictability for equatorial ocean areas. Moreover, CRPSS indicates predictive skill for parts of the tropical

  5. Long-term wave measurements in a climate change perspective.

    NASA Astrophysics Data System (ADS)

    Pomaro, Angela; Bertotti, Luciana; Cavaleri, Luigi; Lionello, Piero; Portilla-Yandun, Jesus

    2017-04-01

    At present multi-decadal time series of wave data needed for climate studies are generally provided by long term model simulations (hindcasts) covering the area of interest. Examples, among many, at different scales are wave hindcasts adopting the wind fields of the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF, Reading, U.K.) at the global level and by regional re-analysis as for the Mediterranean Sea (Lionello and Sanna, 2006). Valuable as they are, these estimates are necessarily affected by the approximations involved, the more so because of the problems encountered within modelling processes in small basins using coarse resolution wind fields (Cavaleri and Bertotti, 2004). On the contrary, multi-decadal observed time series are rare. They have the evident advantage of somehow representing the real evolution of the waves, without the shortcomings associated with the limitation of models in reproducing the actual processes and the real variability within the wave fields. Obviously, observed wave time series are not exempt of problems. They represent a very local information, hence their use to describe the wave evolution at large scale is sometimes arguable and, in general, it needs the support of model simulations assessing to which extent the local value is representative of a large scale evolution. Local effects may prevent the identification of trends that are indeed present at large scale. Moreover, a regular maintenance, accurate monitoring and metadata information are crucial issues when considering the reliability of a time series for climate applications. Of course, where available, especially if for several decades, measured data are of great value for a number of reasons and can be valuable clues to delve further into the physics of the processes of interest, especially if considering that waves, as an integrated product of the local climate, if available in an area sensitive to even limited changes of the

  6. Predicting seabed burial of cylinders by wave-induced scour: Application to the sandy inner shelf off Florida and Massachusetts

    USGS Publications Warehouse

    Trembanis, A.C.; Friedrichs, Carl T.; Richardson, M.D.; Traykovski, P.; Howd, P.A.; Elmore, P.A.; Wever, T.F.

    2007-01-01

    A simple parameterized model for wave-induced burial of mine-like cylinders as a function of grain-size, time-varying, wave orbital velocity and mine diameter was implemented and assessed against results from inert instrumented mines placed off the Indian Rocks Beach (IRB, FL), and off the Martha's Vineyard Coastal Observatory (MVCO, Edgartown, MA). The steady flow scour parameters provided by Whitehouse (1998) for self-settling cylinders worked well for predicting burial by depth below the ambient seabed for O (0.5 m) diameter mines in fine sand at both sites. By including or excluding scour pit infilling, a range of percent burial by surface area was predicted that was also consistent with observations. Rapid scour pit infilling was often seen at MVCO but never at IRB, suggesting that the environmental presence of fine sediment plays a key role in promoting infilling. Overprediction of mine scour in coarse sand was corrected by assuming a mine within a field of large ripples buries only until it generates no more turbulence than that produced by surrounding bedforms. The feasibility of using a regional wave model to predict mine burial in both hindcast and real-time forecast mode was tested using the National Oceanic and Atmospheric Administration (NOAA, Washington, DC) WaveWatch 3 (WW3) model. Hindcast waves were adequate for useful operational forcing of mine burial predictions, but five-day wave forecasts introduced large errors. This investigation was part of a larger effort to develop simple yet reliable predictions of mine burial suitable for addressing the operational needs of the U.S. Navy. ?? 2007 IEEE.

  7. Observations and estimates of wave-driven water level extremes at the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-10-01

    Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.

  8. Hindcasting of decadal‐timescale estuarine bathymetric change with a tidal‐timescale model

    USGS Publications Warehouse

    Ganju, Neil K.; Schoellhamer, David H.; Jaffe, Bruce E.

    2009-01-01

    Hindcasting decadal-timescale bathymetric change in estuaries is prone to error due to limited data for initial conditions, boundary forcing, and calibration; computational limitations further hinder efforts. We developed and calibrated a tidal-timescale model to bathymetric change in Suisun Bay, California, over the 1867–1887 period. A general, multiple-timescale calibration ensured robustness over all timescales; two input reduction methods, the morphological hydrograph and the morphological acceleration factor, were applied at the decadal timescale. The model was calibrated to net bathymetric change in the entire basin; average error for bathymetric change over individual depth ranges was 37%. On a model cell-by-cell basis, performance for spatial amplitude correlation was poor over the majority of the domain, though spatial phase correlation was better, with 61% of the domain correctly indicated as erosional or depositional. Poor agreement was likely caused by the specification of initial bed composition, which was unknown during the 1867–1887 period. Cross-sectional bathymetric change between channels and flats, driven primarily by wind wave resuspension, was modeled with higher skill than longitudinal change, which is driven in part by gravitational circulation. The accelerated response of depth may have prevented gravitational circulation from being represented properly. As performance criteria became more stringent in a spatial sense, the error of the model increased. While these methods are useful for estimating basin-scale sedimentation changes, they may not be suitable for predicting specific locations of erosion or deposition. They do, however, provide a foundation for realistic estuarine geomorphic modeling applications.

  9. A Cause and A Solution for the Underprediction of Extreme Wave Events in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Ellenson, A. N.; Ozkan-Haller, H. T.; Thomson, J.; Brown, A. C.; Haller, M. C.

    2016-12-01

    Along the coastlines of Washington and Oregon, at least one 10 m wave height event occurs every year, and the strongest storms produce wave heights of 14-15 m. Extremely high wave heights can cause severe damage to coastal infrastructure and pose hazards to stakeholders along the coast. A system which can accurately predict such sea states is important for quantifying risk and aiding in preparation for extreme wave events. This study explores how to optimize forecast model performance for extreme wave events by utilizing different physics packages or wind input in four model configurations. The different wind input products consist of a reanalyzed Global Forecasting System (GFS) wind input and a Climate Forecast System Reanalysis (CFSR) from the National Center of Environmental Prediction (NCEP). The physics packages are the Tolman-Chalikov (1996) ST2 physics package and the Ardhuin et al (2009) ST4 physics package associated with version 4.18 of WaveWatch III. A hindcast was previously performed to assess the wave character along the Pacific Northwest Coastline for wave energy applications. Inspection of hindcast model results showed that the operational model, which consisted of ST2 physics and GFS wind, underpredicted events where wave height exceeded six meters.The under-prediction is most severe for cases with the combined conditions of a distant cyclone and a strong coastal jet. Three such cases were re-analyzed with the four model configurations. Model output is compared with observations at NDBC buoy 46050, offshore of Newport, OR. The model configuration consisting of ST4 physics package and CFSR wind input performs best as compared with the original model, reducing significant wave height underprediction from 1.25 m to approximately 0.67 m and mean wave direction error from 30 degrees to 17 degrees for wave heights greater than 6 m. Spectral analysis shows that the ST4-CFSR model configuration best resolves southerly wave energy, and all model

  10. Evaluation of the Ability of S2S and NMME Models to Predict Heat Waves Following Drought Events in the United States

    NASA Astrophysics Data System (ADS)

    Ford, T.; Dirmeyer, P.

    2016-12-01

    The influence of antecedent drought conditions on the onset of heat waves in North America is important as the establishment of past heat wave events has been connected to both advection of warm, dry air and limitation of local moisture recycling due to dry soils. The strong connection between the land surface and subsequent extreme heat offers promise that realistic soil moisture initialization could improve model forecast skill. However, there is still a lack of consensus about the (1) the role of antecedent drought conditions in forcing heat waves over North America and (2) the ability of numerical forecast models to predict extreme heat events at sub-seasonal to seasonal time scales. For this project, we use atmospheric reanalysis datasets to establish the connection between drought and subsequent extreme heat events. The Standardized Precipitation Index (SPI), computed over 30-, 60-, and 90-day intervals, is used to identify drought events, while the excess heat factor defines subsequent heat wave events. We focus on heat waves immediately following drought periods, including events coinciding with but not beginning prior to the start of drought, as well as heat wave events beginning no more than 3 days after the demise of a drought event. Hindcasts from individual model ensemble members of the Sub-seasonal to Seasonal Prediction (S2S) Project and the Phase II of the North American Multi-Model Ensemble (NMME) are assessed with regard to heat wave prediction. Each individual S2S and NMME ensemble member is evaluated to determine if their respective hindcasts are able to capture/predict heat wave events identified in the reanalysis products.

  11. Reliability of Long-Term Wave Conditions Predicted with Data Sets of Short Duration

    DTIC Science & Technology

    1985-03-01

    the validity and reliability of predicted probable wave heights obtained from data of limited duration. BACKGROUND: The basic steps listed by...interest to perform the analysis outlined in steps 2 to 5, the prediction would only be reliable for up to a 3year return period. For a 5-year data set...for long-term hindcast data . The data retrieval and analysis program known as the Sea State Engineering Analysis System (SEAS) makes handling of the

  12. The sinking of the El Faro: predicting real world rogue waves during Hurricane Joaquin.

    PubMed

    Fedele, Francesco; Lugni, Claudio; Chawla, Arun

    2017-09-11

    We present a study on the prediction of rogue waves during the 1-hour sea state of Hurricane Joaquin when the Merchant Vessel El Faro sank east of the Bahamas on October 1, 2015. High-resolution hindcast of hurricane-generated sea states and wave simulations are combined with novel probabilistic models to quantify the likelihood of rogue wave conditions. The data suggests that the El Faro vessel was drifting at an average speed of approximately 2.5 m/s prior to its sinking. As a result, we estimated that the probability that El Faro encounters a rogue wave whose crest height exceeds 14 meters while drifting over a time interval of 10 (50) minutes is ~1/400 (1/130). The largest simulated wave is generated by the constructive interference of elementary spectral components (linear dispersive focusing) enhanced by bound nonlinearities. Not surprisingly then, its characteristics are quite similar to those displayed by the Andrea, Draupner and Killard rogue waves.

  13. Evaluation of ozone hindcasts: optimal data sets to use, and results from simulations with the GMI model for 1990-2010.

    NASA Astrophysics Data System (ADS)

    Logan, J. A.; Megretskaia, I.; Liu, J.; Rodriguez, J. M.; Strahan, S. E.; Damon, M.; Steenrod, S. D.

    2012-12-01

    Simulations of atmospheric composition in the recent past (hindcasts) are a valuable tool for determining the causes of interannual variability (IAV) and trends in tropospheric ozone, including factors such as anthropogenic emissions, biomass burning, stratospheric input, and variability in meteorology. We will review the ozone data sets (balloon, satellite, and surface) that are the most reliable for evaluating hindcasts, and demonstrate their application with the GMI model. The GMI model is driven by the GEOS-5/MERRA reanalysis and includes both stratospheric and tropospheric chemistry. Preliminary analysis of a simulation for 1990-2010 using constant fossil fuel emissions is promising. The model reproduces the recent interannual variability (IAV) in ozone in the lowermost stratosphere seen in MLS and sonde data, as well as the IAV seen in sonde data in the lower stratosphere since 1995, and captures much of the IAV and short-term trends in surface ozone at remote sites, showing the influence of variability in dynamics. There was considerable IAV in ozone in the lowermost stratosphere in the Aura period, but almost none at European alpine sites in winter/spring, when ozone at 150 hPa has been shown to be correlated with that at 700 hPa in earlier years. The model matches the IAV in alpine ozone in Europe in July-September, including the high values in heat-waves, showing the role of variability in meteorology. A focus on IAV in each season is essential. The model matches IAV in MLS in the upper troposphere, TES tropical ozone, and the tropospheric ozone column (OMI/MLS) the best in tSropical regions controlled by ENSO related changes in dynamics. This study, combined with sensitivity simulations with changes to emissions, and simulations with passive tracers (see Abstract by Rodriguez et al. Session A76), lays the foundations for assessment of the mechanisms that have influenced tropospheric ozone in the past two decades.

  14. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case

    NASA Astrophysics Data System (ADS)

    Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D. J.; Tanelli, S.; Parodi, A.

    2014-03-01

    The city of Genoa, which places between the Tyrrhenian Sea and the Apennine mountains (Liguria, Italy) was rocked by severe flash floods on the 4th of November, 2011. Nearly 500 mm of rain, a third of the average annual rainfall, fell in six hours. Six people perished and millions of Euros in damages occurred. The synoptic-scale meteorological system moved across the Atlantic Ocean and into the Mediterranean generating floods that killed 5 people in Southern France, before moving over the Ligurian Sea and Genoa producing the extreme event studied here. Cloud-permitting simulations (1 km) of the finger-like convective system responsible for the torrential event over Genoa have been performed using Advanced Research Weather and Forecasting Model (ARW-WRF, version 3.3). Two different microphysics (WSM6 and Thompson) as well as three different convection closures (explicit, Kain-Fritsch, and Betts-Miller-Janjic) were evaluated to gain a deeper understanding of the physical processes underlying the observed heavy rain event and the model's capability to predict, in hindcast mode, its structure and evolution. The impact of forecast initialization and of model vertical discretization on hindcast results is also examined. Comparison between model hindcasts and observed fields provided by raingauge data, satellite data, and radar data show that this particular event is strongly sensitive to the details of the mesoscale initialization despite being evolved from a relatively large scale weather system. Only meso-γ details of the event were not well captured by the best setting of the ARW-WRF model and so peak hourly rainfalls were not exceptionally well reproduced. The results also show that specification of microphysical parameters suitable to these events have a positive impact on the prediction of heavy precipitation intensity values.

  15. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    NASA Astrophysics Data System (ADS)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  16. Forecasting and Hindcasting Waves With the SWAN Model in the Southern California Bight

    DTIC Science & Technology

    2007-01-01

    2006, there are active relevant websites run by the Coastal Data Information Program ( CDIP ). * Corresponding author. Fax: +1 228 688 4759. An...word "blocking" here implies that an island is completely output locations are locations of CDIP instruments (all buoys, blocking wave energy from some...direction. Blocking is not the except for 073). Some CDIP locations are referred to by three- only problem associated with geographic resolution, of

  17. Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction

    USGS Publications Warehouse

    Hoeke, R.; Storlazzi, C.; Ridd, P.

    2011-01-01

    This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.

  18. Evaluating Snow Data Assimilation Framework for Streamflow Forecasting Applications Using Hindcast Verification

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.

    2012-12-01

    Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and

  19. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    USGS Publications Warehouse

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  20. Impacts of wave-induced circulation in the surf zone on wave setup

    NASA Astrophysics Data System (ADS)

    Guérin, Thomas; Bertin, Xavier; Coulombier, Thibault; de Bakker, Anouk

    2018-03-01

    Wave setup corresponds to the increase in mean water level along the coast associated with the breaking of short-waves and is of key importance for coastal dynamics, as it contributes to storm surges and the generation of undertows. Although overall well explained by the divergence of the momentum flux associated with short waves in the surf zone, several studies reported substantial underestimations along the coastline. This paper investigates the impacts of the wave-induced circulation that takes place in the surf zone on wave setup, based on the analysis of 3D modelling results. A 3D phase-averaged modelling system using a vortex force formalism is applied to hindcast an unpublished field experiment, carried out at a dissipative beach under moderate to very energetic wave conditions (Hm 0 = 6m at breaking and Tp = 22s). When using an adaptive wave breaking parameterisation based on the beach slope, model predictions for water levels, short waves and undertows improved by about 30%, with errors reducing to 0.10 m, 0.10 m and 0.09 m/s, respectively. The analysis of model results suggests a very limited impact of the vertical circulation on wave setup at this dissipative beach. When extending this analysis to idealized simulations for different beach slopes ranging from 0.01 to 0.05, it shows that the contribution of the vertical circulation (horizontal and vertical advection and vertical viscosity terms) becomes more and more relevant as the beach slope increases. In contrast, for a given beach slope, the wave height at the breaking point has a limited impact on the relative contribution of the vertical circulation on the wave setup. For a slope of 0.05, the contribution of the terms associated with the vertical circulation accounts for up to 17% (i.e. a 20% increase) of the total setup at the shoreline, which provides a new explanation for the underestimations reported in previously published studies.

  1. A Forecast Skill Comparison between CliPAS One-Tier and Two-Tier Hindcast Experiments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Wang, B.; Kang, I.

    2006-05-01

    A 24-year (1981-2004) MME hindcast experimental dataset is produced under the "Climate Prediction and Its Application to Society" (CliPAS) project sponsored by Korean Meteorological Administration (KMA). This dataset consists of 5 one-tier model systems from National Aeronautics and Space Administration (NASA), National Center for Environmental Prediction (NCEP), Frontier Research Center for Global Change (FRCGC), Seoul National University (SNU), and University of Hawaii (UH) and 5 two-tier model systems from Florida State University (FSU), Geophysical Fluid Dynamic Lab (GFDL), SNU, and UH. Multi-model Ensemble (MME) Forecast skills of seasonal precipitation and atmospheric circulation are compared between CliPAS one-tier and two-tier hindcast experiments for seasonal mean precipitation and atmospheric circulation. For winter prediction, two-tier MME has a comparable skill to one-tier MME. However, it is demonstrated that in the Asian-Australian monsoon (A-AM) heavy precipitation regions, one-tier systems are superior to two-tier systems in summer season. The reason is that inclusion of the local warm pool- monsoon interaction in the one-tier system improves the ENSO teleconnection with monsoon regions. Both one-tier and two-tier MME fail to predict Indian monsoon circulation, while they have a significantly good skill for the broad scale monsoon circulation defined by Webster and Yang index. One-tier system has a much better skill to predict the monsoon circulation over the western North pacific where air-sea interaction plays an important role than two-tier system.

  2. IFIS Model-Plus: A Web-Based GUI for Visualization, Comparison and Evaluation of Distributed Flood Forecasts and Hindcasts

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Della Libera Zanchetta, A.; Mantilla, R.; Demir, I.

    2017-12-01

    This work explores the use of hydroinformatics tools to provide an user friendly and accessible interface for executing and assessing the output of realtime flood forecasts using distributed hydrological models. The main result is the implementation of a web system that uses an Iowa Flood Information System (IFIS)-based environment for graphical displays of rainfall-runoff simulation results for both real-time and past storm events. It communicates with ASYNCH ODE solver to perform large-scale distributed hydrological modeling based on segmentation of the terrain into hillslope-link hydrologic units. The cyber-platform also allows hindcast of model performance by testing multiple model configurations and assumptions of vertical flows in the soils. The scope of the currently implemented system is the entire set of contributing watersheds for the territory of the state of Iowa. The interface provides resources for visualization of animated maps for different water-related modeled states of the environment, including flood-waves propagation with classification of flood magnitude, runoff generation, surface soil moisture and total water column in the soil. Additional tools for comparing different model configurations and performing model evaluation by comparing to observed variables at monitored sites are also available. The user friendly interface has been published to the web under the URL http://ifis.iowafloodcenter.org/ifis/sc/modelplus/.

  3. Continuously on-­going regional climate hindcast simulations for impact applications

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Piringer, Martin; Kaufmann, Hildegard; Knauder, Werner; Resch, Gernot; Andre, Konrad

    2017-04-01

    Observational data for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation performed with the regional climate model COSMO-CLM is forced by ERAinterim and optimized for the Alpine Region. The simulation available for the period of 1979-2015 in a spatial resolution of about 10km is prolonged ongoing and fullfils the customer's needs with respect of output variables, levels, intervals and statistical measures. One of the main tasks is to capture strong precipitation events which often occur during summer when low pressure systems develop over the Golf of Genoa, moving to the Northeast. This leads to floods and landslide events in Austria, Czech Republic and Germany. Such events are not sufficiently represented in the CORDEX-evaluation runs. ZAMG use high quality gridded precipitation and temperature data for the Alpine Region (1-6km) to evaluate the model performance. Data is provided e.g. to hydrological modellers (high water, low water), but also to assess icing capability of infrastructure or the calculation the separation distances between livestock

  4. Multiscale climate emulator of multimodal wave spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, Ana; Hegermiller, Christie A.; Antolinez, Jose A. A.; Camus, Paula; Vitousek, Sean; Ruggiero, Peter; Barnard, Patrick L.; Erikson, Li H.; Tomás, Antonio; Mendez, Fernando J.

    2017-02-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this complex problem tractable using computationally expensive numerical models. So far, the skill of statistical-downscaling model-based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  5. Multiscale Climate Emulator of Multimodal Wave Spectra: MUSCLE-spectra

    NASA Astrophysics Data System (ADS)

    Rueda, A.; Hegermiller, C.; Alvarez Antolinez, J. A.; Camus, P.; Vitousek, S.; Ruggiero, P.; Barnard, P.; Erikson, L. H.; Tomas, A.; Mendez, F. J.

    2016-12-01

    Characterization of multimodal directional wave spectra is important for many offshore and coastal applications, such as marine forecasting, coastal hazard assessment, and design of offshore wave energy farms and coastal structures. However, the multivariate and multiscale nature of wave climate variability makes this problem complex yet tractable using computationally-expensive numerical models. So far, the skill of statistical-downscaling models based parametric (unimodal) wave conditions is limited in large ocean basins such as the Pacific. The recent availability of long-term directional spectral data from buoys and wave hindcast models allows for development of stochastic models that include multimodal sea-state parameters. This work introduces a statistical-downscaling framework based on weather types to predict multimodal wave spectra (e.g., significant wave height, mean wave period, and mean wave direction from different storm systems, including sea and swells) from large-scale atmospheric pressure fields. For each weather type, variables of interest are modeled using the categorical distribution for the sea-state type, the Generalized Extreme Value (GEV) distribution for wave height and wave period, a multivariate Gaussian copula for the interdependence between variables, and a Markov chain model for the chronology of daily weather types. We apply the model to the Southern California coast, where local seas and swells from both the Northern and Southern Hemispheres contribute to the multimodal wave spectrum. This work allows attribution of particular extreme multimodal wave events to specific atmospheric conditions, expanding knowledge of time-dependent, climate-driven offshore and coastal sea-state conditions that have a significant influence on local nearshore processes, coastal morphology, and flood hazards.

  6. Evaluation of the multi-model CORDEX-Africa hindcast using RCMES

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.

    2011-12-01

    Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed

  7. numerical broadband modelling of ocean waves, from 1 to 300 s: implications for seismic wave sources and wave climate studies

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Stutzmann, E.; Gualtieri, L.

    2014-12-01

    Ocean waves provide most of the energy that feeds the continuous vertical oscillations of the solid Earth. Three period bands are usually identified. The hum contains periods longer than 30 s, and the primary and secondary peaks are usually centered around 15 and 5 s, respectively. Motions in all three bands are recorded everywhere on our planet and can provide information on both the solid Earth structure and the ocean wave climate over the past century. Here we describe recent efforts to extend the range of validity of ocean wave models to cover periods from 1 to 300 s (Ardhuin et al., Ocean Modelling 2014), and the resulting public database of ocean wave spectra (http://tinyurl.com/iowagaftp/HINDCAST/ ). We particularly discuss the sources of uncertainty for building a numerical model of acoustic and seismic noise on this knowledge of ocean wave spectra. For acoustic periods shorter than 3 seconds, the main uncertainties are the directional distributions of wave energy (Ardhuin et al., J. Acoust. Soc. Amer. 2013). For intermediate periods (3 to 25 s), the propagation properties of seismic waves are probably the main source of error when producing synthetic spectra of Rayleigh waves (Ardhuin et al. JGR 2011, Stutzmann et al. GJI 2012). For the longer periods (25 to 300 s), the poor knowledge of the bottom topography details may be the limiting factor for estimating hum spectra or inverting hum measurements in properties of the infragravity wave field. All in all, the space and time variability of recorded seismic and acoustic spectra is generally well reproduced in the band 3 to 300 s, and work on shorter periods is under way. This direct model can be used to search for missing noise sources, such as wave scattering in the marginal ice zone, find events relevant for solid earth studies (e.g. Obrebski et al. JGR 2013) or invert wave climate properties from microseismic records. The figure shows measured spectra of the vertical ground acceleration, and modeled

  8. Numerical Investigation of the Middle Atlantic Bight Shelfbreak Frontal Circulation Using a High-Resolution Ocean Hindcast Model

    DTIC Science & Technology

    2010-05-01

    circulation from December 2003 to June 2008 . The model is driven by tidal harmonics, realistic atmospheric forcing, and dynamically consistent initial and open...important element of the regional circulation (He and Wilkin 2006). We applied the method of Mellor and Yamada (1982) to compute vertical turbulent...shelfbreak ROMS hindcast ran continuously from December 2003 through January 2008 . Initial conditions were taken from the MABGOM ROMS simulation on 1

  9. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.

  10. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Pohlmann, Holger; Kröger, Jürgen; Greatbatch, Richard J.; Müller, Wolfgang A.

    2017-10-01

    Low prediction skill in the tropical Pacific is a common problem in decadal prediction systems, especially for lead years 2-5 which, in many systems, is lower than in uninitialized experiments. On the other hand, the tropical Pacific is of almost worldwide climate relevance through its teleconnections with other tropical and extratropical regions and also of importance for global mean temperature. Understanding the causes of the reduced prediction skill is thus of major interest for decadal climate predictions. We look into the problem of reduced prediction skill by analyzing the Max Planck Institute Earth System Model (MPI-ESM) decadal hindcasts for the fifth phase of the Climate Model Intercomparison Project and performing a sensitivity experiment in which hindcasts are initialized from a model run forced only by surface wind stress. In both systems, sea surface temperature variability in the tropical Pacific is successfully initialized, but most skill is lost at lead years 2-5. Utilizing the sensitivity experiment enables us to pin down the reason for the reduced prediction skill in MPI-ESM to errors in wind stress used for the initialization. A spurious trend in the wind stress forcing displaces the equatorial thermocline in MPI-ESM unrealistically. When the climate model is then switched into its forecast mode, the recovery process triggers artificial El Niño and La Niña events at the surface. Our results demonstrate the importance of realistic wind stress products for the initialization of decadal predictions.

  11. Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.

    Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate

  12. Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module

    DOE PAGES

    Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.

    2017-11-29

    Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate

  13. Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module

    NASA Astrophysics Data System (ADS)

    Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.

    2017-11-01

    Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is

  14. AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales

    NASA Astrophysics Data System (ADS)

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    2000-08-01

    Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in

  15. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  16. A test-bed modeling study for wave resource assessment

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  17. Exploring the nearshore marine wind profile from field measurements and numerical hindcast

    NASA Astrophysics Data System (ADS)

    del Jesus, F.; Menendez, M.; Guanche, R.; Losada, I.

    2012-12-01

    Wind power is the predominant offshore renewable energy resource. In the last years, offshore wind farms have become a technically feasible source of electrical power. The economic feasibility of offshore wind farms depends on the quality of the offshore wind conditions compared to that of onshore sites. Installation and maintenance costs must be balanced with more hours and a higher quality of the available resources. European offshore wind development has revealed that the optimum offshore sites are those in which the distance from the coast is limited with high available resource. Due to the growth in the height of the turbines and the complexity of the coast, with interactions between inland wind/coastal orography and ocean winds, there is a need for field measurements and validation of numerical models to understand the marine wind profile near the coast. Moreover, recent studies have pointed out that the logarithmic law describing the vertical wind profile presents limitations. The aim of this work is to characterize the nearshore vertical wind profile in the medium atmosphere boundary layer. Instrumental observations analyzed in this work come from the Idermar project (www.Idermar.es). Three floating masts deployed at different locations on the Cantabrian coast provide wind measurements from a height of 20 to 90 meters. Wind speed and direction are measured as well as several meteorological variables at different heights of the profile. The shortest wind time series has over one year of data. A 20 year high-resolution atmospheric hindcast, using the WRF-ARW model and focusing on hourly offshore wind fields, is also analyzed. Two datasets have been evaluated: a European reanalysis with a ~15 Km spatial resolution, and a hybrid downscaling of wind fields with a spatial resolution of one nautical mile over the northern coast of Spain.. These numerical hindcasts have been validated based on field measurement data. Several parameterizations of the vertical wind

  18. Sensitivity of a numerical wave model on wind re-analysis datasets

    NASA Astrophysics Data System (ADS)

    Lavidas, George; Venugopal, Vengatesan; Friedrich, Daniel

    2017-03-01

    Wind is the dominant process for wave generation. Detailed evaluation of metocean conditions strengthens our understanding of issues concerning potential offshore applications. However, the scarcity of buoys and high cost of monitoring systems pose a barrier to properly defining offshore conditions. Through use of numerical wave models, metocean conditions can be hindcasted and forecasted providing reliable characterisations. This study reports the sensitivity of wind inputs on a numerical wave model for the Scottish region. Two re-analysis wind datasets with different spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and the CFSR-NCEP Re-Analysis dataset. Different wind products alter results, affecting the accuracy obtained. The scope of this study is to assess different available wind databases and provide information concerning the most appropriate wind dataset for the specific region, based on temporal, spatial and geographic terms for wave modelling and offshore applications. Both wind input datasets delivered results from the numerical wave model with good correlation. Wave results by the 1-h dataset have higher peaks and lower biases, in expense of a high scatter index. On the other hand, the 6-h dataset has lower scatter but higher biases. The study shows how wind dataset affects the numerical wave modelling performance, and that depending on location and study needs, different wind inputs should be considered.

