Sample records for washington neutron radiotherapy

  1. University of Washington Clinical Neutron Facility: Report on 26 Years of Operation

    NASA Astrophysics Data System (ADS)

    Laramore, George E.; Emery, Robert; Reid, David; Banerian, Stefani; Kalet, Ira; Jacky, Jonathan; Risler, Ruedi

    2011-12-01

    Particle radiotherapy facilities are highly capital intensive and must operate over decades to recoup the original investment. We describe the successful, long-term operation of a neutron radiotherapy center at the University of Washington, which has been operating continuously since September 1984. To date, 2836 patients have received neutron radiotherapy. The mission of the facility has also evolved to include the production of unique radioisotopes that cannot be made with the low-energy cyclotrons more commonly found in nuclear medicine departments. The facility is also used for neutron damage testing for industrial devices. In this paper, we describe the challenges of operating such a facility over an extended time period, including a planned maintenance and upgrade program serving diverse user groups, and summarize the major clinical results in terms of tumor control and normal tissue toxicity. Over time, the mix of patients being treated has shifted from common tumors such as prostate cancer, lung cancer, and squamous cell tumors of the head and neck to the rarer tumors such as salivary gland tumors and sarcomas due to the results of clinical trials. Current indications for neutron radiotherapy are described and neutron tolerance doses for a range of normal tissues presented.

  2. Treatment of salivary gland neoplasms with fast neutron radiotherapy.

    PubMed

    Douglas, James G; Koh, Wui-jin; Austin-Seymour, Mary; Laramore, George E

    2003-09-01

    To evaluate the efficacy of fast neutron radiotherapy for the treatment of salivary gland neoplasms. Retrospective analysis. University of Washington Cancer Center, Neutron Facility, Seattle. The medical records of 279 patients treated with curative intent using fast neutron radiotherapy at the University of Washington Cancer Center were reviewed. Of the 279 patients, 263 had evidence of gross residual disease at the time of treatment (16 had no evidence of gross residual disease), 141 had tumors of a major salivary gland, and 138 had tumors of minor salivary glands. The median follow-up period was 36 months (range, 1-142 months). Local-regional control, cause-specific survival, and freedom from metastasis. The 6-year actuarial cause-specific survival rate was 67%. Multivariate analysis revealed that low group stage (I-II) disease, minor salivary sites, lack of skull base invasion, and primary disease were associated with a statistically significant improvement in cause-specific survival. The 6-year actuarial local-regional control rate was 59%. Multivariate analysis revealed size 4 cm or smaller, lack of base of skull invasion, prior surgical resection, and no previous radiotherapy to have a statistically significant improved local-regional control. Sixteen patients without evidence of gross residual disease had a 100% 6-year actuarial local-regional control. The 6-year actuarial freedom from metastasis rate was 64%. Factors associated with decreased development of systemic metastases included negative lymph nodes at the time of treatment and lack of base of skull involvement. The 6-year actuarial rate of development of grade 3 or 4 long-term toxicity (using the Radiation Therapy Oncology Group and European Organization for Research on the Treatment of Cancer criteria) was 10%. No patient experienced grade 5 toxic effects. Neuron radiotherapy is an effective treatment for patients with salivary gland neoplasms who have gross residual disease and achieves excellent

  3. Treatment of Locally Advanced Adenoid Cystic Carcinoma of the Trachea With Neutron Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittner, Nathan; Koh, W.-J.; Laramore, George E.

    2008-10-01

    Purpose: To examine the efficacy of fast neutron radiotherapy in the treatment of locally advanced adenoid cystic carcinoma (ACC) of the trachea and to compare outcomes with and without high-dose-rate (HDR) endobronchial brachytherapy boost. Methods and Materials: Between 1989 and 2005, a total of 20 patients with ACC of the trachea were treated with fast neutron radiotherapy at University of Washington. Of these 20 patients, 19 were treated with curative intent. Neutron doses ranged from 10.7 to 19.95 Gy (median, 19.2 Gy). Six of these patients received an endobronchial brachytherapy boost using an HDR {sup 192}Ir source (3.5 Gy xmore » 2 fractions). Median duration of follow-up was 46 months (range, 10-121 months). Results: The 5-year actuarial overall survival rate and median overall survival for the entire cohort were 89.4%, and 97 months, respectively. Overall survival was not statistically different among those patients receiving an endobronchial boost compared with those receiving neutron radiotherapy alone (100% vs. 68%, p = 0.36). The 5-year actuarial locoregional control rate for the entire cohort was 54.1%. The locoregional control rate was not statistically different among patients who received an endobronchial boost compared with those who received neutron radiotherapy alone (40% vs. 58%, p 0.94). There were no cases of Grade {>=}3 acute toxicity. There were 2 cases of Grade 3/4 chronic toxicity. Conclusions: Fast neutron radiotherapy is an effective treatment for locally advanced adenoid cystic carcinoma of the trachea, with acceptable treatment-related toxicity.« less

  4. Measuring neutron spectra in radiotherapy using the nested neutron spectrometer.

    PubMed

    Maglieri, Robert; Licea, Angel; Evans, Michael; Seuntjens, Jan; Kildea, John

    2015-11-01

    Out-of-field neutron doses resulting from photonuclear interactions in the head of a linear accelerator pose an iatrogenic risk to patients and an occupational risk to personnel during radiotherapy. To quantify neutron production, in-room measurements have traditionally been carried out using Bonner sphere systems (BSS) with activation foils and TLDs. In this work, a recently developed active detector, the nested neutron spectrometer (NNS), was tested in radiotherapy bunkers. The NNS is designed for easy handling and is more practical than the traditional BSS. Operated in current-mode, the problem of pulse pileup due to high dose-rates is overcome by measuring current, similar to an ionization chamber. In a bunker housing a Varian Clinac 21EX, the performance of the NNS was evaluated in terms of reproducibility, linearity, and dose-rate effects. Using a custom maximum-likelihood expectation-maximization algorithm, measured neutron spectra at various locations inside the bunker were then compared to Monte Carlo simulations of an identical setup. In terms of dose, neutron ambient dose equivalents were calculated from the measured spectra and compared to bubble detector neutron dose equivalent measurements. The NNS-measured spectra for neutrons at various locations in a treatment room were found to be consistent with expectations for both relative shape and absolute magnitude. Neutron fluence-rate decreased with distance from the source and the shape of the spectrum changed from a dominant fast neutron peak near the Linac head to a dominant thermal neutron peak in the moderating conditions of the maze. Monte Carlo data and NNS-measured spectra agreed within 30% at all locations except in the maze where the deviation was a maximum of 40%. Neutron ambient dose equivalents calculated from the authors' measured spectra were consistent (one standard deviation) with bubble detector measurements in the treatment room. The NNS may be used to reliably measure the neutron

  5. A neutron track etch detector for electron linear accelerators in radiotherapy

    PubMed Central

    Vukovic, Branko; Faj, Dario; Poje, Marina; Varga, Maja; Radolic, Vanja; Miklavcic, Igor; Ivkovic, Ana; Planinic, Josip

    2010-01-01

    Background Electron linear accelerators in medical radiotherapy have replaced cobalt and caesium sources of radiation. However, medical accelerators with photon energies over 10 MeV generate undesired fast neutron contamination in a therapeutic X-ray photon beam. Photons with energies above 10 MeV can interact with the atomic nucleus of a high-Z material, of which the target and the head of an accelerator consist, and lead to the neutron ejection. Results and conclusions. Our neutron dosimeter, composed of the LR-115 track etch detector and boron foil BN-1 converter, was calibrated on thermal neutrons generated in the nuclear reactor of the Josef Stefan Institute (Slovenia), and applied to dosimetry of undesirable neutrons in photon radiotherapy by the linear accelerator 15 MV Siemens Mevatron. Having considered a high dependence of a cross-section between neutron and boron on neutron energy, and broad neutron spectrum in a photon beam, as well as outside the entrance door to maze of the Mevatron, we developed a method for determining the effective neutron detector response. A neutron dose rate in the photon beam was measured to be 1.96 Sv/h. Outside the Mevatron room the neutron dose rate was 0.62 μSv/h. PACS: 87.52. Ga; 87.53.St; 29.40.Wk. PMID:22933893

  6. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy weremore » identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they

  7. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-01

    Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be

  8. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Epithermal neutron beam for BNCT research at Washington State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.; Nigg, D.W.; Wheeler, F.J.

    1999-09-01

    Veterinary radiation oncology researchers at the Washington State University (WSU) School of Veterinary Medicine have made major contributions to the understanding of the in-vivo radiobiology of boron neutron capture therapy (BNCT) over the years. Recent attention has been focused on the development of a more convenient and cost-effective local epithermal-neutron beam facility for BNCT research and boronated pharmaceutical screening in large-animal models at WSU. The design of such a facility, to be installed in the thermal column region of the TRIGA research reactor at WSU, was performed in a collaborative effort of SWU and the Idaho National Engineering and Environmentalmore » Laboratory. Construction is now underway.« less

  10. Influence of secondary neutrons induced by proton radiotherapy for cancer patients with implantable cardioverter defibrillators

    PubMed Central

    2012-01-01

    Background Although proton radiotherapy is a promising new approach for cancer patients, functional interference is a concern for patients with implantable cardioverter defibrillators (ICDs). The purpose of this study was to clarify the influence of secondary neutrons induced by proton radiotherapy on ICDs. Methods The experimental set-up simulated proton radiotherapy for a patient with an ICD. Four new ICDs were placed 0.3 cm laterally and 3 cm distally outside the radiation field in order to evaluate the influence of secondary neutrons. The cumulative in-field radiation dose was 107 Gy over 10 sessions of irradiation with a dose rate of 2 Gy/min and a field size of 10 × 10 cm2. After each radiation fraction, interference with the ICD by the therapy was analyzed by an ICD programmer. The dose distributions of secondary neutrons were estimated by Monte-Carlo simulation. Results The frequency of the power-on reset, the most serious soft error where the programmed pacing mode changes temporarily to a safety back-up mode, was 1 per approximately 50 Gy. The total number of soft errors logged in all devices was 29, which was a rate of 1 soft error per approximately 15 Gy. No permanent device malfunctions were detected. The calculated dose of secondary neutrons per 1 Gy proton dose in the phantom was approximately 1.3-8.9 mSv/Gy. Conclusions With the present experimental settings, the probability was approximately 1 power-on reset per 50 Gy, which was below the dose level (60-80 Gy) generally used in proton radiotherapy. Further quantitative analysis in various settings is needed to establish guidelines regarding proton radiotherapy for cancer patients with ICDs. PMID:22284700

  11. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    PubMed Central

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-01-01

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061

  12. Implementation of an analytical model for leakage neutron equivalent dose in a proton radiotherapy planning system.

    PubMed

    Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  13. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment

  14. Real-time detection of fast and thermal neutrons in radiotherapy with CMOS sensors.

    PubMed

    Arbor, Nicolas; Higueret, Stephane; Elazhar, Halima; Combe, Rodolphe; Meyer, Philippe; Dehaynin, Nicolas; Taupin, Florence; Husson, Daniel

    2017-03-07

    The peripheral dose distribution is a growing concern for the improvement of new external radiation modalities. Secondary particles, especially photo-neutrons produced by the accelerator, irradiate the patient more than tens of centimeters away from the tumor volume. However the out-of-field dose is still not estimated accurately by the treatment planning softwares. This study demonstrates the possibility of using a specially designed CMOS sensor for fast and thermal neutron monitoring in radiotherapy. The 14 microns-thick sensitive layer and the integrated electronic chain of the CMOS are particularly suitable for real-time measurements in γ/n mixed fields. An experimental field size dependency of the fast neutron production rate, supported by Monte Carlo simulations and CR-39 data, has been observed. This dependency points out the potential benefits of a real-time monitoring of fast and thermal neutron during beam intensity modulated radiation therapies.

  15. Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy.

    PubMed

    Elazhar, H; Deschler, T; Létang, J M; Nourreddine, A; Arbor, N

    2018-06-20

    The out-of-field dose in radiation therapy is a growing concern in regards to the late side-effects and secondary cancer induction. In high-energy x-ray therapy, the secondary neutrons generated through photonuclear reactions in the accelerator are part of this secondary dose. The neutron dose is currently not estimated by the treatment planning system while it appears to be preponderant for distances greater than 50 cm from the isocenter. Monte Carlo simulation has become the gold standard for accurately calculating the neutron dose under specific treatment conditions but the method is also known for having a slow statistical convergence, which makes it difficult to be used on a clinical basis. The neutron track length estimator, a neutron variance reduction technique inspired by the track length estimator method has thus been developped for the first time in the Monte Carlo code GATE to allow a fast computation of the neutron dose in radiotherapy. The details of its implementation, as well as the comparison of its performances against the analog MC method, are presented here. A gain of time from 15 to 400 can be obtained by our method, with a mean difference in the dose calculation of about 1% in comparison with the analog MC method.

  16. Commissioning of intensity modulated neutron radiotherapy (IMNRT).

    PubMed

    Burmeister, Jay; Spink, Robyn; Liang, Liang; Bossenberger, Todd; Halford, Robert; Brandon, John; Delauter, Jonathan; Snyder, Michael

    2013-02-01

    Intensity modulated neutron radiotherapy (IMNRT) has been developed using inhouse treatment planning and delivery systems at the Karmanos Cancer Center∕Wayne State University Fast Neutron Therapy facility. The process of commissioning IMNRT for clinical use is presented here. Results of commissioning tests are provided including validation measurements using representative patient plans as well as those from the TG-119 test suite. IMNRT plans were created using the Varian Eclipse optimization algorithm and an inhouse planning system for calculation of neutron dose distributions. Tissue equivalent ionization chambers and an ionization chamber array were used for point dose and planar dose distribution comparisons with calculated values. Validation plans were delivered to water and virtual water phantoms using TG-119 measurement points and evaluation techniques. Photon and neutron doses were evaluated both inside and outside the target volume for a typical IMNRT plan to determine effects of intensity modulation on the photon dose component. Monitor unit linearity and effects of beam current and gantry angle on output were investigated, and an independent validation of neutron dosimetry was obtained. While IMNRT plan quality is superior to conventional fast neutron therapy plans for clinical sites such as prostate and head and neck, it is inferior to photon IMRT for most TG-119 planning goals, particularly for complex cases. This results significantly from current limitations on the number of segments. Measured and calculated doses for 11 representative plans (six prostate∕five head and neck) agreed to within -0.8 ± 1.4% and 5.0 ± 6.0% within and outside the target, respectively. Nearly all (22∕24) ion chamber point measurements in the two phantom arrangements were within the respective confidence intervals for the quantity [(measured-planned)∕prescription dose] derived in TG-119. Mean differences for all measurements were 0.5% (max = 7.0%) and 1.4% (max = 4

  17. Dosimetric characteristics of the University of Washington Clinical Neutron Therapy System

    NASA Astrophysics Data System (ADS)

    Moffitt, Gregory B.; Stewart, Robert D.; Sandison, George A.; Goorley, John T.; Argento, David C.; Jevremovic, Tatjana; Emery, Robert; Wootton, Landon S.; Parvathaneni, Upendra; Laramore, George E.

    2018-05-01

    The University of Washington (UW) Clinical Neutron Therapy System (CNTS), which generates high linear energy transfer fast neutrons through interactions of 50.5 MeV protons incident on a Be target, has depth-dose characteristics similar to 6 MV x-rays. In contrast to the fixed beam angles and primitive blocking used in early clinical trials of neutron therapy, the CNTS has a gantry with a full 360° of rotation, internal wedges, and a multi-leaf collimator (MLC). Since October of 1984, over 3178 patients have received conformal neutron therapy treatments using the UW CNTS. In this work, the physical and dosimetric characteristics of the CNTS are documented through comparisons of measurements and Monte Carlo simulations. A high resolution computed tomography scan of the model 17 ionization chamber (IC-17) has also been used to improve the accuracy of simulations of the absolute calibration geometry. The response of the IC-17 approximates well the kinetic energy released per unit mass (KERMA) in water for neutrons and photons for energies from a few tens of keV up to about 20 MeV. Above 20 MeV, the simulated model 17 ion chamber response is 20%–30% higher than the neutron KERMA in water. For CNTS neutrons, simulated on- and off-axis output factors in water match measured values within ~2%  ±  2% for rectangular and irregularly shaped field with equivalent square areas ranging in a side dimension from 2.8 cm to 30.7 cm. Wedge factors vary by less than 1.9% of the measured dose in water for clinically relevant field sizes. Simulated tissue maximum ratios in water match measured values within 3.3% at depths up to 20 cm. Although the absorbed dose for water and adipose tissue are within 2% at a depth of 1.7 cm, the absorbed dose in muscle and bone can be as much as 12 to 40% lower than the absorbed dose in water. The reported studies are significant from a historical perspective and as additional validation of a new tool for patient quality assurance

  18. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.

    PubMed

    Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C

    2006-07-01

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children.

  19. Radiation transport codes for potential applications related to radiobiology and radiotherapy using protons, neutrons, and negatively charged pions

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.

    1972-01-01

    Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.

  20. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.