  19. Temporal downscaling of decadal sediment load estimates to a daily interval for use in hindcast simulations

    USGS Publications Warehouse

    Ganju, N.K.; Knowles, N.; Schoellhamer, D.H.

    2008-01-01

    In this study we used hydrologic proxies to develop a daily sediment load time-series, which agrees with decadal sediment load estimates, when integrated. Hindcast simulations of bathymetric change in estuaries require daily sediment loads from major tributary rivers, to capture the episodic delivery of sediment during multi-day freshwater flow pulses. Two independent decadal sediment load estimates are available for the Sacramento/San Joaquin River Delta, California prior to 1959, but they must be downscaled to a daily interval for use in hindcast models. Daily flow and sediment load data to the Delta are available after 1930 and 1959, respectively, but bathymetric change simulations for San Francisco Bay prior to this require a method to generate daily sediment load estimates into the Delta. We used two historical proxies, monthly rainfall and unimpaired flow magnitudes, to generate monthly unimpaired flows to the Sacramento/San Joaquin Delta for the 1851-1929 period. This step generated the shape of the monthly hydrograph. These historical monthly flows were compared to unimpaired monthly flows from the modern era (1967-1987), and a least-squares metric selected a modern water year analogue for each historical water year. The daily hydrograph for the modern analogue was then assigned to the historical year and scaled to match the flow volume estimated by dendrochronology methods, providing the correct total flow for the year. We applied a sediment rating curve to this time-series of daily flows, to generate daily sediment loads for 1851-1958. The rating curve was calibrated with the two independent decadal sediment load estimates, over two distinct periods. This novel technique retained the timing and magnitude of freshwater flows and sediment loads, without damping variability or net sediment loads to San Francisco Bay. The time-series represents the hydraulic mining period with sustained periods of increased sediment loads, and a dramatic decrease after 1910

  20. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Dodet, Guillaume; Masselink, Gerd; Scott, Tim

    2017-02-01

    A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52°N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52°N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.

  1. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei-Cheng; Yang, Zhaoqing; Wang, Taiping

    This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization using the unstructured-grid SWAN model coupled with a nested-grid WWIII model. The flexibility of models of various spatial resolutions and the effects of open- boundary conditions simulated by a nested-grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured-grid modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Centermore » Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the model skill of the ST2 physics package for predicting wave power density for large waves, which is important for wave resource assessment, device load calculation, and risk management. In addition, bivariate distributions show the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than that with the ST2 physics package. This study demonstrated that the unstructured-grid wave modeling approach, driven by the nested-grid regional WWIII outputs with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (10^2 km).« less

  2. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  3. Real time wave forecasting using wind time history and numerical model

    NASA Astrophysics Data System (ADS)

    Jain, Pooja; Deo, M. C.; Latha, G.; Rajendran, V.

    Operational activities in the ocean like planning for structural repairs or fishing expeditions require real time prediction of waves over typical time duration of say a few hours. Such predictions can be made by using a numerical model or a time series model employing continuously recorded waves. This paper presents another option to do so and it is based on a different time series approach in which the input is in the form of preceding wind speed and wind direction observations. This would be useful for those stations where the costly wave buoys are not deployed and instead only meteorological buoys measuring wind are moored. The technique employs alternative artificial intelligence approaches of an artificial neural network (ANN), genetic programming (GP) and model tree (MT) to carry out the time series modeling of wind to obtain waves. Wind observations at four offshore sites along the east coast of India were used. For calibration purpose the wave data was generated using a numerical model. The predicted waves obtained using the proposed time series models when compared with the numerically generated waves showed good resemblance in terms of the selected error criteria. Large differences across the chosen techniques of ANN, GP, MT were not noticed. Wave hindcasting at the same time step and the predictions over shorter lead times were better than the predictions over longer lead times. The proposed method is a cost effective and convenient option when a site-specific information is desired.

  4. Pacific Coast Hindcast Deepwater Wave Information.

    DTIC Science & Technology

    1986-03-01

    32 8 123^ 7.0-7.9 . . 3 ±7 9 191 8.-9 1 18a 02a9.0-99 5. 20 10.0+ 20 6 27 "TOTAL 8 17t 264 186 172 108 18 1 0 0 MEAN HS(M) 5.5 LARGEST HS(M): 12.3...2527 1184 181 58 10~o-i. 1 95o 141 ,. 3.0-3.9 434 219 432 1351 1878 765 10 51c. 4.0-4.9 53 162 56 340 8E6 626 44 L1175.0-5.9 30 46 46 366 264 63 e 56.0...DEVIATION OF HSIMETRES)= 1.9 STt WAPD DEVIATICO OF IP(SECONDS)= 2.4 -" L4.3SEST HSU1ETPES)= 14.8 IP (SECOODS)ASSCC. WITH THE LARGEST HSZ 14.3 AVE

  5. Generation of Wind Waves in the Persian Gulf: A Numerical Investigation

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kaihatu, J. M.

    2010-12-01

    The Persian Gulf is a long shallow basin located between the Arabian Peninsula and Iran. Wind-wave generation processes in the region are often affected by the shamal, a strong wind caused by the passage of cold fronts over the mountains of Turkey and Kurdistan. This can set up sudden energetic wind seas, hampering marine traffic. It is not immediately clear whether present wind-wave models can predict this intense, short-term growth and evolution under these conditions. Furthermore, few wave measurements or models studies have been performed in this area. In advance of a wind-wave generation experiment to be conducted off the Qatar coast, we performed a climatological study of the wind wave environment in the Persian Gulf. Using the SWAN wave model as a baseline of the state of the art, five years (2004-2008)of wind field model hindcasts from COAMPS are used as forcing.To investigate the sensitivity of the results to bathymetry, the climatological analysis was run twice more, with refraction or wave breaking deactivated, in turn. The results do not show significant differences with and without refraction, which implies the wind-wave process in Persian Gulf is less dominated by the variation of bathymetry. However the results show that a large amount of wave is dissipated by wave breaking. Wide, flat and shallow bathymetry in Persian Gulf results in a long-fetch scenario, particularly for waves arriving from the northwest. It implies that long period wind-generated waves can be fully generated in this region. Wave height is therefore fully grown by the long-fetch condition, so as to lead in higher possibility of wave breaking and energy dissipation.

  6. Forecasting and Hindcasting Waves In and Near the Marginal Ice Zone: Wave Modeling and the ONR Sea State Field Experiment

    DTIC Science & Technology

    2018-04-12

    non-directional) wave spectra, but we consider the energy at high frequencies to be unreliable, so we only use significant waveheight Hs and dominant...spectral density, N=E/s), which is a function of wavenumber or frequency (k or s), direction (θ), space (x,y), and time (t), with spectral density...Elgar 1987). As the spectra are now co-located in time, space , and frequency , the inversion is simply a minimization process for |logVR(6jvH>w(9

  7. Modeled changes in extreme wave climates of the tropical Pacific over the 21st century: Implications for U.S. and U.S.-Affiliated atoll islands

    USGS Publications Warehouse

    Shope, J.B.; Storlazzi, Curt; Erikson, Li H.; Hegermiller, C.A.

    2015-01-01

    Wave heights, periods, and directions were forecast for 2081–2100 using output from four coupled atmosphere–ocean global climate models for representative concentration pathway scenarios RCP4.5 and RCP8.5. Global climate model wind fields were used to drive the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. December–February 95th percentile extreme significant wave heights under both climate scenarios decreased by 2100 compared to 1976–2010 historical values. Trends under both scenarios were similar, with the higher-emission RCP8.5 scenario displaying a greater decrease in extreme significant wave heights than where emissions are reduced in the RCP4.5 scenario. Central equatorial Pacific Islands displayed the greatest departure from historical values; significant wave heights decreased there by as much as 0.32 m during December–February and associated wave directions rotated approximately 30° clockwise during June–August compared to hindcast data.

  8. Population and genetic study of Vibrio cholerae from the amazon environment confirms that the WASA-1 prophage is the main marker of the epidemic strain that circulated in the region.

    PubMed

    Morais, Lena Líllian Canto de Sá; Garza, Daniel Rios; Loureiro, Edvaldo Carlos Brito; Vale, Elivam Rodrigues; Santos, Denise Suéllem Amorim de Sousa; Corrêa, Vanessa Cavaleiro; Sousa, Nayara Rufino; Gurjão, Tereza Cristina Monteiro; Santos, Elisabeth Conceição de Oliveira; Vieira, Verônica Viana; da Fonseca, Erica Lourenço; Vicente, Ana Carolina Paulo

    2013-01-01

    Vibrio cholerae is a natural inhabitant of many aquatic environments in the world. Biotypes harboring similar virulence-related gene clusters are the causative agents of epidemic cholera, but the majority of strains are harmless to humans. Since 1971, environmental surveillance for potentially pathogenic V. cholerae has resulted in the isolation of many strains from the Brazilian Amazon aquatic ecosystem. Most of these strains are from the non-O1/non-O139 serogroups (NAGs), but toxigenic O1 strains were isolated during the Latin America cholera epidemic in the region (1991-1996). A collection of environmental V. cholerae strains from the Brazilian Amazon belonging to pre-epidemic (1977-1990), epidemic (1991-1996), and post-epidemic (1996-2007) periods in the region, was analyzed. The presence of genes related to virulence within the species and the genetic relationship among the strains were studied. These variables and the information available concerning the strains were used to build a Bayesian multivariate dependency model to distinguish the importance of each variable in determining the others. Some genes related to the epidemic strains were found in environmental NAGs during and after the epidemic. Significant diversity among the virulence-related gene content was observed among O1 strains isolated from the environment during the epidemic period, but not from clinical isolates, which were analyzed as controls. Despite this diversity, these strains exhibited similar PFGE profiles. PFGE profiles were significant while separating potentially epidemic clones from indigenous strains. No significant correlation with isolation source, place or period was observed. The presence of the WASA-1 prophage significantly correlated with serogroups, PFGE profiles, and the presence of virulence-related genes. This study provides a broad characterization of the environmental V. cholerae population from the Amazon, and also highlights the importance of identifying precisely

  9. Population and Genetic Study of Vibrio cholerae from the Amazon Environment Confirms that the WASA-1 Prophage Is the Main Marker of the Epidemic Strain that Circulated in the Region

    PubMed Central

    Morais, Lena Líllian Canto de Sá; Garza, Daniel Rios; Loureiro, Edvaldo Carlos Brito; Vale, Elivam Rodrigues; Santos, Denise Suéllem Amorim de Sousa; Corrêa, Vanessa Cavaleiro; Sousa, Nayara Rufino; Gurjão, Tereza Cristina Monteiro; Santos, Elisabeth Conceição de Oliveira; Vieira, Verônica Viana; da Fonseca, Erica Lourenço; Vicente, Ana Carolina Paulo

    2013-01-01

    Vibrio cholerae is a natural inhabitant of many aquatic environments in the world. Biotypes harboring similar virulence-related gene clusters are the causative agents of epidemic cholera, but the majority of strains are harmless to humans. Since 1971, environmental surveillance for potentially pathogenic V. cholerae has resulted in the isolation of many strains from the Brazilian Amazon aquatic ecosystem. Most of these strains are from the non-O1/non-O139 serogroups (NAGs), but toxigenic O1 strains were isolated during the Latin America cholera epidemic in the region (1991-1996). A collection of environmental V. cholerae strains from the Brazilian Amazon belonging to pre-epidemic (1977-1990), epidemic (1991-1996), and post-epidemic (1996-2007) periods in the region, was analyzed. The presence of genes related to virulence within the species and the genetic relationship among the strains were studied. These variables and the information available concerning the strains were used to build a Bayesian multivariate dependency model to distinguish the importance of each variable in determining the others. Some genes related to the epidemic strains were found in environmental NAGs during and after the epidemic. Significant diversity among the virulence-related gene content was observed among O1 strains isolated from the environment during the epidemic period, but not from clinical isolates, which were analyzed as controls. Despite this diversity, these strains exhibited similar PFGE profiles. PFGE profiles were significant while separating potentially epidemic clones from indigenous strains. No significant correlation with isolation source, place or period was observed. The presence of the WASA-1 prophage significantly correlated with serogroups, PFGE profiles, and the presence of virulence-related genes. This study provides a broad characterization of the environmental V. cholerae population from the Amazon, and also highlights the importance of identifying precisely

  10. Model Simulations of Waves in Hurricane Juan

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Toulany, B.; Padilla-Hernandez, R.; Hu, Y.; Smith, P.; Zhang, W.; Zou, Q.; Ren, X.

    2004-05-01

    Hurricane Juan made landfall at 0300 UTC near Halifax Nova Scotia. This was a category 2 hurricane with winds of 44 m/s, the largest storm to pass over these coastal areas in several decades. Associated high ocean waves were experienced in coastal waters, from Peggy's Cove to Sheet Harbour, growing to epic proportions on the Scotian Shelf, and exceeding the 100-year return wave based on the present climatology. As part of the GoMOOS program (Gulf of Maine Ocean Observing System, www.gomoos.org), winds from the USA Navy COAMPS (Coupled Ocean Atmosphere Model Prediction System) were used to evaluate and compare three widely-used third generation numerical wave models, SWAN, WAM and WaveWatch-III (hereafter WW3) for accuracy, with in situ measurements. Model comparisons consist of a set of composite model systems, respectively nesting WAM, WW3 and SWAN in WAM and WW3. We report results from the intermediate-resolution grid for Hurricane Juan. Wave measurements were made using four operational deep-water buoys (C44258, C44142, C44137, 44005), by a conventional directional wave rider (DWR) moored offshore from Lunenburg Bay, and also by two acoustic Doppler current profiler (ADCP) located (1) near an oil rig on Sable Island Bank, in relatively shallow water, and (2) near the outer boundary of Lunenburg Bay. We discuss the reliability of DWR wave data compared to ADCP wave data. We show that all models provide reliable hindcasts for significant wave height (Hs) and for peak period (Tp) for Juan, although a clear under-estimation of Hs at the peak of the storm is evident, compared to observations. A feature in the COAMPS storm simulation is that the storm track appears to be slightly to the east of that of Quikscat scatterometer data. Comparisons between models and 2-dimensional wave spectra are presented. Preliminary results suggest that the recently released upgrade to the WW3 model shows slightly enhanced skill compared to the other models.

  11. Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation

    NASA Astrophysics Data System (ADS)

    Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.

    2016-12-01

    The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled

  12. CMIP5-based global wave climate projections including the entire Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  13. Spectral modelling of ice-induced wave decay: implementation of a new viscoelastic theory in WAVEWATCH III

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Rogers, W. E.; Babanin, A. V.; Squire, V. A.; Mosig, J. E. M.; Li, J.; Guan, C.

    2017-12-01

    A new viscoelastic ice layer model is implemented in the third generation spectral wave model WAVEWATCH III to estimate the ice-induced, frequency-dependent wave attenuation rate. Two case studies are then conducted with this viscoelastic model: one is the hindcast of waves in the autumn Beaufort Sea, 2015, and the other is the modelling of wave fields in the Antarctic marginal ice zone (MIZ), 2012. It is demonstrated that the viscoelastic model is capable of reproducing the measured significant wave heights (Ηs) in these two different geophysical regions. The sensitivity of the simulated wave height on different source terms -- ice-induced decay Sice and other physical processes Sother such as wind input Sin, nonlinear four-wave interaction Snl -- is also investigated in this study. For the Antarctic MIZ experiment, Sother is found to be much less than Sice and thus contributes little to the simulated Hs. The trend of the wave height decay (dHs/dx) discovered recently -- saturating at large wave heights -- is well reproduced by the standalone linear viscoelastic model. The flattening of dHs/dx is most likely due to the only presence of longer waves, with the shorter waves having been already low-pass filtered. Nonetheless, Sother should not be disregarded within a more general modelling perspective as Sin and Snl is shown to be comparable or even much higher than Sice in the Beaufort Sea case.

  14. Linking North Atlantic Teleconnections to Latitudinal Variability of Wave Climate Along the North American Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Provancha, C.; Adams, P. N.; Hegermiller, C.; Storlazzi, C. D.

    2015-12-01

    Shoreline change via coastal erosion and accretion is largely influenced by variations in ocean wave climate. Identifying the sources of these variations is challenging because the timing of wave energy delivery varies over multiple timescales within ocean basins. We present the results of an investigation of USACE Wave Information Studies hindcast hourly wave heights, periods, and directions along the North American Atlantic coast from 1980-2012, designed to explore links between wave climate and teleconnection patterns. Trends in median and extreme significant wave heights (SWHs) demonstrate that mean monthly SWHs increased from 1 to 5 cm/yr along the roughly 3000 km reach of study area, with changes in hurricane season waves appearing to be most influential in producing the overall trends. Distributions of SWHs categorized by North Atlantic Oscillation (NAO) phase, show that positive-period NAO SWHs are greater than negative-period NAO SWHs along the entire eastern seaboard (25°N to 45°N). The most prominent wave direction off Cape Cod, MA during positive-period NAO is approximately 105°, as compared to approximately 75° during negative-period NAO. Prominent wave directions between Cape Canaveral, FL, and Savannah, GA exhibit a similar shift but during opposite phases of the NAO. The results of this analysis suggest that the atmosphere-ocean interactions associated with contrasting NAO phases can significantly change the wave climate observed offshore along the North American Atlantic coast, altering alongshore wave energy fluxes and sediment transport patterns along the coast.

  15. The response of the southwest Western Australian wave climate to Indian Ocean climate variability

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.

    2018-03-01

    Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.

  16. Long-run evolution of the global economy: 2. Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-03-01

    Long-range climate forecasts rely upon integrated assessment models that link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework, outlined in Part 1, that is based on physical principles rather than explicitly resolved societal dynamics. Relative to a reference model of persistence in trends, model hindcasts that are initialized with data from 1950 to 1960 reproduce trends in global economic production and energy consumption between 2000 and 2010 with a skill score greater than 90%. In part, such high skill appears to be because civilization has responded to an impulse of fossil fuel discovery in the mid-twentieth century. Forecasting the coming century will be more of a challenge because the effect of the impulse appears to have nearly run its course. Nonetheless, the model offers physically constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  17. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  18. Evolution of Indian land surface biases in the seasonal hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    NASA Astrophysics Data System (ADS)

    Chevuturi, Amulya; Turner, Andrew G.; Woolnoug, Steve J.; Martin, Gill

    2017-04-01

    In this study we investigate the development of biases over the Indian region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. These mean state biases lead to strong precipitation errors during the monsoon over the subcontinent. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with variety of observations to assess the evolution of the mean state biases over the Indian land surface. All biases within the model develop rapidly, particularly surface heat and radiation flux biases. Strong biases are present within the model climatology from pre-monsoon (May) in the surface heat fluxes over India (higher sensible / lower latent heat fluxes) when compared to observed estimates. The early evolution of such biases prior to onset rains suggests possible problems with the land surface scheme or soil moisture errors. Further analysis of soil moisture over the Indian land surface shows a dry bias present from the beginning of the hindcasts during the pre-monsoon. This lasts until the after the monsoon develops (July) after which there is a wet bias over the region. Soil moisture used for initialization of the model also shows a dry bias when compared against the observed estimates, which may lead to the same in the model. The early dry bias in the model may reduce local moisture availability through surface evaporation and thus may possibly limit precipitation recycling. On this premise, we identify and test the sensitivity of the monsoon in the model against higher soil moisture forcing. We run sensitivity experiments initiated using gridpoint-wise annual soil moisture maxima over the Indian

  19. Hindcast of water availability in regional aquifer systems using MODFLOW Farm Process

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Faunt, Claudia C.; Phillips, Steven P.

    2015-01-01

    Coupled groundwater and surface-water components of the hydrologic cycle can be simulated by the Farm Process for MODFLOW (MF-FMP) in both irrigated and non-irrigated areas and aquifer-storage and recovery systems. MF-FMP is being applied to three productive agricultural regions of different scale in the State of California, USA, to assess the availability of water and the impacts of alternative management decisions. Hindcast simulations are conducted for similar periods from the 1960s to near recent times. Historical groundwater pumpage is mostly unknown in one region (Central Valley) and is estimated by MF-FMP. In another region (Pajaro Valley), recorded pumpage is used to calibrate model-estimated pumpage. Multiple types of observations are used to estimate uncertain parameters, such as hydraulic, land-use, and farm properties. MF-FMP simulates how climate variability and water-import availability affect water demand and supply. MF-FMP can be used to predict water availability based on anticipated changes in anthropogenic or natural water demands. Keywords groundwater; surface-water; irrigation; water availability; response to climate variability/change

  20. Magnitudes of nearshore waves generated by tropical cyclone Winston, the strongest landfalling cyclone in South Pacific records. Unprecedented or unremarkable?

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Lau, A. Y. Annie

    2018-02-01

    We delimit nearshore storm waves generated by category-5 Tropical Cyclone Winston in February 2016 on the northern Fijian island of Taveuni. Wave magnitudes (heights and flow velocities) are hindcast by inverse modelling, based on the characteristics of large carbonate boulders (maximum 33.8 m3, 60.9 metric tons) that were quarried from reef-front sources, transported and deposited on coral reef platforms during Winston and older extreme events. Results indicate that Winston's storm waves on the seaward-margin of reefs fringing the southeastern coasts of Taveuni reached over 10 m in height and generated flow velocities of 14 m s- 1, thus coinciding with the scale of the biggest ancient storms as estimated from pre-existing boulder evidence. We conclude that although Winston tracked an uncommon path and was described as the most powerful storm on record to make landfall in the Fiji Islands, its coastal wave characteristics were not unprecedented on centennial timescales. At least seven events of comparable magnitude have occurred over the last 400 years.

  1. Atlantic Coast Hindcast, Deepwater, Significant Wave Information

    DTIC Science & Technology

    1981-01-01

    251 91 ISO 110 20 662 4.00 - 4.4V96 117 90 96 34. 439 4.50 - 4.99 76 f2 41 20 35 254 5.00 - 5.41 48 69 20 6 27 170 3.50 5 .19. 34 .9 4 13 122 6.00...3.6 LARES +++ERE)- 5.4- NO.+- OF-+ CASE ISO AZMT Z 2.4: : +__ +,_ + + +++ + +. ++ -- :--All +i7+ STATION I SEASON I AZIUTH(OEfGEES)=3S9.# - 539.9...6 . , i . , 2 0 .9 0: - - O 0.,0 is 61 96 96 27 293 0.50 - 0.99 212 5 260 116 636 1.00 - 9.,9 .o .7 ISO 61 ,, 5A 1.50 - 0.0 3 30 10 .9.00 -0 4 , . 7

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.

    Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.

  3. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  4. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  5. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  6. Relationships between interannual and intraseasonal variations of the Asian-western Pacific summer monsoon hindcasted by BCC_CSM1.1(m)

    NASA Astrophysics Data System (ADS)

    Liu, Xiangwen; Wu, Tongwen; Yang, Song; Li, Qiaoping; Cheng, Yanjie; Liang, Xiaoyun; Fang, Yongjie; Jie, Weihua; Nie, Suping

    2014-09-01

    Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of El Niño-Southern Oscillation with forecast time in the model.

  7. A comparison of dynamical and statistical downscaling methods for regional wave climate projections along French coastlines.

    NASA Astrophysics Data System (ADS)

    Laugel, Amélie; Menendez, Melisa; Benoit, Michel; Mattarolo, Giovanni; Mendez, Fernando

    2013-04-01

    Wave climate forecasting is a major issue for numerous marine and coastal related activities, such as offshore industries, flooding risks assessment and wave energy resource evaluation, among others. Generally, there are two main ways to predict the impacts of the climate change on the wave climate at regional scale: the dynamical and the statistical downscaling of GCM (Global Climate Model). In this study, both methods have been applied on the French coast (Atlantic , English Channel and North Sea shoreline) under three climate change scenarios (A1B, A2, B1) simulated with the GCM ARPEGE-CLIMAT, from Météo-France (AR4, IPCC). The aim of the work is to characterise the wave climatology of the 21st century and compare the statistical and dynamical methods pointing out advantages and disadvantages of each approach. The statistical downscaling method proposed by the Environmental Hydraulics Institute of Cantabria (Spain) has been applied (Menendez et al., 2011). At a particular location, the sea-state climate (Predictand Y) is defined as a function, Y=f(X), of several atmospheric circulation patterns (Predictor X). Assuming these climate associations between predictor and predictand are stationary, the statistical approach has been used to project the future wave conditions with reference to the GCM. The statistical relations between predictor and predictand have been established over 31 years, from 1979 to 2009. The predictor is built as the 3-days-averaged squared sea level pressure gradient from the hourly CFSR database (Climate Forecast System Reanalysis, http://cfs.ncep.noaa.gov/cfsr/). The predictand has been extracted from the 31-years hindcast sea-state database ANEMOC-2 performed with the 3G spectral wave model TOMAWAC (Benoit et al., 1996), developed at EDF R&D LNHE and Saint-Venant Laboratory for Hydraulics and forced by the CFSR 10m wind field. Significant wave height, peak period and mean wave direction have been extracted with an hourly-resolution at

  8. Vertical structure and physical processes of the Madden-Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening

    DOE PAGES

    Klingaman, Nicholas P.; Woolnough, Steven J.; Jiang, Xianan; ...

    2015-04-10

    Here, many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of the three components of a model evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20 day hindcasts, initialized daily during two MJO events in winter 2009–2010. The 13 models exhibit a range of skill:more » several have accurate forecasts to 20 days lead, while others perform similarly to statistical models (8–11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to midlevel moistening at moderate rainfall and upper level moistening for heavy rainfall. The midlevel moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.« less

  9. Trend analysis of the wave storminess: the wave direction

    NASA Astrophysics Data System (ADS)

    Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.

    2009-09-01

    directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.

  10. Long-run evolution of the global economy - Part 2: Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-10-01

    Long-range climate forecasts use integrated assessment models to link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework outlined in part 1 of this study (Garrett, 2014) that approaches the global economy using purely physical principles rather than explicitly resolved societal dynamics. If this model is initialized with economic data from the 1950s, it yields hindcasts for how fast global economic production and energy consumption grew between 2000 and 2010 with skill scores > 90 % relative to a model of persistence in trends. The model appears to attain high skill partly because there was a strong impulse of discovery of fossil fuel energy reserves in the mid-twentieth century that helped civilization to grow rapidly as a deterministic physical response. Forecasting the coming century may prove more of a challenge because the effect of the energy impulse appears to have nearly run its course. Nonetheless, an understanding of the external forces that drive civilization may help development of constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  11. Hindcasting the Madden‐Julian Oscillation With a New Parameterization of Surface Heat Fluxes

    PubMed Central

    Wang, Jingfeng; Lin, Wenshi

    2017-01-01

    Abstract The recently developed maximum entropy production (MEP) model, an alternative parameterization of surface heat fluxes, is incorporated into the Weather Research and Forecasting (WRF) model. A pair of WRF cloud‐resolving experiments (5 km grids) using the bulk transfer model (WRF default) and the MEP model of surface heat fluxes are performed to hindcast the October Madden‐Julian oscillation (MJO) event observed during the 2011 Dynamics of the MJO (DYNAMO) field campaign. The simulated surface latent and sensible heat fluxes in the MEP and bulk transfer model runs are in general consistent with in situ observations from two research vessels. Compared to the bulk transfer model, the convection envelope is strengthened in the MEP run and shows a more coherent propagation over the Maritime Continent. The simulated precipitable water in the MEP run is in closer agreement with the observations. Precipitation in the MEP run is enhanced during the active phase of the MJO with significantly reduced regional dry and wet biases. Large‐scale ocean evaporation is stronger in the MEP run leading to stronger boundary layer moistening to the east of the convection center, which facilitates the eastward propagation of the MJO. PMID:29399269

  12. Coastal Storm Model.

    DTIC Science & Technology

    1976-04-30

    hindcasting, whereas a con- stant azimuth and storm velocity are used in forecasting. Tte results of hindcast analysis at several sites are included in... undersea breeze conditions and wave- current interactions in the surf zone; Tech. Report TC-149-4, ONR Contract N00014-69-C-0107, Tetra Tech, Inc., Pasadena...MARYLAND 21043 DEPARTMENT UF GEOSCIENrES PURI)IUL UNIVERSITY -DR. RURERT L. MILLER ___ LAFAYE- TTE , INDIANA 47901 DEPARTMENT OF GEOPHYSICAL SCIENCES

  13. Atlantic Coast Hindcast, Shallow-Water, Significant Wave Information.

    DTIC Science & Technology

    1983-01-01

    Photo by Steve Lissau. Photo originally ap- peared in Oceans, a publication of the Oceanic Society. Vol. 12, No. 1, Jan-Feb 1979. Unclassified SECURITY ...NAME S ADDRESS(ldiff~eet finm Controling Office) IS. SECURITY CLASS. (of this report) Unclassified 15a. DECL ASSI FICATION/ DOWNGRADING SCHEDULE iS...LARGEST HS(METRES) FOR STATION 41 4.1 C32 lam PR" qf2 20 YEARS IAV AP OAC TANGLE (DEGREESJ= 0. - 29.9 SHRLINETANGLE : 7~ 0 DEGREES AZIMJTH PERCENT

  14. Evaluation of decadal hindcasts using satellite simulators

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc

    2013-04-01

    hydrometeor types. Therefore, testing is performed to determine the extent to which the quality of the simulator results depends on the applied methods used to generate sub-grid variability (e.g. sub-grid resolution). Moreover, the sensitivity of results to the choice of different distributions of hydrometeors is explored. The model evaluation is carried out in a statistical manner using histograms of radar reflectivities (TRMM PR) and brightness temperatures (IASI). Finally, methods to deduce data suitable for probabilistic evaluation of decadal hindcasts such as simple indices are discussed.