    PubMed

    Holeman, G R; Price, K W; Friedman, L F; Nath, R

    1977-01-01

    High-energy x-ray radiotherapy machines in the supermegavoltage region generate complex neutron energy spectra which make an exact evaluation of neutron shielding difficult. Fast neutrons resulting from photonuclear reactions in the x-ray target and collimators undergo successive collisions in the surrounding materials and are moderated by varying amounts. In order to examine the neutron radiation exposures quantitatively, the neutron energy spectra have been measured inside and outside the treatment room of a Sagittaire medical linear accelerator (25-MV x rays) located at Yale-New Haven Hospital. The measurements were made using a Bonner spectrometer consisting of 2-, 3-, 5-, 8-, 10- and 12-in.-diameter polyethylene spheres with 6Li and 7Li thermoluminescent dosimeter (TLD) chips at the centers, in addition to bare and cadmium-covered chips. The individual TLD chips were calibrated for neutron and photon response. The spectrometer was calibrated using a known PuBe spectrum Spectrometer measurements were made at Yale Electron Accelerator Laboratory and results compared with a neutron time-of-flight spectrometer and an activation technique. The agreement between the results from these independent methods is found to be good, except for the measurements in the direct photon beam. Quality factors have been inferred for the neutron fields inside and outside the treatment room. Values of the inferred quality factors fall primarily between 4 and 8, depending on location.

  1. Out-of-field neutron and leakage photon exposures and the associated risk of second cancers in high-energy photon radiotherapy: current status.

    PubMed

    Takam, R; Bezak, E; Marcu, L G; Yeoh, E

    2011-10-01

    Determination and understanding of out-of-field neutron and photon doses in accelerator-based radiotherapy is an important issue since linear accelerators operating at high energies (>10 MV) produce secondary radiations that irradiate parts of the patient's anatomy distal to the target region, potentially resulting in detrimental health effects. This paper provides a compilation of data (technical and clinical) reported in the literature on the measurement and Monte Carlo simulations of peripheral neutron and photon doses produced from high-energy medical linear accelerators and the reported risk and/or incidence of second primary cancer of tissues distal to the target volume. Information in the tables facilitates easier identification of (1) the various methods and measurement techniques used to determine the out-of-field neutron and photon radiations, (2) reported linac-dependent out-of-field doses, and (3) the risk/incidence of second cancers after radiotherapy due to classic and modern treatment methods. Regardless of the measurement technique and type of accelerator, the neutron dose equivalent per unit photon dose ranges from as low as 0.1 mSv/Gy to as high as 20.4 mSv/Gy. This radiation dose potentially contributes to the induction of second primary cancer in normal tissues outside the treated area.

  2. Role of particle radiotherapy in the management of head and neck cancer.

    PubMed

    Laramore, George E

    2009-05-01

    Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.

  3. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Update of a Past Trial and Future Research Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieger, John N.; Krall, John M.; Laramore, George E.

    1987-01-01

    Between June, 1977 and April, 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III study comparing fast neutron radiotherapy as part of a mixed beam (neutron/photon) regimen with conventional photon (x-ray) radiotherapy for patients with locally advanced (stages C and o1 ) adenocarcinoma of the prostate. A total of 91 analyzable patients were entered into the study with -the two treatment groups being balanced in regard to all major prognostic variables. The current analysis is for a median follow-up of 6.7 years (range 3.4-9.0). Actuarial curves are presented for local/regional control, overall survival and "determinantal" survival. The resultsmore » are statistically significant in favor of the mixed beam group for all of the above parameters. At 5 years the local control rate is 81% on the mixed beam arm compared to 60% on the photon arm. Histologic evidence of residual prostatic carcinoma was documented in six patients with no clinical evidence of disease on both treatment arms. The actuarial overall survival rate at S years is 70% on the mixed beam compared to 56% on the photon arm. The determinantal survival at 5 years was 82%. on the mixed beam arm compared to 61% on the photon arm. The type of therapy appeared to be the most important predictor of both local tumor control and patient survival in a step-wise Cox analysis. There was no difference in the treatment related morbidity for the two patient groups. Mixed beam therapy may be superior to standard photon radiotherapy for treatment of locally advanced prostate cancer.« less

  4. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).

    PubMed

    Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana

    2016-01-21

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  5. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    NASA Astrophysics Data System (ADS)

    Barrera, M. T.; Barros, H.; Pino, F.; Dávila, J.; Sajo-Bohus, L.

    2015-07-01

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e'n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction 10B(n,α)7Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (˜1.6 104 neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.

  6. Thermal and epithermal neutron fluence rate gradient measurements by PADC detectors in LINAC radiotherapy treatments-field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.

    2015-07-23

    LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). Thesemore » covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.« less

  7. Applicability of self-activation of an NaI scintillator for measurement of photo-neutrons around a high-energy X-ray radiotherapy machine.

    PubMed

    Wakabayashi, Genichiro; Nohtomi, Akihiro; Yahiro, Eriko; Fujibuchi, Toshioh; Fukunaga, Junichi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Nakamura, Katsumasa; Hosono, Makoto; Itoh, Tetsuo

    2015-01-01

    The applicability of the activation of an NaI scintillator for neutron monitoring at a clinical linac was investigated experimentally. Thermal neutron fluence rates are derived by measurement of the I-128 activity generated in an NaI scintillator irradiated by neutrons; β-rays from I-128 are detected efficiently by the NaI scintillator. In order to verify the validity of this method for neutron measurement, we irradiated an NaI scintillator at a research reactor, and the neutron fluence rate was estimated. The method was then applied to neutron measurement at a 10-MV linac (Varian Clinac 21EX), and the neutron fluence rate was estimated at the isocenter and at 30 cm from the isocenter. When the scintillator was irradiated directly by high-energy X-rays, the production of I-126 was observed due to photo-nuclear reactions, in addition to the generation of I-128 and Na-24. From the results obtained by these measurements, it was found that the neutron measurement by activation of an NaI scintillator has a great advantage in estimates of a low neutron fluence rate by use of a quick measurement following a short-time irradiation. Also, the future application of this method to quasi real-time monitoring of neutrons during patient treatments at a radiotherapy facility is discussed, as well as the method of evaluation of the neutron dose.

  8. Dose factor entry and display tool for BNCT radiotherapy

    DOEpatents

    Wessol, Daniel E.; Wheeler, Floyd J.; Cook, Jeremy L.

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  9. A Monte Carlo model system for core analysis and epithermal neutron beam design at the Washington State University Radiation Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, T.D. Jr.

    1996-05-01

    The Monte Carlo Model System (MCMS) for the Washington State University (WSU) Radiation Center provides a means through which core criticality and power distributions can be calculated, as well as providing a method for neutron and photon transport necessary for BNCT epithermal neutron beam design. The computational code used in this Model System is MCNP4A. The geometric capability of this Monte Carlo code allows the WSU system to be modeled very accurately. A working knowledge of the MCNP4A neutron transport code increases the flexibility of the Model System and is recommended, however, the eigenvalue/power density problems can be run withmore » little direct knowledge of MCNP4A. Neutron and photon particle transport require more experience with the MCNP4A code. The Model System consists of two coupled subsystems; the Core Analysis and Source Plane Generator Model (CASP), and the BeamPort Shell Particle Transport Model (BSPT). The CASP Model incorporates the S({alpha}, {beta}) thermal treatment, and is run as a criticality problem yielding, the system eigenvalue (k{sub eff}), the core power distribution, and an implicit surface source for subsequent particle transport in the BSPT Model. The BSPT Model uses the source plane generated by a CASP run to transport particles through the thermal column beamport. The user can create filter arrangements in the beamport and then calculate characteristics necessary for assessing the BNCT potential of the given filter want. Examples of the characteristics to be calculated are: neutron fluxes, neutron currents, fast neutron KERMAs and gamma KERMAs. The MCMS is a useful tool for the WSU system. Those unfamiliar with the MCNP4A code can use the MCMS transparently for core analysis, while more experienced users will find the particle transport capabilities very powerful for BNCT filter design.« less

  10. In vivo neutron activation analysis of sodium and chlorine in tumor tissue after fast neutron therapy.

    PubMed

    Auberger, T; Koester, L; Knopf, K; Weissfloch, L

    1996-01-01

    In 12 patients with recurrences and metastases of different primaries (head and neck cancer, breast cancer, malignant melanoma, and osteosarcoma) who were treated with reactor fission neutrons the photon emission of irradiated tissue was measured after each radiotherapy fraction. Spectral analyses of the decay rates resulted in data for the exchange of sodium (Na) and chlorine (Cl) between the irradiated tissue and the body. About 60% of Na and Cl exchanged rapidly with a turnover half-life of 13 +/- 2 min. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval/min/kg of soft tissue. At the beginning of radiotherapy the turnover of the electrolytes in tissues with large tumor volumes was about twice that in tissues with small tumor volumes. Depending on the dose, neutron therapy led in all cases to variation in the metabolism. A maximum of Cl exchange and a minimum of Na exchange occurred after 10 Gy of neutrons (group of six previously untreated patients) or after 85 Gy (photon equivalent dose) of combined photon-neutron therapy. A significant increase in non-exchangeable fraction of Na from about 40 to 80% was observed in three tumors after a neutron dose of 10 Gy administered in five fractions correlated with a rapid reduction of tissue within 4 weeks after end of therapy. These results demonstrate for the first time the local response of the electrolyte metabolism to radiotherapy.

  11. SU-E-T-495: Influence of Reduced Target-To-Nozzle Distance On Secondary Neutron Dose Equivalent in Proton and Carbon Ion Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Shahnazi, K; Wang, W

    Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominalmore » and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.« less

  12. A feasibility study of [sup 252]Cf neutron brachytherapy, cisplatin + 5-FU chemo-adjuvant and accelerated hyperfractionated radiotherapy for advanced cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Y.; Wierzbicki, J.; Bowen, M.G.

    The purpose was to evaluate the feasibility and toxicity of [sup 252]Cf neutron brachytherapy combined with hyperaccelerated chemoradiotherapy for Stage III and IV cervical cancers. Eleven patients with advanced Stage IIIB-IVA cervical cancers were treated with [sup 252]Cf neutron brachytherapy in an up-front schedule followed by cisplatin (CDDP; 50 mg/m[sup 2]) chemotherapy and hyperfractionated accelerated (1.2 Gy bid) radiotherapy given concurrently with intravenous infusion of 5-Fluorouracil (5-FU) (1000 mg/m[sup 2]/day [times] 4 days) in weeks 1 and 4 with conventional radiation (weeks 2, 3, 5, and 6). Total dose at a paracervical point A isodose surface was 80-85 Gy-eq bymore » external and intracavitary therapy and 60 Gy at the pelvic sidewalls. Patients tolerated the protocol well. There was 91% compliance with the chemotherapy and full compliance with the [sup 252]Cf brachytherapy and the external beam radiotherapy. There were no problems with acute chemo or radiation toxicity. One patient developed a rectovaginal fistula (Grade 3-4 RTOG criteria) but no other patients developed significant late cystitis, proctitis or enteritis. There was complete response (CR) observed in all cases. With mean follow-up to 26 months, local control has been achieved with 90% actuarial 3-year survival with no evidence of disease (NED). [sup 252]Cf neutrons can be combined with cisplatin and 5-FU infusion chemotherapy plus hyperaccelerated chemoradiotherapy without unusual side effects or toxicity and with a high local response and tumor control rate. Further study of [sup 252]Cf neutron-chemoradiotherapy for advanced and bulky cervical cancer are indicated. The authors found chemotherapy was more effective with the improved local tumor control. 18 refs., 2 tabs.« less

  13. Activation of hip prostheses in high energy radiotherapy and resultant dose to nearby tissue.

    PubMed

    Keehan, Stephanie; Smith, Ryan L; Millar, Jeremy; Esser, Max; Taylor, Michael L; Lonski, Peta; Kron, Tomas; Franich, Rick D

    2017-03-01

    High energy radiotherapy can produce contaminant neutrons through the photonuclear effect. Patients receiving external beam radiation therapy to the pelvis may have high-density hip prostheses. Metallic materials such as those in hip prostheses, often have high cross-sections for neutron interaction. In this study, Thackray (UK) prosthetic hips have been irradiated by 18 MV radiotherapy beams to evaluate the additional dose to patients from the activation products. Hips were irradiated in- and out-of field at various distances from the beam isocenter to assess activation caused in-field by photo-activation, and neutron activation which occurs both in and out-of-field. NaI(Tl) scintillator detectors were used to measure the subsequent gamma-ray emissions and their half-lives. High sensitivity Mg, Cu, P doped LiF thermoluminescence dosimeter chips (TLD-100H) were used to measure the subsequent dose at the surface of a prosthesis over the 12 h following an in-field irradiation of 10,000 MU to a hip prosthesis located at the beam isocenter in a water phantom. 53 Fe, 56 Mn, and 52 V were identified within the hip following irradiation by radiotherapy beams. The dose measured at the surface of a prosthesis following irradiation in a water phantom was 0.20 mGy over 12 h. The dose at the surface of prostheses irradiated to 200 MU was below the limit of detection (0.05 mGy) of the TLD100H. Prosthetic hips are activated by incident photons and neutrons in high energy radiotherapy, however, the dose resulting from activation is very small. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Effect of external shielding for neutrons during radiotherapy for prostate cancer, considering the 2300 CD linear accelerator and voxel phantom

    NASA Astrophysics Data System (ADS)

    Thalhofer, J. L.; Roque, H. S.; Rebello, W. F.; Correa, S. A.; Silva, A. X.; Souza, E. M.; Batita, D. V. S.; Sandrini, E. S.

    2014-02-01

    Photoneutron production occurs when high energy photons, greater than 6.7 MeV, interact with linear accelerator head structures. In Brazil, the National Cancer Institute, one of the centers of reference in cancer treatment, uses radiation at 4 angles (0°, 90°, 180° and 270°) as treatment protocol for prostate cancer. With the objective of minimizing the dose deposited in the patient due to photoneutrons, this study simulated radiotherapy treatment using MCNPX, considering the most realistic environment; simulating the radiotherapy room, the Linac 2300 head, the MAX phantom and the treatment protocol with the accelerator operating at 18 MV. In an attempt to reduce the dose deposited by photoneutrons, an external shielding was added to the Linac 2300. Results show that the equivalent dose due to photoneutrons deposited in the patient diminished. The biggest reduction was seen in bone structures, such as the tibia and fibula, and mandible, at approximately 75%. Besides that, organs such as the brain, pancreas, small intestine, lungs and thyroid revealed a reduction of approximately 60%. It can be concluded that the shielding developed by our research group is efficient in neutron shielding, reducing the dose for the patient, and thus, the risk of secondary cancer, and increasing patient survival rates.

  15. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.

    PubMed

    Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da

    2017-03-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.

  16. TU-F-BRE-07: In Vivo Neutron Detection in Patients Undergoing Stereotactic Ablative Radiotherapy (SABR) for Primary Kidney Cancer Using 6Li and 7Li Enriched TLD Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonski, P; Kron, T; RMIT University, Melbourne, Victoria

    Purpose: Stereotactic ablative radiotherapy (SABR) for primary kidney cancer often involves the use of high-energy photons combined with a large number of monitor units. While important for risk assessment, the additional neutron dose to untargeted healthy tissue is not accounted for in treatment planning. This work aims to detect out-of-field neutrons in vivo for patients undergoing SABR with high-energy (>10 MV) photons and provides preliminary estimates of neutron effective dose. Methods: 3 variations of high-sensitivity LiF:Mg,Cu,P thermoluminescent dosimeter (TLD) material, each with varying {sup 6}Li / {sup 7}Li concentrations, were used in custom-made Perspex holders for in vivo measurements. Themore » variation in cross section for thermal neutrons between Li isotopes was exploited to distinguish neutron from photon signal. Measurements were made out-of-field for 7 patients, each undergoing 3D-conformal SABR treatment for primary kidney cancer on a Varian 21iX linear accelerator. Results: In vivo measurements show increased signal for the {sup 6}Li enriched material for patients treated with 18 MV photons. Measurements on one SABR patient treated using only 6 MV showed no difference between the 3 TLD materials. The out-of-field photon signal decreased exponentially with distance from the treatment field. The neutron signal, taken as the difference between {sup 6}Li enriched and {sup 7}Li enriched TLD response, remains almost constant up to 50 cm from the beam central axis. Estimates of neutron effective dose from preliminary TLD calibration suggest between 10 and 30 mSv per 1000 MU delivered at 18 MV for the 7 patients. Conclusion: TLD was proven to be a useful tool for the purpose of in vivo neutron detection at out-of-field locations. Further work is required to understand the relationship between TL signal and neutron dose. Dose estimates based on preliminary TLD calibration in a neutron beam suggest the additional neutron dose was <30 mSv per 1000 MU

  17. Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  18. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Najem, M. A.; Abolaban, F. A.; Podolyák, Z.; Spyrou, N. M.

    2015-11-01

    One of the problems arising from using a conventional linac at high energy (>8 MV) is the production of neutrons. One way to reduce neutron production is to remove the flattening filter (FF). The main purpose of this work was to study the effect of FF removal on neutron fluence and neutron dose equivalent inside the treatment room at different photon beam energies. Several simulations based on Monte Carlo techniques were carried out in order to calculate the neutron fluence at different locations in the treatment room from different linac energies with and without a FF. In addition, a step-and-shoot intensity modulated radiotherapy (SnS IMRT) for prostate cancer was modelled using the 15 MV photon beam with and without a FF on a water phantom to calculate the neutron dose received in a full treatment. The results obtained show a significant drop-off in neutrons fluence and dose equivalent when the FF was removed. For example, the neutron fluence was decreased by 54%, 76% and 75% for 10, 15 and 18 MV, respectively. This can decrease the neutron dose to the patient as well as reduce the shielding cost of the treatment room. The neutron dose equivalent of the SnS IMRT for prostate cancer was reduced significantly by 71.3% when the FF was removed. It can be concluded that the flattening filter removal from the head of the linac could reduce the risk of causing secondary cancers and the shielding cost of radiotherapy treatment rooms.