  15. Hindcasting of Equatorial Spread F Using Seasonal Empirical Models

    NASA Astrophysics Data System (ADS)

    Aswathy, R. P.; Manju, G.

    2018-02-01

    The role of gravity waves in modulating equatorial spread F (ESF) day-to-day variability is investigated using ionosonde data at Trivandrum (geographic coordinates, 8.5°N, 77°E; mean geomagnetic latitude -0.3°N) a magnetic equatorial location. A novel empirical model that incorporates the combined effects of electrodynamics and gravity waves in modulating ESF occurrence during autumnal equinox season was presented by Aswathy and Manju (2017). In the present study, the height variations of the requisite gravity wave seed perturbations for ESF are examined for the vernal equinoxes, summer solstices, and winter solstices of different years. Subsequently, the empirical model, incorporating the electrodynamical effects and the gravity wave modulation, valid for each of the seasons is developed. Accordingly, for each season, the threshold curve may be demarcated provided the solar flux index (F10.7) is known. The empirical models are validated using the data for high, moderate, and low solar activity years corresponding to each season. In the next stage, this model is to be fine tuned to facilitate the prediction of ESF well before its onset.

  16. ENSO-Related Variability in Wave Climate Drives Greater Erosion Potential on Central Pacific Atolls

    NASA Astrophysics Data System (ADS)

    Bramante, J. F.; Ashton, A. D.; Donnelly, J. P.

    2015-12-01

    The El Nino Southern Oscillation (ENSO) modulates atmospheric circulation across the equatorial Pacific over a periodic time scale of 2-7 years. Despite the importance of this climate mode in forcing storm generation and trade wind variability, its impact on the wave climate incident on central Pacific atolls has not been addressed. We used the NOAA Wavewatch III CFSR reanalysis hindcasts (1979-2007) to examine the influence of ENSO on sediment mobility and transport at Kwajalein Atoll (8.8°N, 167.7°E). We found that during El Nino event years, easterly trade winds incident on the atoll weakened by 4% compared to normal years and 17% relative to La Nina event years. Despite this decrease in wind strength, significant wave heights incident on the atoll were 3-4% greater during El Nino event years. Using machine learning to partition these waves revealed that the greater El Nino wave heights originated mainly from greater storm winds near the atoll. The southeastern shift in tropical cyclone genesis location during El Nino years forced these storm winds and contributed to the 7% and 16% increases in annual wave energy relative to normal and La Nina years, respectively. Using nested SWAN and XBeach models we determined that the additional wave energy during El Nino event years significantly increased potential sediment mobility at Kwajalein Atoll and led to greater net offshore transport on its most populous island. The larger storm waves likely deplete ocean-facing beaches and reef flats of sediment, but increase the supply of sediment to the atoll lagoon across open reef platforms that are not supporting islands. We discuss further explicit modelling of storms passing over the atoll to elucidate the confounding role of storm surge on the net erosional/depositional effects of these waves. Extrapolating our results to recent Wavewatch III forecasts leads us to conclude that climate change-linked increases in wave height and storm wave energy will increase erosion on

  17. Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model

    NASA Astrophysics Data System (ADS)

    Urban, Nathan M.; Keller, Klaus

    2010-10-01

    How has the Atlantic Meridional Overturning Circulation (AMOC) varied over the past centuries and what is the risk of an anthropogenic AMOC collapse? We report probabilistic projections of the future climate which improve on previous AMOC projection studies by (i) greatly expanding the considered observational constraints and (ii) carefully sampling the tail areas of the parameter probability distribution function (pdf). We use a Bayesian inversion to constrain a simple model of the coupled climate, carbon cycle and AMOC systems using observations to derive multicentury hindcasts and projections. Our hindcasts show considerable skill in representing the observational constraints. We show that robust AMOC risk estimates can require carefully sampling the parameter pdfs. We find a low probability of experiencing an AMOC collapse within the 21st century for a business-as-usual emissions scenario. The probability of experiencing an AMOC collapse within two centuries is 1/10. The probability of crossing a forcing threshold and triggering a future AMOC collapse (by 2300) is approximately 1/30 in the 21st century and over 1/3 in the 22nd. Given the simplicity of the model structure and uncertainty in the forcing assumptions, our analysis should be considered a proof of concept and the quantitative conclusions subject to severe caveats.

  18. Projected wave conditions in the Eastern North Pacific under the influence of two CMIP5 climate scenarios

    USGS Publications Warehouse

    Erikson, Li H.; Hegermiller, Christie; Barnard, Patrick; Ruggiero, Peter; van Ormondt, Martin

    2015-01-01

    Hindcast and 21st century winds, simulated by General Circulation Models (GCMs), were used to drive global- and regional-scale spectral wind-wave generation models in the Pacific Ocean Basin to assess future wave conditions along the margins of the North American west coast and Hawaiian Islands. Three-hourly winds simulated by four separate GCMs were used to generate an ensemble of wave conditions for a recent historical time-period (1976–2005) and projections for the mid and latter parts of the 21st century under two radiative forcing scenarios (RCP 4.5 and RCP 8.5), as defined by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) experiments. Comparisons of results from historical simulations with wave buoy and ERA-Interim wave reanalysis data indicate acceptable model performance of wave heights, periods, and directions, giving credence to generating projections. Mean and extreme wave heights are projected to decrease along much of the North American west coast. Extreme wave heights are projected to decrease south of ∼50°N and increase to the north, whereas extreme wave periods are projected to mostly increase. Incident wave directions associated with extreme wave heights are projected to rotate clockwise at the eastern end of the Aleutian Islands and counterclockwise offshore of Southern California. Local spatial patterns of the changing wave climate are similar under the RCP 4.5 and RCP 8.5 scenarios, but stronger magnitudes of change are projected under RCP 8.5. Findings of this study are similar to previous work using CMIP3 GCMs that indicates decreasing mean and extreme wave conditions in the Eastern North Pacific, but differ from other studies with respect to magnitude and local patterns of change. This study contributes toward a larger ensemble of global and regional climate projections needed to better assess uncertainty of potential future wave climate change, and provides model boundary conditions for assessing the impacts of

  19. Projections of extreme water level events for atolls in the western Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.

    2014-12-01

    Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.

  20. Observational Evidence Against Mountain-Wave Generation of Ice Nuclei as a Prerequisite for the Formation of Three Solid Nitric Acid Polar Stratospheric Clouds Observed in the Arctic in Early December 1999

    NASA Technical Reports Server (NTRS)

    Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.

    2004-01-01

    A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.

  1. Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, Duane E.; Mattmann, Chris A.; Goodale, Cameron E.; Hart, Andrew F.; Zimdars, Paul A.; Crichton, Daniel J.; Jones, Colin; Nikulin, Grigory; Hewitson, Bruce; Jack, Chris; Lennard, Christopher; Favre, Alice

    2014-03-01

    Monthly-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CORDEX-Africa regional climate model (RCM) hindcast experiment are evaluated for model skill and systematic biases. All RCMs simulate basic climatological features of these variables reasonably, but systematic biases also occur across these models. All RCMs show higher fidelity in simulating precipitation for the west part of Africa than for the east part, and for the tropics than for northern Sahara. Interannual variation in the wet season rainfall is better simulated for the western Sahel than for the Ethiopian Highlands. RCM skill is higher for TAVG and TMAX than for TMIN, and regionally, for the subtropics than for the tropics. RCM skill in simulating cloudiness is generally lower than for precipitation or temperatures. For all variables, multi-model ensemble (ENS) generally outperforms individual models included in ENS. An overarching conclusion in this study is that some model biases vary systematically for regions, variables, and metrics, posing difficulties in defining a single representative index to measure model fidelity, especially for constructing ENS. This is an important concern in climate change impact assessment studies because most assessment models are run for specific regions/sectors with forcing data derived from model outputs. Thus, model evaluation and ENS construction must be performed separately for regions, variables, and metrics as required by specific analysis and/or assessments. Evaluations using multiple reference datasets reveal that cross-examination, quality control, and uncertainty estimates of reference data are crucial in model evaluations.

  2. Modeling long period swell in Southern California: Practical boundary conditions from buoy observations and global wave model predictions

    NASA Astrophysics Data System (ADS)

    Crosby, S. C.; O'Reilly, W. C.; Guza, R. T.

    2016-02-01

    Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive models of beach erosion, coastal flooding, and alongshore transport of sediment, biota and pollutants. On highly sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and nearshore model prediction error is often dominated by uncertainty in offshore boundary conditions. Offshore islands and shoals, and coastline curvature, create complex sheltering patterns over the 250km span of southern California (SC) shoreline. Here, regional wave model skill in SC was compared for different offshore boundary conditions created using offshore buoy observations and global wave model hindcasts (National Oceanographic and Atmospheric Administration Wave Watch 3, WW3). Spectral ray-tracing methods were used to transform incident offshore swell (0.04-0.09Hz) energy at high directional resolution (1-deg). Model skill is assessed for predictions (wave height, direction, and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Model skill using buoy-derived boundary conditions is higher than with WW3-derived boundary conditions. Buoy-driven nearshore model results are similar with various assumptions about the true offshore directional distribution (maximum entropy, Bayesian direct, and 2nd derivative smoothness). Two methods combining offshore buoy observations with WW3 predictions in the offshore boundary condition did not improve nearshore skill above buoy-only methods. A case example at Oceanside harbor shows strong sensitivity of alongshore sediment transport predictions to different offshore boundary conditions. Despite this uncertainty in alongshore transport magnitude, alongshore gradients in transport (e.g. the location of model accretion and erosion zones) are determined by the local bathymetry, and are similar for all predictions.

  3. Marine and Hydrokinetic Data | Geospatial Data Science | NREL

    Science.gov Websites

    . wave energy resource using a 51-month Wavewatch III hindcast database developed by the National Database The U.S. Department of Energy's Marine and Hydrokinetic Technology Database provides information database includes wave, tidal, current, and ocean thermal energy and contains information about energy

  4. Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk

    NASA Astrophysics Data System (ADS)

    Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan

    2017-11-01

    The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.

  5. Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Peureux, C.; Royer, J. Y.

    2016-12-01

    The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.

  6. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    NASA Astrophysics Data System (ADS)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  7. GCM Hindcasts for SST Forced Climate Variability over Agriculturally Intensive Regions

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Shah, Kathryn P.; Chandler, Mark A.; Rind, David

    1998-01-01

    The ability to forecast seasonal climate is of great practical interest. One of the most obvious benefits would be agriculture, for which various preparations (planting, machinery, irrigation, manpower) would be enabled. The expectation of being able to make such forecasts far enough in advance (on the order of 9 months) hinges on components of the system with the longest persistence or predictability. The mixed results of El Nino forecasts has raised the hope that tropical Pacific sea surface temperatures (SST) fall into this category. For agriculturally-relevant forecasts to be made, and utilized, requires several conditions. The SST in the regions that affect agricultural areas must be forecast successfully, many months in advance. The climate response to such sea surface temperatures must then be ascertained, either through the use of historical empirical studies or models (e.g., GCMS). For practical applications, the agricultural production must be strongly influenced by climate, and farmers on either the local level or through commercial concerns must be able to adjust to using such forecasts. In a continuing series of papers, we will explore each of these components. This article concerns the question of utilizing SST to forecast the climate in several regions of agricultural production. We optimize the possibility of doing so successfully by using observed SST in a hindcast mode (i.e., a perfect forecast), and we also use the globally observed values (rather than just those from the tropical Pacific, for which predictability has been shown). This then is the ideal situation; in subsequent papers we will explore degrading the results by using only tropical Pacific SSTs, and then using only

  8. EDgE multi-model hydro-meteorological seasonal hindcast experiments over Europe

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Oldrich; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel

    2017-04-01

    Extreme hydrometeorological events (e.g., floods, droughts and heat waves) caused serious damage to society and infrastructures over Europe during the past decades. Developing a seamless and skillful operational seasonal forecasting system of these extreme events is therefore a key tool for short-term decision making at local and regional scales. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the skill of a newly created large multi-model hydro-meteorological ensemble for predicting extreme events over the Pan-EU domain at a higher resolution 5×5 km2. Two state-of-the-art seasonal prediction systems were chosen for this project. Two models from the North American MultiModel ensemble (NMME) with 22 realizations, and two models provided by the ECMWF with 30 realizations. All models provide daily forcings (P, Ta, Tmin, Tmax) of the the Pan-EU at 1°. Downscaling has been carried out with the MTCLIM algorithm (Bohn et al. 2013) and external drift Kriging using elevation as drift to induce orographic effects. In this project, four high-resolution seamless hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the common hindcast period of 1993-2012 resulting in an ensemble size of 208 realizations. Key indicators are focussing on six terrestrial Essential Climate Variables (tECVs): river runoff, soil moisture, groundwater recharge, precipitation, potential evapotranspiration, and snow water equivalent. Impact Indicators have been co-designed with stakeholders in Norway (hydro-power), UK (water supply), and Spain (river basin authority) to provide an improved information for decision making. The Indicators encompass diverse information such as the occurrence of high and low streamflow percentiles (floods, and hydrological drought) and lower percentiles of top soil moisture (agricultural drought) among others. Preliminary results evaluated at study sites in Norway

  9. Identification of wind fields for wave modeling near Qatar

    NASA Astrophysics Data System (ADS)

    Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay

    2016-04-01

    Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was

  10. Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events

    NASA Astrophysics Data System (ADS)

    Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.

    2018-05-01

    This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.

  11. Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

    USGS Publications Warehouse

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick

    2017-01-01

    While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

  12. Space-time extreme wind waves: Observation and analysis of shapes and heights

    NASA Astrophysics Data System (ADS)

    Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Carniel, Sandro; Sclavo, Mauro

    2016-04-01

    .H.G.., Benetazzo, A., Bergamasco, F., Bertotti, L., Carniel, S., Cavaleri, L., Chao, Y.Y., Chawla, A., Ricchi, A., Sclavo, M., Tolman, H., 2015. Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study, in: 14th International Workshop on Wave Hindcasting and Forecasting. November, 8-13, Key West, Florida (USA). - Benetazzo, A., Barbariol, F., Bergamasco, F., Torsello, A., Carniel, S., Sclavo, M., 2015. Observation of extreme sea waves in a space-time ensemble. J. Phys. Oceanogr. 45, 2261-2275. - Boccotti, P., 1983. Some new results on statistical properties of wind waves. Appl. Ocean Res. 5, 134-140. - Fedele, F., 2012. Space-Time Extremes in Short-Crested Storm Seas. J. Phys. Oceanogr. 42, 1601-1615.

  13. Characterization of Polar Stratospheric Cloud-Producing Mountain Waves using Thermal Radiance Imagery from the Advanced Microwave Sounding Unit (AMSU-A)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Wu, D. L.; Doyle, J. D.; Burris, J. F.; McGee, T. J.; Hostetler, C. A.; Lawrence, B. N.; Stephens, A.; McCormack, J. P.; Coy, L.; Hogan, T. F.

    2006-12-01

    The Advanced Microwave Sounding Unit (AMSU-A) acquires pushbroom thermal radiance imagery from the NOAA 15-18 meteorological satellites and NASA's Aqua research satellite. We develop a simplified forward model of its in-orbit radiance acquisition and use it to demonstrate that the swath-scanned Channel 9 radiances (peaking at ~60--90~hPa) can resolve and horizontally image long wavelength gravity waves. To validate these inferences, we isolate and study structure in Channel 9 radiances acquired by AMSU-A instruments over Scandinavia on 14 January 2003. On this day, mountain waves were forecast to form polar stratospheric clouds (PSCs) over southern Scandinavia during NASA's second SAGE III Ozone Loss and Validation Experiment (SOLVE II) out of Kiruna, Sweden. Based on this forecast guidance, a flight was planned with NASA's DC-8 research aircraft, in which onboard aerosol lidars measured extensive tilted layers of enhanced aerosol backscatter typical of type II PSCs formed in the cooling phases of mountain waves. We show that these PSC-forming mountain waves were imaged in AMSU-A Channel 9 radiance imagery, which shows the waves growing in amplitude from 0600-1200 UTC and then weakening slightly and changing horizontal structure from 1200-2000 UTC. Our forward model results are used to infer 90 hPa peak wave temperature amplitudes of ~6--7~K, values validated by radiosonde data and full three-dimensional in-orbit forward modeling of three-dimensional temperatures, as forecast/hindcast by a suite of global and mesoscale numerical weather prediction models. These results demonstrate that AMSU-A radiances can provide important new hemispheric information on the role of long-wavelength stratospheric mountain waves in PSC formation, denitrification and polar ozone loss.

  14. Measurement of the ω → π+π-π0 Dalitz plot distribution

    NASA Astrophysics Data System (ADS)

    Adlarson, P.; Augustyniak, W.; Bardan, W.; Bashkanov, M.; Bergmann, F. S.; Berłowski, M.; Bhatt, H.; Bondar, A.; Büscher, M.; Calén, H.; Ciepał, I.; Clement, H.; Czerwiński, E.; Demmich, K.; Engels, R.; Erven, A.; Erven, W.; Eyrich, W.; Fedorets, P.; Föhl, K.; Fransson, K.; Goldenbaum, F.; Goswami, A.; Grigoryev, K.; Gullström, C.-O.; Heijkenskjöld, L.; Hejny, V.; Hüsken, N.; Jarczyk, L.; Johansson, T.; Kamys, B.; Kemmerling, G.; Khan, F. A.; Khatri, G.; Khoukaz, A.; Khreptak, O.; Kirillov, D. A.; Kistryn, S.; Kleines, H.; Kłos, B.; Krzemień, W.; Kulessa, P.; Kupść, A.; Kuzmin, A.; Lalwani, K.; Lersch, D.; Lorentz, B.; Magiera, A.; Maier, R.; Marciniewski, P.; Mariański, B.; Morsch, H.-P.; Moskal, P.; Ohm, H.; Perez del Rio, E.; Piskunov, N. M.; Prasuhn, D.; Pszczel, D.; Pysz, K.; Pyszniak, A.; Ritman, J.; Roy, A.; Rudy, Z.; Rundel, O.; Sawant, S.; Schadmand, S.; Schätti-Ozerianska, I.; Sefzick, T.; Serdyuk, V.; Shwartz, B.; Sitterberg, K.; Skorodko, T.; Skurzok, M.; Smyrski, J.; Sopov, V.; Stassen, R.; Stepaniak, J.; Stephan, E.; Sterzenbach, G.; Stockhorst, H.; Ströher, H.; Szczurek, A.; Trzciński, A.; Varma, R.; Wolke, M.; Wrońska, A.; Wüstner, P.; Yamamoto, A.; Zabierowski, J.; Zieliński, M. J.; Złomańczuk, J.; Żuprański, P.; Żurek, M.; Kubis, B.; Leupold, S.

    2017-07-01

    Using the production reactions pd →3He ω and pp → ppω, the Dalitz plot distribution for the ω →π+π-π0 decay is studied with the WASA detector at COSY, based on a combined data sample of (4.408 ± 0.042) ×104 events. The Dalitz plot density is parametrised by a product of the P-wave phase space and a polynomial expansion in the normalised polar Dalitz plot variables Z and ϕ. For the first time, a deviation from pure P-wave phase space is observed with a significance of 4.1σ. The deviation is parametrised by a linear term 1 + 2 αZ, with α determined to be + 0.147 ± 0.036, consistent with the expectations of ρ-meson-type final-state interactions of the P-wave pion pairs.

  15. Nowcasting, forecasting and hindcasting Harvey and Irma inundation in near-real time using a continental 2D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Sampson, C. C.; Wing, O.; Quinn, N.; Smith, A.; Neal, J. C.; Schumann, G.; Bates, P.

    2017-12-01

    During an ongoing natural disaster data are required on: (1) the current situation (nowcast); (2) its likely immediate evolution (forecast); and (3) a consistent view post-event of what actually happened (hindcast or reanalysis). We describe methods used to achieve all three tasks for flood inundation during the Harvey and Irma events using a continental scale 2D hydrodynamic model (Wing et al., 2017). The model solves the local inertial form of the Shallow Water equations over a regular grid of 1 arcsecond ( 30m). Terrain data are taken from the USGS National Elevation Dataset with known flood defences represented using the U.S. Army Corps of Engineers National Levee Dataset. Channels are treated as sub-grid scale features using the HydroSHEDS global hydrography data set. The model is driven using river flows, rainfall and coastal water levels. It simulates river flooding in basins > 50 km2, and fluvial and coastal flooding everywhere. Previous wide area validation tests show this model to be capable of matching FEMA maps and USGS local models built with bespoke data with hit rates of 86% and 92% respectively (Wing et al., 2017). Boundary conditions were taken from NOAA QPS data to produce nowcast and forecast simulations in near real time, before updating with NOAA observations to produce the hindcast. During the event simulation results were supplied to major insurers and multi-nationals who used them to estimate their likely capital exposure and to mitigate flood damage to their infrastructure whilst the event was underway. Simulations were validated against modelled flood footprints computed by FEMA and USACE, and composite satellite imagery produced by the Dartmouth Flood Observatory. For the Harvey event, hit rates ranged from 60-84% against these data sources, but a lack of metadata meant it was difficult to perform like-for-like comparisons. The satellite data also appeared to miss known flooding in urban areas that was picked up in the models. Despite

  16. Multiple GISS AGCM Hindcasts and MSU Versions of 1979-1998

    NASA Technical Reports Server (NTRS)

    Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark

    1998-01-01

    Multiple realizations of the 1979-1998 time period have been simulated by the Goddard Institute for Space Studies Atmospheric General Circulation Model (GISS AGCM) to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM's lower tropospheric, tropospheric and lower stratospheric brightness temperature (Tb) time series for correlations with the various Microwave Sounding Unit (MSU) time series available. MSU maps of monthly means and anomalies were also used to assess the AGCM's mean annual cycle and regional variability. Seven realizations by the AGCM were forced by observed sea surface temperatures (sst) through 1992 to gather rough standard deviations associated with internal model variability. Subsequent runs hindcast January 1979 through April 1998 with an accumulation of forcings: observed ssts, greenhouse gases, stratospheric volcanic aerosols. stratospheric and tropospheric ozone and tropospheric sulfate and black carbon aerosols. The goal of narrowing gaps between AGCM and MSU time series was complicated by MSU time series, by Tb simulation concerns and by unforced climatic variability in the AGCM and in the real world. Lower stratospheric Tb correlations between the AGCM and MSU for 1979-1998 reached as high as 0.91 +/-0.16 globally with sst, greenhouse gases, volcanic aerosol, stratospheric ozone forcings and tropospheric aerosols. Mid-tropospheric Tb correlations reached as high as 0.66 +/-.04 globally and 0.84 +/-.02 in the tropics. Oceanic lower tropospheric Tb correlations similarly reached 0.61 +/-.06 globally and 0.79 +/-.02 in the tropics. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with mid-tropospheric Tb correlations up to 0.75 +/- .03. The two other agricultural regions, in Africa and in the northern mid-latitudes, suffered from higher levels of non-sst variability. Zimbabwe

  17. Forecasting Glacier Evolution and Hindcasting Paleoclimates In Light of Mass Balance Nonlinearities

    NASA Astrophysics Data System (ADS)

    Malone, A.; Doughty, A. M.; MacAyeal, D. R.

    2016-12-01

    Glaciers are commonly used barometers of present and past climate change, with their variations often being linked to shifts in the mean climate. Climate variability within a unchanging mean state, however, can produce short term mass balance and glacier length anomalies, complicating this linkage. Also, the mass balance response to this variability can be nonlinear, possibly impacting the longer term state of the glacier. We propose a conceptual model to understand these nonlinearities and quantify their impacts on the longer term mass balance and glacier length. The relationship between mass balance and elevation, i.e. the vertical balance profile (VBP), illuminates these nonlinearities (Figure A). The VBP, given here for a wet tropical glacier, is piecewise, which can lead to different mass balance responses to climate anomalies of similar magnitude but opposite sign. We simulate the mass balance response to climate variability by vertically (temperature anomalies) and horizontally (precipitation anomalies) transposing the VBP for the mean climate (Figure A). The resulting anomalous VBP is the superposition of the two translations. We drive a 1-D flowline model with 10,000 years of anomalous VBPs. The aggregate VBP for the mean climate including variability differs from the VBP for the mean climate excluding variability, having a higher equilibrium line altitude (ELA) and a negative mass balance (Figure B). Accordingly, the glacier retreats, and the equilibrium glacier length for the aggregate VBP is the same as the mean length from the 10,000 year flowline simulation (Figure C). The magnitude of the VBP shift and glacier retreat increases with greater temperature variability and larger discontinuities in the VBP slope. These results highlight the importance of both the climate mean and variability in determining the longer term state of the glacier. Thus, forecasting glacier evolution or hindcasting past climates should also include representation of climate

  18. Projecting future wave climates and corresponding shoreline changes along the differently exposed coastal sections of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Suursaar, Ülo; Tõnisson, Hannes

    2015-04-01

    The aim of the study is to analyze the recently observed and projected future coastal changes in differently exposed Estonian coastal sections as a result of changing wind and wave climates. Along the shoreline of the practically tideless Baltic Sea, the increase in storminess has already impacted the coastal environment over the last 50 years. However, the number of storms, as well as their pathways, has been fluctuating considerably over the last decades. Furthermore, forecasting future hydrodynamic conditions and corresponding coastal changes is a rather mixed, yet crucial task. A number of Estonian study sites have been regularly examined by coastal scientists since the 1960s. Six coastal sections have been chosen for this study: Harilaid Peninsula (exposed to SW), Letipea-Sillamäe (N), Kõiguste-Nasva (SE), Kihnu-Pärnu (S), and two sides of the Osmussaar Island (W, N). Since the 2000s, use of GPS instruments and GIS software has enabled year-to-year changes in the shoreline to be tracked and the calculation of the corresponding areas or volumes due to accumulation and erosion. Recently digitized aerial photographs, as well as orthophotos and old topographic maps, enable the calculation of changes over longer sub-periods. Based on recorded and hindcasted changes in wind-driven hydrodynamic conditions, we found relationships between forcing conditions and the rates at which shorelines were changing. For future changes, wave climates were projected for the selected coastal sections of special geomorphic interest, where also a series of hydrodynamic surveys (waves, currents, sea level) were carried out using ADCP-s in 2006-2014. Wave parameters were consecutively hindcasted using a site-dependently calibrated fetch-based wave model. As the full calculation period (1966-2013) might suffer from inhomogeneity of wind input data, a confidently homogeneous time cut (2004-2013; 10 full years with hourly resolution) was chosen as a baseline (or control) period. An

  19. Observations of whitecaps during HiWinGS, their dependence on wave field, and relation to gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Fairall, C. W.; Blomquist, B.; Brooks, I. M.; Tamura, H.; Yang, M.; Huebert, B. J.

    2016-02-01

    The High Wind Gas exchange Study (HiWinGS) presents the unique opportunity to gain new insights on the poorly understood aspects of air-sea interaction under high winds. The HiWinGS cruise took place in the North Atlantic during October and November 2013. Wind speeds exceeded 15 m s-1 25% of the time, including 48 hrs with U10 > 20 m s-1. Continuous measurements of turbulent fluxes of heat, momentum, and gas were taken from the bow of the R/V Knorr. Visible imagery was acquired from the port and starboard side of the flying bridge during daylight hours at 20Hz and directional wave spectra were obtained when on station from a wave rider buoy. Additional wave field statistics were computed from a laser altimeter as well as from a Wavewatch III hindcast. Taking advantage of the range of physical forcing and wave conditions sampled during HiWinGS, we investigate how the fractional whitecap coverage (W) and gas transfer velocity (K) vary with sea state. We distinguish between windseas and swell based on a separation algorithm applied to directional wave spectra, allowing contrasting pure windseas to swell dominated periods. For mixed seas, system alignment is considered when interpreting results. The four gases sampled during HiWinGS ranged from being mostly waterside controlled to almost entirely airside controlled. While bubble-mediated transfer appears to be small for moderately soluble gases like DMS, the importance of wave breaking turbulence transport has yet to be determined for all gases regardless of their solubility. This will be addressed by correlating measured K to estimates of active whitecap fraction (WA) and turbulent kinetic energy dissipation rate (ɛ). WA and ɛ are estimated from moments of the breaking crest length distribution derived from the imagery, focusing on young seas, when it is likely that large-scale breaking waves (i.e., whitecapping) will dominate the ɛ.