  19. Accelerator-driven boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Edgecock, Rob

    2014-05-01

    Boron Neutron Capture Therapy is a binary treatment for certain types of cancer. It works by loading the cancerous cells with a boron-10 carrying compound. This isotope has a large cross-section for thermal neutrons, the reaction producing a lithium nucleus and alpha particle that kill the cell in which they are produced. Recent studies of the boron carrier compound indicate that the uptake process works best in particularly aggressive cancers. Most studied is glioblastoma multiforme and a trial using a combination of BNCT and X-ray radiotherapy has shown an increase of nearly a factor of two in mean survival over the state of the art. However, the main technical problem with BNCT remains producing a sufficient flux of neutrons for a reasonable treatment duration in a hospital environment. This paper discusses this issue.

  20. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.

    PubMed

    Horst, Felix; Czarnecki, Damian; Zink, Klemens

    2015-11-01

    Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry-although considered to be very low-is widely unexplored. In this work, Monte Carlo based investigations into this issue performed with fluka and egsnrc are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. egsnrc was used for the photon and fluka for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons' impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons' influence, a theoretically required correction factor was defined and calculated for five representative water depths. The neutrons' impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons' influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose 6Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on 6Li. The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three different types of TLD chips was quantified and was as expected found to be very

  1. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    PubMed

    Moghaddasi, Leyla; Bezak, Eva

    2018-03-01

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  2. Boron Neutron Capture Therapy - A Literature Review

    PubMed Central

    Nedunchezhian, Kavitaa; Thiruppathy, Manigandan; Thirugnanamurthy, Sarumathi

    2016-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiation science which is emerging as a hopeful tool in treating cancer, by selectively concentrating boron compounds in tumour cells and then subjecting the tumour cells to epithermal neutron beam radiation. BNCT bestows upon the nuclear reaction that occurs when Boron-10, a stable isotope, is irradiated with low-energy thermal neutrons to yield α particles (Helium-4) and recoiling lithium-7 nuclei. A large number of 10 Boron (10B) atoms have to be localized on or within neoplastic cells for BNCT to be effective, and an adequate number of thermal neutrons have to be absorbed by the 10B atoms to maintain a lethal 10B (n, α) lithium-7 reaction. The most exclusive property of BNCT is that it can deposit an immense dose gradient between the tumour cells and normal cells. BNCT integrates the fundamental focusing perception of chemotherapy and the gross anatomical localization proposition of traditional radiotherapy. PMID:28209015

  3. HEND Maps of Fast Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in high-energy, or fast, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Fast neutrons, like epithermal neutrons, are sensitive to the presence of hydrogen. Unlike epithermal neutrons, however, they are not affected by the presence of carbon dioxide, which at the time of these observations covered the north polar area as 'dry ice' frost. The low flux of fast neutrons (blue and purple colors) in the north polar region suggests an abundance of hydrogen in the soil comparable to that determined in the south from the flux of epithermal neutrons. These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Neutron response of GafChromic® EBT2 film

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chen; Liu, Yuan-Hao; Chen, Wei-Lin; Jiang, Shiang-Huei

    2013-03-01

    Neutron and gamma-ray mixed field dosimetry remains one of the most challenging topics in radiation dosimetry studies. However, the requirement for accurate mixed field dosimetry is increasing because of the considerable interest in high-energy radiotherapy machines, medical ion beams and BNCT epithermal neutron beams. Therefore, this study investigated the GafChromic® EBT2 film. The linearity, reproducibility, energy dependence and homogeneity of the film were tested in a 60Co medical beam, 6-MV LINAC and 10-MV LINAC. The linearity and self-developing effect of the film irradiated in an epithermal neutron beam were also examined. These basic detector characteristics showed that EBT2 film can be effectively applied in mixed field dosimetry. A general detector response model was developed to determine the neutron relative effectiveness (RE) values. The RE value of fast neutrons varies with neutron spectra. By contrast, the RE value of thermal neutrons was determined as a constant; it is only 32.5% in relation to gamma rays. No synergy effect was observed in this study. The lithium-6 capture reaction dominates the neutron response in the thermal neutron energy range, and the recoil hydrogen dose becomes the dominant component in the fast neutron energy region. Based on this study, the application of the EBT2 film in the neutron and gamma-ray mixed field is feasible.

  5. 75 FR 28757 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ...-AA87 Security Zone; Potomac River, Washington Channel, Washington, DC AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary security zone in certain waters of Washington Channel on the Potomac River. The security zone is necessary to provide for the...

  6. Global Map of Thermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in low energy, or thermal, neutrons. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area at the top of the map indicates that about one meter (three feet) of carbon dioxide frost covers the surface, as it does every Mars winter in the polar regions. Soil enriched by hydrogen is indicated by the deep blue colors on the map, which show a low intensity of thermal neutrons. An enhancement of thermal neutrons close to the south pole, seen as a light green color, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. HEND Maps of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. These maps are based on data acquired by the high-energy neutron detector, one of the instruments in the gamma ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). These observations were acquired during the first two months of mapping operations. Contours of topography are superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. 1971 Washington timber harvest.

    Treesearch

    Brian R. Wall

    1972-01-01

    Washington's 1971 timber harvest of 6.45 billion board feet was nearly the same as the 1970 harvest level. The total timber harvest on public lands increased nearly 4 percent with a 30-percent increase in eastern Washington more than offsetting a 5-percent decline in western Washington. Part of the increase in eastern Washington reflects salvage of a large volume...

  9. Real time spectrometer for thermal neutrons from radiotherapic accelerators

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bartesaghi, G.; Bolognini, D.; Conti, V.; Mascagna, V.; Prest, M.; Scazzi, S.; Cappelletti, P.; Frigerio, M.; Gelosa, S.; Monti, A.; Ostinelli, A.; Bevilacqua, R.; Giannini, G.; Totaro, P.; Vallazza, E.

    2007-10-01

    Radiotherapy accelerators can produce high energy photon beams for deep tumour treatments. Photons with energies greater than 8 MeV produce neutrons via photoproduction. The PHONES (PHOto NEutron Source) project is developing a neutron moderator to use the photoproduced neutrons for BNCT (Boron Neutron Capture Therapy) in hospital environments. In this framework we are developing a real time spectrometer for thermal neutrons exploiting the bunch structure of the beam. Since the beam is produced by a linear accelerator, in fact, particles are sent to the patient in bunches with a rate of 150-300 Hz depending on the beam type and energy. The neutron spectrum is usually measured with integrating detectors such as bubble dosimeters or TLDs, which integrate over a time interval and an energy one. We are developing a scintillator detector to measure the neutron spectrum in real time in the interval between bunches, that is in the thermal region. The signals from the scintillator are discriminated and sampled by a dedicated clock in a Cyclone II FPGA by Altera, thus obtaining the neutron time of flight spectrum. The exploited physical process in ordinary plastic scintillators is neutron capture by H with a subsequent γ emission. The measured TOF spectrum has been compared with a BF 3 counter one. A dedicated simulation with MCNP is being developed to extract the energy spectrum from the TOF one. The paper will present the results of the prototype measurements and the status of the simulation.

  10. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system

    NASA Astrophysics Data System (ADS)

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E.; Wemple, Charles A.; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; DeNardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4—2%, MCNP—10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of

  11. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  12. Assessment of Neutron Contamination Originating from the Presence of Wedge and Block in Photon Beam Radiotherapy.

    PubMed

    Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M

    2018-03-01

    One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.

  13. 78 FR 15053 - Simpson Lumber Company, LLC, Shelton, Washington; Simpson Lumber Company, LLC, Tacoma, Washington...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ...,372B] Simpson Lumber Company, LLC, Shelton, Washington; Simpson Lumber Company, LLC, Tacoma, Washington; Simpson Lumber Company, LLC, Longview, Washington; Notice of Revised Determination on Reconsideration On... Reconsideration for the workers and former workers of Simpson Lumber Company, LLC, Shelton, Washington (TA-W-81...

  14. Washington Correlator

    NASA Technical Reports Server (NTRS)

    Hall, David M.; Boboltz, David

    2013-01-01

    This report summarizes the activities of the Washington Correlator for 2012. The Washington Correlator provides up to 80 hours of attended processing per week plus up to 40 hours of unattended operation, primarily supporting Earth Orientation and astrometric observations. In 2012, the major programs supported include the IVS-R4, IVS-INT, APSG, and CRF observing sessions.

  15. 1975 Washington timber harvest.

    Treesearch

    J.D. Jr. Lloyd

    1977-01-01

    In 1975, the Washington timber harvest declined for the 2d year to 6.2 billion board feet, 10 percent below 1974, and the lowest level in 8 years. The decrease, which occurred on almost all ownerships, amounted to 561 million board feet in western Washington and 130 million board feet in eastern Washington.

  16. 124Sb-Be photo-neutron source for BNCT: Is it possible?

    NASA Astrophysics Data System (ADS)

    Golshanian, Mohadeseh; Rajabi, Ali Akbar; Kasesaz, Yaser

    2016-11-01

    In this research a computational feasibility study has been done on the use of 124SbBe photo-neutron source for Boron Neutron Capture Therapy (BNCT) using MCNPX Monte Carlo code. For this purpose, a special beam shaping assembly has been designed to provide an appropriate epithermal neutron beam suitable for BNCT. The final result shows that using 150 kCi of 124Sb, the epithermal neutron flux at the designed beam exit is 0.23×109 (n/cm2 s). In-phantom dose analysis indicates that treatment time for a brain tumor is about 40 min which is a reasonable time. This high activity 124Sb could be achieved using three 50 kCi rods of 124Sb which can be produced in a research reactor. It is clear, that as this activity is several hundred times the activity of a typical cobalt radiotherapy source, issues related to handling, safety and security must be addressed.

  17. Exploring Boron Neutron Capture Therapy for non-small cell lung cancer.

    PubMed

    Farías, Rubén O; Bortolussi, Silva; Menéndez, Pablo R; González, Sara J

    2014-12-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high LET radiation. It consists in the enrichment of tumour with (10)B and in the successive irradiation of the target with low energy neutrons producing charged particles that mainly cause non-repairable damages to the cells. The feasibility to treat Non Small Cells Lung Cancer (NSCLC) with BNCT was explored. This paper proposes a new approach to determine treatment plans, introducing the possibility to choose the irradiation start and duration to maximize the tumour dose. A Tumour Control Probability (TCP) suited for lung BNCT as well as other high dose radiotherapy schemes was also introduced. Treatment plans were evaluated in localized and disseminated lung tumours. Semi-ideal and real energy spectra beams were employed to assess the best energy range and the performance of non-tailored neutron sources for lung tumour treatments. The optimal neutron energy is within [500 eV-3 keV], lower than the 10 keV suggested for the treatment of deep-seated tumours in the brain. TCPs higher than 0.6 and up to 0.95 are obtained for all cases. Conclusions drawn from [Suzuki et al., Int Canc Conf J 1 (4) (2012) 235-238] supporting the feasibility of BNCT for shallow lung tumours are confirmed, however discussions favouring the treatment of deeper lesions and disseminated disease are also opened. Since BNCT gives the possibility to deliver a safe and potentially effective treatment for NSCLC, it can be considered a suitable alternative for patients with few or no treatment options. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  19. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  20. Extracting Neutron Polarizabilities from Compton Scattering on Quasi-Free Neutrons in γd -> γnp

    NASA Astrophysics Data System (ADS)

    Demissie, Berhan

    2017-01-01

    Compton scattering processes are ideal to study electric and magnetic dipole polarizability coefficients of nucleons. These fundamental quantities parametrize the response to a monochromatic photon probe. In this work, the inelastic channel γd -> γnp is treated in χEFT, with a focus on the NQFP - neutron quasi-free peak - kinematic region. In this region, the momentum of the outgoing proton is small enough that it is considered to remain at rest. This provides access to the Compton scattering process γn -> γn from which the neutron scalar polarizabilites α and β are extracted. Using χEFT, differential cross-sections, d3 σ / dEn dΩγ'Ωn , in the photon energy range of 200-400 MeV are computed. The biggest contribution comes from the impulse approximation, with small corrections stemming from final state interaction, meson exchange currents and rescattering. A new extraction of neutron polarizabilities from a two-parameter fit to the Kossert et al. data taken at MAMI in 2002 is presented. This work is supported by the US Department of Energy under contracts DE-FG02- 95ER-40907, and by the Dean's Research Chair programme of the Columbian College of Arts and Sciences of The George Washington University.

  1. 1967 Washington timber harvest.

    Treesearch

    Brian R. Wall

    1968-01-01

    Washington's 1967 timber harvest declined to 5.9 billion board feet, 2.3 percent below the 1966 harvest. The cut on public lands remained about the same as in 1966 with a 6.7-percent increase in public cut in eastern Washington, offsetting a 2.2-percent decrease in western Washington. The Indian lands had the greatest increase in harvest, up 35 million board feet...

  2. 1970 Washington timber harvest.

    Treesearch

    Brian R. Wall

    1971-01-01

    Washington's 1970 timber harvest of 6.46 billion board feet was 7.8 percent below the near record harvest of 7 billion board feet established in 1969. Timber harvests on all public lands declined 13 percent with a 9.0-percent reduction in western Washington and a 22.9-percent drop in eastern Washington. State lands led the decline in public production with a 142-...

  3. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.

    PubMed

    Porras, I

    2008-04-07

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  4. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

    PubMed

    Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo

    2014-04-01

    Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.

  5. Potential hazard due to induced radioactivity secondary to radiotherapy: the report of task group 136 of the American Association of Physicists in Medicine.

    PubMed

    Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark

    2014-11-01

    External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be

  6. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Çeçen, Yiğit; Gülümser, Tuğçe; Yazgan, Çağrı; Dapo, Haris; Üstün, Mahmut; Boztosun, Ismail

    2017-09-01

    In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs). If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n) which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA) using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270°) with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe) detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s) which is compatible with an americium-beryllium (Am-Be) neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  7. 12 CFR 4.4 - Washington office.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Washington office. 4.4 Section 4.4 Banks and... EXAMINERS Organization and Functions § 4.4 Washington office. The Washington office of the OCC is the main office and headquarters of the OCC. The Washington office directs OCC policy, oversees OCC operations...

  8. Metabolism and pathophysiology of sodium and chlorine in tissue after neutron irradiation.

    PubMed

    Koester, L; Knopf, K; Auberger, T

    1994-01-01

    The photon emission of tissue was measured after radiotherapy with various doses of fission neutrons. Spectral analyses of the decay rates resulted in data for the exchange of sodium and chlorine between the irradiated tissue and the whole body. In 12 cases we found that about three fifths of Na and Cl exchange rapidly between the extravascular and vascular liquids with a turnover half-life of 13 +/- 2 min. Slowly exchangeable or non-exchangeable fractions are deposited in the soft tissue. New defined mass exchange rates for Na and Cl amount to an average of 0.8 mval min-1 kg-1 of soft tissue. The turnover of the electrolytes in tissue with large tumours is about twice that in tissues with small metastasis. Depending on dose, radiotherapy led in all cases to distinct variations of the metabolism. A maximum of the exchange of Cl combined with a minimum of Na occurs at about 85 Gy of conventional or at 10 Gy of lead-filtered fission neutron radiation. These results show directly for the first time the local response of the electrolyte metabolism to therapy.

  9. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    USGS Publications Warehouse

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  10. Global Map of Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a global view of Mars in intermediate-energy, or epithermal, neutrons. Soil enriched by hydrogen is indicated by the deep blue colors on the map, which show a low intensity of epithermal neutrons. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. Hydrogen in the far north is hidden at this time beneath a layer of carbon dioxide frost (dry ice). Light blue regions near the equator contain slightly enhanced near-surface hydrogen, which is most likely chemically or physically bound because water ice is not stable near the equator. The view shown here is a map of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. The central meridian in this projection is zero degrees longitude. Topographic features are superimposed on the map for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Forest industries of eastern Washington.

    Treesearch

    Brian R. Wall; Donald R. Gedney; Robert B. Forster

    1966-01-01

    A sawmill, built in 1872, marked the beginning of the forest industry in eastern Washington -- almost half a century after the emergence of the lumber industry in western Washington. Since then, this industry has increased in importance to eastern Washington's economy, now furnishing about one-fifth of the total manufacturing employment and wages paid—in...

  12. The NASA Neutron Star Grand Challenge: The coalescences of Neutron Star Binary System

    NASA Astrophysics Data System (ADS)

    Suen, Wai-Mo

    1998-04-01

    NASA funded a Grand Challenge Project (9/1996-1999) for the development of a multi-purpose numerical treatment for relativistic astrophysics and gravitational wave astronomy. The coalescence of binary neutron stars is chosen as the model problem for the code development. The institutes involved in it are the Argonne Lab, Livermore lab, Max-Planck Institute at Potsdam, StonyBrook, U of Illinois and Washington U. We have recently succeeded in constructing a highly optimized parallel code which is capable of solving the full Einstein equations coupled with relativistic hydrodynamics, running at over 50 GFLOPS on a T3E (the second milestone point of the project). We are presently working on the head-on collisions of two neutron stars, and the inclusion of realistic equations of state into the code. The code will be released to the relativity and astrophysics community in April of 1998. With the full dynamics of the spacetime, relativistic hydro and microphysics all combined into a unified 3D code for the first time, many interesting large scale calculations in general relativistic astrophysics can now be carried out on massively parallel computers.

  13. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  14. Better Jobs, Brighter Futures, a Stronger Washington. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    The world is changing rapidly. With changes in technology, demographics, and workforce trends, Washington needs colleges to not only keep pace, but lead the way. Washington's 34 community and technical colleges answer that call. The community and technical colleges have proven uniquely positioned to adapt to, embrace, and ignite change. Community…

  15. The influence of neutron contamination on dosimetry in external photon beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horst, Felix, E-mail: felix.ernst.horst@kmub.thm.de; Czarnecki, Damian; Zink, Klemens

    Purpose: Photon fields with energies above ∼7 MeV are contaminated by neutrons due to photonuclear reactions. Their influence on dosimetry—although considered to be very low—is widely unexplored. Methods: In this work, Monte Carlo based investigations into this issue performed with FLUKA and EGSNRC are presented. A typical Linac head in 18 MV-X mode was modeled equivalently within both codes. EGSNRC was used for the photon and FLUKA for the neutron production and transport simulation. Water depth dose profiles and the response of different detectors (Farmer chamber, TLD-100, TLD-600H, and TLD-700H chip) in five representative depths were simulated and the neutrons’more » impact (neutron absorbed dose relative to photon absorbed dose) was calculated. To take account of the neutrons’ influence, a theoretically required correction factor was defined and calculated for five representative water depths. Results: The neutrons’ impact on the absorbed dose to water was found to be below 0.1% for all depths and their impact on the response of the Farmer chamber and the TLD-700H chip was found to be even less. For the TLD-100 and the TLD-600H chip it was found to be up to 0.3% and 0.7%, respectively. The theoretical correction factors to be applied to absorbed dose to water values measured with these four detectors in a depth different from the reference/calibration depth were calculated and found to be below 0.05% for the Farmer chamber and the TLD-700H chip, but up to 0.15% and 0.35% for the TLD-100 and TLD-600H chips, respectively. In thermoluminescence dosimetry the neutrons’ influence (and therefore the additional inaccuracy in measurement) was found to be higher for TLD materials whose {sup 6}Li fraction is high, such as TLD-100 and TLD-600H, resulting from the thermal neutron capture reaction on {sup 6}Li. Conclusions: The impact of photoneutrons on the absorbed dose to water and on the response of a typical ionization chamber as well as three

  16. Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy.

    PubMed

    Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue; Wu, Yuan-Hung

    2017-01-01

    Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.

  17. Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy

    PubMed Central

    Lee, Jia-Cheng; Chuang, Keh-Shih; Chen, Yi-Wei; Hsu, Fang-Yuh; Chou, Fong-In; Yen, Sang-Hue

    2017-01-01

    Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting. PMID:28662135

  18. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. Copyright © 2013. Published by Elsevier SAS.

  19. Washington, D.C. - Local Information | NREL

    Science.gov Websites

    International Airport (IAD), and Baltimore/Washington International Thurgood Marshall Airport (BWI). DCA is the additional information. Reagan National Airport - DCA Dulles International Airport - IAD Baltimore/Washington International Thurgood Marshall Airport - BWI Public Transportation The Washington Metropolitan Area Transit

  20. A compact ion source for intense neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, Luke Torrilhon

    Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and

  1. Enraged about radiotherapy.

    PubMed Central

    Sikora, K.

    1994-01-01

    The use of radiotherapy in treating breast cancer has meant that many women are able to avoid mastectomy, which is both physically and psychologically damaging. The side effects of radiotherapy, however, are given little attention. Many women have developed brachial plexus injury after radiotherapy for breast cancer, often resulting in severe pain and loss of use of the arm. There is no effective treatment for this injury and little help can be offered. In addition, many of the women did not require radiotherapy of nodal areas. A pressure group has been formed to support these women, to establish the right to compensation, and to ensure that radiotherapy regimens given to future patients will not damage the brachial plexus. Images p188-a PMID:8312773

  2. Development of a new multi-modal Monte-Carlo radiotherapy planning system.

    PubMed

    Kumada, H; Nakamura, T; Komeda, M; Matsumura, A

    2009-07-01

    A new multi-modal Monte-Carlo radiotherapy planning system (developing code: JCDS-FX) is under development at Japan Atomic Energy Agency. This system builds on fundamental technologies of JCDS applied to actual boron neutron capture therapy (BNCT) trials in JRR-4. One of features of the JCDS-FX is that PHITS has been applied to particle transport calculation. PHITS is a multi-purpose particle Monte-Carlo transport code. Hence application of PHITS enables to evaluate total doses given to a patient by a combined modality therapy. Moreover, JCDS-FX with PHITS can be used for the study of accelerator based BNCT. To verify calculation accuracy of the JCDS-FX, dose evaluations for neutron irradiation of a cylindrical water phantom and for an actual clinical trial were performed, then the results were compared with calculations by JCDS with MCNP. The verification results demonstrated that JCDS-FX is applicable to BNCT treatment planning in practical use.

  3. Polar Maps of Thermal and Epithermal Neutrons

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show views of the polar regions of Mars in thermal neutrons (top) and epithermal neutrons (bottom). In these maps, deep blue indicates a low amount of neutrons, and red indicates a high amount. Thermal neutrons are sensitive to the presence of hydrogen and the presence of carbon dioxide, in this case 'dry ice' frost. The red area in the upper right map indicates that about one meter (three feet) of carbon dioxide frost covers the surface around the north pole, as it does every Mars winter in the polar regions. An enhancement of thermal neutrons close to the south pole, seen as a light green color on the upper left map, indicates the presence of residual carbon dioxide in the south polar cap, even though the annual frost dissipated from that region during southern summer. Soil enriched with hydrogen is indicated by the deep blue colors on the epithermal maps (bottom), showing a low intensity of epithermal neutrons. The deep blue areas in the polar regions are believed to contain up to 50 percent water ice in the upper one meter (three feet) of the soil. The views shown here are of measurements made during the first three months of mapping using the neutron spectrometer instrument, part of the gamma ray spectrometer instrument suite. Topographic features are superimposed on the map for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime

  4. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  5. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    NASA Astrophysics Data System (ADS)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  6. Booker T. Washington Rediscovered

    ERIC Educational Resources Information Center

    Bieze, Michael Scott, Ed.; Gasman, Marybeth, Ed.

    2012-01-01

    Booker T. Washington, a founding father of African American education in the United States, has long been studied, revered, and reviled by scholars and students. Born into slavery, freed and raised in the Reconstruction South, and active in educational reform through the late nineteenth and early twentieth centuries, Washington sought to use…

  7. 1969 Washington timber harvest.

    Treesearch

    Brian R. Wall

    1970-01-01

    Washington's timber harvest increased slightly in 1969 to a 40-year high of 7 billion board feet. This is slightly below the record timber harvest of 7.38 billion board feet established in 1829. Private timberland owners in western Washington increased their production 10.9 percent, accounting for most of the increase in the 1969 total harvest. In eastern...

  8. Peripheral photon and neutron doses from prostate cancer external beam irradiation.

    PubMed

    Bezak, Eva; Takam, Rundgham; Marcu, Loredana G

    2015-12-01

    Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. George Washington: A Hero for American Students?

    ERIC Educational Resources Information Center

    Jordan, Ervin L., Jr.; Bennett, Clifford T.

    1997-01-01

    Discusses the career of George Washington with specific emphasis on his racial views and his role as a slaveholder. Describes Washington as a man bound by racial and political mores of his time. Although troubled by certain aspects of slavery, Washington directly benefited from the operation of this system. (MJP)

  10. USGS Water Data for Washington

    USGS Publications Warehouse

    ,

    2009-01-01

    The U.S. Geological Survey (USGS) has been investigating the water resources of Washington State since the latter part of the 19th century. During this time, demand for water has evolved from primarily domestic and stock needs to the current complex requirements for public-water supplies, irrigation, power generation, navigation, ecological needs, and numerous other uses. Water-resource data collected by the USGS in Washington have been, or soon will be, published by the USGS Washington Water Science Center (WAWSC) in numerous data and interpretive reports. Most of these reports are available online at the WAWSC web page http://wa.water.usgs.gov/pubs/

  11. Patterns of radiotherapy infrastructure in Japan and in other countries with well-developed radiotherapy infrastructures.

    PubMed

    Nakamura, Katsumasa; Konishi, Kenta; Komatsu, Tetsuya; Sasaki, Tomonari; Shikama, Naoto

    2018-05-01

    In high-income countries, the number of radiotherapy machine per population reaches a sufficient level. However, the patterns of infrastructure of radiotherapy in high-income countries are not well known. Among 29 high-income countries with gross national income of $25,000 or more per capita, we selected 23 countries whose total number of newly diagnosed cancer patients in 2012 was reported in the Organisation for Economic Co-operation and Development Health Statistics 2017. The numbers of radiotherapy centers and teletherapy machines in each of these 23 countries were collected using the Dictionary of Radiotherapy Centers database. The number of cancer patients per teletherapy machine was 452.35-1398.22 (median 711.66) with a three-fold variation, whereas the number of cancer patients per radiotherapy center varied even more widely, from 826.16 to 5159.86 (median 2259.83) with a six-fold variation. The average number of teletherapy machines per radiotherapy center also ranged widely, from 1.24 to 8.29 (median 3.11) with a seven-fold variation. The number of teletherapy machines in each country was almost proportional to that of cancer patients, and the number of teletherapy machines per radiotherapy center was inversely related to the number of radiotherapy centers per cancer patients. The number of teletherapy machines per radiotherapy center in Japan was 1.24, the most fragmented among the high-income countries. The percentage of large radiotherapy centers having three or more teletherapy machines in Japan was the smallest among 23 high-income countries. Optimization of the radiotherapy infrastructure in Japan should be carefully considered.

  12. Washington, D.C. USA

    NASA Image and Video Library

    1984-10-13

    41G-40-071 (5-13 Oct. 1984) --- Washington, D.C. -- the nation's capital -- is at right center in this phtograph from the Earth-orbiting space shuttle Challenger. J.F. Dulles Airport at lower left. Andrews Air Force Base is at right center edge. The Potomac River enters at left center, flows past Washington and as a tidal estuary at lower right. Also visible are the Great Falls of the Potomac. Photo credit: NASA

  13. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report.

    PubMed

    Tamaki, Tomoaki; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi; Nakano, Takashi

    2013-04-05

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  14. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  15. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. Copyright © 2013. Published by Elsevier SAS.

  16. Demand for radiotherapy in Spain.

    PubMed

    Rodríguez, A; Borrás, J M; López-Torrecilla, J; Algara, M; Palacios-Eito, A; Gómez-Caamaño, A; Olay, L; Lara, P C

    2017-02-01

    Assessing the demand for radiotherapy in Spain based on existing evidence to estimate the human resources and equipment needed so that every person in Spain has access to high-quality radiotherapy when they need it. We used data from the European Cancer Observatory on the estimated incidence of cancer in Spain in 2012, along with the evidence-based indications for radiotherapy developed by the Australian CCORE project, to obtain an optimal radiotherapy utilisation proportion (OUP) for each tumour. About 50.5 % of new cancers in Spain require radiotherapy at least once over the course of the disease. Additional demand for these services comes from reradiation therapy and non-melanoma skin cancer. Approximately, 25-30 % of cancer patients with an indication for radiotherapy do not receive it due to factors that include access, patient preference, familiarity with the treatment among physicians, and especially resource shortages, all of which contribute to its underutilisation. Radiotherapy is underused in Spain. The increasing incidence of cancer expected over the next decade and the greater frequency of reradiations necessitate the incorporation of radiotherapy demand into need-based calculations for cancer services planning.

  17. Dubois and Washington -- Opposite or Similar: An Evaluation of the Philosophies of Washington and Dubois.

    ERIC Educational Resources Information Center

    Reedom, John Anthony

    Although comparative analysis of the philosophies of Booker T. Washington and W.E.B. DuBois reveals significant differences in preferred solutions to problems of blacks in the United States, the philosophies of the two men are not as diametrically opposed as scholars have generally maintained. Washington's philosophy was one of conciliation…

  18. Neutron dosimetry in organs of an adult human phantom using linacs with multileaf collimator in radiotherapy treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.

    Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and

  19. Key Facts about Higher Education in Washington. 2012

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2012

    2012-01-01

    "Key Facts about Higher Education in Washington" provides vital data to chart higher education's progress and challenges. First published in 2002 by the Washington Higher Education Coordinating Board, this annual report highlights "Key Facts" about Washington's postsecondary institutions--including faculty, students, budgets,…

  20. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreachmore » program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering

  1. Washington State Biofuels Industry Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  2. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  3. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  4. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  5. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  6. 33 CFR 117.1051 - Lake Washington Ship Canal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Washington Ship Canal. 117.1051 Section 117.1051 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Washington § 117.1051 Lake Washington Ship...

  7. Water Mass Map from Neutron Spectrometer

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This map shows the estimated lower limit of the water content of the upper meter of Martian soil. The estimates are derived from the hydrogen abundance measured by the neutron spectrometer component of the gamma ray spectrometer suite on NASA's Mars Odyssey spacecraft.

    The highest water-mass fractions, exceeding 30 percent to well over 60 percent, are in the polar regions, beyond about 60 degrees latitude north or south. Farther from the poles, significant concentrations are in the area bound in longitude by minus 10 degrees to 50 degrees and in latitude by 30 degrees south to 40 degrees north, and in an area to the south and west of Olympus Mons (30 degrees to 0 degrees south latitude and minus 135 degrees to 110 degrees longitude).

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for the NASA Office of Space Science in Washington. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  8. 2007 Washington State collision data summary

    DOT National Transportation Integrated Search

    2008-10-13

    In 2007, Washingtons traffic fatality rate decreased to 1.00 per 100 million vehicle miles traveled (VMT), the lowest fatality rate in state history. : Washington State is 27% below the 2007 U.S. fatality rate of 1.37 fatalities per 100 VMT. : Bet...

  9. 2009 Washington State collision data summary

    DOT National Transportation Integrated Search

    2010-07-02

    In 2009, Washingtons traffic fatality rate decreased to 0.87 per 100 million vehicle miles traveled (VMT), the lowest fatality rate in state history. : Washington State is 33% below the 2009 U.S. preliminary fatality rate of 1.16 fatalities per 10...

  10. 2008 Washington State collision data summary

    DOT National Transportation Integrated Search

    2009-07-28

    In 2008, Washingtons traffic fatality rate decreased to 0.94 per 100 million vehicle miles traveled (VMT), the lowest fatality rate in state history. : Washington State is 35% below the 2008 U.S. fatality rate of 1.27 fatalities per 100 VMT. : Bet...

  11. 1979-1980 Geothermal Resource Assessment Program in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  12. An analytical model of leakage neutron equivalent dose for passively-scattered proton radiotherapy and validation with measurements.

    PubMed

    Schneider, Christopher; Newhauser, Wayne; Farah, Jad

    2015-05-18

    Exposure to stray neutrons increases the risk of second cancer development after proton therapy. Previously reported analytical models of this exposure were difficult to configure and had not been investigated below 100 MeV proton energy. The purposes of this study were to test an analytical model of neutron equivalent dose per therapeutic absorbed dose  at 75 MeV and to improve the model by reducing the number of configuration parameters and making it continuous in proton energy from 100 to 250 MeV. To develop the analytical model, we used previously published H/D values in water from Monte Carlo simulations of a general-purpose beamline for proton energies from 100 to 250 MeV. We also configured and tested the model on in-air neutron equivalent doses measured for a 75 MeV ocular beamline. Predicted H/D values from the analytical model and Monte Carlo agreed well from 100 to 250 MeV (10% average difference). Predicted H/D values from the analytical model also agreed well with measurements at 75 MeV (15% average difference). The results indicate that analytical models can give fast, reliable calculations of neutron exposure after proton therapy. This ability is absent in treatment planning systems but vital to second cancer risk estimation.

  13. SU-E-T-90: Accuracy of Calibration of Lithium-6 and -7 Enriched LiF TLDs for Neutron Measurements in High Energy Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keehan, S; Franich, R; Taylor, M

    Purpose: To determine the potential error involved in the interpretation of neutron measurements from medical linear accelerators (linacs) using TLD-600H and TLD-700H if standard AmBe and {sup 252}Cf neutron sources are used for calibration without proper inclusion of neutron energy spectrum information. Methods: The Kerma due to neutrons can be calculated from the energy released by various nuclear interactions (elastic and inelastic scatter, (n,α), (n,p), (n,d), (n,t), (n,2n), etc.). The response of each TLD can be considered the sum of the neutron and gamma components; each proportional to the Kerma. Using the difference between the measured TLD responses and themore » ratio of the calculated Kerma for each material, the neutron component of the response can be calculated. The Monte Carlo code MCNP6 has been used to calculate the neutron energy spectra resulting from photonuclear interactions in a Varian 21EX linac. TLDs have been exposed to the mixed (γ-n) field produced by a linac and AmBe and {sup 252}Cf standard neutron sources. Results: For dosimetry of neutrons from AmBe or {sup 252}Cf sources, assuming TLD-700H insensitivity to neutrons will Result in 10% or 20% overestimation of neutron doses respectively.For dosimetry of neutrons produced in a Varian 21EX, applying a calibration factor derived from a standard AmBe or {sup 252}Cf source will Result in an overestimation of neutron fluence, by as much as a factor of 47.The assumption of TLD-700H insensitivity to neutrons produced by linacs leads to a negligible error due to the extremely high Kerma ratio (600H/700H) of 3000 for the assumed neutron spectrum. Conclusion: Lithium-enriched TLDs calibrated with AmBe and/or {sup 252}Cf neutron sources are not accurate for use under the neutron energy spectrum produced by a medical linear accelerator.« less

  14. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  15. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model

  16. Commentary: exciting new developments in fast neutron cross sections and dosimetry

    NASA Astrophysics Data System (ADS)

    Bielajew, A. F.; Chadwick, M. B.