  20. Future evolution of a tidal inlet due to changes in wave climate, Sea level and lagoon morphology (Óbidos lagoon, Portugal)

    NASA Astrophysics Data System (ADS)

    Bruneau, Nicolas; Fortunato, André B.; Dodet, Guillaume; Freire, Paula; Oliveira, Anabela; Bertin, Xavier

    2011-11-01

    Tidal inlets are extremely dynamic, as a result of an often delicate balance between the effects of tides, waves and other forcings. Since the morphology of these inlets can affect navigation, water quality and ecosystem dynamics, there is a clear need to anticipate their evolution in order to promote adequate management decisions. Over decadal time scales, the position and size of tidal inlets are expected to evolve with the conditions that affect them, for instance as a result of climate change. A process-based morphodynamic modeling system is validated and used to analyze the effects of sea level rise, an expected shift in the wave direction and the reduction of the upper lagoon surface area by sedimentation on a small tidal inlet (Óbidos lagoon, Portugal). A new approach to define yearly wave regimes is first developed, which includes a seasonal behavior, random inter-annual variability and the possibility to extrapolate trends. Once validated, this approach is used to produce yearly time series of wave spectra for the present and for the end of the 21st century, considering the local rotation trends computed using hindcast results for the past 57 years. Predictions of the mean sea level for 2100 are based on previous studies, while the bathymetry of the upper lagoon for the same year is obtained by extrapolation of past trends. Results show, and data confirm, that the Óbidos lagoon inlet has three stable configurations, largely determined by the inter-annual variations in the wave characteristics. Both sea level rise and the reduction of the lagoon surface area will promote the accretion of the inlet. In contrast, the predicted rotation of the wave regime, within foreseeable limits, will have a negligible impact on the inlet morphology.

  1. Challenges of Modeling Swell Propagation and Sea Waves over a Complex Bathymetry: Implication for Coastal Flood Mapping in Sitka, AK

    NASA Astrophysics Data System (ADS)

    Marjani, A.; Allahdadi, M.

    2016-02-01

    Sitka, AK is included in Region X of FEMA Flood Hazard Mapping. The scoped shoreline is located east of the Sitka Sound connecting Sitka to the Pacific waters through a semi-narrow continental shelf. Wave hindcast is a fundamental component of Coastal Flood Risk Study Process. SWAN model on an unstructured mesh was used to determine the characteristics of waves along the Sitka shoreline. This area is substantially affected by a combination of both offshore waves (swells) and waves generated by severe local winds. The bathymetry inside the Sitka Sound and the nearshore areas along the Sitka coastline is very complex and includes many abrupt deepening as a result of geological characteristics or large tidal currents. The present study provides a brief review of the steps and challenges for a reliable wave modeling over this area. The requirement for running the model in non-stationary mode in combination with the mentioned complexities initiated instabilities regarding intense refractions that cause unrealistic large values for the peak period and the wave height. Refining the computational mesh over the areas with great depth gradients as well as increasing the spectral grid resolution and decreasing time steps did not satisfactorily resolve the above issue. Choosing an appropriate CFL Limiters on Spectral Propagation Velocities in SWAN setup (which is not considered in the default settings) could properly treat this instability (See attached Figure). The model offshore boundary was prescribed using wave data obtained from the WIS buoys, while wind forcing was resulted as a combination of Sitka airport and offshore Buoy wind data. Model performance in transformation of swells from the open boundary was evaluated using two more offshore WIS buoy data. A 1D model transferred the extracted wave data from SWAN to the surfzone along each selected transect for each storm event. The the final production was runup with different recurrence periods along the shoreline.

  2. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar

  3. Heat wave over India during summer 2015: an assessment of real time extended range forecast

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2017-08-01

    Hot winds are the marked feature of summer season in India during late spring preceding the climatological onset of the monsoon season in June. Some years the conditions becomes very vulnerable with the maximum temperature ( T max) exceeding 45 °C for many days over parts of north-western, eastern coastal states of India and Indo-Gangetic plain. During summer of 2015 (late May to early June) eastern coastal states, central and northwestern parts of India experienced severe heat wave conditions leading to loss of thousands of human life in extreme high temperature conditions. It is not only the loss of human life but also the animals and birds were very vulnerable to this extreme heat wave conditions. In this study, an attempt is made to assess the performance of real time extended range forecast (forecast up to 3 weeks) of this scorching T max based on the NCEP's Climate Forecast System (CFS) latest version coupled model (CFSv2). The heat wave condition was very severe during the week from 22 to 28 May with subsequent week from 29 May to 4 June also witnessed high T max over many parts of central India including eastern coastal states of India. The 8 ensemble members of operational CFSv2 model are used once in a week to prepare the weekly bias corrected deterministic (ensemble mean) T max forecast for 3 weeks valid from Friday to Thursday coinciding with the heat wave periods of 2015. Using the 8 ensemble members separately and the CFSv2 corresponding hindcast climatology the probability of above and below normal T max is also prepared for the same 3 weeks. The real time deterministic and probabilistic forecasts did indicate impending heat wave over many parts of India during late May and early June of 2015 associated with strong northwesterly wind over main land mass of India, delaying the sea breeze, leading to heat waves over eastern coastal regions of India. Thus, the capability of coupled model in providing early warning of such killer heat wave can be very

  4. The Atchafalaya River Delta. Report 10. Wave Hindcasts. Appendix C.

    DTIC Science & Technology

    1985-03-01

    8217 " .1 Trl I: A,: FlPIc;D BF DJPECTION HEIO"HT(FT .. CH T" I TOTAL , 0.1, , 31 1. - 4.5- O ,+ . ’ 4 .q 𔃾.4 LC!;GEP 0. - 0."𔃾 0 0.25- 0.’. 1107 0.50 . -1...144 48 192 1.75 -199 o.• 2.00 - 2.24 0 2.25-2.49 . . . . . . . . . .0 2.5n -GREATER c00 74 6 3.6 TOTAL 0 6 7845 866 33; 46 0 . AVERAGE HS(FT) 0 .64

  5. Variability of Changjiang Diluted Water revealed by a 45-year long-term ocean hindcast and Self-Organizing Maps analysis

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangming; He, Ruoying; Zong, Haibo

    2017-08-01

    Based on long-term realistic ocean circulation hindcast for in the Bohai, Yellow, and East China Seas, 45 years (1961-2005) of sea surface salinity data were analyzed using Self-Organizing Maps (SOM) to have a better understanding of the Changjiang Diluted Water (CDW) variation. Three spatial patterns were revealed by the SOM: normal, transition, and extension. The normal pattern mainly occurs from December to May while the CDW hugs China's east coast closely and flows southward. The extension pattern is dominant from June to October when the CDW extends northwestward toward Jeju Island in an omega shape. The transition pattern prevails for the rest of the year. Pattern-averaged temperature, circulation, and chlorophyll-a concentration show significant differences. CDW area and its eastern most extension were explored as a function of the Changjiang runoff and regional upwelling index. We found that Changjiang runoff and upwelling index can be reasonable predictors for the overall CDW area, while ambient circulation determines the distribution and structure of the CDW, and thus the CDW eastern most extension.

  6. Numerical Hindcast Experiments for Study Tropical Convections and MJO Events during Year of Tropical Convection

    NASA Astrophysics Data System (ADS)

    Chern, J.; Tao, W.; Shen, B.

    2011-12-01

    The Madden-Julian oscillation (MJO) is the dominant component of intraseasonal variability in the tropic. It interacts and influences a wide range of weather and climate phenomena across different temporal and spatial scales. Despite the important role the MJO plays in the weather and climate system, past multi-model MJO intercomparison studies have shown that current global general circulation models (GCMs) still have considerable shortcomings in representing and forecasting this phenomenon. To improve representation of MJO and tropical convective cloud systems in global model, an Multiscale Modeling Framework (MMF) in which a cloud-resolving model takes the place of the sing-column cumulus parameterization used in convectional GCMs has been successfully developed at NAAS Goddard (Tao et al. 2009). To evaluate and improve the ability of this modeling system in representation and prediction of the MJO, several numerical hindcast experiments of a few selected MJO events during YOTC have been carried out. The ability of the model to simulate the MJO events is examined using diagnostic and skill metrics developed by the CLIVAR MJO Working Group Project as well as comparisons with a high-resolution global mesoscale model simulations, satellite observations, and analysis dataset. Several key variables associated with the MJO are investigated, including precipitation, outgoing longwave radiation, large-scale circulation, surface latent heat flux, low-level moisture convergence, vertical structure of moisture and hydrometers, and vertical diabatic heating profiles to gain insight of cloud processes associated with the MJO events.

  7. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    NASA Astrophysics Data System (ADS)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  8. Systematic Study of Three-Nucleon Systems Dynamics in the Cross Section of the Deuteron-Proton Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Kłos, B.; Ciepał, I.; Jamróz, B.; Khatri, G.; Kistryn, S.; Kozela, A.; Magiera, A.; Parol, W.; Skwira-Chalot, I.; Stephan, E.

    2014-08-01

    An experiment to investigate the 1H( d, pp) n breakup reaction using a deuteron beam of 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. The main goal was the detailed study of various aspects of few-nucleon dynamics in the medium energy region, with particular emphasis on relativistic effects and their interplay with three nucleon forces. These effects become more important with increasing available energy in the three nucleon system. Therefore the investigations at high energies are crucial to understand their nature. The almost 4 π geometry of the WASA detector gives an unique possibility to study various aspects of dynamics of processes in the three-nucleon reaction. Preliminary results obtained using the WASA detector are presented.

  9. Spin Dependence of η Meson Production in Proton-Proton Collisions Close to Threshold.

    PubMed

    Adlarson, P; Augustyniak, W; Bardan, W; Bashkanov, M; Bass, S D; Bergmann, F S; Berłowski, M; Bondar, A; Büscher, M; Calén, H; Ciepał, I; Clement, H; Czerwiński, E; Demmich, K; Engels, R; Erven, A; Erven, W; Eyrich, W; Fedorets, P; Föhl, K; Fransson, K; Goldenbaum, F; Goswami, A; Grigoryev, K; Gullström, C-O; Heijkenskjöld, L; Hejny, V; Hüsken, N; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khatri, G; Khoukaz, A; Khreptak, O; Kirillov, D A; Kistryn, S; Kleines, H; Kłos, B; Krzemień, W; Kulessa, P; Kupść, A; Kuzmin, A; Lalwani, K; Lersch, D; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Mariański, B; Morsch, H-P; Moskal, P; Ohm, H; Parol, W; Perez Del Rio, E; Piskunov, N M; Prasuhn, D; Pszczel, D; Pysz, K; Pyszniak, A; Ritman, J; Roy, A; Rudy, Z; Rundel, O; Sawant, S; Schadmand, S; Schätti-Ozerianska, I; Sefzick, T; Serdyuk, V; Shwartz, B; Sitterberg, K; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Stephan, E; Sterzenbach, G; Stockhorst, H; Ströher, H; Szczurek, A; Trzciński, A; Wolke, M; Wrońska, A; Wüstner, P; Yamamoto, A; Zabierowski, J; Zieliński, M J; Złomańczuk, J; Żuprański, P; Żurek, M

    2018-01-12

    Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high polarization degree of the proton beam of COSY, the reaction p[over →]p→ppη has been measured close to threshold to explore the analyzing power A_{y}. The angular distribution of A_{y} is determined with the precision improved by more than 1 order of magnitude with respect to previous results, allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q=15  MeV, signaling s-wave production with no evidence for higher partial waves. At Q=72  MeV the data reveal strong interference of Ps and Pp partial waves and cancellation of (Pp)^{2} and Ss^{*}Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the η meson.

  10. Using Combined Diagnostic Test Results to Hindcast Trends of Infection from Cross-Sectional Data

    PubMed Central

    Rydevik, Gustaf; Innocent, Giles T.; Marion, Glenn; White, Piran C. L.; Billinis, Charalambos; Barrow, Paul; Mertens, Peter P. C.; Gavier-Widén, Dolores; Hutchings, Michael R.

    2016-01-01

    Infectious disease surveillance is key to limiting the consequences from infectious pathogens and maintaining animal and public health. Following the detection of a disease outbreak, a response in proportion to the severity of the outbreak is required. It is thus critical to obtain accurate information concerning the origin of the outbreak and its forward trajectory. However, there is often a lack of situational awareness that may lead to over- or under-reaction. There is a widening range of tests available for detecting pathogens, with typically different temporal characteristics, e.g. in terms of when peak test response occurs relative to time of exposure. We have developed a statistical framework that combines response level data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epidemic trend in the population prior to the time of sampling. We evaluate the performance of this statistical framework on simulated data from epidemic trend curves and show that we can recover the parameter values of those trends. We also apply the framework to epidemic trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a whooping cough outbreak in humans. Together, these results show that hindcasting can estimate the time since infection for individuals and provide accurate estimates of epidemic trends, and can be used to distinguish whether an outbreak is increasing or past its peak. We conclude that if temporal characteristics of diagnostics are known, it is possible to recover epidemic trends of both human and animal pathogens from cross-sectional data collected at a single point in time. PMID:27384712

  11. Run-up parameterization and beach vulnerability assessment on a barrier island: a downscaling approach

    NASA Astrophysics Data System (ADS)

    Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.

    2016-01-01

    We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.

  12. Wave Information Studies of US Coastlines: Hindcast Wave Information for the Great Lakes: Lake Erie

    DTIC Science & Technology

    1991-10-01

    total ice cover) for individual grid cells measuring 5 km square. 42. The GLERL analyzed each half-month data set to provide the maximum, minimum...average, median, and modal ice concentrations for each 5-km cell . The median value, which represents an estimate of the 50-percent point of the ice...incorporating the progression and decay of the time-dependent ice cover was complicated by the fact that different grid cell sizes were used for mapping the ice

  13. Synoptic analysis and hindcast of an intense bow echo in Western Europe: The 09 June 2014 storm

    NASA Astrophysics Data System (ADS)

    Mathias, Luca; Ermert, Volker; Kelemen, Fanni D.; Ludwig, Patrick; Pinto, Joaquim G.

    2017-04-01

    On Pentecost Monday of 09 June 2014, a severe mesoscale convective system (MCS) hit Belgium and Western Germany. This storm was one of the most severe thunderstorms in Germany for decades. The synoptic-scale and mesoscale characteristics of this storm are analyzed based on remote sensing data and in-situ measurements. Moreover, the forecast potential of the storm is evaluated using sensitivity experiments with a regional climate model. The key ingredients for the development of the Pentecost storm were the concurrent presence of low-level moisture, atmospheric conditional instability and wind shear. The synoptic and mesoscale analysis shows that the outflow of a decaying MCS above northern France triggered the storm, which exhibited the typical features of a bow echo like a mesovortex and rear inflow jet. This resulted in hurricane-force wind gusts (reaching 40 m/s) along a narrow swath in the Rhine-Ruhr region leading to substantial damage. Operational numerical weather predictions models mostly failed to forecast the storm, but high-resolution regional model hindcasts enable a realistic simulation of the storm. The model experiments reveal that the development of the bow echo is particularly sensitive to the initial wind field and the lower tropospheric moisture content. Correct initial and boundary conditions are therefore necessary for realistic numerical forecasts of such a bow echo event. We conclude that the Pentecost storm exhibited a comparable structure and a similar intensity to the observed bow echo systems in the United States.

  14. Hindcast and forecast of grand solar minina and maxima using a three-frequency dynamo model based on Jupiter-Saturn tidal frequencies modulating the 11-year sunspot cycle

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-04-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The two side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle can be associated to a quasi-11-year sunspot solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. These frequencies and other oscillations appear once the model is non-linearly processed. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900- 1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with

  15. Projections of wind-waves in South China Sea for the 21st century

    NASA Astrophysics Data System (ADS)

    Mohammed, Aboobacker; Dykyi, Pavlo; Zheleznyak, Mark; Tkalich, Pavel

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). GCMs are not having a wind-wave variable due to a poor grid resolution; therefore, dynamical downscaling of wind-waves to the regional scale is advisable using well established models, such as Wave Watch III (WWIII) and SWAN. Rectilinear-coordinates WWIII model is adapted for the far field comprising the part of Pacific and Indian Oceans centered at the South China Sea and Sunda Shelf (90 °E-130 °E, 10 °S - 26.83 °N) with a resolution of 10' (about 18 km). Near-field unstructured-mesh SWAN model covers Sunda Shelf and centered on Singapore Strait, while reading lateral boundary values from WWIII model. The unstructured grid has the coarsest resolution in the South China Sea (6 to 10 km), medium resolution in the Malacca Strait (1 to 2 km), and the finest resolution in the Singapore Strait (400 m) and along the Singapore coastline (up to 100 m). Following IPCC methodology, the model chain is validated climatologically for the past period 1961-1990 against Voluntary Observing Ship (VOS) data; additionally, the models are validated using recent high-resolution satellite data. The calibrated model chain is used to project waves to 21st century using WRF-downscaled wind speed output of CCSM GCM run for A1FI climate change scenario. To comply with IPCC methodology the entire modeling period is split into three 30-years periods for which statistical parameters are computed individually. Time series of significant wave height at key points near Singapore and on ship sea routes in the SCS are statistically analysed to get probability distribution functions (PDFs) of extreme values. Climatological maps of mean and maximum significant wave height (SWH) values, and mean wave period are built for Singapore region for each 30-yrs period. Linear trends of mean SWH values

  16. Circulation patterns and wave climate along the coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrán, J. C.

    2010-09-01

    Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the wave climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation patterns and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the wave variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher wave climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast

  17. Application of a wind-wave-current coupled model in the Catalan coast (NW Mediterranean sea), for wind energy purposes

    NASA Astrophysics Data System (ADS)

    María Palomares, Ana; Navarro, Jorge; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2016-04-01

    This work shows the main results of the HAREAMAR project (including HAREMAR, ENE2012-38772-C02-01 and DARDO, ENE2012-38772-C02-02 projects), concerning the local Wind, Wave and Current simulation at St. Jordi Bay (NW Mediterranean Sea). Offshore Wind Energy has become one of the main topics within the research in Wind Energy research. Although there are quite a few models with a high level of reliability for wind simulation and prediction in onshore places, the wind prediction needs further investigations for adaptation to the Offshore emplacements, taking into account the interaction atmosphere-ocean. The main problem in these ocean areas is the lack of wind data, which neither allows for characterizing the energy potential and wind behaviour in a particular place, nor validating the forecasting models. The main objective of this work is to reduce the local prediction errors, in order to make the meteo-oceanographic hindcast and forecast more reliable. The COAWST model (Coupled-Ocean-Atmosphere-Wave Sediment Transport Model; Warner et al., 2010) system has been implemented in the region considering a set of downscaling nested meshes to obtain high-resolution outputs in the region. The adaptation to this particular area, combining the different wind, wave and ocean model domains has been far from simple, because the grid domains for the three models differ significantly. This work shows the main results of the COAWST model implementation to this particular area, including both monthly and other set of tests in different atmospheric situations, especially chosen for their particular interest. The time period considered for the validation is the whole year 2012. A comparative study between the WRF, SWAN and ROMS model outputs (without coupling), the COWAST model outputs, and a buoy measurements moored in the region was performed for this year. References Warner, J.C., Armstrong, B., He, R., and Zambon, J.B., 2010, Development of a Coupled Ocean-Atmosphere-Wave

  18. Implementation and test of a coastal forecasting system for wind waves in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Inghilesi, R.; Catini, F.; Orasi, A.; Corsini, S.

    2010-09-01

    A coastal forecasting system has been implemented in order to provide a coverage of the whole Mediterranean Sea and of several enclosed coastal areas as well. The problem is to achieve a good definition of the small scale coastal processes which affect the propagation of waves toward the shores while retaining the possibility of selecting any of the possible coastal areas in the whole Mediterranean Sea. The system is built on a very high resolution parallel implementation of the WAM and SWAN models, one-way chain-nested in key areas. The system will shortly be part of the ISPRA SIMM forecasting system which has been operative since 2001. The SIMM sistem makes available the high resolution wind fields (0.1/0.1 deg) used in the coastal system. The coastal system is being tested on several Italian coastal areas (Ligurian Sea, Lower Tyrrenian Sea, Sicily Channel, Lower Adriatic Sea) in order to optimise the numerics of the coastal processes and to verify the results in shallow waters and complex bathymetries. The results of the comparison between hindcast and buoy data in very shallow (14m depth) and deep sea (150m depth) will be shown for several episodes in the upper Tyrrenian Sea.

  19. Regional downscaling of temporal resolution in near-surface wind from statistically downscaled Global Climate Models (GCMs) for use in San Francisco Bay coastal flood modeling

    NASA Astrophysics Data System (ADS)

    O'Neill, A.; Erikson, L. H.; Barnard, P.

    2013-12-01

    While Global Climate Models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues (MACA) provide daily near-surface winds at an appropriate spatial resolution for wave modeling within San Francisco Bay. Using 30 years (1975-2004) of climatological data from four representative stations around San Francisco Bay, a library of example daily wind conditions for four corresponding over-water sub-regions is constructed. Empirical cumulative distribution functions (ECDFs) of station conditions are compared to MACA GFDL hindcasts to create correction factors, which are then applied to 21st century MACA wind projections. For each projection day, a best match example is identified via least squares error among all stations from the library. The best match's daily variation in velocity components (u/v) is used as an analogue of representative wind variation and is applied at 3-hour increments about the corresponding sub-region's projected u/v values. High temporal resolution reconstructions using this methodology on hindcast MACA fields from 1975-2004 accurately recreate extreme wind values within the San Francisco Bay, and because these extremes in wind forcing are of key importance in wave and subsequent coastal flood modeling, this represents a valuable method of generating near-surface wind vectors for use in coastal flood modeling.

  20. A data driven model for dune morphodynamics

    NASA Astrophysics Data System (ADS)

    Palmsten, M.; Brodie, K.; Spore, N.

    2016-12-01

    Dune morphology results from a number of competing feedbacks between wave, Aeolian, and biologic processes. Only now are conceptual and numerical models for dunes beginning to incorporate all aspects of the processes driving morphodynamics. Drawing on a 35-year record of observations of dune morphology and forcing conditions at the Army Corps of Engineers Field Research Facility (FRF) at Duck, NC, USA, we hypothesize that local dune morphology results from the competition between dune growth during dry windy periods and erosion during storms. We test our hypothesis by developing a data driven model using a Bayesian network to hindcast dune-crest elevation change, dune position change, and shoreline position change. Model inputs include a description of dune morphology from dune-crest elevation, dune-base elevation, dune width, and beach width. Wave forcing and the effect of moisture is parameterized in terms of the maximum total water level and period that waves impact the dunes, along with precipitation. Aeolian forcing is parameterized in terms of maximum wind speed, direction and period that wind exceeds a critical value for sediment transport. We test the sensitivity of our model to forcing parameters and hindcast the 35-year record of dune morphodynamics at the FRF. We also discuss the role of vegetation on dune morphologic differences observed at the FRF.

  1. Wave Extremes in the Northeast Atlantic from Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Aarnes, Ole Johan; Bidlot, Jean-Raymond; Carrasco, Ana; Saetra, Øyvind

    2013-10-01

    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-year archived period exhibit no significant departures from stationarity compared with a recent reforecast, i.e., there is no spurious trend due to model upgrades. EPS yields significantly higher return values than ERA-40 and ERA-Interim and is in good agreement with the high-resolution hindcast NORA10, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it is biased low. Confidence intervals are half the width of those found for ERA-Interim due to the magnitude of the data set.

  2. An Update on Experimental Climate Prediction and Analysis Products Being Developed at NASA's Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried

    2011-01-01

    The Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center is developing a number of experimental prediction and analysis products suitable for research and applications. The prediction products include a large suite of subseasonal and seasonal hindcasts and forecasts (as a contribution to the US National MME), a suite of decadal (10-year) hindcasts (as a contribution to the IPCC decadal prediction project), and a series of large ensemble and high resolution simulations of selected extreme events, including the 2010 Russian and 2011 US heat waves. The analysis products include an experimental atlas of climate (in particular drought) and weather extremes. This talk will provide an update on those activities, and discuss recent efforts by WCRP to leverage off these and similar efforts at other institutions throughout the world to develop an experimental global drought early warning system.

  3. North Texas Sediment Budget: Sabine Pass to San Luis Pass

    DTIC Science & Technology

    2006-09-01

    concrete units have been placed over sand-filled fabric tube . .......................................33 Figure 28. Sand-filled fabric tubes protecting...system UTM Zone 15, NAD 83 Longshore drift directions King (in preparation) Based on wave hindcast statistics and limited buoy data Rollover Pass...along with descriptions of the jetties and limited geographic coordinate data1 (Figure 18). The original velum or Mylar sheets from which the report

  4. Forecasting the impact of storm waves and sea-level rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument—a comparison of passive versus dynamic inundation models

    USGS Publications Warehouse

    Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.

    2013-01-01

    Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested

  5. Extreme Sea Conditions in Shallow Water: Estimation based on in-situ measurements

    NASA Astrophysics Data System (ADS)

    Le Crom, Izan; Saulnier, Jean-Baptiste

    2013-04-01

    The design of marine renewable energy devices and components is based, among others, on the assessment of the environmental extreme conditions (winds, currents, waves, and water level) that must be combined together in order to evaluate the maximal loads on a floating/fixed structure, and on the anchoring system over a determined return period. Measuring devices are generally deployed at sea over relatively short durations (a few months to a few years), typically when describing water free surface elevation, and extrapolation methods based on hindcast data (and therefore on wave simulation models) have to be used. How to combine, in a realistic way, the action of the different loads (winds and waves for instance) and which correlation of return periods should be used are highly topical issues. However, the assessment of the extreme condition itself remains a not-fully-solved, crucial, and sensitive task. Above all in shallow water, extreme wave height, Hmax, is the most significant contribution in the dimensioning process of EMR devices. As a case study, existing methodologies for deep water have been applied to SEMREV, the French marine energy test site. The interest of this study, especially at this location, goes beyond the simple application to SEMREV's WEC and floating wind turbines deployment as it could also be extended to the Banc de Guérande offshore wind farm that are planned close by. More generally to pipes and communication cables as it is a redundant problematic. The paper will first present the existing measurements (wave and wind on site), the prediction chain that has been developed via wave models, the extrapolation methods applied to hindcast data, and will try to formulate recommendations for improving this assessment in shallow water.

  6. A novel adaptive biogeochemical model, and its 3-D application for a decadal hindcast simulation of the biogeochemistry of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Kerimoglu, Onur; Hofmeister, Richard; Wirtz, Kai

    2016-04-01

    Adaptation and acclimation processes are often ignored in ecosystem-scale model implementations, despite the long-standing recognition of their importance. Here we present a novel adaptive phytoplankton growth model where acclimation of the community to the changes in external resource ratios is accounted for, using optimality principles and dynamic physiological traits. We show that the model can reproduce the internal stoichiometries obtained at marginal supply ratios in chemostat experiments. The model is applied in a decadal hindcast simulation of the southern North Sea, where it is coupled to a 2-D benthic model and a 3-D hydrodynamic model in an approximately 1.5km horizontal resolution at the German Bight coast. The model is shown to have good skill in capturing the steep, coastal gradients in the German Bight, suggested by the match between the estimated and observed dissolved nutrient and chlorophyll concentrations. We then analyze the differential sensitivity of the coastal and off-shore zones to major drivers of the system, such as riverine nutrient loads. We demonstrate that the relevance of phytoplankton acclimation varies across coastal gradients and can become particularly significant in terms of summer nutrient depletion.

  7. A mid-shelf, mean wave direction climatology for southeastern Australia, and its relationship to the El Niño - Southern Oscillation since 1878 A.D.

    NASA Astrophysics Data System (ADS)

    Goodwin, Ian D.