    1998-12-01

    The field of fast neutron therapy, and to some extent the practice of radiation protection in the vicinity of medical linear accelerators, requires accurate physical data. The paucity of physical data for neutron cross sections above about 15 MeV in low- Z materials is best exemplified (and somewhat exaggerated!) in the late Herb Attix's standard textbook Introduction to Radiological Physics and Radiation Dosimetry (Attix 1986). On page 464, the contributions to kerma in tissue from neutrons stops abruptly shortly above about 15 MeV. Photon and electron dosimetry has benefited from a well established and highly cohesive relationship between measurement and theory due to the enormous success of quantum electrodynamics. In contrast, measurements in the field of neutron radiotherapy have benefited less from theory because of the complexity of the quantum mechanics of nuclear structure, especially for light elements. This is because the nuclear levels are widely spaced at low excitation energies unlike for heavy elements where the energy level spacing is more dense and statistical assumptions can be applied with success. This means that accurate measurements are crucial for guiding and testing theoretical development. Measurements contributing to the field of fast neutron dosimetry are few and far between. Amazingly, in this issue of Physics in Medicine and Biology there are two such contributions! The paper by Benck, Slypen, Meulders and Corcalciuc (1998) entitled `Experimental double differential cross sections and derived kerma factors for oxygen at incident neutron energies from reaction thresholds to 65 MeV' reports on a set of measurements of the doubly-differential cross sections (energy and angle) for fast neutrons on for 9 energies between 25 and 65 MeV. The reaction channels measured were (n, px), (n, dx), (n, tx) and (n, x). These cross sections were then integrated to produce partial and total kerma factors. There are several features of this paper that are

  17. 30 CFR 947.700 - Washington Federal program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.700 Washington... necessary because of the nature of the terrain, climate, biological, chemical, or other relevant physical...

  18. 30 CFR 947.700 - Washington Federal program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.700 Washington... necessary because of the nature of the terrain, climate, biological, chemical, or other relevant physical...

  19. 30 CFR 947.700 - Washington Federal program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.700 Washington... necessary because of the nature of the terrain, climate, biological, chemical, or other relevant physical...

  20. 30 CFR 947.700 - Washington Federal program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.700 Washington... necessary because of the nature of the terrain, climate, biological, chemical, or other relevant physical...

  1. Hydrogeology and history of Washington, D.C.

    NASA Astrophysics Data System (ADS)

    For Washington, D.C., inhabitants or anyone planning a trip to the area, interesting information on the hydrology, geology, and natural and cultural history is available.To provide geographic and historical background for field trips in the area, a book was published for the 28th International Geological Congress, held in Washington in July 1989. Geology, Hydrology, and History of the Washington, D.C. Area, edited by John E. Moore of the U.S. Geological Survey, Reston, Va., and Julia A. Jackson of the American Geological Institute, Alexandria, Va., describes such interesting items as the Washington Canal, which ran from the Potomac River to the Capitol and is now Constitution Avenue, and the Cabin John Aqueduct, where a 297-foot granite arch was the longest masonry arch in the world for 40 years. The aqueduct has carried water to Washington since 1863. The 114-page book contains many historic photographs and maps and can be purchased from the American Geological Institute, 4220 King Street, Alexandria, VA 22302-1507, tel. 703-379-2480.

  2. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    PubMed

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Washington: "...By Ability, Politeness, and Attention."

    ERIC Educational Resources Information Center

    Bingham, Marjorie Wall

    1997-01-01

    Examines the career of George Washington, particularly emphasizing his skills as a mediator and negotiator. Postulates that the origins of these skills are in Washington's upbringing and his role as the leader of a large extended family. Argues that, as a national leader, he effectively employed these same skills. (MJP)

  4. Washington Tsunami Hazard Mitigation Program

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  5. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons.

    PubMed

    Ali, F; Atanackovic, J; Boyer, C; Festarini, A; Kildea, J; Paterson, L C; Rogge, R; Stuart, M; Richardson, R B

    2018-06-06

    Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14 N(n,p) 14 C reaction and the remainder from the 1 H(n,γ) 2 H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14 N(n,p) 14 C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.

  6. Radiotherapy.

    PubMed

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  7. Evaluation of the Washington State Target Zero teams project.

    DOT National Transportation Integrated Search

    2015-01-01

    As part of its Target Zero strategic highway safety plan that has the goal to reduce traffic fatalities in Washington to zero by the year 2030, the State of Washington established three detachments of Washington State Patrol (WSP) troopers to f...

  8. Timber resource statistics for southwest Washington.

    Treesearch

    John W. Hazard

    1965-01-01

    This publication summarizes the results of the third reinventory of six counties in southwest Washington: Clark, Cowlitz, Lewis, Pacific, Skamania, and Wahkiakurn. This block of 6 counties is one of 10 such blocks set up in the States of Oregon and Washington by the Forest Survey to facilitate orderly reinventories of the timber resources. Each block will be...

  9. Baltimore-Washington Parkway, Maryland : traffic safety plan

    DOT National Transportation Integrated Search

    2015-06-01

    Over the past decade, a number of studies have documented the traffic safety issues on the National Park Services (NPS) portion of the Baltimore-Washington (B-W) Parkway. The Baltimore-Washington Parkway Traffic Safety Plan provides an action plan...

  10. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  11. SU-E-T-75: Commissioning Optically Stimulated Luminescence Dosimeters for Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F; Sandison, G

    Purpose: Fast neutrons therapy used at the University of Washington is clinically proven to be more effective than photon therapy in treating salivary gland and other cancers. A nanodot optically stimulated luminescence (OSL) system was chosen to be commissioned for patient in vivo dosimetry for neutron therapy. The OSL-based radiation detectors are not susceptible to radiation damage caused by neutrons compared to diodes or MOSFET systems. Methods: An In-Light microStar OSL system was commissioned for in vivo use by radiating Landauer nanodots with neutrons generated from 50.0 MeV protons accelerated onto a beryllium target. The OSLs were calibrated the depthmore » of maximum dose in solid water localized to 150 cm SAD isocenter in a 10.3 cm square field. Linearity was tested over a typical clinical dose fractionation range i.e. 0 to 150 neutron-cGy. Correction factors for transient signal fading, trap depletion, gantry angle, field size, and wedge factor dependencies were also evaluated. The OSLs were photo-bleached between radiations using a tungsten-halogen lamp. Results: Landauer sensitivity factors published for each nanodot are valid for measuring photon and electron doses but do not apply for neutron irradiation. Individually calculated nanodot calibration factors exhibited a 2–5% improvement over calibration factors computed by the microStar InLight software. Transient fading effects had a significant impact on neutron dose reading accuracy compared to photon and electron in vivo dosimetry. Greater accuracy can be achieved by calibrating and reading each dosimeter within 1–2 hours after irradiation. No additional OSL correction factors were needed for field size, gantry angle, or wedge factors in solid water phantom measurements. Conclusion: OSL detectors are a useful for neutron beam in vivo dosimetry verification. Dosimetric accuracy comparable to conventional diode systems can be achieved. Accounting for transient fading effects during the neutron

  12. Access Washington Home

    Science.gov Websites

    - state and local licensing and registration requirements. Watch - Find out what legal aid clients and Microsoft President Brad Smith have to say in this short video - Civil Legal Aid in Washington State. Health

  13. Dirhenium decacarbonyl-loaded PLLA nanoparticles: influence of neutron irradiation and preliminary in vivo administration by the TMT technique.

    PubMed

    Hamoudeh, Misara; Fessi, Hatem; Mehier, Henri; Faraj, Achraf Al; Canet-Soulas, Emmanuelle

    2008-02-04

    In a previous study, we have described the elaboration of PLLA-based nanoparticles loaded with non radioactive dirhenium decacarbonyl [Re(2)(CO)(10)], a novel neutron-activatable radiopharmaceutical dosage form for intra-tumoral radiotherapy. These nanoparticles are designed for a neutron irradiation which can be carried out in a nuclear reactor facility. This new paper describes the neutron irradiation influence on these Re(2)(CO)(10)-loaded PLLA nanoparticles. The loaded nanoparticles with 23% (w/w) of metallic rhenium have shown to remain stable and separated and to keep out their sphericity at the lower neutron flux (1x10(11)n/cm(2)/s for 0.5h) which was used for rhenium content determination (neutron activation analysis, NAA). However, when loaded nanoparticles were irradiated at the higher neutron flux (1.45x10(13)n/cm(2)/s, 1h), they have shown to be partially coagglomerated and some pores appeared at their surface. Furthermore, DSC results showed a decrease in the PLLA melting point and melting enthalpy in both blank and loaded nanoparticles indicating a decrease in polymer crystallinity. In addition, the polymer molecular weights (M(n), M(w)) decreased after irradiation but without largely affecting the polymer polydispersity index (P.I.) which indicated that an irradiation-induced PLLA chain scission had occurred in a random way. The XRD patterns of irradiated PLLA provided another proof of polymer loss of crystallinity. FTIR spectra results have shown that irradiated nanoparticles retained the chemical identity of the used Re(2)(CO)(10) and PLLA despite the reduction in polymer crystallinity and molecular weight. Nanoparticles suspending after irradiation became also more difficult, but it was properly achievable by adding PVA (1%) and ethanol (10%) into the dispersing medium. Moreover, after 24h incubation of different irradiated nanoparticles in two different culture mediums, visual examination did not show bacterial growth indicating that applied

  14. Workforce: Washington

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In Washington, the demand for well-educated employees will only increase over the next several years. In the decade leading up to 2012, healthcare occupations will see growth of 20 percent. Teachers will be in demand: nearly 9,000 new elementary and middle-school educators will need to be hired. Computer fields will undergo growth of 24 percent,…

  15. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  16. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy.

    PubMed

    Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U

    2014-05-21

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  17. Present Status of Radiotherapy in Clinical Practice

    NASA Astrophysics Data System (ADS)

    Duehmke, Eckhart

    Aims of radiation oncology are cure from malignant diseases and - at the same time preservation of anatomy (e.g. female breast, uterus, prostate) and organ functions (e.g. brain, eye, voice, sphincter ani). At present, methods and results of clinical radiotherapy (RT) are based on experiences with natural history and radiobiology of malignant tumors in properly defined situations as well as on technical developments since World War II in geometrical and biological treatment planning in teletherapy and brachytherapy. Radiobiological research revealed tolerance limits of healthy tissues to be respected, effective total treatment doses of high cure probability depending on histology and tumor volume, and - more recently - altered fractionation schemes to be adapted to specific growth fractions and intrinsic radiosensitivities of clonogenic tumor cells. In addition, Biological Response Modifiers (BRM), such as cis-platinum, oxygen and hyperthermia may steepen cell survival curves of hypoxic tumor cells, others - such as tetrachiordekaoxid (TCDO) - may enhance repair of normal tissues. Computer assisted techniques in geometrical RT-planning based on individual healthy and pathologic anatomy (CT, MRT) provide high precision RT for well defined brain lesions by using dedicated linear accelerators (Stereotaxy). CT-based individual tissue compensators help with homogenization of distorted dose distributions in magna field irradiation for malignant lymphomas and with total body irradiation (TBI) before allogeneic bone marrow transplantation, e.g. for leukemia. RT with fast neutrons, Boron Neutron Capture Therapy (BNCT), RT with protons and heavy ions need to be tested in randomized trials before implementation into clinical routine.

  18. 29 CFR 2.2 - Employees attached to Washington office.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Employees attached to Washington office. 2.2 Section 2.2 Labor Office of the Secretary of Labor GENERAL REGULATIONS General § 2.2 Employees attached to Washington office. No person who has been an employee of the Department and attached to the Washington office...

  19. 29 CFR 2.2 - Employees attached to Washington office.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Employees attached to Washington office. 2.2 Section 2.2 Labor Office of the Secretary of Labor GENERAL REGULATIONS General § 2.2 Employees attached to Washington office. No person who has been an employee of the Department and attached to the Washington office...

  20. 29 CFR 2.2 - Employees attached to Washington office.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Employees attached to Washington office. 2.2 Section 2.2 Labor Office of the Secretary of Labor GENERAL REGULATIONS General § 2.2 Employees attached to Washington office. No person who has been an employee of the Department and attached to the Washington office...

  1. 29 CFR 2.2 - Employees attached to Washington office.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Employees attached to Washington office. 2.2 Section 2.2 Labor Office of the Secretary of Labor GENERAL REGULATIONS General § 2.2 Employees attached to Washington office. No person who has been an employee of the Department and attached to the Washington office...

  2. 29 CFR 2.2 - Employees attached to Washington office.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Employees attached to Washington office. 2.2 Section 2.2 Labor Office of the Secretary of Labor GENERAL REGULATIONS General § 2.2 Employees attached to Washington office. No person who has been an employee of the Department and attached to the Washington office...

  3. 12 CFR 4.4 - Washington office and web site.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Washington office and web site. 4.4 Section 4.4... EXAMINERS Organization and Functions § 4.4 Washington office and web site. The Washington office of the OCC...'s Web site is at http://www.occ.gov. [76 FR 43561, July 21, 2011] ...

  4. 12 CFR 4.4 - Washington office and web site.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Washington office and web site. 4.4 Section 4.4... EXAMINERS Organization and Functions § 4.4 Washington office and web site. The Washington office of the OCC...'s Web site is at http://www.occ.gov. [76 FR 43561, July 21, 2011] ...

  5. 12 CFR 4.4 - Washington office and web site.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Washington office and web site. 4.4 Section 4.4... EXAMINERS Organization and Functions § 4.4 Washington office and web site. The Washington office of the OCC...'s Web site is at http://www.occ.gov. [76 FR 43561, July 21, 2011] ...

  6. 30 CFR 947.700 - Washington Federal program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....700 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE WASHINGTON § 947.700 Washington Federal program. (a) This part contains all rules that are applicable to surface coal mining operations in...

  7. Melatonin prevents possible radiotherapy-induced thyroid injury.

    PubMed

    Arıcıgil, Mitat; Dündar, Mehmet Akif; Yücel, Abitter; Eryılmaz, Mehmet Akif; Aktan, Meryem; Alan, Mehmet Akif; Fındık, Sıdıka; Kılınç, İbrahim

    2017-12-01

    We aimed to investigate the protective effect of melatonin in radiotherapy-induced thyroid gland injury in an experimental rat model. Thirty-two rats were divided into four groups: the control group, melatonin treatment group, radiotherapy group and melatonin plus radiotherapy group. The neck region of each rat was defined by simulation and radiated with 2 Gray (Gy) per min with 6-MV photon beams, for a total dose of 18 Gy. Melatonin was administered at a dose of 50 mg/kg through intraperitoneal injection, 15 min prior to radiation exposure. Thirty days after the beginning of the study, rats were decapitated and analyses of blood and thyroid tissue were performed. Tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05), whereas interleukin-10 (IL-10) and glutathione (GSH) values were higher in the melatonin plus radiotherapy group (p < .05). The infiltration of inflammatory cells and percentage of apoptosis in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05). Melatonin helped protect thyroid gland structure against the undesired cytotoxic effects of radiotherapy in rats.

  8. Examining Determinants of Radiotherapy Access: Do Cost and Radiotherapy Inconvenience Affect Uptake of Breast-conserving Treatment for Early Breast Cancer?

    PubMed

    Lam, J; Cook, T; Foster, S; Poon, R; Milross, C; Sundaresan, P

    2015-08-01

    Radiotherapy utilisation is likely affected by multiple factors pertaining to radiotherapy access. Radiotherapy is an integral component of breast-conserving treatment (BCT) for early breast cancer. We aimed to determine if stepwise improvements in radiotherapy access in regional Australia affected the uptake of BCT and thus radiotherapy. Breast cancer operations in the Central Coast of New South Wales between January 2010 and March 2014 for T1-2N0-1M0 invasive or in situ (≤5 cm) disease in female patients eligible for BCT were examined. BCT uptake was calculated for three 1 year periods: period 1 (local radiotherapy available at cost to user or out of area radiotherapy with travel cost and inconvenience); period 2 (as per period 1 + publicly funded transport and radiotherapy at out of area facilities at no cost to user); period 3 (as per period 1 + publicly funded local radiotherapy at no cost to user). In total, 574 cases met eligibility criteria. BCT declined with increasing distance to publicly funded radiotherapy (P = 0.035). BCT rates for periods 1, 2 and 3 were 63% (113/180), 61% (105/173) and 71% (156/221). There were no statistically significant differences in BCT between periods 1 and 2 in the whole cohort or within age, histology or tumour size subgroups. Overall, there was a 9% increase in BCT in the whole cohort in period 3 compared with periods 1 and 2 (P = 0.031). This increase was statistically significant for women over 70 years (19% increase, P = 0.034), for women with ductal carcinoma in situ (25% increase, P = 0.013) and for women with primary tumours that were ≤10 mm (21% increase, P = 0.016). Improving the affordability of radiotherapy through publicly funded transport and radiotherapy at out of area facilities did not improve BCT uptake in a region where radiotherapy was locally available, albeit at cost to the user. Improving both affordability and convenience through the provision of local publicly funded radiotherapy increased BCT

  9. ASTER Washington, D.C.

    NASA Image and Video Library

    2000-10-06

    The White House, the Jefferson Memorial, and the Washington Monument with its shadow are all visible in this image of Washington, D.C. With its 15-meter spatial resolution, ASTER can see individual buildings. Taken on June 1, 2000, this image covers an area 14 kilometers (8.5 miles) wide and 13.7 kilometers (8.2 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of visible and near infrared bands displays vegetation in red and water in dark grays. The Potomac River flows from the middle left to the bottom center. The large red area west of the river is Arlington National Cemetery. http://photojournal.jpl.nasa.gov/catalog/PIA02655

  10. The launch of the first UK charity devoted to radiotherapy: ACORRN -- Action Radiotherapy.

    PubMed

    Price, P

    2011-01-01

    The Academic Clinical Oncology and Radiobiology Research Network (ACORRN) was set up to support research and development in radiotherapy in the UK. This innovative networking initiative was launched initially by the National Cancer Research Institute in 2005 to harness the power of the radiation research base in the UK. Through an interactive website a co-ordinated network of multidisciplinary radiation researchers has been established. The network has developed to a stage where it can be self-funding and dedicated to improving radiotherapy for cancer. A patient interactive section and extended support for service development will ensure that anyone treated in the UK will have immediate access to the best knowledge in the country. This provides a solution for cost-effectiveness and future improvement of cancer care and is seen as a new model to support healthcare development and delivery. The charity ACORRN - Action Radiotherapy aims to support radiotherapy research and development and was launched in the House of Lords in July 2010.