    2005-11-01

    Coastal systems behave on timescales from days to centuries. Shelf and coastal wave climatological data from the Tasman Sea are only available for the past few decades. Hence, the records are too short to investigate inter- and multidecadal variability and their impact on coastal systems. A method is presented to hindcast monthly mid-shelf mean wave direction (MWD) for southeastern Australia, based on the monthly, trans-Tasman mean sea-level pressure (MSLP) difference between northern NSW (Yamba) and the north island of New Zealand (Auckland). The MSLP index is calibrated to instrumental (Waverider buoy) MWD data for the Sydney shelf and coast. Positive/negative trans-Tasman MSLP difference is significantly correlated to southerly/easterly Sydney MWD, and to long/short mean wave periods. The 124-year Sydney annual (MWD) time series displays multidecadal variability, and identifies a significant period of more southerly annual MWD during 1884 to 1914 than in the period since 1915. The Sydney MWD is significantly correlated to the Southern Oscillation Index (SOI). The correlation with the SOI is enhanced during periods when the Interdecadal Pacific Oscillation (IPO) is in its negative state and warm SST anomalies occur in the southwest Pacific region. The Sydney MWD was found to be associated with Pacific basin-wide climate fluctuations associated with the El Niño-Southern Oscillation (ENSO). Southerly/easterly Sydney MWD is correlated with low/high MSLP anomalies over New Zealand and the central Pacific Ocean. Southerly/easterly Sydney MWD is also correlated with cool/warm SST anomalies in the southwest Pacific, particularly in the eastern Coral Sea and Tasman Sea. Copyright

  8. Depth averaged wave-current interaction in the multi bank morphology of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Komijani, Homayoon; Osuna, Pedro; Ocampo Torres, Francisco; Monbaliu, Jaak

    2017-04-01

    The effects of wind induced waves on the barotropic mean flow during a storm event in the southern North Sea are investigated. The well known radiation stress gradient theory of Longuet-Higgins and Stewart (1962, 1964) together with the influence of waves through the Stokes drift (Hasselmann, 1971 and Garret, 1976) are incorporated in the RANS equation system of the COHERENS circulation model (Luyten et al., 2005) following the methodology worked out by Bennis et al. (2011) . The SWAN spectral wave model (version 40.91, http://www.swan.tudelft.nl/) is used to provide the wave information. This allows us to take into account the dissipative terms of wave momentum flux to the mean flow such as depth induced wave breaking and bottom friction as well as the conservative terms of wave effects such as the vortex-force and wave induced pressure gradient. The resulting coupled COHERENS-SWAN model has been validated using the well known planar beach test case proposed by Haas and Warner (2009) in depth averaged mode. For the application in the southern North Sea, a series of nested grids using COHERENS (circulation model) and WAM cycle 4.5.3 (spectral wave model applied to the North Sea shelf area, Monbaliu et al. 2000; Günther, H. and A. Behrens, personal communications, May 2012) is set up to provide the hydrodynamic and wave boundary conditions for the COHERENS-SWAN two way coupled wave-current model for the Belgian coastal zone model. The improvements obtained in hindcasting the circulation processes in the Belgian coastal area during a storm event will be highlighted. But also difficulties faced in the coupling of the models and in the simulation of a real case storm will be discussed. In particular, some of the approaches for dealing with the numerical instabilities due to multi bank morphology of the southern North Sea will be addressed. References : Bennis, A.-C., F. Ardhuin, and F. Dumas (2011). "On the coupling of wave and three-dimensional circulation models

  9. Streamflow hindcasting in European river basins via multi-parametric ensemble of the mesoscale hydrologic model (mHM)

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis

    2016-04-01

    There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins

  10. Numerical simulation and prediction of coastal ocean circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account formore » non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.« less

  11. Three-dimensional freak waves and higher-order wave-wave resonances

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  12. Hawaii Regional Sediment Management: Regional Sediment Budget for the Kekaha Region of Kauai, HI

    DTIC Science & Technology

    2013-06-01

    Waimea River . Some sediment passes from the Waimea cell to the west and is deposited in the Kikiaola Harbor entrance channel and basin . Upland... study regions, have been developed by the University of Hawaii Coastal Geology Group (UH CGG) (Fletcher et al. 2012) for the US Geological Survey... Study (WIS) (Hubertz 1992) hindcast dataset were used as input to the model STeady WAVE (STWAVE) (Smith et al. 2001). The model output provides

  13. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  14. Use of Lagrangian simulations to hindcast the geographical position of propagule release zones in a Mediterranean coastal fish.

    PubMed

    Calò, Antonio; Lett, Christophe; Mourre, Baptiste; Pérez-Ruzafa, Ángel; García-Charton, José Antonio

    2018-03-01

    The study of organism dispersal is fundamental for elucidating patterns of connectivity between populations, thus crucial for the design of effective protection and management strategies. This is especially challenging in the case of coastal fish, for which information on egg release zones (i.e. spawning grounds) is often lacking. Here we assessed the putative location of egg release zones of the saddled sea bream (Oblada melanura) along the south-eastern coast of Spain in 2013. To this aim, we hindcasted propagule (egg and larva) dispersal using Lagrangian simulations, fed with species-specific information on early life history traits (ELTs), with two approaches: 1) back-tracking and 2) comparing settler distribution obtained from simulations to the analogous distribution resulting from otolith chemical analysis. Simulations were also used to assess which factors contributed the most to dispersal distances. Back-tracking simulations indicated that both the northern sector of the Murcia region and some traits of the North-African coast were hydrodynamically suitable to generate and drive the supply of larvae recorded along the coast of Murcia in 2013. With the second approach, based on the correlation between simulation outputs and field results (otolith chemical analysis), we found that the oceanographic characteristics of the study area could have determined the pattern of settler distribution recorded with otolith analysis in 2013 and inferred the geographical position of main O. melanura spawning grounds along the coast. Dispersal distance was found to be significantly affected by the geographical position of propagule release zones. The combination of methods used was the first attempt to assess the geographical position of propagule release zones in the Mediterranean Sea for O. melanura, and can represent a valuable approach for elucidating dispersal and connectivity patterns in other coastal species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Numerical Modeling of Medium Term Morphological Changes at Manavgat River Mouth Due to Combined Action of Waves and River Discharges

    NASA Astrophysics Data System (ADS)

    Demirci, E.; Baykal, C.; Guler, I.

    2016-12-01

    In this study, hydrodynamic conditions due to river discharge, wave action and sea level fluctuations within a seven month period and the morphological response of the Manavgat river mouth are modeled with XBeach, a two-dimensional depth-averaged (2DH) numerical model developed to compute the natural coastal response during time-varying storm and hurricane conditions (Roelvink et al., 2010). The study area shows an active behavior on its nearshore morphology, thus, two jetties were constructed at the river mouth between years 1996-2000. Recently, Demirci et al. (2016) has studied the impacts of an excess river discharge and concurrent wave action and tidal fluctuations on the Manavgat river mouth morphology for the duration of 12 days (December 4th and 15th, 1998) while the construction of jetties were carried on. It is concluded that XBeach has presumed the final morphology fairly well with the calibrated set of input parameters. Here, the river mouth modeled at a further past date before the construction of jetties with the similar set of input parameters (between August 1st, 1995-March 8th, 1996) to reveal the drastic morphologic change near the mouth due to high river discharge and severe storms happened in a longer period of time. Wave climate effect is determined with the wave hindcasting model, W61, developed by Middle East Technical University-OERC with the NCEP-CFSR wind data as well as the sea level data. River discharge, wave and sea level data are introduced as input parameters in the XBeach numerical model and the final output morphological change is compared with the final bed level measurements. References:Demirci, E., Baykal, C., Guler, I., Ergin, A., & Sogut, E. (postponed). Numerical Modelling on Hydrodynamic Flow Conditions and Morphological Changes Using XBeach Near Manavgat River Mouth. Accepted as Oral presentation at the 35thInt. Conf. on Coastal Eng., Istanbul, Turkey. Guler, I., Ergin, A., Yalçıner, A. C., (2003). Monitoring Sediment

  16. U.S. Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: North Atlantic Ocean

    DTIC Science & Technology

    1983-10-01

    203 204 205 206 207 208 LES 209 212 215 218 221 224 227 230 233 236 239 242 245 248 251 254 257 260 263 266 269 272 275 278 281 284 287 290 293 296...34 10 - 34 22 1 f I I I - 20 LL .1 2 1 2 3 13 1 2 2 S 3 L 112 1 -12 2 - - 2 2 3 1 291 2 1 2 1 1 2 2 2 so 1 281 22 - - - L _ 22 2213 1 -Is I a...70 311 70 3428 so 281 20 1 .80 2 1 - 2 28 so - - - 20 1 1 281 -402 . . .. 3 is22 22 30 22 so goso *0 22 22 3 22Isso Is to 3 1 - I - - - - 17 -. L I I

  17. U.S. Navy Hindcast Spectral Ocean Wave Model Climatic Atlas: North Pacific Ocean

    DTIC Science & Technology

    1985-03-01

    160 170 E 180 W 170 160 176-3 -~ 140-3 98-3 122-3 % 52 -3 27 85- 124 80-3 *31-3 209-1 1223 67-2 136-3...5 2319 1285 1 7 E -2 -2 177 39 485 𔄀- 4 0. 󈧫 23 4243 33 52 109 2 4 43 539 10. 339 2s*.3 32 1 n 9* 5K33I,2 624 ’ 64 00 64 100 2332 48 0 -0 48, 0 N...82172 5’ 0.1 71 5. 27’ 52 +1. 1 270 . 72 11.0 7 .5 Ŗ𔃻 +6 +6.2 16.0 6. ’’ 55 so.6 .35 3. . ’ 5. . . 0 I.5 726 9 4.8 160 55 � 122 12 55 � .S.

  18. Evaluation of cool season precipitation event characteristics over the Northeast US in a suite of downscaled climate model hindcasts

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.; Waliser, Duane E.; Kim, Jinwon; Ferraro, Robert

    2017-08-01

    Cool season precipitation event characteristics are evaluated across a suite of downscaled climate models over the northeastern US. Downscaled hindcast simulations are produced by dynamically downscaling the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA2) using the National Aeronautics and Space Administration (NASA)-Unified Weather Research and Forecasting (WRF) regional climate model (RCM) and the Goddard Earth Observing System Model, Version 5 (GEOS-5) global climate model. NU-WRF RCM simulations are produced at 24, 12, and 4-km horizontal resolutions using a range of spectral nudging schemes while the MERRA2 global downscaled run is provided at 12.5-km. All model runs are evaluated using four metrics designed to capture key features of precipitation events: event frequency, event intensity, even total, and event duration. Overall, the downscaling approaches result in a reasonable representation of many of the key features of precipitation events over the region, however considerable biases exist in the magnitude of each metric. Based on this evaluation there is no clear indication that higher resolution simulations result in more realistic results in general, however many small-scale features such as orographic enhancement of precipitation are only captured at higher resolutions suggesting some added value over coarser resolution. While the differences between simulations produced using nudging and no nudging are small, there is some improvement in model fidelity when nudging is introduced, especially at a cutoff wavelength of 600 km compared to 2000 km. Based on the results of this evaluation, dynamical regional downscaling using NU-WRF results in a more realistic representation of precipitation event climatology than the global downscaling of MERRA2 using GEOS-5.

  19. Plane Evanescent Waves and Interface Waves

    NASA Astrophysics Data System (ADS)

    Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.

    The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.

  20. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the

  1. Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yawen; Zhang, Kai; Qian, Yun

    Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short

  2. Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles

    DOE PAGES

    Liu, Yawen; Zhang, Kai; Qian, Yun; ...

    2018-01-03

    Aerosols from fire emissions can potentially have large impact on clouds and radiation. However, fire aerosol sources are often intermittent, and their effect on weather and climate is difficult to quantify. Here we investigated the short-term effective radiative forcing of fire aerosols using the global aerosol–climate model Community Atmosphere Model version 5 (CAM5). Different from previous studies, we used nudged hindcast ensembles to quantify the forcing uncertainty due to the chaotic response to small perturbations in the atmosphere state. Daily mean emissions from three fire inventories were used to consider the uncertainty in emission strength and injection heights. The simulated aerosolmore » optical depth (AOD) and mass concentrations were evaluated against in situ measurements and reanalysis data. Overall, the results show the model has reasonably good predicting skills. Short (10-day) nudged ensemble simulations were then performed with and without fire emissions to estimate the effective radiative forcing. Results show fire aerosols have large effects on both liquid and ice clouds over the two selected regions in April 2009. Ensemble mean results show strong negative shortwave cloud radiative effect (SCRE) over almost the entirety of southern Mexico, with a 10-day regional mean value of –3.0 W m –2. Over the central US, the SCRE is positive in the north but negative in the south, and the regional mean SCRE is small (–0.56 W m –2). For the 10-day average, we found a large ensemble spread of regional mean shortwave cloud radiative effect over southern Mexico (15.6 % of the corresponding ensemble mean) and the central US (64.3 %), despite the regional mean AOD time series being almost indistinguishable during the 10-day period. Moreover, the ensemble spread is much larger when using daily averages instead of 10-day averages. In conclusion, this demonstrates the importance of using a large ensemble of simulations to estimate the short

  3. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    USGS Publications Warehouse

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  4. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  6. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Alexandra; Haller, Merrick; Walker, David

    This project addressed Topic 3: “Wave Measurement Instrumentation for Feed Forward Controls” under the FOA number DE-FOA-0000971. The overall goal of the program was to develop a phase-resolving wave forecasting technique for application to the active control of Wave Energy Conversion (WEC) devices. We have developed an approach that couples a wave imaging marine radar with a phase-resolving linear wave model for real-time wave field reconstruction and forward propagation of the wave field in space and time. The scope of the project was to develop and assess the performance of this novel forecasting system. Specific project goals were as follows:more » Develop and verify a fast, GPU-based (Graphical Processing Unit) wave propagation model suitable for phase-resolved computation of nearshore wave transformation over variable bathymetry; Compare the accuracy and speed of performance of the wave model against a deep water model in their ability to predict wave field transformation in the intermediate water depths (50 to 70 m) typical of planned WEC sites; Develop and implement a variational assimilation algorithm that can ingest wave imaging radar observations and estimate the time-varying wave conditions offshore of the domain of interest such that the observed wave field is best reconstructed throughout the domain and then use this to produce model forecasts for a given WEC location; Collect wave-resolving marine radar data, along with relevant in situ wave data, at a suitable wave energy test site, apply the algorithm to the field data, assess performance, and identify any necessary improvements; and Develop a production cost estimate that addresses the affordability of the wave forecasting technology and include in the Final Report. The developed forecasting algorithm (“Wavecast”) was evaluated for both speed and accuracy against a substantial synthetic dataset. Early in the project, performance tests definitively demonstrated that the system was capable

  7. Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times

    DTIC Science & Technology

    2013-09-30

    GEWEX GASS MJO Diabatic Heating Experiment, 2) Intraseasonal Variability Hindcast Experiment (ISVHE) C. Conduct more comprehensive analysis on the...since her Ph.D. study. Key partners include M. Zhao (GFDL) and J. Ridout (NRL). Both Zhao and Ridout are contributors to the MJO multi-model diabatic ...a paper and submitted to the Journal of the Atmospheric Sciences (Guo et al. 2013). We have also begun acquiring model data from the MJO Diabatic

  8. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  9. Projecting 21st century coastal cliff retreat in Southern California

    NASA Astrophysics Data System (ADS)

    Limber, P. W.; Barnard, P.; Erikson, L. H.; Vitousek, S.

    2016-12-01

    In California, sea level is expected to rise over 1 m by 2100, with extreme projections approaching 3 m. Sea level rise (SLR) increases the frequency, severity, and duration of wave impacts on coastal cliffs, potentially accelerating cliff retreat rates. To assess the future risk to cliff-top infrastructure, densely populated Southern California cities like Los Angeles and San Diego require estimates of coastal retreat over long time (multi-decadal) and large spatial (>100 km) scales. We developed a suite of eight coastal cliff retreat models, ranging in complexity from empirical 1-D representations of cliff response to wave impacts to more intricate 2-D process-based models integrated with artificial neural networks. The ensemble produces a comprehensive estimate of time-averaged coastal cliff retreat with uncertainty, is applicable to different geological environments, and is flexible in application depending on processing power, available data, and/or available time (e.g. if processing power and time are limited, the fast 1-D models can be used as a `rapid assessment' tool). Global-to-local nested wave models provided the hindcasts (1980-2010) and forecasts (2010-2100) used to force the models, and waves were applied in combination with eight SLR scenarios ranging from 0.25 m to 2 m. In the more detailed models, tides, non-tidal residuals, and storm surge were included for the hindcast and forecast periods. For model calibration, a new automated cliff edge extraction routine was used to estimate historical cliff retreat rates from LiDAR data. Initial model application to Southern California suggests that 1 m of SLR during the 21st century will cause cliff retreat rates to increase on average by over 50% relative to historical rates. Model results also demonstrate how small-scale, episodic cliff failure events can coalesce through time into spatially uniform, long-term cliff retreat signals.

  10. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    NASA Astrophysics Data System (ADS)

    Teng, Lee-Wen; Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2009-12-01

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation to the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.

  11. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  12. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  13. Wave-Particle Dynamics of Wave Breaking in the Self-Excited Dust Acoustic Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, L.-W.; Chang, M.-C.; Tseng, Y.-P.

    2009-12-11

    The wave-particle microdynamics in the breaking of the self-excited dust acoustic wave growing in a dusty plasma liquid is investigated through directly tracking dust micromotion. It is found that the nonlinear wave growth and steepening stop as the mean oscillating amplitude of dust displacement reaches about 1/k (k is the wave number), where the vertical neighboring dust trajectories start to crossover and the resonant wave heating with uncertain crest trapping onsets. The dephased dust oscillations cause the abrupt dropping and broadening of the wave crest after breaking, accompanied by the transition from the liquid phase with coherent dust oscillation tomore » the gas phase with chaotic dust oscillation. Corkscrew-shaped phase-space distributions measured at the fixed phases of the wave oscillation cycle clearly indicate how dusts move in and constitute the evolving waveform through dust-wave interaction.« less

  14. Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.

    ERIC Educational Resources Information Center

    Leung, W. P.

    1980-01-01

    Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)

  15. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  16. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less

  17. Wave turbulence

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  18. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  19. Wind Generated Rogue Waves in an Annular Wave Flume.

    PubMed

    Toffoli, A; Proment, D; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2017-04-07

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an unlimited-fetch condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  20. Scattering of plane evanescent waves by cylindrical shells and wave vector coupling conditions for exciting flexural waves

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.

  1. Method for cancelling expansion waves in a wave rotor

    NASA Astrophysics Data System (ADS)

    Paxson, Daniel E.

    1994-03-01

    A wave rotor system includes a wave rotor coupled to first and second end plates. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion, and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is substantially the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding substantially to the head of the expansion wave, and a second end corresponding substantially to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. Preferably the cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.

  2. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  3. Excitation of parasitic waves near cutoff in forward-wave amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory S.; Sinitsyn, Oleksandr V.; Antonsen, Thomas M. Jr.

    2010-10-15

    In this paper, excitation of parasitic waves near cutoff in forward-wave amplifiers is studied in a rather general form. This problem is important for developing high-power sources of coherent, phase controlled short-wavelength electromagnetic radiation because just the waves which can be excited near cutoff have low group velocities. Since the wave coupling to an electron beam is inversely proportional to the group velocity, these waves are the most dangerous parasitic waves preventing stable amplification of desired signal waves. Two effects are analyzed in the paper. The first one is the effect of signal wave parameters on the self-excitation conditions ofmore » such parasitic waves. The second effect is the role of the beam geometry on excitation of these parasitic waves in forward-wave amplifiers with spatially extended interaction space, such as sheet-beam devices. It is shown that a large-amplitude signal wave can greatly influence the self-excitation conditions of the parasitic waves which define stability of operation. Therefore the effect described is important for accurate designing of high-power amplifiers of electromagnetic waves.« less

  4. Generation of long subharmonic internal waves by surface waves

    NASA Astrophysics Data System (ADS)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  5. Calcium waves.

    PubMed

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  6. Studies of large amplitude Alfvén waves and wave-wave interactions in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; Brugman, B.; Auerbach, D. W.

    2006-10-01

    Electromagnetic turbulence is thought to play an important role in plasmas in astrophysical settings (e.g. the interstellar medium, accretion disks) and in the laboratory (e.g. transport in magnetic fusion devices). From a weak turbulence point of view, nonlinear interactions between shear Alfvén waves are fundamental to the turbulent energy cascade in magnetic turbulence. An overview of experiments on large amplitude shear Alfvén waves in the Large Plasma Device (LAPD) will be presented. Large amplitude Alfvén waves (δB/B ˜1%) are generated either using a resonant cavity or loop antennas. Properties of Alfvén waves generated by these sources will be discussed, along with evidence of heating, background density modification and electron acceleration by the waves. An overview of experiments on wave-wave interactions will be given along with a discussion of future directions.

  7. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    USGS Publications Warehouse

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    To hindcast and fill data records, 214 empirical models were developed—189 are linear regression models and 25 are artificial neural network models. The coefficient of determination (R2) for 163 of the models is greater than 0.80 and the median percent model error (root mean square error divided by the range of the measured data) is 5 percent. To evaluate the performance of the hindcast models as a group, contour maps of modeled water-level surfaces at 2-centimeter (cm) intervals were generated using the hindcasted data. The 2-cm contour maps were examined for selected days to verify that water surfaces from the EDEN model are consistent with the input data. The biweekly 2-cm contour maps did show a higher number of issues during days in 1990 as compared to days after 1990. May 1990 had the lowest water levels in the Everglades of the 21-year dataset used for the hindcasting study. To hindcast these record low conditions in 1990, many of the hindcast models would require large extrapolations beyond the range of the predictive quality of the models. For these reasons, it was decided to limit the hindcasted data to the period January 1, 1991, to December 31, 1999. Overall, the hindcasted and gap-filled data are assumed to provide reasonable estimates of station-specific water-level data for an extended historical period to inform research and natural resource management in the Everglades.

  8. Confinement-induced p-wave resonances from s-wave interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

    2010-12-15

    We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less

  9. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.

    2018-03-01

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

  10. Full-wave effects on shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei

    2014-02-01

    Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.

  11. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  12. The new wave-ring helical (WRH) slow-wave structure for traveling wave tube amplifiers

    NASA Astrophysics Data System (ADS)

    Panahi, Nasser; Saviz, S.; Ghorannevis, M.

    2017-12-01

    In this paper, the new slow-wave structure called wave-ring helix to enhance the power of the traveling wave tubes is introduced. In this new structure, without increasing the length and radius of the helix, the wave motion path can be increased to radiofrequency wave in phase with the electron beam. The results show that in the special frequency range the output power and gain are greater than conventional helix. In this paper, optimization results are presented in cold and hot tests on the new structure. The software CST is used in S-band frequency range.

  13. Near Shore Wave Modeling and applications to wave energy estimation

    NASA Astrophysics Data System (ADS)

    Zodiatis, G.; Galanis, G.; Hayes, D.; Nikolaidis, A.; Kalogeri, C.; Adam, A.; Kallos, G.; Georgiou, G.

    2012-04-01

    The estimation of the wave energy potential at the European coastline is receiving increased attention the last years as a result of the adaptation of novel policies in the energy market, the concernsfor global warming and the nuclear energy security problems. Within this framework, numerical wave modeling systems keep a primary role in the accurate description of wave climate and microclimate that is a prerequisite for any wave energy assessment study. In the present work two of the most popular wave models are used for the estimation of the wave parameters at the coastline of Cyprus: The latest parallel version of the wave model WAM (ECMWF version), which employs new parameterization of shallow water effects, and the SWAN model, classically used for near shore wave simulations. The results obtained from the wave models near shores are studied by an energy estimation point of view: The wave parameters that mainly affect the energy temporal and spatial distribution, that is the significant wave height and the mean wave period, are statistically analyzed,focusing onpossible different aspects captured by the two models. Moreover, the wave spectrum distribution prevailing in different areas are discussed contributing, in this way, to the wave energy assessmentin the area. This work is a part of two European projects focusing on the estimation of the wave energy distribution around Europe: The MARINA platform (http://www.marina-platform.info/ index.aspx) and the Ewave (http://www.oceanography.ucy.ac.cy/ewave/) projects.

  14. Wave "Coherency" and Implications for Wave-Particle Interactions

    NASA Astrophysics Data System (ADS)

    Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang

    2016-07-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.

  15. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  16. Seismic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Wu, Xianyun; Wu, Ru-Shan

    A seismic wave is a mechanical disturbance or energy packet that can propagate from point to point in the Earth. Seismic waves can be generated by a sudden release of energy such as an earthquake, volcanic eruption, or chemical explosion. There are several types of seismic waves, often classified as body waves, which propagate through the volume of the Earth, and surface waves, which travel along the surface of the Earth. Compressional and shear waves are the two main types of body wave and Rayleigh and Love waves are the most common forms of surface wave.

  17. Determination of wave speed and wave separation in the arteries.

    PubMed

    Khir, A W; O'Brien, A; Gibbs, J S; Parker, K H

    2001-09-01

    Considering waves in the arteries as infinitesimal wave fronts rather than sinusoidal wavetrains, the change in pressure across the wave front, dP, is related to the change in velocity, dU, that it induces by the "water hammer" equation, dP=+/-rhocdU, where rho is the density of blood and c is the local wave speed. When only unidirectional waves are present, this relationship corresponds to a straight line when P is plotted against U with slope rhoc. When both forward and backward waves are present, the PU-loop is no longer linear. Measurements in latex tubes and systemic and pulmonary arteries exhibit a linear range during early systole and this provides a way of determining the local wave speed from the slope of the linear portion of the loop. Once the wave speed is known, it is also possible to separate the measured P and U into their forward and backward components. In cases where reflected waves are prominent, this separation of waves can help clarify the pattern of waves in the arteries throughout the cardiac cycle.

  18. Storminess at the Gulf of Biscay: classification and long term trends

    NASA Astrophysics Data System (ADS)

    Rasilla, D.; Garcia Codron, J. C.

    2009-04-01

    Widespread geomorphological evidences along the northern coast of the Iberian Peninsula, such as beach retreat or falling cliffs, show the remarkable activity of the Atlantic storm during the last decades. In the present communication we analyze some characteristics of those events and their temporal evolution over the area. Oceanographic information (significant wave height, wave direction and period) was retrieved from observed (buoys network from Puertos del Estado -PdE-) and hindcast (KNMI/ERA 40) databases. To explore the atmospheric mechanisms responsible, we combined local reports from coastal observatories, a regional Eulerian approach (a synoptic typing) and a larger-scale Lagrangian method, based on the analysis of storm-tracks. Surface meteorological variables (sea level pressure and wind speed and direction) were extracted from ISWHO (Integrated Surface Hourly Observations) CD Rom collection. Sea level pressure, surface 10m U and V wind components gridded data were obtained from ECMWF ERA40 Reanalysis. Storm tracks and cyclone statistics were obtained from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). In other to accomplish the objectives of this contribution, first we validated the hindcast data with actual observations from buoys. Secondly, we identified the storm episodes, considering them as a period longer than 12 hours in which the wave height was higher than 6 m, and separated by at least 48. Long winds fetch and locally strong westerly and northwesterly winds expose the northern coast of Iberia to episodes of intense storminess, mainly during the winter months. Extratropical disturbances tracking between the 50-60°N parallel are the main driving force behind those episodes, many of them as a result of a cyclogenesis processes along the eastern coast of North America. In some cases, the deep cyclonic storms are product of a secondary cyclogenesis, crossing the area southward of the 50

  19. Upper atmospheric planetary-wave and gravity-wave observations

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  20. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinxing; Bortnik, Jacob; An, Xin

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  1. Chorus Waves Modulation of Langmuir Waves in the Radiation Belts

    DOE PAGES

    Li, Jinxing; Bortnik, Jacob; An, Xin; ...

    2017-11-20

    Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler-mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E || component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermalmore » electrons via Landau resonance, and generate a localized electron beam in phase space density. Consequently, the Langmuir waves are excited locally and are modulated by the chorus wave phase. As a result, this microscale interaction between chorus waves and high frequency electrostatic waves provides a new insight into the nonlinear wave-particle interaction process.« less

  2. Wave envelope technique for multimode wave guide problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Sudharsanan, S. I.

    1986-01-01

    A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.

  3. Contribution of non-resonant wave-wave interactions in the dynamics of long-crested sea wave fields

    NASA Astrophysics Data System (ADS)

    Benoit, Michel

    2017-04-01

    Gravity waves fields at the surface of the oceans evolve under the combined effects of several physical mechanisms, of which nonlinear wave-wave interactions play a dominant role. These interactions transfer energy between components within the energy spectrum and allow in particular to explain the shape of the distribution of wave energy according to the frequencies and directions of propagation. In the oceanic domain (deep water conditions), dominant interactions are third-order resonant interactions, between quadruplets (or quartets) of wave components, and the evolution of the wave spectrum is governed by a kinetic equation, established by Hasselmann (1962) and Zakharov (1968). The kinetic equation has a number of interesting properties, including the existence of self-similar solutions and cascades to small and large wavelengths of waves, which can be studied in the framework of the wave (or weak) turbulence theory (e.g. Badulin et al., 2005). With the aim to obtain more complete and precise modelling of sea states dynamics, we investigate here the possibility and consequences of taking into account the non-resonant interactions -quasi-resonant in practice- among 4 waves. A mathematical formalism has recently been proposed to account for these non-resonant interactions in a statistical framework by Annenkov & Shrira (2006) (Generalized Kinetic Equation, GKE) and Gramstad & Stiassnie (2013) (Phase Averaged Equation, PAE). In order to isolate the non-resonant contributions, we limit ourselves here to monodirectional (i.e. long-crested) wave trains, since in this case the 4-wave resonant interactions vanish. The (stochastic) modelling approaches proposed by Annenkov & Shrira (2006) and Gramstad & Stiassnie (2013) are compared to phase-resolving (deterministic) simulations based on a fully nonlinear potential approach (using a high-order spectral method, HOS). We study and compare the evolution dynamics of the wave spectrum at different time scales (i.e. over

  4. Photoelectron wave function in photoionization: Plane wave or Coulomb wave? [Does photoionization of neutral targets produce Coulomb or plane waves?