  11. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    PubMed Central

    2013-01-01

    Background Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Materials and methods Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. Results The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. Conclusions These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels. PMID:24295213

  12. Father Secchi Goes to Washington

    NASA Astrophysics Data System (ADS)

    McCarthy, M. F.

    1994-12-01

    In 1848 a small group of Jesuit refugees arrived at Georgetown College near Washington, D.C. Among them was a young priest, Angelo Secchi, who had finished theology studies in Rome, but had not been able to complete his final examinations. This done successfully, Secchi turned to astronomy and the new facilities of the Georgetown College Observatory, directed by its founder, Fr. James Curley. During his two years in Washington, Secchi studied physics, wrote an article on Electrical Rheometry for the Smithsonian Institution, and formed a friendship with Matthew Fontaine Maury of the U.S. Navy, who headed the Chart Service and in 1844 was named superintendent of the National Observatory. This was later named the U.S. Naval Observatory. Secchi's friendships formed during the Washington visit proved most helpful for relations between European astronomers and U.S. colleagues. Secchi, after his return to Rome constructed the Observatory of the Collegio Romano atop the baroque Church of St. Ignatius in Rome and began his work in spectral classification of stars.

  13. Washington State Survey of Adolescent Health Behaviors.

    ERIC Educational Resources Information Center

    Washington State Dept. of Social and Health Services, Olympia.

    The 1992 Washington State Survey of Adolescent Health Behaviors (WSSAHB) was created to collect information regarding a variety of adolescent health behaviors among students in the state of Washington. It expands on two previous administrations of a student tobacco, alcohol, and other drug survey and includes questions about medical care, safety,…

  14. Aerospace Training. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  15. Corrections Education. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    The Washington State Department of Corrections contracts with community colleges to provide basic education and job training at each of the state's 12 adult prisons so upon release, individuals are more likely to get jobs and less likely to return. Washington State community colleges build a bridge for offenders to successfully re-enter…

  16. Community & Technical College Share of Washington's Educational Attainment Goals for 2023

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    In 2013, the Washington Student Achievement Council (WSAC) set a 10 year plan for improving the educational attainment of Washington residents. The Roadmap included two educational attainment goals for 2023: (1) All adults in Washington, ages 25-44, will have a high school diploma or equivalent; and (2) At least 70 percent of Washington adults,…

  17. 78 FR 46258 - Drawbridge Operation Regulation Lake Washington, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Operation Regulation Lake Washington, Seattle, WA AGENCY: Coast Guard, DHS. ACTION: Notice of deviation from... that governs the Evergreen Point Floating Bridge (State Route 520 across Lake Washington) at Seattle... Route 520 across Lake Washington) remain closed to vessel traffic to facilitate safe passage of...

  18. State of Washington Population Trends, 1977. Washington State Information Report.

    ERIC Educational Resources Information Center

    Washington State Office of Program Planning and Fiscal Management, Olympia.

    As of April 1, 1977, Washington's population was estimated at 3,661,975--an increase of 248,725 since 1970. Prepared yearly, this report presents data on the official April 1 population estimates for cities, towns, and counties; components of population change; planned population forecasting activities; procedures which help make the housing unit…

  19. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  20. 75 FR 73073 - Washington Gas Light Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-74-000] Washington Gas Light Company; Notice of Filing November 18, 2010. Take notice that on November 15, 2010, Washington Gas Light Company (Washington Gas) filed its annual actual lost and unaccounted for volumes (LAUF...

  1. 76 FR 26719 - Washington 10 Storage Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-80-001] Washington 10 Storage Corporation; Notice of Filing Take notice that on April 29, 2011, Washington 10 Storage Corporation (Washington 10) filed a revised Statement of Operating Conditions (SOC) to comply with an April 25...

  2. 76 FR 78915 - Washington 10 Storage Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR12-10-000] Washington 10 Storage Corporation; Notice of Filing Take notice that on December 13, 2011, Washington 10 Storage Corporation (Washington 10) filed a Statement of Operating Conditions to revise certain provisions of its Firm...

  3. Cobalt-60 Machines and Medical Linear Accelerators: Competing Technologies for External Beam Radiotherapy.

    PubMed

    Healy, B J; van der Merwe, D; Christaki, K E; Meghzifene, A

    2017-02-01

    Medical linear accelerators (linacs) and cobalt-60 machines are both mature technologies for external beam radiotherapy. A comparison is made between these two technologies in terms of infrastructure and maintenance, dosimetry, shielding requirements, staffing, costs, security, patient throughput and clinical use. Infrastructure and maintenance are more demanding for linacs due to the complex electric componentry. In dosimetry, a higher beam energy, modulated dose rate and smaller focal spot size mean that it is easier to create an optimised treatment with a linac for conformal dose coverage of the tumour while sparing healthy organs at risk. In shielding, the requirements for a concrete bunker are similar for cobalt-60 machines and linacs but extra shielding and protection from neutrons are required for linacs. Staffing levels can be higher for linacs and more staff training is required for linacs. Life cycle costs are higher for linacs, especially multi-energy linacs. Security is more complex for cobalt-60 machines because of the high activity radioactive source. Patient throughput can be affected by source decay for cobalt-60 machines but poor maintenance and breakdowns can severely affect patient throughput for linacs. In clinical use, more complex treatment techniques are easier to achieve with linacs, and the availability of electron beams on high-energy linacs can be useful for certain treatments. In summary, there is no simple answer to the question of the choice of either cobalt-60 machines or linacs for radiotherapy in low- and middle-income countries. In fact a radiotherapy department with a combination of technologies, including orthovoltage X-ray units, may be an option. Local needs, conditions and resources will have to be factored into any decision on technology taking into account the characteristics of both forms of teletherapy, with the primary goal being the sustainability of the radiotherapy service over the useful lifetime of the equipment

  4. Radiotherapy for gastric lymphoma: a planning study of 3D conformal radiotherapy, the half-beam method, and intensity-modulated radiotherapy.

    PubMed

    Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun

    2014-11-01

    During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. 75 FR 53964 - Washington Gas Light Company; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR09-8-004] Washington Gas Light Company; Notice of Filing August 27, 2010. Take notice that on August 24, 2010, Washington Gas Light Company (Washington Gas) filed to revise the Statement of Interstate Service Rates of its Firm...

  6. Reshaping the Image of Booker T. Washington

    ERIC Educational Resources Information Center

    Norrell, Robert J.

    2009-01-01

    Booker T. Washington, founder of the Tuskegee Institute and the recognized leader of American black people from 1895 until his death in 1915, has been viewed as an accommodationist to segregation, an African-American leader who traded black equality and voting rights for his own influence among white bigots. Washington rose to national fame with a…

  7. Early Childhood Injury Deaths in Washington State.

    ERIC Educational Resources Information Center

    Starzyk, Patricia M.

    This paper discusses data on the deaths of children aged 1-4 years in Washington State. A two-fold approach was used in the analysis. First, Washington State death certificate data for 1979-85 were used to characterize the deaths and identify hazardous situations. Second, death certificates were linked to birth certificates of children born in…

  8. Geologic map of the Richland 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Mosesmore » Lake, Ritzville quadrangles have already been released.« less

  9. Requirements for a Washington State freight simulation model.

    DOT National Transportation Integrated Search

    2009-12-01

    WSDOT and TransNow have already allocated $190,000 to researchers at the University of Washington and the : Washington State University to explore the flow of goods through the transportation system, the dynamics of that flow in : response to disrupt...

  10. 76 FR 377 - Land Acquisitions; Cowlitz Indian Tribe of Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... State of Washington by Auditor's File Nos. G 450664 and G 147358. Parcel II That portion of the... thereof acquired by the State of Washington by deed recorded under Auditor's File Nos. G 140380 and D... recorded under Auditor's File No. F 38759, records of Clark County, Washington, described as follows...

  11. Population trajectory of burrowing owls (Athene cunicularia) in eastern Washington

    USGS Publications Warehouse

    Conway, C.J.; Pardieck, K.L.

    2006-01-01

    Anecdotal evidence suggests that burrowing owls have declined in Washington. The Washington Department of Fish and Wildlife is currently conducting a status review for burrowing owls which will help determine whether they should be listed as threatened or endangered in the state. To provide insights into the current status of burrowing owls (Athene cunicularia), we analyzed data from the North American Breeding Bird Survey using two analytical approaches to determine their current population trajectory in eastern Washington. We used a one-sample t-test to examine whether trend estimates across all BBS routes in Washington differed from zero. We also used a mixed model analysis to estimate the rate of decline in number of burrowing owls detected between 1968 and 2005. The slope in number of burrowing owls detected was negative for 12 of the 16 BBS routes in Washington that have detected burrowing owls. Numbers of breeding burrowing owls detected in eastern Washington declined at a rate of 1.5% annually. We suggest that all BBS routes that have detected burrowing owls in past years in eastern Washington be surveyed annually and additional surveys conducted to track population trends of burrowing owls at finer spatial scales in eastern Washington. In the meantime, land management and regulatory agencies should ensure that publicly managed areas with breeding burrowing owls are not degraded and should implement education and outreach programs to promote protection of privately owned areas with breeding owls.

  12. Final Report for the “WSU Neutron Capture Therapy Facility Support”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald E. Tripard; Keith G. Fox

    2006-08-24

    The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and

  13. State of Washington Population Trends, 1975. Washington State Information Report.

    ERIC Educational Resources Information Center

    Washington State Office of Program Planning and Fiscal Management, Olympia.

    As of April 1, 1975, Washington's population was estimated at 3,494,124--an increase of 80,874 since 1970. Prepared yearly, this report presents tabular data pertaining to: (1) current April 1 estimates for cities, towns, and counties; (2) current decline in household size; (3) the use of postal vacancy surveys in estimating vacancy rates; and (4)…

  14. Cardiac Side-effects From Breast Cancer Radiotherapy.

    PubMed

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. The role of intraoperative radiotherapy in solid tumors.

    PubMed

    Skandarajah, A R; Lynch, A C; Mackay, J R; Ngan, S; Heriot, A G

    2009-03-01

    Combined multimodality therapy is becoming standard treatment for many solid tumors, but the role of intraoperative radiotherapy in the management of solid tumors remains uncertain. The aim is to review the indication, application, and outcomes of intraoperative radiotherapy in the management of nongynecological solid tumors. A literature search was performed using Medline, Embase, Ovid, and Cochrane database for studies between 1965 and 2008 assessing intraoperative radiotherapy, using the keywords "intraoperative radiotherapy," "colorectal cancer," "breast cancer," "gastric cancer," "pancreatic cancer," "soft tissue tumor," and "surgery." Only publications in English with available abstracts and regarding adult humans were included, and the evidence was critically evaluated. Our search retrieved 864 publications. After exclusion of nonclinical papers, duplicated papers and exclusion of brachytherapy papers, 77 papers were suitable to assess the current role of intraoperative radiotherapy. The clinical application and evidence base of intraoperative radiotherapy for each cancer is presented. Current studies in all common cancers show an additional benefit in local recurrence rates when intraoperative radiotherapy is included in the multimodal treatment. However, intraoperative radiotherapy may not improve overall survival and has significant morbidity depending on the site of the tumor. Intraoperative radiotherapy does have a role in the multidisciplinary management of solid tumors, but further studies are required to more precisely determine the extent of benefit.

  16. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  17. Palliative radiotherapy practice within Western European countries: impact of the radiotherapy financing system?

    PubMed

    Lievens, Y; Van den Bogaert, W; Rijnders, A; Kutcher, G; Kesteloot, K

    2000-09-01

    To analyze the reimbursement modalities for radiotherapy in the different Western European countries, as well as to investigate if these differences have an impact on the palliative radiotherapy practice for bone metastases. A questionnaire was sent to 565 radiotherapy centres included in the 1997 ESTRO directory. In this questionnaire the reimbursement strategy applied in the different centres was assessed, with respect to the use of a budget (departmental or hospital budget), case payment and/or fee-for-service reimbursement. The differences were analyzed according to country and to type and size of the radiotherapy centre. A total of 170 centres (86% of the responders) returned the questionnaire. Most frequent is budget reimbursement: some form of budget reimbursement is found in 69% of the centres, whereas 46% of the centres are partly reimbursed through fee-for-service and 35% through case payment. The larger the department, the more frequent the reimbursement through a budget or a case payment system and the less the importance of fee-for-service reimbursement (chi(2): P=0.0012; logit: P=0.0055). Whereas private centres are almost equally reimbursed by fee-for-service financing as by budget or case payment, radiotherapy departments in university hospitals receive the largest part of their financial resources through a budget or by case payment (83%) (chi(2): P=0.002; logit: P=0.0073). A correlation between the country and the radiotherapy reimbursement system was also demonstrated (P=0.002), radiotherapy centres in Spain, the Netherlands and the United Kingdom being almost entirely reimbursed through a budget and/or case payment and centres in Germany and Switzerland mostly through a fee-for-service system. In budget and case payment financing lower total number of fractions and lower total dose (chi(2): P=0.003; logit: P=0.0120) as well as less shielding blocks (chi(2): P=0.003; logit: P=0.0066) are used. A same tendency is found for the use of isodose

  18. Estimating radiotherapy demands in South East Asia countries in 2025 and 2035 using evidence-based optimal radiotherapy fractions.

    PubMed

    Yahya, Noorazrul; Roslan, Nurhaziqah

    2018-01-08

    As about 50% of cancer patients may require radiotherapy, the demand of radiotherapy as the main treatment to treat cancer is likely to rise due to rising cancer incidence. This study aims to quantify the radiotherapy demand in countries in Southeast Asia (SEA) in 2025 and 2035 using evidence-based optimal radiotherapy fractions. SEA country-specific cancer incidence by tumor site for 2015, 2025 and 2035 was extracted from the GLOBOCAN database. We utilized the optimal radiotherapy utilization rate model by Wong et al. (2016) to calculate the optimal number of fractions for all tumor sites in each SEA country. The available machines (LINAC & Co-60) were extracted from the IAEA's Directory of Radiotherapy Centres (DIRAC) from which the number of available fractions was calculated. The incidence of cancers in SEA countries are expected to be 1.1 mil cases (2025) and 1.4 mil (2035) compared to 0.9 mil (2015). The number of radiotherapy fractions needed in 2025 and 2035 are 11.1 and 14.1 mil, respectively, compared to 7.6 mil in 2015. In 2015, the radiotherapy fulfillment rate (RFR; required fractions/available fractions) varied between countries with Brunei, Singapore and Malaysia are highest (RFR > 1.0 - available fractions > required fractions), whereas Cambodia, Indonesia, Laos, Myanmar, Philippines, Timor-Leste and Vietnam have RFR < 0.5. RFR is correlated to GDP per capita (ρ = 0.73, P = 0.01). To allow RFR ≥1 in 2025 and 2035, another 866 and 1177 machines are required, respectively. The number are lower if longer running hours are implemented. With the optimal number of radiotherapy fractions, estimation for number of machines required can be obtained which will guide acquisition of machines in SEA countries. RFR is low with access varied based on the economic status. © 2018 John Wiley & Sons Australia, Ltd.

  19. Getting Veterans Back to Work. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    Each year about 13,000 military personnel leave the service and select Washington state as their home, bringing with them a wealth of experience and a wide range of skills. Washington ranks among the top five most popular states for military personnel separating from the service. Washington's 34 community and technical colleges are a perfect fit…

  20. Washington Play Fairway Analysis Geothermal GIS Data

    DOE Data Explorer

    Corina Forson

    2015-12-15

    This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'WA_State_Play_Fairway_Phase_1_Technical_Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.

  1. A case study of the neuropsychological outcomes following microsurgery, conventional radiotherapy and stereotactic radiotherapy for an adult's recurrent craniopharyngioma.

    PubMed

    Preece, David; Allan, Alfred; Becerra, Rodrigo

    2016-01-01

    To examine the neuropsychological outcomes for an adult patient, 2 years after receiving microsurgery and conventional radiotherapy for a recurrent craniopharyngioma; and the impact of a further intervention, stereotactic radiotherapy, on this level of neuropsychological functioning. JD, a 30 year old male whose recurrent craniopharyngioma had 2 years earlier been treated with two operations and conventional radiotherapy. JD was assessed (using standardized clinical tests) before and after a course of stereotactic radiotherapy. Prior to stereotactic radiotherapy (and 2 years after microsurgery and conventional radiotherapy) JD's IQ was intact, but considerable impairments were present in executive functioning, memory, theory of mind and processing speed. Fifteen months after stereotactic radiotherapy, all neuropsychological domains remained largely static or improved, supporting the utility of this treatment option in the neuropsychological domain. However, deficits in executive functioning, memory and processing speed remained. These findings suggest that, even after multiple treatments, substantial cognitive impairments can be present in an adult patient with a recurrent craniopharyngioma. This profile of deficits underlines the inadequacy of relying purely on IQ as a marker for cognitive health in this population and emphasizes the need to include neuropsychological impairments as a focus of rehabilitation with these patients.

  2. Opportunities for addressing laminated root rot caused by Phellinus sulphuracens in Washington's forests: A Report from the Washington State Academy of Sciences in cooperation with the Washington State Department of Natural Resources

    Treesearch

    R. James Cook; Robert L. Edmonds; Ned B. Klopfenstein; Willis Littke; Geral McDonald; Daniel Omdahl; Karen Ripley; Charles G. Shaw; Rona Sturrock; Paul Zambino

    2013-01-01

    This report from the Washington State Academy of Sciences (WSAS) is in response to a request from the Washington State Department of Natural Resources (DNR) to "identify approaches and opportunities ripe for research on understanding and managing root diseases of Douglas-fir." Similar to the process used by the National Research Council, the WSAS upon...

  3. 36 CFR 1253.4 - Washington National Records Center.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Washington National Records Center. 1253.4 Section 1253.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... National Records Center. Washington National Records Center is located at 4205 Suitland Road, Suitland, MD...

  4. 36 CFR 1253.4 - Washington National Records Center.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Washington National Records Center. 1253.4 Section 1253.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... National Records Center. Washington National Records Center is located at 4205 Suitland Road, Suitland, MD...

  5. 36 CFR 1253.4 - Washington National Records Center.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Washington National Records Center. 1253.4 Section 1253.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... National Records Center. Washington National Records Center is located at 4205 Suitland Road, Suitland, MD...

  6. Innovations in Radiotherapy Technology.

    PubMed

    Feain, I J; Court, L; Palta, J R; Beddar, S; Keall, P

    2017-02-01

    Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy. Copyright © 2016 The Royal College of Radiologists. All rights reserved.

  7. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  8. Breast Cancer Patients’ Experience of External-Beam Radiotherapy

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; Bovbjerg, Dana H.; Montgomery, Guy H.

    2013-01-01

    Radiotherapy is a critical component of treatment for the majority of women with breast cancer, particularly those who receive breast conserving surgery. Although medically beneficial, radiotherapy can take a physical and psychological toll on patients. However, little is known about the specific thoughts and feelings experienced by women undergoing breast cancer radiotherapy. Therefore, the study aim was to use qualitative research methods to develop an understanding of these thoughts and feelings based on 180 diary entries, completed during radiotherapy by 15 women with Stage 0-III breast cancer. Thematic analysis identified four primary participant concerns: (a) a preoccupation with time; (b) fantasies (both optimistic and pessimistic) about life following radiotherapy; (c) the toll their side-effect experience takes on their self-esteem; and (d) feeling mystified by radiotherapy. These themes are consistent with previous literature on illness and identity. These findings have implications for the treatment and care of women undergoing breast cancer radiotherapy. PMID:19380502

  9. Washington's Bold Reformer

    ERIC Educational Resources Information Center

    Schachter, Ron

    2008-01-01

    For more than a year, the debate, press coverage, and buzz in Washington, D.C., have swirled over whether someone so different--and so relatively inexperienced--can deliver sweeping change. And presidential hopeful Barack Obama hasn't been the only one receiving that kind of unrelenting scrutiny. This article describes Michelle Rhee who became…

  10. 36 CFR 1253.4 - Washington National Records Center.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Washington National Records Center. 1253.4 Section 1253.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PUBLIC AVAILABILITY AND USE LOCATION OF RECORDS AND HOURS OF USE § 1253.4 Washington National...

  11. Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons

    PubMed Central

    Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong

    2014-01-01

    Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699

  12. Evaluation of the Washington nighttime seat belt enforcement program.

    DOT National Transportation Integrated Search

    2017-04-01

    The Washington Traffic Safety Commission (WTSC) and the National Highway Traffic Safety Administration (NHTSA) : conducted a high-visibility Nighttime Seat Belt Enforcement (NTSBE) program in Washington. The two-year program : followed the basic Clic...

  13. Very Early Salvage Radiotherapy Improves Distant Metastasis-Free Survival.

    PubMed

    Abugharib, Ahmed; Jackson, William C; Tumati, Vasu; Dess, Robert T; Lee, Jae Y; Zhao, Shuang G; Soliman, Moaaz; Zumsteg, Zachary S; Mehra, Rohit; Feng, Felix Y; Morgan, Todd M; Desai, Neil; Spratt, Daniel E

    2017-03-01

    Early salvage radiotherapy following radical prostatectomy for prostate cancer is commonly advocated in place of adjuvant radiotherapy. We aimed to determine the optimal definition of early salvage radiotherapy. We performed a multi-institutional retrospective study of 657 men who underwent salvage radiotherapy between 1986 and 2013. Two comparisons were made to determine the optimal definition of early salvage radiotherapy, including 1) the time from radical prostatectomy to salvage radiotherapy (less than 9, 9 to 21, 22 to 47 or greater than 48 months) and 2) the level of detectable pre-salvage radiotherapy prostate specific antigen (0.01 to 0.2, greater than 0.2 to 0.5 or greater than 0.5 ng/ml). Outcomes included freedom from salvage androgen deprivation therapy, and biochemical relapse-free, distant metastases-free and prostate cancer specific survival. Median followup was 9.8 years. Time from radical prostatectomy to salvage radiotherapy did not correlate with 10-year biochemical relapse-free survival rates (R 2 = 0.18). Increasing pre-salvage radiotherapy prostate specific antigen strongly correlated with biochemical relapse-free survival (R 2 = 0.91). Increasing detectable pre-salvage radiotherapy prostate specific antigen (0.01 to 0.2, greater than 0.2 to 0.5 and greater than 0.5 ng/ml) predicted worse 10-year biochemical relapse-free survival (62%, 44% and 27%), freedom from salvage androgen deprivation therapy (77%, 66% and 49%), distant metastases-free survival (86%, 79% and 66%, each p <0.001) and prostate cancer specific survival (93%, 89% and 80%, respectively, p = 0.001). On multivariable analysis early salvage radiotherapy (prostate specific antigen greater than 0.2 to 0.5 ng/ml) was associated with a twofold increase in biochemical failure, use of salvage androgen deprivation therapy and distant metastases compared to very early salvage radiotherapy (prostate specific antigen 0.01 to 0.2 ng/ml). The duration from radical prostatectomy to salvage

  14. Washington Headquarters Services

    Science.gov Websites

    Status OPM Status: Open Open Main Navigation Home Our Services Our Customers Our People Our Leaders Our Organization Contact Us CAC Site Navigation Customers Employees Our Services Our Customers Our People Our facilities in the Washington, DC area. Read more about Our Customers Our People A picture with the left edge

  15. Washington VAAC Homepage

    Science.gov Websites

    » OSPO Home » DOC » NOAA » NESDIS » OSPO NOAA Office of Satellite and Product Operations EMWIN GEONETCAST Americas GOES DCS LRIT NOAA Satellite Conferences NOAASIS SARSAT Products Atmosphere - Satellite Services Division - Office of Satellite Data Processing and Distribution Washington Volcanic Ash

  16. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  17. 75 FR 20776 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    .... Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25, 2010. Entry.... Basis and Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  18. Drivers' use of marijuana in Washington state : traffic tech.

    DOT National Transportation Integrated Search

    2016-08-01

    In July 2014, Washington State allowed legal sales of : recreational marijuana. Working with the Washington : Traffic Safety Commission, NHTSA assisted the State in : conducting a roadside study to examine the prevalence : of marijuana use before and...

  19. The Washington Library Network

    ERIC Educational Resources Information Center

    Franklin, Ralph W.; MacDonald, Clarice I.

    1976-01-01

    The objectives of the Washington Library Network (WLN) are 1) statewide sharing of resources among all types of libraries, 2) economically meeting the information demands of all citizens of the state, and 3) centralized computer-communication systems for bibliographic services. (Author)

  20. Survey on deep learning for radiotherapy.

    PubMed

    Meyer, Philippe; Noblet, Vincent; Mazzara, Christophe; Lallement, Alex

    2018-07-01

    More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  2. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro.

    PubMed

    Sun, Ting; Zhang, Zizhu; Li, Bin; Chen, Guilin; Xie, Xueshun; Wei, Yongxin; Wu, Jie; Zhou, Youxin; Du, Ziwei

    2013-08-06

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma.

  3. Washington Monument Grounds, U.S. Reservation 2, Fiveacres, northeast section of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Monument Grounds, U.S. Reservation 2, Five-acres, northeast section of the 106-acre,Washington Monument Grounds. Bounded by Constitution Avenue to the north, Madison Drive to the south, 14th Street to the east, and 15th Street to the West, Washington, District of Columbia, DC

  4. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and

  5. The Perspectives of the Boron Neutron Capture Therapy-Clinical Applications Research and Development in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Badhrees, I.; Alrumayan, F.; Mahube, F.

    Boron Neutron Capture Therapy (BNCT) is a binary form of experimental radiotherapy which is based on the administration of a drug able to concentrate the isotopes in a tumor cell that later are irradiated with a neutron beam. Even though the first evidence of the success of this treatment dates back many years ago, BNCT showed successful treatment results in malignant melanoma, and Glioblastoma. In order for BNCT to be successful, a sufficient amount of Boron (10B) must be selectively delivered to the tumor cell, and then irradiated by neutrons of sufficient enough. The CS-30 cyclotron at King Faisal Specialist Hospital & Research Center is a positive-ion machine capable of accelerating protons at 26MeV, and other isotopes as well. Although the peak beam intensity from the CS-30 is low, the key to success of using it for the BNCT is by using a high average beam current at low energy. This work is aimed at testing the capability of the CS-30 Cyclotron to produce a low-energy neutron beam to be used to activate the Boron atoms injected into the tumor cell, through simulation of a compatible moderator. We are also planning to measure the overall dosimetry of the energy dose as well as that for the boron in the tumor cell.

  6. SU-E-T-195: Commissioning the Neutron Production of a Varian TrueBeam Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irazola, L; Brualla, L; Rosello, J

    2015-06-15

    Purpose: The purpose of this work is the characterization of a new Varian TrueBeam™ facility in terms of neutron production, in order to estimate neutron equivalent dose in organs during radiotherapy treatments. Methods: The existing methodology [1] was used with the reference SRAMnd detector, calibrated in terms of thermal neutron fluence at the reference field operated by PTB (Physikalisch-Technische-Bundesanstalt) at the GeNF (Geesthacht-Neutron-Facility) with the GKSS reactor FRG-1 [2]. Thermal neutron fluence for the 5 available possibilities was evaluated: 15 MV and 10&6 MV with and without Flattening Filter (FF and FFF, respectively). Irradiation conditions are as described in [3].more » In addition, three different collimator-MLC configurations were studied for 15 MV: (a) collimator of 10×10 cm{sup 2} and MLC fully retracted (reference), (b) field sizes of 20×20 cm{sup 2} and 10×10 cm{sup 2} for collimator and MLC respectively, and (c) collimator and MLC aperture of 10×10 cm{sup 2}. Results: Thermal fluence rate at the “reference point” [3], as a consequence of the neutron production, obtained for (a) conformation in 15 MV is (1.45±0.11) x10{sup 4} n•cm{sup 2}/MU. Configurations (b) and (c) gave fluences of 96.6% and 97.8% of the reference (a). Neutron production decreases up to 8.6% and 5.7% for the 10 MV FF and FFF beams, respectively. Finally, it decreases up to 2.8% and 0.1% for the 6 MV FF and FFF modes, respectively. Conclusion: This work evaluates thermal neutron production of Varian TrueBeam™ system for organ equivalent dose estimation. The small difference in collimator-MLC configuration shows the universality of the methodology [3]. A decrease in this production is shown when decreasing energy from 15 to 10 MV and an almost negligible production was found for 6 MV. Moreover, a lower neutron contribution is observed for the FFF modes.[1]Phys Med Biol,2012;57:6167–6191.[2]Radiat Meas,2010;45:1513–1517.[3]Med Phys,2015;42:276

  7. Post-radiotherapy hypothyroidism in dogs treated for thyroid carcinomas.

    PubMed

    Amores-Fuster, I; Cripps, P; Blackwood, L

    2017-03-01

    Hypothyroidism is a common adverse event after head and neck radiotherapy in human medicine, but uncommonly reported in canine patients. Records of 21 dogs with histologically or cytologically confirmed thyroid carcinoma receiving definitive or hypofractionated radiotherapy were reviewed. Nine cases received 48 Gy in 12 fractions, 10 received 36 Gy in 4 fractions and 2 received 32 Gy in 4 fractions. Seventeen cases had radiotherapy in a post-operative setting. Ten cases developed hypothyroidism (47.6%) after radiotherapy. The development of hypothyroidism was not associated with the radiotherapy protocol used. Median time to diagnosis of hypothyroidism was 6 months (range, 1-13 months). Hypothyroidism is a common side effect following radiotherapy for thyroid carcinomas. Monitoring of thyroid function following radiotherapy is recommended. No specific risk factors have been identified. © 2015 John Wiley & Sons Ltd.

  8. 75 FR 10446 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... during the U.S. Coast Guard Commandant's Change of Command ceremony from 6 a.m. through 5 p.m. on May 25... Purpose The Coast Guard will conduct a Change of Command ceremony at Fort McNair in Washington, DC. To... the U.S. Coast Guard Commandant's Change of Command ceremony. Due to the catastrophic impact a...

  9. Assessing the lumber manufacturing sector in western Washington

    Treesearch

    Jean M. Daniels

    2010-01-01

    The production structure of the lumber manufacturing sector in western Washington was investigated using a translog cost function with capital. labor, and sawlog inputs. Analyses were performed with a panel data set of biennial observations from 1972 to 2002 on a cross section of 16 western Washington counties. Production structure was examined using Allen and...

  10. Washington: Hanford Nuclear Reservation

    Atmospheric Science Data Center

    2014-05-15

    ... is seen wending its way around the area, and the Snake River branches off to the right. According to Idaho's National Interagency Fire ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  11. Washington State School Finance, 1999: A Special Focus on Teacher Salaries.

    ERIC Educational Resources Information Center

    Plecki, Margaret L.

    This paper provides current information about the funding of Washington's K-12 school finance system. Schools in Washington State derive most of their revenues from state sources. In response to a 1977 court ruling, 'Seattle v. State of Washington', the state assumed responsibility for funding "basic education" for a "uniform system…

  12. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  13. The Los Alamos Neutron Science Center Spallation Neutron Sources

    DOE PAGES

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    2017-10-26

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutronsmore » are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ~100 keV. The characteristics of these sources

  14. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  15. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy

    PubMed Central

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-01-01

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269

  16. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.

    PubMed

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-07-12

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.

  17. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    PubMed

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  18. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysismore » included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions

  19. SU-E-T-365: Estimation of Neutron Ambient Dose Equivalents for Radioprotection Exposed Workers in Radiotherapy Facilities Based On Characterization Patient Risk Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irazola, L; Terron, J; Sanchez-Doblado, F

    2015-06-15

    Purpose: Previous measurements with Bonner spheres{sup 1} showed that normalized neutron spectra are equal for the majority of the existing linacs{sup 2}. This information, in addition to thermal neutron fluences obtained in the characterization procedure{sup 3}3, would allow to estimate neutron doses accidentally received by exposed workers, without the need of an extra experimental measurement. Methods: Monte Carlo (MC) simulations demonstrated that the thermal neutron fluence distribution inside the bunker is quite uniform, as a consequence of multiple scatter in the walls{sup 4}. Although inverse square law is approximately valid for the fast component, a more precise calculation could bemore » obtained with a generic fast fluence distribution map around the linac, from MC simulations{sup 4}. Thus, measurements of thermal neutron fluences performed during the characterization procedure{sup 3}, together with a generic unitary spectra{sup 2}, would allow to estimate the total neutron fluences and H*(10) at any point{sup 5}. As an example, we compared estimations with Bonner sphere measurements{sup 1}, for two points in five facilities: 3 Siemens (15–23 MV), Elekta (15 MV) and Varian (15 MV). Results: Thermal neutron fluences obtained from characterization, are within (0.2–1.6×10{sup 6}) cm−{sup 2}•Gy{sup −1} for the five studied facilities. This implies ambient equivalent doses ranging from (0.27–2.01) mSv/Gy 50 cm far from the isocenter and (0.03–0.26) mSv/Gy at detector location with an average deviation of ±12.1% respect to Bonner measurements. Conclusion: The good results obtained demonstrate that neutron fluence and H*(10) can be estimated based on: (a) characterization procedure established for patient risk estimation in each facility, (b) generic unitary neutron spectrum and (c) generic MC map distribution of the fast component. [1] Radiat. Meas (2010) 45: 1391 – 1397; [2] Phys. Med. Biol (2012) 5 7:6167–6191; [3] Med. Phys (2015) 42

  20. VIEW OF NOS. 217 AND 219 WASHINGTON AVENUE LOOKING NORTHEAST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF NOS. 217 AND 219 WASHINGTON AVENUE LOOKING NORTHEAST, SHOWING WEST FACADES - Apollo Iron & Steel Works, Company Housing, West of Washington & Lincoln Avenues, Vandergrift, Westmoreland County, PA

  1. The stink bugs (Hemiptera: Heteroptera: Pentatomidae) of Washington state

    USDA-ARS?s Scientific Manuscript database

    Froeschner (1988) records 23 species of stink bugs (Hemiptera: Heteroptera: Pentatomidae) as occurring in Washington state. Based onmaterial primarily housed in the M.T. James Entomological Collection at Washington State University, the number of species is increased to 47. Species recorded by Froes...