    DOE PAGES

    Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...

    2015-10-28

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less

  5. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  6. Exploring Wave-Wave Interactions in a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.

    2018-01-01

    Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.

  7. Wave-Induced Momentum Flux over Wind-driven Surface Waves

    NASA Astrophysics Data System (ADS)

    Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu

    2017-11-01

    In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.

  8. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  9. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less

  10. Wave Tank Studies of Phase Velocities of Short Wind Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  11. Wave-particle interaction in the Faraday waves.

    PubMed

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2015-10-01

    Wave motion in disordered Faraday waves is analysed in terms of oscillons or quasi-particles. The motion of these oscillons is measured using particle tracking tools and it is compared with the motion of fluid particles on the water surface. Both the real floating particles and the oscillons, representing the collective fluid motion, show Brownian-type dispersion exhibiting ballistic and diffusive mean squared displacement at short and long times, respectively. While the floating particles motion has been previously explained in the context of two-dimensional turbulence driven by Faraday waves, no theoretical description exists for the random walk type motion of oscillons. It is found that the r.m.s velocity ⟨μ̃(osc)⟩(rms) of oscillons is directly related to the turbulent r.m.s. velocity ⟨μ̃⟩(rms) of the fluid particles in a broad range of vertical accelerations. The measured ⟨μ̃(osc)⟩(rms) accurately explains the broadening of the frequency spectra of the surface elevation observed in disordered Faraday waves. These results suggest that 2D turbulence is the driving force behind both the randomization of the oscillons motion and the resulting broadening of the wave frequency spectra. The coupling between wave motion and hydrodynamic turbulence demonstrated here offers new perspectives for predicting complex fluid transport from the knowledge of wave field spectra and vice versa.

  12. On the interaction of small-scale linear waves with nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Xu, Chengzhu; Stastna, Marek

    2017-04-01

    In the study of environmental and geophysical fluid flows, linear wave theory is well developed and its application has been considered for phenomena of various length and time scales. However, due to the nonlinear nature of fluid flows, in many cases results predicted by linear theory do not agree with observations. One of such cases is internal wave dynamics. While small-amplitude wave motion may be approximated by linear theory, large amplitude waves tend to be solitary-like. In some cases, when the wave is highly nonlinear, even weakly nonlinear theories fail to predict the wave properties correctly. We study the interaction of small-scale linear waves with nonlinear solitary waves using highly accurate pseudo spectral simulations that begin with a fully nonlinear solitary wave and a train of small-amplitude waves initialized from linear waves. The solitary wave then interacts with the linear waves through either an overtaking collision or a head-on collision. During the collision, there is a net energy transfer from the linear wave train to the solitary wave, resulting in an increase in the kinetic energy carried by the solitary wave and a phase shift of the solitary wave with respect to a freely propagating solitary wave. At the same time the linear waves are greatly reduced in amplitude. The percentage of energy transferred depends primarily on the wavelength of the linear waves. We found that after one full collision cycle, the longest waves may retain as much as 90% of the kinetic energy they had initially, while the shortest waves lose almost all of their initial energy. We also found that a head-on collision is more efficient in destroying the linear waves than an overtaking collision. On the other hand, the initial amplitude of the linear waves has very little impact on the percentage of energy that can be transferred to the solitary wave. Because of the nonlinearity of the solitary wave, these results provide us some insight into wave-mean flow

  13. Shear wave speed recovery in sonoelastography using crawling wave data.

    PubMed

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-07-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.

  14. Shear wave speed recovery in sonoelastography using crawling wave data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley

    2010-01-01

    The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane. PMID:20649204

  15. The CAUSES Model Intercomparison Project: Using hindcast approach to study the U.S. summertime surface warm temperature bias

    NASA Astrophysics Data System (ADS)

    Ma, H. Y.; Klein, S. A.; Xie, S.; Zhang, C.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.

    2016-12-01

    The CAUSES (Clouds Above the United States and Errors at the Surface) is a joint GASS/RGCM/ASR model intercomparison project with an observational focus (data from the U.S. DOE ARM SGP site and other observations). The goal of this project is to evaluate the role of clouds, radiation and precipitation processes in contributing to the surface air temperature bias in the region of the central U.S., which is seen in several weather and climate models. In this project, we use a short-term hindcast approach and examine the error growth due to cloud-associated processes while the large-scale state remains close to observations. The study period is from April 1 to August 31, 2011, which also covers the entire Midlatitude Continental Convective Clouds Experiment (MC3E) campaign that provides very frequent radiosondes (8 per day) and many extensive cloud and precipitation radar observations. Our preliminary analysis indicates that the warm surface air temperature bias in the mean diurnal cycle of the whole study period is very robust across all the participating models over the ARM SGP site. During the spring season (April-May), the daytime warm bias in most models is mostly due to excessive net surface shortwave flux resulting from insufficient deep convective cloud fraction or too optically thin clouds. The nighttime warm bias is likely due to the excessive downwelling longwave flux warming resulting from the persisting deep clouds. During the summer season (June-August), bias contribution from precipitation bias becomes important. The insufficient seasonal accumulated precipitation from the propagating convective systems originated from the Rockies contributes to lower soil moisture. Such condition drives the land surface to a dry state whereby radiative input can only be balanced by sensible heat loss through an increased surface air temperature. More information about the CAUSES project can be found through the following project webpage (http

  16. Full-wave modeling of EMIC waves near the He + gyrofrequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun -Hwa; Johnson, Jay R.

    Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less

  17. Full-wave modeling of EMIC waves near the He + gyrofrequency

    DOE PAGES

    Kim, Eun -Hwa; Johnson, Jay R.

    2016-01-06

    Electromagnetic ion cyclotron (EMIC) waves are known to be excited by the cyclotron instability associated with hot and anisotropic ion distributions in the equatorial region of the magnetosphere and are thought to play a key role in radiation belt losses. Although detection of these waves at the ground can provide a global view of the EMIC wave environment, it is not clear what signatures, if any, would be expected. One of the significant scientific issues concerning EMIC waves is to understand how these waves are detected at the ground. In order to solve this puzzle, it is necessary to understandmore » the propagation characteristics of the field-aligned EMIC waves, which include polarization reversal, cutoff, resonance, and mode coupling between different wave modes, in a dipolar magnetic field. However, the inability of ray tracing to adequately describe wave propagation near the crossover cutoff-resonance frequencies in multi-ion plasmas is one of reasons why these scientific questions remain unsolved. Using a recently developed 2-D full-wave code that solves the full-wave equations in global magnetospheric geometry, we demonstrate how EMIC waves propagate from the equatorial region to higher magnetic latitude in an electron-proton-He+ plasma. We find that polarization reversal occurs at the crossover frequency from left-hand polarization (LHP) to right-hand (RHP) polarization and such RHP EMIC waves can either propagate to the inner magnetosphere or reflect to the outer magnetosphere at the Buchsbaum resonance location. Lastly, we also find that mode coupling from guided LHP EMIC waves to unguided RHP or LHP waves (i.e., fast mode) occurs.« less

  18. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  19. Measurement study on stratospheric turbulence generation by wave-wave interaction

    NASA Astrophysics Data System (ADS)

    Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef

    2017-04-01

    During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.

  20. Helical localized wave solutions of the scalar wave equation.

    PubMed

    Overfelt, P L

    2001-08-01

    A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.

  1. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics. Copyright © 2016 the American Physiological Society.

  2. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE PAGES

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.; ...

    2018-02-16

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  3. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  4. Rogue Wave Modes for the Long Wave-Short Wave Resonance and the Derivative Nonlinear Schrödinger Models

    NASA Astrophysics Data System (ADS)

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-11-01

    Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.

  5. Making Waves.

    ERIC Educational Resources Information Center

    DeClark, Tom

    2000-01-01

    Presents an activity on waves that addresses the state standards and benchmarks of Michigan. Demonstrates waves and studies wave's medium, motion, and frequency. The activity is designed to address different learning styles. (YDS)

  6. Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Jonah Maxwell

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  7. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  8. Planetary plasma waves

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1993-01-01

    The primary types of plasma waves observed in the vicinity of the planets Venus, Mars, Earth, Jupiter, Saturn, Uranus, and Neptune are described. The observations are organized according to the various types of plasma waves observed, ordered according to decreasing distance from the planet, starting from the sunward side of the planet, and ending in the region near the closest approach. The plasma waves observed include: electron plasma oscillations and ion acoustic waves; trapped continuum radiation; electron cyclotron and upper hybrid waves; whistler-mode emissions; electrostatic ion cyclotron waves; and electromagnetic ion cyclotron waves.

  9. Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect.

    PubMed

    Brächer, T; Fabre, M; Meyer, T; Fischer, T; Auffret, S; Boulle, O; Ebels, U; Pirro, P; Gaudin, G

    2017-12-13

    The miniaturization of complementary metal-oxide-semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co 8 Fe 72 B 20 /MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.

  10. Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)

    NASA Astrophysics Data System (ADS)

    Gorman, Richard M.; Oliver, Hilary J.

    2018-06-01

    Most geophysical models include many parameters that are not fully determined by theory, and can be tuned to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.

  11. WAVE-E: The WAter Vapour European-Explorer Mission

    NASA Astrophysics Data System (ADS)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  12. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    NASA Astrophysics Data System (ADS)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  13. System and method for cancelling expansion waves in a wave rotor

    NASA Astrophysics Data System (ADS)

    Paxson, Daniel E.

    1993-12-01

    A wave rotor system that is comprised of a wave rotor coupled to first and second plates is described. Special ports are provided, one in each of the first and second end plates, to cancel expansion waves generated by the release of working fluid from the wave rotor. One of the expansion waves is reflected in the wave rotor from a reflecting portion and provided to the special port in the second end plate. Fluid present at the special port in the second end plate has a stagnation pressure and mass flow which is the same as that of the cells of the wave rotor communicating with such special port. This allows for cancellation of the expansion wave generated by the release of working fluid from the wave rotor. The special port in the second end plate has a first end corresponding to the head of the expansion wave and a second end corresponding to the tail of the expansion wave. Also, the special port is configured to continually change along the circumference of the second end plate to affect expansion wave cancellation. An expansion wave generated by a second release of working fluid from the wave rotor is cancelled in a similar manner to that described above using a special port in the first end plate. The cycle of operation of the wave rotor system is designed so that the stagnation pressure and mass flow of the fluid present at the special ports is the same so that the special ports may be connected by a common duct.

  14. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    NASA Astrophysics Data System (ADS)

    Farazmand, Mohammad; Sapsis, Themistoklis P.

    2017-07-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. We assess the validity of this scheme in several cases of ocean wave spectra.

  15. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  16. Scaling depth-induced wave-breaking in two-dimensional spectral wave models

    NASA Astrophysics Data System (ADS)

    Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.

    2015-03-01

    Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.

  17. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  18. Experimental investigation of three-wave interactions of capillary surface-waves

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric

    2014-11-01

    We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.

  19. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  20. Wave-induced current considering wave-tide interaction in Haeundae

    NASA Astrophysics Data System (ADS)

    Lim, Hak Soo

    2017-04-01

    The Haeundae, located at the south eastern end of the Korean Peninsula, is a famous beach, which has an approximately 1.6 km long and 70 m wide coastline. The beach has been repeatedly eroded by the swell waves caused by typhoons in summer and high waves originating in the East Sea in winter. The Korean government conducted beach restoration projects including beach nourishment (620,000 m3) and construction of two submerged breakwaters near both ends of the beach. To prevent the beach erosion and to support the beach restoration project, the Korean government initiated a R&D project, the development of coastal erosion control technology since 2013. As a part of the project, we have been measuring waves and currents at a water depth of 22 m, 1.8 km away from the beach using an acoustic wave and current meter (AWAC) continuously for more than three years; we have also measured waves and currents intensively near the surf-zone in summer and winter. In this study, a numerical simulation using a wave and current coupled model (ROMS-SWAN) was conducted for determining the wave-induced current considering seasonal swell waves (Hs : 2.5 m, Tp: 12 s) and for better understanding of the coastal process near the surf-zone in Haeundae. By comparing the measured and simulated results, we found that cross-shore current during summer is mainly caused by the eddy produced by the wave-induced current near the beach, which in turn, is generated by the strong waves coming from the SSW and S directions. During other seasons, longshore wave-induced current is produced by the swell waves coming from the E and ESE directions. The longshore current heading west toward Dong-Back Island, west end of the beach, during all the seasons and eddy current toward Mipo-Port, east end of the beach, in summer which is well matched with the observed residual current. The wave-induced current with long-term measurement data is incorporated in simulation of sediment transport modeling for developing

  1. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  2. Damping of lower hybrid waves by low-frequency drift waves

    NASA Astrophysics Data System (ADS)

    Krall, Nicholas A.

    1989-11-01

    The conditions under which a spectrum of lower hybrid drift waves will decay into low-frequency drift waves (LFD) are calculated. The purpose is to help understand why lower hybrid drift waves are not seen in all field-reversed configuration (FRC) experiments in which they are predicted. It is concluded that if there is in the plasma a LFD wave amplitude above a critical level, lower hybrid waves will decay into low-frequency drift waves. The critical level required to stabilize TRX-2 [Phys. Fluids 30, 1497 (1987)] is calculated and found to be reasonably consistent with theoretical estimates.

  3. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  4. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  5. Calculating wave-generated bottom orbital velocities from surface-wave parameters

    USGS Publications Warehouse

    Wiberg, P.L.; Sherwood, C.R.

    2008-01-01

    Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics

  6. OXIDANT/DISINFECTANT CHEMISTRY AND IMPACTS ON LEAD CORROSION

    EPA Science Inventory

    In response to continued elevated lead levels throughout the District of Columbia's distribution system, a collaboration was begun with the District of Columbia's Water & Sewer Authority (WASA) and Water Resources Division of U. S. Environmental Protection Agency's (USEPA) Office...

  7. Emerging trends in the sea state of the Beaufort and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Thomson, Jim; Fan, Yalin; Stammerjohn, Sharon; Stopa, Justin; Rogers, W. Erick; Girard-Ardhuin, Fanny; Ardhuin, Fabrice; Shen, Hayley; Perrie, Will; Shen, Hui; Ackley, Steve; Babanin, Alex; Liu, Qingxiang; Guest, Peter; Maksym, Ted; Wadhams, Peter; Fairall, Chris; Persson, Ola; Doble, Martin; Graber, Hans; Lund, Bjoern; Squire, Vernon; Gemmrich, Johannes; Lehner, Susanne; Holt, Benjamin; Meylan, Mike; Brozena, John; Bidlot, Jean-Raymond

    2016-09-01

    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

  8. Looking for radio waves with a simple radio wave detector

    NASA Astrophysics Data System (ADS)

    Sugimoto (Stray Cats), Norihiro

    2011-11-01

    I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.

  9. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  10. Characterization of Regular Wave, Irregular Wave, and Large-Amplitude Wave Group Kinematics in an Experimental Basin

    DTIC Science & Technology

    2011-02-01

    seakeeping was the transient wave technique, developed analytically by Davis and Zarnick (1964). At the David Taylor Model Basin, Davis and Zarnick, and...Gersten and Johnson (1969) applied the transient wave technique to regular wave model experiments for heave and pitch, at zero forward speed. These...tests demonstrated a potential reduction by an order of magnitude of the total necessary testing time. The transient wave technique was also applied to

  11. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.

    PubMed

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G

    2015-08-07

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.

  12. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    PubMed Central

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620

  13. Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R.

    2009-12-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.

  14. Unpinning of spiral waves from rectangular obstacles by stimulated wave trains

    NASA Astrophysics Data System (ADS)

    Ponboonjaroenchai, Benjamas; Srithamma, Panatda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Müller, Stefan C.; Luengviriya, Chaiya; Luengviriya, Jiraporn

    2017-09-01

    Pinned spiral waves are exhibited in many excitable media. In cardiology, lengthened tachycardia correspond to propagating action potential in forms of spiral waves pinned to anatomical obstacles including veins and scares. Thus, elimination such waves is important particularly in medical treatments. We present study of unpinning of a spiral wave by a wave train initiated by periodic stimuli at a given location. The spiral wave is forced to leave the rectangular obstacle when the period of the wave train is shorter than a threshold Tunpin. For small obstacles, Tunpin decreases when the obstacle size is increased. Furthermore, Tunpin depends on the obstacle orientation with respect to the wave train propagation. For large obstacles, Tunpin is independent to the obstacle size. It implies that the orientation of the obstacle plays an important role in the unpinning of the spiral wave, especially for small rectangular obstacles.

  15. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  16. Primordial standing waves

    NASA Astrophysics Data System (ADS)

    Gubitosi, Giulia; Magueijo, João

    2018-03-01

    We consider the possibility that the primordial fluctuations (scalar and tensor) might have been standing waves at their moment of creation, whether or not they had a quantum origin. We lay down the general conditions for spatial translational invariance, and isolate the pieces of the most general such theory that comply with, or break translational symmetry. We find that, in order to characterize statistically translationally invariant standing waves, it is essential to consider the correlator ⟨c0(k )c0(k')⟩ in addition to the better known ⟨c0(k )c0†(k')⟩ [where c0(k ) are the complex amplitudes of traveling waves]. We then examine how the standard process of "squeezing" (responsible for converting traveling waves into standing waves while the fluctuations are outside the horizon) reacts to being fed primordial standing waves. For translationally invariant systems only one type of standing wave, with the correct temporal phase (the "sine wave"), survives squeezing. Primordial standing waves might therefore be invisible at late times—or not—depending on their phase. Theories with modified dispersion relations behave differently in this respect, since only standing waves with the opposite temporal phase survive at late times.

  17. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  18. Rings and Waves

    NASA Image and Video Library

    2013-09-30

    Saturn A ring is decorated with several kinds of waves. NASA Cassini spacecraft has captured a host of density waves, a bending wave, and the edge waves on the edge of the Keeler gap caused by the small moon Daphnis.

  19. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    PubMed

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  20. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  1. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  2. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  3. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    NASA Astrophysics Data System (ADS)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  4. Hurricane Gustav (2008) Waves and Storm Surge: Hindcast, Synoptic Analysis, and Validation in Southern Louisiana

    DTIC Science & Technology

    2011-08-01

    weakening to category 3 prior to its first landfall, maintained its intensity through the Breton and Chandeleur Sounds, and tracked near metropolitan New...Gulf Outlet (MRGO) 5 Inner Harbor Navigational Canal (IHNC) 6 Mississippi River Bays, lakes, and sounds 7 Chandeleur Sound 8 Breton Sound 9 Lake Borgne...Sound Islands 18 Chandeleur Islands 19 Grand Isle Places 20 Louisiana–Mississippi Shelf 21 Biloxi marsh 22 Caernarvon marsh 23 ‘‘Bird’s foot’’ of the

  5. Jupiter Wave

    NASA Image and Video Library

    2015-10-13

    Scientists spotted a rare wave in Jupiter North Equatorial Belt that had been seen there only once before in this false-color close-up from NASA Hubble Telescope. In Jupiter's North Equatorial Belt, scientists spotted a rare wave that had been seen there only once before. It is similar to a wave that sometimes occurs in Earth's atmosphere when cyclones are forming. This false-color close-up of Jupiter shows cyclones (arrows) and the wave (vertical lines). http://photojournal.jpl.nasa.gov/catalog/PIA19659

  6. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  7. Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability

    NASA Astrophysics Data System (ADS)

    Schlutow, Mark; Klein, Rupert

    2017-04-01

    Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.

  8. Modeling transport and deposition of the Mekong River sediment

    USGS Publications Warehouse

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  9. Revisiting the difference between traveling-wave and standing-wave thermoacoustic engines - A simple analytical model for the standing-wave one

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi

    2015-11-01

    There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.

  10. Island-Trapped Waves, Internal Waves, and Island Circulation

    DTIC Science & Technology

    2014-09-30

    from the government of Palau to allow us to deliver some water and food to the officers. Governor Patris of Hatohobei State and the Coral Reef ...Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...large islands (Godfrey, 1989; Firing et al., 1999); • Westward propagating eddies and/or Rossby waves encounter large islands and produce boundary

  11. Experimental observation of standing interfacial waves induced by surface waves in muddy water

    NASA Astrophysics Data System (ADS)

    Maxeiner, Eric; Dalrymple, Robert A.

    2011-09-01

    A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.

  12. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    USGS Publications Warehouse

    Vitousek, Sean; Barnard, Patrick; Limber, Patrick W.; Erikson, Li; Cole, Blake

    2017-01-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea-level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea-level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea-level rise scenarios of 0.93 to 2.0 m.

  13. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change

    NASA Astrophysics Data System (ADS)

    Vitousek, Sean; Barnard, Patrick L.; Limber, Patrick; Erikson, Li; Cole, Blake

    2017-04-01

    We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS-COAST (Coastal One-line Assimilated Simulation Tool), is a transect-based, one-line model that predicts short-term and long-term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process-based models of coastline evolution due to longshore and cross-shore transport by waves and sea level rise. Additionally, the model uses an extended Kalman filter for data assimilation of historical shoreline positions to improve estimates of model parameters and thereby improve confidence in long-term predictions. We apply CoSMoS-COAST to simulate sandy shoreline evolution along 500 km of coastline in Southern California, which hosts complex mixtures of beach settings variably backed by dunes, bluffs, cliffs, estuaries, river mouths, and urban infrastructure, providing applicability of the model to virtually any coastal setting. Aided by data assimilation, the model is able to reproduce the observed signal of seasonal shoreline change for the hindcast period of 1995-2010, showing excellent agreement between modeled and observed beach states. The skill of the model during the hindcast period improves confidence in the model's predictive capability when applied to the forecast period (2010-2100) driven by GCM-projected wave and sea level conditions. Predictions of shoreline change with limited human intervention indicate that 31% to 67% of Southern California beaches may become completely eroded by 2100 under sea level rise scenarios of 0.93 to 2.0 m.

  14. Transport of pollutants and sediment in the area of the Wave Hub (Celtic Sea)

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Huntley, David

    2010-05-01

    consequences. This paper presents some preliminary modelling results of a baseline study focussed on hind-cast and now-cast simulation of the 3D structure of temperature, salinity and current velocity in the area immediately adjacent to the location of the Wave Hub. Of the range of available 3D numerical models for shelf sea hydrodynamics, we have selected the Proudman Oceanographic Laboratory Coastal Modelling System (POLCOMS). The POLCOMS has successfully been used in a number of coastal/shelf sea regions to simulate circulation of coastal waters. Modelling is carried out in the region of approximately 200x 200 km with the variable vertical resolution typically less than 2 m. Such parameters allow resololution of the formation of coastal density fronts both within and outside the wave shadow zone, expected to be of the order of tens of kilometres. The meteorological parameters are obtained from the publicly available NCEP re-analyses data base. These parameters include components of the wind velocity and the surface heat fluxes, air pressure at sea level; temperature and humidity in the low troposphere; precipitation and cloudiness. In this study, the transport of pollution is simulated by a number of passive drifters located at a certain depth at a number of locations including the central point of the Wave Hub. Sediment transport is modelled using the Engelund-Hansen algorithm taking the current velocities produced by the POLCOMS as an input parameter. The Celtic sea is a tidally dominated region, and the modelling is run both in full-forcing and in tide-only modes in order to assess effects of density fronts on the residual (tidally averaged) circulation pattern. The results show that the pollution pathways are very sensitive to the formation of temperature fronts. In some cases the passive traces move in nearly opposite directions when the effect of temperature fronts is disregarded. Sediment transport is highly non-uniform spatially with some four areas along the

  15. Full-wave and half-wave rectification in second-order motion perception

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1994-01-01

    Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the

  16. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  17. Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  18. Mode coupling and wave particle interactions for unstable ion acoustic waves

    NASA Technical Reports Server (NTRS)

    Martin, P.; Fried, B. D.

    1972-01-01

    A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.

  19. Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls

    NASA Astrophysics Data System (ADS)

    Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin

    2018-01-01

    Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.

  20. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    NASA Astrophysics Data System (ADS)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  1. Numerical analysis of THz radiation wave using upper hybrid wave wiggler

    NASA Astrophysics Data System (ADS)

    Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku

    2018-03-01

    A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.

  2. EPA SITE DEMONSTRATION OF BIOTROL AQUEOUS TREATMENT SYSTEM.

    EPA Science Inventory

    BioTrol's pilot scale, fixed-film biological system wa evaluated, under the EPA's SITE program, for its effectiveness at removing pentachlorophenol from groundwater. The demonstration wasa performed in the summer of 1989 at a wood preserving site in New Brighton, Minnesota. The ...

  3. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    NASA Technical Reports Server (NTRS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  4. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less

  5. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  6. A statistical study of EMIC waves observed by Cluster: 1. Wave properties

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-01

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  7. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    NASA Astrophysics Data System (ADS)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  8. Ultrasound shear wave imaging

    NASA Astrophysics Data System (ADS)

    Ye, Shigong; Wu, Junru

    2000-05-01

    Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.

  9. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-08-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the

  10. Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.

    PubMed

    Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki

    2017-02-01

    Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.

  11. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    PubMed

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  12. Space-Wave Routing via Surface Waves Using a Metasurface System.

    PubMed

    Achouri, Karim; Caloz, Christophe

    2018-05-15

    We introduce the concept of a metasurface system able to route space waves via surface waves. This concept may be used to laterally shift or modulate the beam width of scattered waves. The system is synthesized based on a momentum transfer approach using phase-gradient metasurfaces. The concept is experimentally verified in an "electromagnetic periscope". Additionally, we propose two other potential applications namely a beam expander and a multi-wave refractor.

  13. A multimodal wave spectrum-based approach for statistical downscaling of local wave climate

    USGS Publications Warehouse

    Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.

    2017-01-01

    Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.

  14. Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.

    2016-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.

  15. Beating HF waves to generate VLF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  16. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  17. Laboratory modeling of edge wave generation over a plane beach by breaking waves

    NASA Astrophysics Data System (ADS)

    Abcha, Nizar; Ezersky, Alexander; Pelinovsky, Efim

    2015-04-01

    Edge waves play an important role in coastal hydrodynamics: in sediment transport, in formation of coastline structure and coastal bottom topography. Investigation of physical mechanisms leading to the edge waves generation allows us to determine their effect on the characteristics of spatially periodic patterns like crescent submarine bars and cusps observed in the coastal zone. In the present paper we investigate parametric excitation of edge wave with frequency two times less than the frequency of surface wave propagating perpendicular to the beach. Such mechanism of edge wave generation has been studied previously in a large number of papers using the assumption of non-breaking waves. This assumption was used in theoretical calculations and such conditions were created in laboratory experiments. In the natural conditions, the wave breaking is typical when edge waves are generated at sea beach. We study features of such processes in laboratory experiments. Experiments were performed in the wave flume of the Laboratory of Continental and Coast Morphodynamics (M2C), Caen. The flume is equipment with a wave maker controlled by computer. To model a plane beach, a PVC plate is placed at small angle to the horizontal bottom. Several resistive probes were used to measure characteristics of waves: one of them was used to measure free surface displacement near the wave maker and two probes were glued on the inclined plate. These probes allowed us to measure run-up due to parametrically excited edge waves. Run-up height is determined by processing a movie shot by high-speed camera. Sub-harmonic generation of standing edge waves is observed for definite control parameters: edge waves represent themselves a spatial mode with wavelength equal to double width of the flume; the frequency of edge wave is equal to half of surface wave frequency. Appearance of sub-harmonic mode instability is studied using probes and movie processing. The dependence of edge wave exponential

  18. Linear excitation of the trapped waves by an incident wave

    NASA Astrophysics Data System (ADS)

    Postacioglu, Nazmi; Sinan Özeren, M.

    2016-04-01

    The excitation of the trapped waves by coastal events such as landslides has been extensively studied. The events in the open sea have in general larger magnitude. However the incident waves produced by these events in the open sea can only excite the the trapped waves through no linearity if the isobaths are straight lines that are in parallel with the coastline. We will show that the imperfections of the coastline can couple the incident and trapped waves using only linear processes. The Coriolis force is neglected in this work . Accordingly the trapped waves are consequence of uneven bathimetry. In the bathimetry we consider, the sea is divided into zones of constant depth and the boundaries between the zones are a family of hyperbolas. The boundary conditions between the zones will lead to an integral equation for the source distribution on the boundaries. The solution will contain both radiating and trapped waves. The trapped waves pose a serious threat for the coastal communities as they can travel long distances along the coastline without losing their energy through geometrical spreading.

  19. CMS-Wave

    DTIC Science & Technology

    2014-10-27

    a phase-averaged spectral wind-wave generation and transformation model and its interface in the Surface-water Modeling System (SMS). Ambrose...applications of the Boussinesq (BOUSS-2D) wave model that provides more rigorous calculations for design and performance optimization of integrated...navigation systems . Together these wave models provide reliable predictions on regional and local spatial domains and cost-effective engineering solutions

  20. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  1. Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation

    NASA Astrophysics Data System (ADS)

    Irisov, V.

    2012-12-01

    Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we

  2. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    NASA Astrophysics Data System (ADS)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  3. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong

    2015-07-01

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less

  4. Patterns in the Waves

    NASA Astrophysics Data System (ADS)

    Coco, G.; Guza, R. T.; Garnier, R.; Lomonaco, P.; Lopez De San Roman Blanco, B.; Dalrymple, R. A.; Xu, M.

    2014-12-01

    Edge waves, gravity waves trapped close to the shoreline by refraction, can in some cases form a standing wave pattern with alongshore periodic sequence of high and low runup. Nonlinear mechanisms for generation of edge waves by monochromatic waves incident on a planar beach from deep water have been elaborated theoretically and in the lab. Edge waves have been long considered a potential source for alongshore periodic morphological patterns in the swash (e.g., beach cusps), and edge-wave based predictions of cusp spacing compare qualitatively well with many field observations. We will discuss the extension of lab observations and numerical modeling to include incident waves with significant frequency and directional bandwidth. Laboratory experiments were performed at the Cantabria Coastal and Ocean Basin. The large rectangular basin (25 m cross-shore by 32 m alongshore) was heavily instrumented, had reflective sidewalls, and a steep concrete beach (slope 1:5) with a constant depth (1m) section between the wavemaker and beach. With monochromatic, normally incident waves we observed the expected, previously described subharmonic observations. Edge wave vertical heights at the shoreline reached 80cm, and edge wave uprushes exceeded the sloping beach freeboard. When frequency and frequency-directional spread are increased, the excited edge wave character changes substantially. In some cases, subharmonic excitation is suppressed completely. In other cases, edge waves are excited intermittently and unpredictably. The spatially and temporally steady forcing required for strong, persistent subharmonic instability is lacking with even modestly spread (direction and frequency) incident waves. An SPH numerical model is capable of reproducing aspects of the observations. It seems unlikely to us that subhamonic edge waves alone are responsible for most cusp formation on natural beaches. The steady incident wave forcing needed to initiate subharmonic growth, and to maintain

  5. RADIATION WAVE DETECTION

    DOEpatents

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  6. Wave and tidal level analysis, maritime climate change, navigation's strategy and impact on the costal defences - Study case of São Paulo State Coastline Harbour Areas (Brazil)

    NASA Astrophysics Data System (ADS)

    Alfredini, P.; Pezzoli, A.; Cristofori, E. I.; Dovetta, A.; Arasaki, E.

    2012-04-01

    São Paulo State Coastline Harbour Area concentrates around of 40% of Brazilian GNP, Santos Harbour is the America South Atlantic Hub Port and São Sebastião Oil Maritime Terminal is the most important oil and gas facility of PETROBRAS, the Brazilian National Petroleum Company. Santos Harbour had in the last decade increased rapidly the container handling rate, being the first in Latin America. In the last decade important oil and gas reserves were discovered in the Santos Oceanic Basin and São Paulo Coastline received a big demand for supplier ships harbours for the petroleum industry. Santos Metropolitan Region is one of the most important of Brazilian Coastline, also considering the turism. For that great economic growth scenario it is very important to have the main maritime hydrodynamics forcing processes, wave climate and tidal levels, well known, considering the sea hazards influence in ship operations. Since the hindcast just represents the deep water wave climate, to make time-series of the waves parameters in coastal waters, for evaluation of sea hazards and ship operations, it is necessary to take into acount the variations of those parameters in shallow waters with coastal instrumental data. Analysis of long term wave data-base (1957-2002) generated by a comparison between wave's data modeled by a "deep water model" (ERA40-ECMWF) and measured wave's data in the years 1982-1984 by a coastal buoy in Santos littoral (São Paulo State, Brazil) was made. Calibration coefficients according to angular sectors of wave's direction were obtained by the comparison of the instrument data with the modeled ones, and applied to the original scenarios. Validation checking procedures with instrumental measurements of storm surges made in other years than 1982-1984 shows high level of confidence. The analysis of the wave climate change on the extreme storm surge wave's conditions, selecting cases of Hs > 3,0 m, using that virtual data-base shows an increase in the Hs

  7. Body-wave traveltime and amplitude shifts from asymptotic travelling wave coupling

    USGS Publications Warehouse

    Pollitz, F.

    2006-01-01

    We explore the sensitivity of finite-frequency body-wave traveltimes and amplitudes to perturbations in 3-D seismic velocity structure relative to a spherically symmetric model. Using the approach of coupled travelling wave theory, we consider the effect of a structural perturbation on an isolated portion of the seismogram. By convolving the spectrum of the differential seismogram with the spectrum of a narrow window taper, and using a Taylor's series expansion for wavenumber as a function of frequency on a mode dispersion branch, we derive semi-analytic expressions for the sensitivity kernels. Far-field effects of wave interactions with the free surface or internal discontinuities are implicitly included, as are wave conversions upon scattering. The kernels may be computed rapidly for the purpose of structural inversions. We give examples of traveltime sensitivity kernels for regional wave propagation at 1 Hz. For the direct SV wave in a simple crustal velocity model, they are generally complicated because of interfering waves generated by interactions with the free surface and the Mohorovic??ic?? discontinuity. A large part of the interference effects may be eliminated by restricting the travelling wave basis set to those waves within a certain range of horizontal phase velocity. ?? Journal compilation ?? 2006 RAS.

  8. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.

    PubMed

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2009-05-01

    Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD > or = 300 microm), whereas chemical dispersion under breaking waves created small droplets (VMD < or = 50 microm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.

  9. Extreme wave formation in unidirectional sea due to stochastic wave phase dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Balachandran, Balakumar

    2018-07-01

    The authors consider a stochastic model based on the interaction and phase coupling amongst wave components that are modified envelope soliton solutions to the nonlinear Schrödinger equation. A probabilistic study is carried out and the resulting findings are compared with ocean wave field observations and laboratory experimental results. The wave height probability distribution obtained from the model is found to match well with prior data in the large wave height region. From the eigenvalue spectrum obtained through the Inverse Scattering Transform, it is revealed that the deep-water wave groups move at a speed different from the linear group speed, which justifies the inclusion of phase correction to the envelope solitary wave components. It is determined that phase synchronization amongst elementary solitary wave components can be critical for the formation of extreme waves in unidirectional sea states.

  10. 4-wave dynamics in kinetic wave turbulence

    NASA Astrophysics Data System (ADS)

    Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto

    2018-01-01

    A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.

  11. Waves at Navigation Structures

    DTIC Science & Technology

    2015-10-30

    upgrades the Coastal Modeling System (CMS) wave models CMS-Wave, a phase- averaged spectral wave model, and BOUSS-2D, a Boussinesq type nonlinear wave...developing WaveNet and TideNet, two Web-based tool systems for wind and wave data access and processing, which provide critical data for USACE project...practical applications, resulting in optimization of navigation system to improve safety, reliability and operations with innovative infrastructures

  12. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    PubMed

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  14. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  15. Surface elastic wave detectors

    NASA Technical Reports Server (NTRS)

    Lawson, R. L.

    1971-01-01

    The potential applications of acoustic surface wave technology to multiplex communication systems such as data-bus, are examined. The goals are primarily to characterize certain aspects of surface wave trapped delay lines, surface wave modulation techniques, and surface wave applications that are relevant to the evaluation of surface wave devices in multiplex systems. The results indicate that there is a potential for the application of surface wave technology in data-bus type systems.

  16. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  17. Numerical investigation of freak waves

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2009-04-01

    Paper describes the results of more than 4,000 long-term (up to thousands of peak-wave periods) numerical simulations of nonlinear gravity surface waves performed for investigation of properties and estimation of statistics of extreme (‘freak') waves. The method of solution of 2-D potential wave's equations based on conformal mapping is applied to the simulation of wave behavior assigned by different initial conditions, defined by JONSWAP and Pierson-Moskowitz spectra. It is shown that nonlinear wave evolution sometimes results in appearance of very big waves. The shape of freak waves varies within a wide range: some of them are sharp-crested, others are asymmetric, with a strong forward inclination. Some of them can be very big, but not steep enough to create dangerous conditions for vessels (but not for fixed objects). Initial generation of extreme waves can occur merely as a result of group effects, but in some cases the largest wave suddenly starts to grow. The growth is followed sometimes by strong concentration of wave energy around a peak vertical. It is taking place in the course of a few peak wave periods. The process starts with an individual wave in a physical space without significant exchange of energy with surrounding waves. Sometimes, a crest-to-trough wave height can be as large as nearly three significant wave heights. On the average, only one third of all freak waves come to breaking, creating extreme conditions, however, if a wave height approaches the value of three significant wave heights, all of the freak waves break. The most surprising result was discovery that probability of non-dimensional freak waves (normalized by significant wave height) is actually independent of density of wave energy. It does not mean that statistics of extreme waves does not depend on wave energy. It just proves that normalization of wave heights by significant wave height is so effective, that statistics of non-dimensional extreme waves tends to be independent

  18. A plane wave generation method by wave number domain point focusing.

    PubMed

    Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2010-11-01

    A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.

  19. Improving the accurate assessment of a layered shear-wave velocity model using joint inversion of the effective Rayleigh wave and Love wave dispersion curves

    NASA Astrophysics Data System (ADS)

    Yin, X.; Xia, J.; Xu, H.

    2016-12-01

    Rayleigh and Love waves are two types of surface waves that travel along a free surface.Based on the assumption of horizontal layered homogenous media, Rayleigh-wave phase velocity can be defined as a function of frequency and four groups of earth parameters: P-wave velocity, SV-wave velocity, density and thickness of each layer. Unlike Rayleigh waves, Love-wave phase velocities of a layered homogenous earth model could be calculated using frequency and three groups of earth properties: SH-wave velocity, density, and thickness of each layer. Because the dispersion of Love waves is independent of P-wave velocities, Love-wave dispersion curves are much simpler than Rayleigh wave. The research of joint inversion methods of Rayleigh and Love dispersion curves is necessary. (1) This dissertation adopts the combinations of theoretical analysis and practical applications. In both lateral homogenous media and radial anisotropic media, joint inversion approaches of Rayleigh and Love waves are proposed to improve the accuracy of S-wave velocities.A 10% random white noise and a 20% random white noise are added to the synthetic dispersion curves to check out anti-noise ability of the proposed joint inversion method.Considering the influences of the anomalous layer, Rayleigh and Love waves are insensitive to those layers beneath the high-velocity layer or low-velocity layer and the high-velocity layer itself. Low sensitivities will give rise to high degree of uncertainties of the inverted S-wave velocities of these layers. Considering that sensitivity peaks of Rayleigh and Love waves separate at different frequency ranges, the theoretical analyses have demonstrated that joint inversion of these two types of waves would probably ameliorate the inverted model.The lack of surface-wave (Rayleigh or Love waves) dispersion data may lead to inaccuracy S-wave velocities through the single inversion of Rayleigh or Love waves, so this dissertation presents the joint inversion method of

  20. Laboratory Investigation of Wave Breaking. Part 2. Deep Water Waves

    DTIC Science & Technology

    1975-06-01

    respectively, phase velocity is given implicitly by: C3 = [ + (f )2] ( Levi - Civita , 1925) (2a)C3 CS = F (1 + (c_-_)2 + (fH)4 (Beach Erosion Board, 1941...In view of the above, one is led to wonder why almost all wave- 4 oriented research within the past two decades has been directed towards wave growth...mechanisms, as opposed to wave breaking. There seem to be ’’ at least two reasors. Wave breaking--aidefined by turbulent energy loss- -is a non

  1. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  2. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  3. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P.

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  4. Wave energy analysis based on simulation wave data in the China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da

    2018-05-01

    In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.

  5. Oceanic-wave-measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T.

    1980-01-01

    Barometer mounted on bouy senses wave heights. As wave motion raises and lowers barometer, pressure differential is proportional to wave height. Monitoring circuit samples barometer output every half cycle of wave motion and adds magnitudes of adjacent positive and negative peaks. Resulting output signals, proportional to wave height, are transmitted to central monitoring station.

  6. Generation of realistic tsunami waves using a bottom-tilting wave maker

    NASA Astrophysics Data System (ADS)

    Park, Yong Sung; Hwang, Jin Hwan

    2016-11-01

    Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.

  7. Gravitational-wave astronomy

    NASA Technical Reports Server (NTRS)

    Press, W. H.; Thorne, K. S.

    1972-01-01

    The significance of experimental evidence for gravitational waves is considered for astronomy. Properties, generation, and astrophysical sources of the waves are discussed. Gravitational wave receivers and antennas are described. A review of the Weber experiment is presented.

  8. Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.

    Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).

  9. Study of the Western Black Sea Storms with a Focus on the Storms Caused by Cyclones of North African Origin

    NASA Astrophysics Data System (ADS)

    Galabov, Vasko; Chervenkov, Hristo

    2018-04-01

    We present a study of the Black Sea storms, using a long hindcast of the western Black Sea wind waves. The goal of the work is to study the trends in the storminess indicators. We identify 238 storms with significant wave height above 4 m for the period 1900-2015. We study the cyclogenetic regions of the cyclones causing these storms and focus specifically on the Black Sea storms associated with cyclones originating over the Gulf of Sidra and the adjacent areas. We also identify which of these storms are associated with the so-called explosive cyclogenesis (with deepening rate above 1 Bergeron) and find that 3 out of 5 cases of severe Black Sea storms associated with explosive cyclones are caused by cyclones originating in the Gulf of Sidra. We find no evidence of steady trends in the western Black Sea storminess.

  10. On the stability of lumps and wave collapse in water waves.

    PubMed

    Akylas, T R; Cho, Yeunwoo

    2008-08-13

    In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.

  11. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    NASA Astrophysics Data System (ADS)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  12. Explicit wave action conservation for water waves on vertically sheared flows

    NASA Astrophysics Data System (ADS)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  13. Rogue wave variational modelling through the interaction of two solitary waves

    NASA Astrophysics Data System (ADS)

    Gidel, Floriane; Bokhove, Onno

    2016-04-01

    The extreme and unexpected characteristics of Rogue waves have made them legendary for centuries. It is only on the 1st of January 1995 that these mariners' tales started to raise scientist's curiosity, when such a wave was recorded in the North Sea; a sudden wall of water hit the Draupner offshore platform, more than twice higher than the other waves, providing evidence of the existence of rogue or freak waves. Since then, studies have shown that these surface gravity waves of high amplitude (at least twice the height of the other sea waves [Dyste et al., 2008]) appear in non-linear dispersive water motion [Drazin and Johnson, 1989], at any depth, and have caused a lot of damage in recent years [Nikolkina and Didenkulova, 2011 ]. So far, most of the studies have tried to determine their probability of occurrence, but no conclusion has been achieved yet, which means that we are currently unenable to predict or avoid these monster waves. An accurate mathematical and numerical water-wave model would enable simulation and observation of this external forcing on boats and offshore structures and hence reduce their threat. In this work, we aim to model rogue waves through a soliton splash generated by the interaction of two solitons coming from different channels at a specific angle. Kodama indeed showed that one way to produce extreme waves is through the intersection of two solitary waves, or one solitary wave and its oblique reflection on a vertical wall [Yeh, Li and Kodama, 2010 ]. While he modelled Mach reflection from Kadomtsev-Petviashvili (KP) theory, we aim to model rogue waves from the three-dimensional potential flow equations and/or their asymptotic equivalent described by Benney and Luke [Benney and Luke, 1964]. These theories have the advantage to allow wave propagation in several directions, which is not the case with KP equations. The initial solitary waves are generated by removing a sluice gate in each channel. The equations are derived through a

  14. Moreton wave, "EIT wave", and type II radio burst as manifestations of a single wave front

    NASA Astrophysics Data System (ADS)

    Kuzmenko, I. V.; Grechnev, V. V.; Uralov, A. M.

    2011-12-01

    We show that a Moreton wave, an "EIT wave," and a type II radio burst observed during a solar flare of July 13, 2004, might have been a manifestation of a single front of a decelerating shock wave, which appeared in an active region (AR) during a filament eruption. We propose describing a quasi-spheroidal wave propagating upward and along the solar surface by using relations known from a theory of a point-like explosion in a gas whose density changes along the radius according to a power law. By applying this law to fit the drop in density of the coronal plasma enveloping the solar active region, we first managed to bring the measured positions and velocities of surface Moreton wave and "EIT wave" into correspondence with the observed frequency drift rate of the meter type II radio burst. The exponent of the vertical coronal density falloff is selected by fitting the power law to the Newkirk and Saito empirical distributions in the height range of interest. Formal use of such a dependence in the horizontal direction with a different exponent appears to be reasonable up to distances of less than 200 Mm around the eruption center. It is possible to assume that the near-surface shock wave weakens when leaving this radius and finally the active region, entering the region of the quiet Sun where the coronal plasma density and the fast-mode speed are almost constant along the horizontal.

  15. Refinements to Atlantic basin seasonal hurricane prediction from 1 December

    NASA Astrophysics Data System (ADS)

    Klotzbach, Philip J.

    2008-09-01

    Atlantic basin seasonal hurricane predictions have been issued by the Tropical Meteorology Project at Colorado State University since 1984, with early December forecasts being issued every year since early December 1991. These forecasts have yet to show real-time forecast skill, despite several statistical models that have shown considerable hindcast skill. In an effort to improve both hindcast skill and hopefully real-time forecast skill, a modified forecast scheme has been developed using data from 1950 to 2007. Predictors were selected based upon how much variance was explained over the 1950-1989 subperiod. These predictors were then required to explain similar amounts of variance over a latter subperiod from 1990 to 2007. Similar amounts of skill were demonstrated for each of the three predictors selected over the 1950-1989 period, the 1990-2007 period, and the full 1950-2007 period. In addition, significant correlations between individual predictors and physical features known to affect hurricanes during the following August-October (i.e., tropical Atlantic wind shear and sea level pressure changes, ENSO phase changes) were obtained. This scheme uses a new methodology where hindcasts were obtained using linear regression and then ranked to generate final hindcast values. Fifty-four percent of the variance was explained for seasonal Net Tropical Cyclone (NTC) activity over the 1950-2007 period. These hindcasts show considerable differences in landfalling U.S. tropical cyclones, especially for the Florida Peninsula and East Coast. Seven major hurricanes made Florida Peninsula and East Coast landfall during the top 15 largest NTC hindcasts compared with only two major hurricane landfalls in the bottom 15 smallest NTC hindcasts.

  16. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    PubMed Central

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260

  17. Experimental studies on wave interactions of partially perforated wall under obliquely incident waves.

    PubMed

    Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon

    2014-01-01

    This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  18. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  19. Earthquake early warning using P-waves that appear after initial S-waves

    NASA Astrophysics Data System (ADS)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  20. Full wave description of VLF wave penetration through the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    2010-05-01

    Of the many problems in whistler study, wave propagation through the ionosphere is among the most important, and the most difficult at the same time. Both satellite and ground-based investigations of VLF waves include considerations of this problem, and it has been in the focus of research since the beginning of whistler study (Budden [1985]; Helliwell [1965]). The difficulty in considering VLF wave passage through the ionosphere is, after all, due to fast variation of the lower ionosphere parameters as compared to typical VLF wave number. This makes irrelevant the consideration in the framework of geometrical optics, which, along with a smooth variations of parameters, is always based on a particular dispersion relation. Although the full wave analysis in the framework of cold plasma approximation does not require slow variations of plasma parameters, and does not assume any particular wave mode, the fact that the wave of a given frequency belongs to different modes in various regions makes numerical solution of the field equations not simple. More specifically, as is well known (e.g. Ginzburg and Rukhadze [1972]), in a cold magnetized plasma, there are, in general, two wave modes related to a given frequency. Both modes, however, do not necessarily correspond to propagating waves. In particular, in the frequency range related to whistler waves, the other mode is evanescent, i.e. it has a negative value of N2 (the refractive index squared). It means that one of solutions of the relevant differential equations is exponentially growing, which makes a straightforward numerical approach to these equations despairing. This well known difficulty in the problem under discussion is usually identified as numerical swamping (Budden [1985]). Resolving the problem of numerical swamping becomes, in fact, a key point in numerical study of wave passage through the ionosphere. As it is typical of work based on numerical simulations, its essential part remains virtually hidden

  1. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the

  2. Wind growth and wave breaking in higher-order spectral phase resolved wave models

    NASA Astrophysics Data System (ADS)

    Leighton, R.; Walker, D. T.

    2016-02-01

    Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322

  3. Wave reflections in the pulmonary arteries analysed with the reservoir–wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pressure and flow in the pulmonary circulation yields incident and reflected waves throughout the cardiac cycle, even during diastole. The reservoir–wave model provides an alternative haemodynamic analysis consistent with minimal wave activity during diastole. Pressure and flow in the main pulmonary artery were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading and positive end-expiratory pressure were observed. The reservoir–wave model was used to determine the reservoir contribution to pressure and flow and once subtracted, resulted in ‘excess’ quantities, which were treated as wave-related. Wave intensity analysis quantified the contributions of waves originating upstream (forward-going waves) and downstream (backward-going waves). In the pulmonary artery, negative reflections of incident waves created by the right ventricle were observed. Overall, the distance from the pulmonary artery valve to this reflection site was calculated to be 5.7 ± 0.2 cm. During 100% O2 ventilation, the strength of these reflections increased 10% with volume loading and decreased 4% with 10 cmH2O positive end-expiratory pressure. In the pulmonary arterial circulation, negative reflections arise from the junction of lobar arteries from the left and right pulmonary arteries. This mechanism serves to reduce peak systolic pressure, while increasing blood flow. PMID:24756638

  4. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  5. A full-wave Helmholtz model for continuous-wave ultrasound transmission.

    PubMed

    Huttunen, Tomi; Malinen, Matti; Kaipio, Jari P; White, Phillip Jason; Hynynen, Kullervo

    2005-03-01

    A full-wave Helmholtz model of continuous-wave (CW) ultrasound fields may offer several attractive features over widely used partial-wave approximations. For example, many full-wave techniques can be easily adjusted for complex geometries, and multiple reflections of sound are automatically taken into account in the model. To date, however, the full-wave modeling of CW fields in general 3D geometries has been avoided due to the large computational cost associated with the numerical approximation of the Helmholtz equation. Recent developments in computing capacity together with improvements in finite element type modeling techniques are making possible wave simulations in 3D geometries which reach over tens of wavelengths. The aim of this study is to investigate the feasibility of a full-wave solution of the 3D Helmholtz equation for modeling of continuous-wave ultrasound fields in an inhomogeneous medium. The numerical approximation of the Helmholtz equation is computed using the ultraweak variational formulation (UWVF) method. In addition, an inverse problem technique is utilized to reconstruct the velocity distribution on the transducer which is used to model the sound source in the UWVF scheme. The modeling method is verified by comparing simulated and measured fields in the case of transmission of 531 kHz CW fields through layered plastic plates. The comparison shows a reasonable agreement between simulations and measurements at low angles of incidence but, due to mode conversion, the Helmholtz model becomes insufficient for simulating ultrasound fields in plates at large angles of incidence.

  6. Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Atakturk, Serhad S.

    1992-01-01

    Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of

  7. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  8. Incident wave, infragravity wave, and non-linear low-frequency bore evolution across fringing coral reefs

    NASA Astrophysics Data System (ADS)

    Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.

    2016-12-01

    Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods <25 s) heights were an order of magnitude greater than infragravity wave (periods > 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.

  9. Wave Measurements in Landfast Ice in Svalbard: Evolution of Wave Propagation following Wind Waves to Swell Transition

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Rabault, J.; Jensen, A.; Christensen, K. H.; Ward, B.; Marchenko, A. V.; Morozov, E.; Gundersen, O.; Halsne, T.; Lindstrøm, E.

    2016-02-01

    The impact of sea-ice cover on propagation of water waves has been studied over five decades, both theoretically and from measurements on the ice. Understanding the interaction between water waves and sea-ice covers is a topic of interest for a variety of purposes such as formulation of ocean models for climate, weather and sea state predictions, and the analysis of pollution dispersion in the Arctic. Our knowledge of the underlying phenomena is still partial, and more experimental data is required to gain further insight into the associated physics. Three Inertial Motion Units (IMUs) have been assessed in the lab and used to perform measurements on landfast ice over 2 days in Tempelfjorden, Svalbard during March 2015. The ice thickness in the measurement area was approximately 60 to 80 cm. Two IMUs were located close to each other (6 meters) at a distance around 180 m from the ice edge. The third IMU was placed 120 m from the ice edge. The data collected contains a transition from high frequency, wind generated waves to lower frequency swell. Drastic changes in wave propagation are observed in relation with this transition. The level of reflected energy obtained from rotational spectra is much higher before the transition to low frequency swell than later on. The correlation between the signal recorded by the IMU closer to the ice edge and the two others IMUs is low during the wind waves dominated period, and increases with incoming swell. The dispersion relation for waves in ice was found to correspond to flexural-gravity waves before the transition and deepwater gravity waves afterwards.

  10. Interactions of solitary waves and compression/expansion waves in core-annular flows

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark

    2017-11-01

    The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  11. Scattering of acoustic evanescent waves by circular cylinders: Partial wave series solution

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    Evanescent acoustical waves occur in a variety of situations such as when sound is incident on a fluid interface beyond the critical angle and when flexural waves on a plate are subsonic with respect to the surrounding fluid. The scattering by circular cylinders at normal incidence was calculated to give insight into the consequences on the scattering of the evanescence of the incident wave. To analyze the scattering, it is necessary to express the incident wave using a modified expansion involving cylindrical functions. For plane evanescent waves, the expansion becomes a double summation with products of modified and ordinary Bessel functions. The resulting modified series is found for the scattering by a fluid cylinder in an unbounded medium. The perfectly soft and rigid cases are also examined. Unlike the case of an ordinary incident wave, the counterpropagating partial waves of the same angular order have unequal magnitudes when the incident wave is evanescent. This is a consequence of the exponential dependence of the incident wave amplitude on the transverse coordinate. The associated exponential dependence of the scattering on the location of a scatterer was previously demonstrated [T. J. Matula and P. L. Marston, J. Acoust. Soc. Am. 93, 1192-1195 (1993)].

  12. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with

  13. Wave disc engine apparatus

    DOEpatents

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  14. Linear Water Waves

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  15. Complementary optical rogue waves in parametric three-wave mixing.

    PubMed

    Chen, Shihua; Cai, Xian-Ming; Grelu, Philippe; Soto-Crespo, J M; Wabnitz, Stefan; Baronio, Fabio

    2016-03-21

    We investigate the resonant interaction of two optical pulses of the same group velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium and report on the complementary rogue wave dynamics which are unique to such a parametric three-wave mixing. Analytic rogue wave solutions up to the second order are explicitly presented and their robustness is confirmed by numerical simulations, in spite of the onset of modulation instability activated by quantum noise.

  16. The Virtual Wave Observatory (VWO): A Portal to Heliophysics Wave Data

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.

    2010-01-01

    The Virtual Wave Observatory (VWO) is one of the discipline-oriented virtual observatories that help form the nascent NASA Heliophysics Data environment to support heliophysics research. It focuses on supporting the searching and accessing of distributed heliophysics wave data and information that are available online. Since the occurrence of a natural wave phenomenon often depends on the underlying geophysical -- i.e., context -- conditions under which the waves are generated and propagate, and the observed wave characteristics can also depend on the location of observation, VWO will implement wave-data search-by-context conditions and location, in addition to searching by time and observing platforms (both space-based and ground-based). This paper describes the VWO goals, the basic design objectives, and the key VWO functionality to be expected. Members of the heliophysics community are invited to participate in VWO development in order to ensure its usefulness and success.

  17. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    NASA Astrophysics Data System (ADS)

    Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S.

    2012-09-01

    Two historical emission inventories of black carbon (BC), primary organic carbon (OC), and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980-2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  18. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    USGS Publications Warehouse

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Once installed, the 'HindCast Player' HyperCard stack displays the spill trajectory of the EXXON Valdez oil spill in the Prince William Sound in March of 1989. The product, 'Exxon Valdez Hind Cast' contains one compressed file and one documentation file. The file containing the documentation is named 'Read.me', and the compressed file is named Exxon HindCasts'. The compressed folder contains a moov file called 'EXXON Valdez', a HyperCard Stack called, 'HindCast Player v/2', and Apples QuickTime(TM) extension file.

  20. ASTER Waves

    NASA Image and Video Library

    2000-10-06

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces. http://photojournal.jpl.nasa.gov/catalog/PIA02662

  1. Rogue waves in shallow water

    NASA Astrophysics Data System (ADS)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  2. Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi

    2012-06-01

    Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.

  3. The role of satellite directional wave spectra for the improvement of the ocean-waves coupling

    NASA Astrophysics Data System (ADS)

    Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand

    2017-04-01

    Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.

  4. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less

  5. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from thatmore » under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.« less

  6. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping

  7. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Erofeev, V. I.

    2015-09-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  8. Potential predictability and actual skill of Boreal Summer Tropical SST and Indian summer monsoon rainfall in CFSv2-T382: Role of initial SST and teleconnections

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Rao, Suryachandra A.; Das, Renu S.; Salunke, Kiran; Dhakate, Ashish

    2017-10-01

    The present study assess the potential predictability of boreal summer (June through September, JJAS) tropical sea surface temperature (SST) and Indian summer monsoon rainfall (ISMR) using high resolution climate forecast system (CFSv2-T382) hindcasts. Potential predictability is computed using relative entropy (RE), which is the combined effect of signal strength and model spread, while the correlation between ensemble mean and observations represents the actual skill. Both actual and potential skills increase as lead time decreases for Niño3 index and equatorial East Indian Ocean (EEIO) SST anomaly and both the skills are close to each other for May IC hindcasts at zero lead. At the same time the actual skill of ISMR and El Niño Modoki index (EMI) are close to potential skill for Feb IC hindcasts (3 month lead). It is interesting to note that, both actual and potential skills are nearly equal, when RE has maximum contribution to individual year's prediction skill and its relationship with absolute error is insignificant or out of phase. The major contribution to potential predictability is from ensemble mean and the role of ensemble spread is limited for Pacific SST and ISMR hindcasts. RE values are able to capture the predictability contribution from both initial SST and simultaneous boundary forcing better than ensemble mean, resulting in higher potential skill compared to actual skill for all ICs. For Feb IC hindcasts at 3 month lead time, initial month SST (Feb SST) has important predictive component for El Niño Modoki and ISMR leading to higher value of actual skill which is close to potential skill. This study points out that even though the simultaneous relationship between ensemble mean ISMR and global SST is similar for all ICs, the predictive component from initial SST anomalies are captured well by Feb IC (3 month lead) hindcasts only. This resulted in better skill of ISMR for Feb IC (3 month lead) hindcasts compared to May IC (0 month lead

  9. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Blair, David G.

    2005-10-01

    Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.

  10. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  11. Temporal change in shallow subsurface P- and S-wave velocities and S-wave anisotropy inferred from coda wave interferometry

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Nishida, K.; Takeda, T.

    2012-12-01

    Recent progresses in theoretical and observational researches on seismic interferometry reveal the possibility to detect subtle change in subsurface seismic structure. This high sensitivity of seismic interferometry to the medium properties may thus one of the most important ways to directly observe the time-lapse behavior of shallow crustal structure. Here, using the coda wave interferometry, we show the co-seismic and post-seismic changes in P- and S-wave velocities and S-wave anisotropy associated with the 2011 off the Pacific coast of Tohoku earthquake (M9.0). In this study, we use the acceleration data recorded at KiK-net stations operated by NIED, Japan. Each KiK-net station has a borehole whose typical depth is about 100m, and two three-component accelerometers are installed at the top and bottom of the borehole. To estimate the shallow subsurface P- and S-wave velocities and S-wave anisotropy between two sensors and their temporal change, we select about 1000 earthquakes that occurred between 2004 and 2012, and extract body waves propagating between borehole sensors by computing the cross-correlation functions (CCFs) of 3 x 3 component pairs. We use frequency bands of 2-4, 4-8, 8-16 Hz in our analysis. Each averaged CCF shows clear wave packets traveling between borehole sensors, and their travel times are almost consistent with those of P- and S-waves calculated from the borehole log data. Until the occurrence of the 2011 Tohoku earthquake, the estimated travel time at each station is rather stable with time except for weak seasonal/annual variation. On the other hand, the 2011 Tohoku earthquake and its aftershocks cause sudden decrease in the S-wave velocity at most of the KiK-net stations in eastern Japan. The typical value of S-wave velocity changes, which are measured by the time-stretching method, is about 5-15%. After this co-seismic change, the S-wave velocity gradually recovers with time, and the recovery continues for over one year following the

  12. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  13. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  14. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  15. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE PAGES

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...

    2018-05-29

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  16. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  17. Nonlinear excitation of fast magnetosonic waves via quasi-electrostatic whistler wave mixing

    NASA Astrophysics Data System (ADS)

    Zechar, Nathan; Sotnikov, Vladimir; Caplinger, James; Chu, Arthur

    2017-10-01

    We report on experiments of nonlinear simultaneous generation of low frequency fast magnetosonic waves and electromagnetic whistler waves using two loop antennas in the afterglow of a cold magnetized helium plasma. The exciting antennas each have a frequency that is below half the electron cyclotron frequency, and the difference between the two is just below the lower hybrid frequency. They both directly excite whistler waves, however their nonlinear interaction excite the low frequency fast magnetosonic waves at the frequency given by their difference. Plasma is generated using a helicon plasma source in a one meter length cylindrical chamber. The spatial and temporal data of the electromagnetic and electrostatic components of the plasma waves are then captured with developed diagnostic techniques. Wave spectra, general structure and time domain frequencies observed will be reported.

  18. Modified fundamental Airy wave.

    PubMed

    Seshadri, S R

    2014-01-01

    The propagation characteristics of the fundamental Airy wave are obtained; the intensity distribution is the same as that for a point electric dipole situated at the origin and oriented normal to the propagation direction. The propagation characteristics of the modified fundamental Airy wave are determined. These characteristics are the same as those for the fundamental Gaussian wave provided that an equivalent waist is identified for the Airy wave. In general, the waves are localized spatially with the peak in the propagation direction.

  19. Lorentz-boosted evanescent waves

    NASA Astrophysics Data System (ADS)

    Bliokh, Konstantin Y.

    2018-06-01

    Polarization, spin, and helicity are important properties of electromagnetic waves. It is commonly believed that helicity is invariant under the Lorentz transformations. This is indeed so for plane waves and their localized superpositions. However, this is not the case for evanescent waves, which are well-defined only in a half-space, and are characterized by complex wave vectors. Here we describe transformations of evanescent electromagnetic waves and their polarization/spin/helicity properties under the Lorentz boosts along the three spatial directions.

  20. Improved Seasonal Prediction of European Summer Temperatures With New Five-Layer Soil-Hydrology Scheme

    NASA Astrophysics Data System (ADS)

    Bunzel, Felix; Müller, Wolfgang A.; Dobrynin, Mikhail; Fröhlich, Kristina; Hagemann, Stefan; Pohlmann, Holger; Stacke, Tobias; Baehr, Johanna

    2018-01-01

    We evaluate the impact of a new five-layer soil-hydrology scheme on seasonal hindcast skill of 2 m temperatures over Europe obtained with the Max Planck Institute Earth System Model (MPI-ESM). Assimilation experiments from 1981 to 2010 and 10-member seasonal hindcasts initialized on 1 May each year are performed with MPI-ESM in two soil configurations, one using a bucket scheme and one a new five-layer soil-hydrology scheme. We find the seasonal hindcast skill for European summer temperatures to improve with the five-layer scheme compared to the bucket scheme and investigate possible causes for these improvements. First, improved indirect soil moisture assimilation allows for enhanced soil moisture-temperature feedbacks in the hindcasts. Additionally, this leads to improved prediction of anomalies in the 500 hPa geopotential height surface, reflecting more realistic atmospheric circulation patterns over Europe.

  1. Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel

    NASA Astrophysics Data System (ADS)

    Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak

    2018-04-01

    Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.

  2. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  3. Space-time properties of wind-waves: a new look at directional wave distributions

    NASA Astrophysics Data System (ADS)

    Leckler, Fabien; Ardhuin, Fabrice; Benetazzo, Alvise; Fedele, Francesco; Bergamasco, Filippo; Dulov, Vladimir

    2014-05-01

    Few accurate observed directional wave spectra are available in the literature at spatial scales ranging between 0.5 and 5.0 m. These intermediate wave scales, relevant for air-sea fluxes and remote sensing are also expected to feed back on the dominant wave properties through wave generation. These wave scales can be prolifically investigated using the well-known optical stereo methods that provides, from a couple of synchronized images, instantaneous representation of wave elevations over a given sea surface. Thus, two stereo systems (the so-called Wave Acquisition Stereo Systems, WASS) were deployed on top of the deep-water platform at Katsiveli, in the Black Sea, in September 2011 and 2013. From image pairs taken by the couple of synchronized high-resolution cameras, ocean surfaces have been reconstructed by stereo-triangulation. Here we analyze sea states corresponding to mean wind speeds of 11 to 14 m/s, and young wave ages of 0.35 to 0.42, associated to significant wave heights of 0.3 to 0.55m. As a result, four 12 Hz time evolutions of sea surface elevation maps with areas about 10 x 10 m2 have been obtained for sequence durations ranging between 15 and 30 minutes, and carefully validated with nearby capacitance wave gauges. The evolving free surfaces elevations were processed into frequency-wavenumber-direction 3D spectra. We found that wave energy chiefly follows the dispersion relation up to frequency of 1.6Hz and wavenumber of 10 rad/m, corresponding to wavelength of about 0.5 m. These spectra also depict well the energy contribution from non-linear waves, which is quantified and compared to theory. A strong bi-modality of the linear spectra was also observed, with the angle of the two maxima separated by about 160 degrees. Furthermore, spectra also exhibit the bimodality of the non-linear part. Integrated over positive frequencies to obtain wavenumber spectra unambiguous in direction, the bimodality of the spectra is partially hidden by the energy from

  4. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  5. Kinesthetic Transverse Wave Demonstration

    NASA Astrophysics Data System (ADS)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  6. Solitary waves, rogue waves and homoclinic breather waves for a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Dong, Min-Jie; Tian, Shou-Fu; Yan, Xue-Wei; Zou, Li; Li, Jin

    2017-10-01

    We study a (2 + 1)-dimensional generalized Kadomtsev-Petviashvili (gKP) equation, which characterizes the formation of patterns in liquid drops. By using Bell’s polynomials, an effective way is employed to succinctly construct the bilinear form of the gKP equation. Based on the resulting bilinear equation, we derive its solitary waves, rogue waves and homoclinic breather waves, respectively. Our results can help enrich the dynamical behavior of the KP-type equations.

  7. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.

    PubMed

    Yang, Guangye; Li, Lu; Jia, Suotang

    2012-04-01

    Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.

  8. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    NASA Astrophysics Data System (ADS)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  9. Wave-Particle Energy Exchange Directly Observed in a Kinetic Alfven-Branch Wave

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; F-Vinas, Adolfo; Dorelli, John C.; Boardsen, Scott A. (Inventor); Avanov, Levon A.; Bellan, Paul M.; Schwartz, Steven J.; Lavraud, Benoit; Coffey, Victoria N.; Chandler, Michael O.; hide

    2017-01-01

    Alfven waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres, and astrophysical systems, but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASAs Magnetospheric Multiscale (MMS) mission, we utilize Earths magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfven wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via non-linear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

  10. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  11. Optical Wave Turbulence and Wave Condensation in a Nonlinear Optical Experiment

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania

    We present theory, numerical simulations and experimental observations of a 1D optical wave system. We show that this system is of a dual cascade type, namely, the energy cascading directly to small scales, and the photons or wave action cascading to large scales. In the optical context the inverse cascade is particularly interesting because it means the condensation of photons. We show that the cascades are induced by a six-wave resonant interaction process described by weak turbulence theory. We show that by starting with weakly nonlinear randomized waves as an initial condition, there exists an inverse cascade of photons towards the lowest wavenumbers. During the cascade nonlinearity becomes strong at low wavenumbers and, due to the focusing nature of the nonlinearity, it leads to modulational instability resulting in the formation of solitons. Further interaction of the solitons among themselves and with incoherent waves leads to the final condensate state dominated by a single strong soliton. In addition, we show the existence of the direct energy cascade numerically and that it agrees with the wave turbulence prediction.

  12. ULF waves in the foreshock

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Le, G.; Strangeway, R. J.

    1995-01-01

    We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.

  13. A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan

    2016-07-01

    This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.

  14. A Simple Wave Driver

    ERIC Educational Resources Information Center

    Temiz, Burak Kagan; Yavuz, Ahmet

    2015-01-01

    This study was done to develop a simple and inexpensive wave driver that can be used in experiments on string waves. The wave driver was made using a battery-operated toy car, and the apparatus can be used to produce string waves at a fixed frequency. The working principle of the apparatus is as follows: shortly after the car is turned on, the…

  15. Vertical shear-wave velocity profiles generated from spectral analysis of surface waves : field examples

    DOT National Transportation Integrated Search

    2003-04-01

    Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...

  16. Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zheng, Shuhua

    2017-06-01

    By using the dynamical system approach, the exact travelling wave solutions for a system of coupled nonlinear electrical transmission lines are studied. Based on this method, the bifurcations of phase portraits of a dynamical system are given. The two-dimensional solitary wave solutions and periodic wave solutions on coupled nonlinear transmission lines are obtained. With the aid of Maple, the numerical simulations are conducted for solitary wave solutions and periodic wave solutions to the model equation. The results presented in this paper improve upon previous studies.

  17. Hindcast and Forecast of 137Cs Activities in the North Pacific Ocean Waters from 1945 to 2020 by Eddy-resolving ROMS

    NASA Astrophysics Data System (ADS)

    Tsubono, T.; Misumi, K.; Tsumune, D.; Aoyama, M.; Hirose, K.

    2015-12-01

    We conducted a hindcast and forecast of 137Cs activities in the North Pacific waters from 1945 to 2020, before and after the Fukushima Dai-ichi Nuclear Power Plant (F1NPP) accident. We used the Regional Ocean Model System (ROMS) with high resolution (1/12º-1/4º in horizontal, 45 levels in vertical), of which domain was the North Pacific Ocean. The model was driven by the exactly repeating "Normal Year" forcing Coordinated Ocean Reference Experiment (CORE) forcing dataset (Large and Yeager, 2008) using bulk formulae and the model-predicted sea surface temperature and the 50 years averaged SODA data as boundary conditions. The reconstructed global fallout due to atmospheric nuclear weapons' tests and Chernobyl accident was employed for atmospheric flux of 137Cs from 1945 to 2011. After the accident, the atmospheric deposition and direct release of 137Cs from F1NPP were also employed for input condition. Five ensemble calculations of 137Cs activities in seawater were conducted under different initial conditions, but had identical forcing. The net input of 16 PBq of 137Cs from F1NPP, which was employed in this study, corresponded to 26% of the total amount (61 PBq) of 137Cs that was estimated in the North Pacific before the F1NPP accident in 2011. Before the accident in 2011, the 137Cs on surface ranged from 0.75 to 1.7 Bq m-3. The direct comparison between simulated and observed 134Cs activities in the surface layer represented that the root-mean-square error and correlation coefficient were 5.6 Bq m-3 and 0.86, respectively, suggesting the model result were consistent with the observations. The main body of high 137Cs activity water from F1NPP was transported to south of the Subarctic Front around 42°N via the Oyashio Coastal Current, the Oyashio intrusion, and the Kuroshio bifurcation and then to the western North Pacific. This model simulation suggested that the 137Cs activities in surface waters at P26 (P04) would increase to 4.1 Bq m-3 (4.3 Bq m-3 ) in 2015

  18. Teleseismic surface wave study of S-wave velocity structure in Southern California

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2002-12-01

    We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes

  19. Wave-particle and wave-wave interactions in hot plasmas: a French historical point of view

    NASA Astrophysics Data System (ADS)

    Laval, Guy; Pesme, Denis; Adam, Jean-Claude

    2016-11-01

    The first researches on nuclear fusion for energy applications marked the entrance of hot plasmas into the laboratory. It became necessary to understand the behavior of such plasmas and to learn how to manipulate them. Theoreticians and experimentalists, building on the foundations of empirical laws, had to construct this new plasma physics from first principles and to explain the results of more and more complicated experiments. Along this line, two important topics emerged: wave-particle and wave-wave interactions. Here, their history is recalled as it has been lived by a French team from the end of the sixties to the beginning of the twenty-first century.

  20. Shear Wave Speed Estimation Using Reverberant Shear Wave Fields: Implementation and Feasibility Studies.

    PubMed

    Ormachea, Juvenal; Castaneda, Benjamin; Parker, Kevin J

    2018-05-01

    Elastography is a modality that estimates tissue stiffness and, thus, provides useful information for clinical diagnosis. Attention has focused on the measurement of shear wave propagation; however, many methods assume shear wave propagation is unidirectional and aligned with the lateral imaging direction. Any deviations from the assumed propagation result in biased estimates of shear wave speed. To address these challenges, directional filters have been applied to isolate shear waves with different propagation directions. Recently, a new method was proposed for tissue stiffness estimation involving creation of a reverberant shear wave field propagating in all directions within the medium. These reverberant conditions lead to simple solutions, facile implementation and rapid viscoelasticity estimation of local tissue. In this work, this new approach based on reverberant shear waves was evaluated and compared with another well-known elastography technique using two calibrated elastic and viscoelastic phantoms. Additionally, the clinical feasibility of this technique was analyzed by assessing shear wave speed in human liver and breast tissues, in vivo. The results indicate that it is possible to estimate the viscoelastic properties in each scanned medium. Moreover, a better approach to estimation of shear wave speed was obtained when only the phase information was taken from the reverberant waves, which is equivalent to setting all magnitudes within the bandpass equal to unity: an idealization of a perfectly isotropic reverberant shear wave field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  1. Relationship between directions of wave and energy propagation for cold plasma waves

    NASA Technical Reports Server (NTRS)

    Musielak, Zdzislaw E.

    1986-01-01

    The dispersion relation for plasma waves is considered in the 'cold' plasma approximation. General formulas for the dependence of the phase and group velocities on the direction of wave propagation with respect to the local magnetic field are obtained for a cold magnetized plasma. The principal cold plasma resonances and cut-off frequencies are defined for an arbitrary angle and are used to establish basic regimes of frequency where the cold plasma waves can propagate or can be evanescent. The relationship between direction of wave and energy propagation, for cold plasma waves in hydrogen atmosphere, is presented in the form of angle diagrams (angle between group velocity and magnetic field versus angle between phase velocity and magnetic field) and polar diagrams (also referred to as 'Friedrich's diagrams') for different directions of wave propagation. Morphological features of the diagrams as well as some critical angles of propagation are discussed.

  2. The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Huang, S. Y.; Allen, R. C.; Fu, H. S.; Deng, X. H.; Zhou, M.; Burch, J. L.; Torbert, R. B.

    2017-08-01

    Electromagnetic ion cyclotron (EMIC) waves can precipitate the ring current ions and relativistic electrons and heat the cold electrons in the magnetosphere. This requires comprehensive knowledge of the occurrence and wave properties of EMIC waves. In the present study, we used the data from one new mission, the Magnetospheric Multiscale (MMS) mission launched in March 2015, to investigate the occurrence and wave properties of H+-band and He+-band EMIC waves in the magnetosphere. Our statistical results show the following: (1) H+-band EMIC waves mostly occur in the higher L-shells (L > 5) while He+-band EMIC waves are mostly observed in the lower L-shells (L < 6). (2) The occurrence rate of H+-band EMIC waves in the dayside is higher than that in the nightside. The highest peak of occurrence rate of H+-band EMIC waves is in the postnoon sector (5-8 L-shells), and the secondary peak lies in the small area of the dawn sector. (3) The wave power spectral density peaks in the postnoon and predusk sectors, while the wave normal angles are largest in the dawn sector. (4) Linear and right-hand polarized H+-band EMIC waves are mainly in the regions of peak occurrence, while linear polarized waves are seen to also dominate outside of the regions of peak occurrence. The highest occurrence rate of linear polarized He+-band EMIC waves is observed in the dawn sector. We discussed the results and compared with previous findings.

  3. Tropical Forcing of the Summer East Atlantic Pattern

    NASA Astrophysics Data System (ADS)

    Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas

    2017-11-01

    The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.

  4. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  5. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eiiassen-Palm flux are also discussed.

  6. Conservation laws of wave action and potential enstrophy for Rossby waves in a stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Straus, D. M.

    1983-01-01

    The evolution of wave energy, enstrophy, and wave motion for atmospheric Rossby waves in a variable mean flow are discussed from a theoretical and pedagogic standpoint. In the absence of mean flow gradients, the wave energy density satisfies a local conservation law, with the appropriate flow velocity being the group velocity. In the presence of mean flow variations, wave energy is not conserved, but wave action is, provided the mean flow is independent of longitude. Wave enstrophy is conserved for arbitrary variations of the mean flow. Connections with Eliassen-Palm flux are also discussed.

  7. Focusing of Shear Shock Waves

    NASA Astrophysics Data System (ADS)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  8. Coherent Waves in Seismic Researches

    NASA Astrophysics Data System (ADS)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  9. Analytical and numerical solution for wave reflection from a porous wave absorber

    NASA Astrophysics Data System (ADS)

    Magdalena, Ikha; Roque, Marian P.

    2018-03-01

    In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.

  10. Initializing decadal climate predictions over the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Matei, Daniela Mihaela; Pohlmann, Holger; Jungclaus, Johann; Müller, Wolfgang; Haak, Helmuth; Marotzke, Jochem

    2010-05-01

    Decadal climate prediction aims to predict the internally-generated decadal climate variability in addition to externally-forced climate change signal. In order to achieve this it is necessary to start the predictions from the current climate state. In this study we investigate the forecast skill of the North Atlantic decadal climate predictions using two different ocean initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer, 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. Hindcast experiments are then performed over the period 1952-2001. An alternative approach is one in which the subsurface ocean temperature and salinity are diagnosed from an ensemble of ocean model runs forced by the NCEP-NCAR atmospheric reanalyzes for the period 1948-2007, then nudge into the coupled model to produce initial conditions for the hindcast experiments. An anomaly coupling scheme is used in both approaches to avoid the hindcast drift and the associated initial shock. Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes. We asses the skill of the initialized decadal hindcast experiments against the prediction skill of the non-initialized hindcasts simulation. We obtain an overview of the regions with the highest predictability from the regional distribution of the anomaly correlation coefficients and RMSE for the SAT. For the first year the hindcast skill is increased over almost all ocean regions in the NCEP-forced approach. This increase in the hindcast skill for the 1 year lead time is somewhat reduced in the GECCO approach. At lead time 5yr and 10yr, the skill enhancement is still found over the North Atlantic and North Pacific regions. We also consider the potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) and Nordic Seas Overflow by comparing the predicted values to

  11. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  12. VLF wave generation by beating of two HF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  13. Whistler mode waves observed by MGF search coil magnetometer -Polarization and wave normal features of upstream waves near the bow-shock

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Matsui, H.; Kawano, H.; Yamamoto, T.; Kokubun, S.

    1994-12-01

    Whistler mode waves observed in the upstream region very close to the bow-shock is focused from the initial survey for magnetic fed data in a frequency range between 1Hz and 50Hz observed by the search coil magnetometer on board the Geotail satellite. Based on the three component wave form data polarization and wave-normal characteristics of foreshock waves is first shown as dynamic spectra for the whole Fourier components of the 50 Hz band width. Intense whistler mode waves generated in the foot region of the bow-shock are found strongly controlled in the observed polarization dependent on the angle between directions of the wave propagation and the solar wind flow but not very dependent on frequency. Our simple scheme to derive the ware characteristics which is effective to survey large amount of data continuously growing is also introduced.

  14. GEOPHYSICS, ASTRONOMY AND ASTROPHYSICS: Numerical method of studying nonlinear interactions between long waves and multiple short waves

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Kuang, Hai-Lan; William, Perrie; Zou, Guang-Hui; Nan, Cheng-Feng; He, Chao; Shen, Tao; Chen, Wei

    2009-07-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.

  15. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.

  16. A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory

    NASA Astrophysics Data System (ADS)

    Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.

    2016-02-01

    Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.

  17. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data

    PubMed Central

    Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.

    2011-01-01

    The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924

  18. Shock wave treatment in medicine.

    PubMed

    Shrivastava, S K; Kailash

    2005-03-01

    Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones.

  19. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  20. Third Wave.

    ERIC Educational Resources Information Center

    Reed, Chris

    2000-01-01

    Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…

  1. Gravitational Waves Propagation through the Stochastic Background of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Nakamoto, F. Y.; Santos, G. A.

    2018-02-01

    With the recent claim that gravitational waves were finally detected and with other efforts around the world for GWs detection, its is reasonable to imagine that the relic gravitational wave background could be detected in some time in the future and with such information gather some hints about the origin of the universe. But, it’s also be considered that gravity has self-interaction, with such assumption it’s reasonable to expect that these gravitational wave will interact with the relic or nonrelic GW background by scattering, for example. Such interaction should decrease the distance which such propagating waves could be detected The propagation of gravitational waves (GWs) is analyzed in an asymptotically de Sitter space by the perturbation expansion around Minkowski space using a scalar component. Using the case of de Sitter inflationary phase scenario, the perturbation propagates through a FRW background. The GW, using the actual value for the Hubble scale (Ho), has a damping factor with a very small valor for the size of the observational universe; the stochastic relic GW background is given by a dimensionless function of the frequency. In this work we analyze this same damping including the gravitational wave background due to astrophysical sources such background is 3 orders of magnitude bigger in some frequencies and produces a higher damping factor.

  2. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  3. Rogue waves of the Kundu-Eckhaus equation in a chaotic wave field.

    PubMed

    Bayindir, Cihan

    2016-03-01

    In this paper we study the properties of the chaotic wave fields generated in the frame of the Kundu-Eckhaus equation (KEE). Modulation instability results in a chaotic wave field which exhibits small-scale filaments with a free propagation constant, k. The average velocity of the filaments is approximately given by the average group velocity calculated from the dispersion relation for the plane-wave solution; however, direction of propagation is controlled by the β parameter, the constant in front of the Raman-effect term. We have also calculated the probabilities of the rogue wave occurrence for various values of propagation constant k and showed that the probability of rogue wave occurrence depends on k. Additionally, we have showed that the probability of rogue wave occurrence significantly depends on the quintic and the Raman-effect nonlinear terms of the KEE. Statistical comparisons between the KEE and the cubic nonlinear Schrödinger equation have also been presented.

  4. Analytic methods for design of wave cycles for wave rotor core engines

    NASA Technical Reports Server (NTRS)

    Resler, Edwin L., Jr.; Mocsari, Jeffrey C.; Nalim, M. R.

    1993-01-01

    A procedure to design a preliminary wave rotor cycle for any application is presented. To complete a cycle with heat addition there are two separate but related design steps that must be followed. The 'wave' boundary conditions determine the allowable amount of heat added in any case and the ensuing wave pattern requires certain pressure discharge conditions to allow the process to be made cyclic. This procedure, when applied, gives a first estimate of the cycle performance and the necessary information for the next step in the design process, namely the application of a characteristic based or other appropriate detailed one dimensional wave calculation that locates the proper porting around the periphery of the wave rotor. Four examples of the design procedure are given to demonstrate its utility and generality. These examples also illustrate the large gains in performance that could be realized with the use of wave rotor enhanced propulsion cycles.

  5. Nonlinear attenuation of S-waves and Love waves within ambient rock

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  6. Scale-dependent Ocean Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.

    1995-01-01

    Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.

  7. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  8. Periodic wave, breather wave and travelling wave solutions of a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou

    2016-11-01

    In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.

  9. Wave Energy Prize - 1/20th Testing - RTI Wave Power

    DOE Data Explorer

    Scharmen, Wesley

    2016-09-30

    Data from the 1/20th scale testing data completed on the Wave Energy Prize for the RTI Wave Power team, including the 1/20th Test Plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners.

  10. Pilot-Wave Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    2015-01-01

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.

  11. Spin-wave diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Jin; Yu, Weichao; Wu, Ruqian

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  12. Spin-wave diode

    DOE PAGES

    Lan, Jin; Yu, Weichao; Wu, Ruqian; ...

    2015-12-28

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  13. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  14. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  15. Wave-current interaction: Effect on the wave field in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2013-10-01

    The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further

  16. Alfvén simple waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.

    2011-02-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.

  17. Diffracted and head waves associated with waves on nonseparable surfaces

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.

    1992-01-01

    A theory is presented for computing waves radiated from waves on a smooth surface. With the assumption that attention of the surface wave is due only to radiation and not to dissipation in the surface material, the radiation coefficient is derived in terms of the attenuation factor. The excitation coefficient is determined by the reciprocity condition. Formulas for the shape and the spreading of the radiated wave are derived, and some sample calculations are presented. An investigation of resonant phase matching for nonseparable surfaces is presented with a sample calculation. A discussion of how such calculations might be related to resonant frequencies of nonseparable thin shell structures is included. A description is given of nonseparable surfaces that can be modeled in the vector that facilitates use of the appropriate formulas of differential geometry.

  18. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    ERIC Educational Resources Information Center

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  19. Ambient seismic wave field

    PubMed Central

    NISHIDA, Kiwamu

    2017-01-01

    The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015

  20. Traveling-wave photodetector

    DOEpatents

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.