  2. Habitat fragmentation and the persistence of lynx populations in Washington state

    Treesearch

    Gary M Koehler; Benjamin T. Maletzke; Jeff A. Von Kienast; Keith B. Aubry; Robert B. Wielgus; Robert H. Naney

    2008-01-01

    Lynx (Lynx canadensis) occur in the northern counties of Washington state, USA; however, current distribution and status of lynx in Washington are poorly understood. During winters 2002-2004 we snow-tracked lynx for 155 km within a 211-km2 area in northern Washington, to develop a model of lynx-habitat relationships that we...

  3. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  4. A low emission vehicle procurement approach for Washington state

    NASA Astrophysics Data System (ADS)

    McCoy, G. A.; Lyons, J. K.; Ware, G.

    1992-06-01

    The Clean Air Washington Act of 1991 directs the Department of Ecology to establish a clean-fuel vehicle standard. The Department of General Administration shall purchase vehicles based on this standard beginning in the Fall of 1992. The following summarizes the major issues effecting vehicle emissions and their regulation, and present a methodology for procuring clean-fuel vehicles for the State of Washington. Washington State's air quality problems are much less severe than in other parts of the country such as California, the East Coast and parts of the Mid West. Ozone, which is arguably the dominant air quality problem in the US, is a recent and relatively minor issue in Washington. Carbon monoxide (CO) represents a more immediate problem in Washington, with most of the state's urban areas exceeding national CO air quality standards. Since the mid-1960's, vehicle tailpipe hydrocarbon and carbon monoxide emissions have been reduced by 96 percent relative to precontrol vehicles. Nitrogen oxide emissions have been reduced by 76 percent. Emissions from currently available vehicles are quite low with respect to in-place exhaust emission standards. Cold-start emissions constitute about 75 percent of the total emissions measured with the Federal Test Procedure used to certify motor vehicles. There is no currently available 'inherently clean burning fuel'. In 1991, 3052 vehicles were purchased under Washington State contract. Provided that the same number are acquired in 1993, the state will need to purchase 915 vehicles which meet the definition of a 'clean-fueled vehicle'.

  5. Greening America's Capitals - Washington, DC

    EPA Pesticide Factsheets

    This Greening America's Capitals report describes design options for the Anacostia Metro station in Washington, DC, that could help people feel safer and more comfortable walking to and from the station.

  6. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.

    PubMed

    Jung, Joo-Young; Yoon, Do-Kun; Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-06-13

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.

  7. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study

    PubMed Central

    Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-01-01

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153

  8. View of inside second floor stairwell of George Washington Junior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of inside second floor stairwell of George Washington Junior High School looking at double doors, facing north. - George Washington Junior High School, 707 Columbus Drive, Tampa, Hillsborough County, FL

  9. Outcome of accelerated radiotherapy alone or accelerated radiotherapy followed by exenteration of the nasal cavity in dogs with intranasal neoplasia: 53 cases (1990-2002).

    PubMed

    Adams, William M; Bjorling, Dale E; McAnulty, Jonathan E; Green, Eric M; Forrest, Lisa J; Vail, David M

    2005-09-15

    To compare long-term results of radiotherapy alone versus radiotherapy followed by exenteration of the nasal cavity in dogs with malignant intranasal neoplasia. Retrospective study. 53 dogs with malignant intranasal neoplasia. All dogs underwent radiotherapy consisting of administration of 10 fractions of 4.2 Gy each on consecutive weekdays. For dogs in the surgery group (n=13), follow-up computed tomography was performed, and dogs were scheduled for surgery if persistent or recurrent tumor was seen. Perioperative complications for dogs that underwent surgery included hemorrhage requiring transfusion (2 dogs) and subcutaneous emphysema (8). Rhinitis and osteomyelitis-osteonecrosis occurred significantly more frequently in dogs in the radiotherapy and surgery group (9 and 4 dogs, respectively) than in dogs in the radiotherapy-only group (4 and 3 dogs, respectively). Two- and 3-year survival rates were 44% and 24%, respectively, for dogs in the radiotherapy group and 69% and 58%, respectively, for dogs in the surgery group. Overall median survival time for dogs in the radiotherapy and surgery group (477 months) was significantly longer than time for dogs in the radiotherapy-only group (19.7 months). Results suggest that exenteration of the nasal cavity significantly prolongs survival time in dogs with intranasal neoplasia that have undergone radiotherapy. Exenteration after radiotherapy may increase the risk of chronic complications.

  10. Washington's Can Do Kids.

    ERIC Educational Resources Information Center

    Washington State Office of Community Development, Olympia.

    Conceived as a state-supported community-sponsored program for families, strengthened by business and service organization support, and designed to work with local educational, child care, and social service agencies, Washington State's Early Childhood Education and Assistance Program (ECEAP, pronounced e-cap) provides a "whole child"…

  11. Multiple-wavelength neutron holography with pulsed neutrons

    PubMed Central

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-01-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering—that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique. PMID:28835917

  12. Multiple-wavelength neutron holography with pulsed neutrons.

    PubMed

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF 2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  13. 173. WASHINGTON ST. ALEXANDRIA AND MEMORIAL FOR THE CONFEDERATE DEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    173. WASHINGTON ST. ALEXANDRIA AND MEMORIAL FOR THE CONFEDERATE DEAD LOOKING NORTH. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  14. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  15. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Time, space and technology in radiotherapy departments: how do these factors impact on patients' experiences of radiotherapy?

    PubMed

    Merchant, S; O'Connor, M; Halkett, G

    2017-03-01

    Radiation therapists (RTs) plan and deliver radiotherapy treatment for patients diagnosed with cancer. They need to communicate regularly with their patients and may have a role to play in reducing patient anxiety and distress. The objectives were to explore how the environment of radiotherapy departments supports or inhibits communication generally and information giving and supportive care provision in particular. An ethnographic approach was used to gather rich descriptive data through observations and interviews conducted in two Australian radiotherapy centres. Time, space and a technology driven culture was found to negatively affect the quality of interaction that occurred between RTs and their patients. This research has shown design/modification of spaces is needed in the radiotherapy environment to reflect a patient care centred culture and to enhance opportunities for RTs to provide supportive care for their patients. © 2015 John Wiley & Sons Ltd.

  17. An assessment of interstate safety investment properties in Washington state.

    DOT National Transportation Integrated Search

    2014-12-01

    The Washington State Department of Transportation (WSDOT) commissioned the current study, targeting the entire interstate : mainline network in Washington State, to provide strategic direction to multi-biennial investment interstate locations that of...

  18. Key Facts about Higher Education in Washington: 2009-10

    ERIC Educational Resources Information Center

    Washington Higher Education Coordinating Board, 2010

    2010-01-01

    First published in 2002, "Key Facts about Higher Education in Washington" provides valuable information on the ways higher education serves the state and its people. The most current data and information available is presented throughout this report to highlight the "Key Facts" about Washington's postsecondary institutions,…

  19. Expanding Access and Opportunity: The Washington State Achievers Scholarship

    ERIC Educational Resources Information Center

    O'Brien, Colleen

    2011-01-01

    In 2001, the Bill & Melinda Gates Foundation launched the multi-year, multi-million dollar Washington State Achievers Scholarship program. Concerned about disparities in college participation for low-income students in the state of Washington versus their wealthier peers, the Gates Foundation partnered with the College Success Foundation…

  20. Expanding Access and Opportunity: The Washington State Achievers Program

    ERIC Educational Resources Information Center

    Ramsey, Jennifer; Gorgol, Laura

    2010-01-01

    In 2001, the Bill & Melinda Gates Foundation launched a 10-year, multi-million dollar initiative, the Washington State Achievers Program (WSA), to increase opportunities for low-income students to attend postsecondary institutions in Washington State. The Bill & Melinda Gates Foundation granted funds to the College Success Foundation…

  1. Forest fire weather in western Oregon and western Washington in 1957.

    Treesearch

    Owen P. Cramer

    1957-01-01

    Severity of 1957 fire weather west of the Cascade Range summit in Oregon and Washington was near the average of the previous 10 years. The season (April 1 through October 31) was slightly more severe than 1956 in western Oregon and about the same as 1956 in western Washington. Spring fire weather was near average severity in both western Washington and western Oregon....

  2. Self-revegetation of disturbed ground in the deserts of Nevada and Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, W.H.; Sauer, R.H.

    1982-01-01

    Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed tomore » the superior competitive ability of cheatgrass in Washington.« less

  3. Photocopy of original blackandwhite silver gelatin print, VIEW FROM WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of original black-and-white silver gelatin print, VIEW FROM WASHINGTON MONUMENT, October 3, 1929, photography Commercial Photo - Internal Revenue Service Headquarters Building, 1111 Constitution Avenue Northwest, Washington, District of Columbia, DC

  4. PERSPECTIVE VIEW OF COMPANYBUILT HOUSING ON EAST SIDE OF WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW OF COMPANY-BUILT HOUSING ON EAST SIDE OF WASHINGTON AVENUE, VIEWED FROM FRANKLIN AVENUE LOOKING NORTH - Apollo Iron & Steel Works, Company Housing, West of Washington & Lincoln Avenues, Vandergrift, Westmoreland County, PA

  5. Washington | Solar Research | NREL

    Science.gov Websites

    . Utilities offer varied loans and incentives to their renewable energy customers. Net Metering All customer is allowed for up to 100 kW per customer Interconnection Washington's adopted standardized Department of Revenue and local utilities Customer-owned renewable energy generation systems can receive

  6. Combined chemotherapy and radiotherapy (without surgery) compared with radiotherapy alone in localized carcinoma of the esophagus.

    PubMed

    Wong, R; Malthaner, R

    2001-01-01

    Esophageal carcinoma can be managed primarily with either a surgical or radiotherapeutic (non surgical) approach. Strategies to improve the outcome of either modality alone include the use of combined modalities. Combination chemotherapy radiotherapy is one approach that has been explored over the years with increasing application in clinical practice especially in North America. To evaluate the effectiveness of combined chemotherapy and radiotherapy versus radiotherapy alone in the outcome of patients with localized esophageal carcinoma. Outcomes of interest include overall survival, cause specific survival, local recurrence, dysphagia relief, quality of life, acute and chronic toxicities. The Cochrane strategy for identifying randomized trials was combined with MeSH headings including esophageal neoplasms, radiotherapy, chemotherapy combined modality, drug therapy combination. Medline, Cancerlit and Embase were searched using this strategy. In addition, the Cochrane library was also searched. References from relevant articles and personal files were included. Randomized controlled trials in patients with localized esophageal cancer, with one arm employing radiotherapy alone, and one arm employing combination radiotherapy chemotherapy were included. Studies comparing non chemotherapy agents such as pure radiotherapy sensitisers, immunostimulants, planned esophagectomy, were excluded. Data were extracted by two independent reviewers, and the trial quality was assessed using both the Jadad scoring and Detsky checklist. Sensitivity analysis was planned to explore sources of heterogeneity where heterogeneity existed. The factors hypothesized a priori included combination versus sequential treatment, quality of study, biological effective radiotherapy dose (i.e. Radiotherapy dose) cisplatin versus non cisplatin containing trials, and 5FU versus non 5FU containing trials. Odds Ratio (OR) and 95% confidence limits were used to assess the significance of the difference

  7. Combined chemotherapy and radiotherapy (without surgery) compared with radiotherapy alone in localized carcinoma of the esophagus.

    PubMed

    Rebecca, W O; Richard, M A

    2003-01-01

    Esophageal carcinoma can be managed primarily with either a surgical or radiotherapeutic (non surgical) approach. Strategies to improve the outcome of either modality alone include the use of combined modalities. Combination chemotherapy radiotherapy is one approach that has been explored over the years with increasing application in clinical practice especially in North America. To evaluate the effectiveness of combined chemotherapy and radiotherapy versus radiotherapy alone in the outcome of patients with localized esophageal carcinoma. Outcomes of interest include overall survival, cause specific survival, local recurrence, dysphagia relief, quality of life, acute and chronic toxicities. The Cochrane strategy for identifying randomized trials was combined with MeSH headings including esophageal neoplasms, radiotherapy, chemotherapy combined modality, drug therapy combination. MEDLINE, CancerLIT and EMBASE were searched using this strategy. In addition, the Cochrane library was also searched. References from relevant articles and personal files were included. Randomized controlled trials in patients with localized esophageal cancer, with one arm employing radiotherapy alone, and one arm employing combination radiotherapy chemotherapy were included. Studies comparing non chemotherapy agents such as pure radiotherapy sensitisers, immunostimulants, planned esophagectomy, were excluded. Data were extracted by two independent reviewers, and the trial quality was assessed using both the Jadad scoring and Detsky checklist. Sensitivity analysis was planned to explore sources of heterogeneity where heterogeneity existed. The factors hypothesized a priori included combination versus sequential treatment, quality of study, biological effective radiotherapy dose (i.e. Radiotherapy dose) cisplatin versus non cisplatin containing trials, and 5FU versus non 5FU containing trials. Odds Ratio (OR) and 95% confidence limits were used to assess the significance of the difference

  8. Building a Prosperous Economy. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Washington's community and technical colleges are a collective, powerful, unmatched resource for advancing prosperity through education. These 34 colleges not only connect with employers in the regions where they operate, but also with each other through common programs--like advanced manufacturing and allied health--that align with Washington's…

  9. Neutron-beam-shaping assembly for boron neutron-capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaidi, L.; Kashaeva, E. A.; Lezhnin, S. I.

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-qualitymore » therapeutic neutron beam.« less

  10. Too-Comfortable Strangers: Cultural Association among the Sephardim of Washington, D.C.

    ERIC Educational Resources Information Center

    Fredman, Ruth Gruber

    The power of the symbol "Sephardic" to foster community association is extremely problematical in the Washington, D.C., context. Washington's Sephardic population is heterogeneous with respect to generation, self-definition, and culture. Complicating the situation is the nature of Washington itself, which in turn is inextricably linked…

  11. 12. VISTA SOUTHWEST ON NEW HAMPSHIRE AVENUE TO WASHINGTON CIRCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VISTA SOUTHWEST ON NEW HAMPSHIRE AVENUE TO WASHINGTON CIRCLE FROM RESERVATION NO. 140 AT THE INTERSECTION OF NEW HAMPSHIRE AVENUE, M, AND 21ST STREETS, NW. - New Hampshire Avenue, Washington, District of Columbia, DC

  12. 2. View of Mainline elevated structure, parallel to Washington Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Mainline elevated structure, parallel to Washington Street, crossing over the Massachusetts Turnpike and the B&A R.R. tracks - looking North. - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA

  13. In vivo and phantom measurements of the secondary photon and neutron doses for prostate patients undergoing 18 MV IMRT.

    PubMed

    Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon

    2006-10-01

    For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the

  14. Washington state freight system resiliency.

    DOT National Transportation Integrated Search

    2009-01-01

    The economic viability and well-being of Washington State is significantly influenced by the freight : transportation system serving the region. An increased understanding of the vulnerability of this freight : system to natural disasters, weather, t...

  15. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  16. Evidence-based optimal number of radiotherapy fractions for cancer: A useful tool to estimate radiotherapy demand.

    PubMed

    Wong, Karen; Delaney, Geoff P; Barton, Michael B

    2016-04-01

    The recently updated optimal radiotherapy utilisation model estimated that 48.3% of all cancer patients should receive external beam radiotherapy at least once during their disease course. Adapting this model, we constructed an evidence-based model to estimate the optimal number of fractions for notifiable cancers in Australia to determine equipment and workload implications. The optimal number of fractions was calculated based on the frequency of specific clinical conditions where radiotherapy is indicated and the evidence-based recommended number of fractions for each condition. Sensitivity analysis was performed to assess the impact of variables on the model. Of the 27 cancer sites, the optimal number of fractions for the first course of radiotherapy ranged from 0 to 23.3 per cancer patient, and 1.5 to 29.1 per treatment course. Brain, prostate and head and neck cancers had the highest average number of fractions per course. Overall, the optimal number of fractions was 9.4 per cancer patient (range 8.7-10.0) and 19.4 per course (range 18.0-20.7). These results provide valuable data for radiotherapy services planning and comparison with actual practice. The model can be easily adapted by inserting population-specific epidemiological data thus making it applicable to other jurisdictions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Washington Community Colleges Factbook.

    ERIC Educational Resources Information Center

    Meier, Terre; Story, Sherie

    Detailed information on the 27 state-supported community colleges in Washington is presented in six sections. The first section, containing general information, describes the state system organization, lists the individual colleges, and reviews the roles of state agencies and presents a history of the system. A section on student information…

  18. 75 FR 71139 - Land Acquisitions; Puyallup Tribe of Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Auditor, in Pierce County, Washington. Except that portion of Lot 3 conveyed to the State of Washington by Deeds recorded under Auditor's file number 689865 and 689858. Together with the East half of the... amendment of Short Plat Nos. 8502210395 and 8403080186, filed with the Pierce County Auditor, in Pierce...

  19. 36 CFR § 1253.4 - Washington National Records Center.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Washington National Records Center. § 1253.4 Section § 1253.4 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... National Records Center. Washington National Records Center is located at 4205 Suitland Road, Suitland, MD...

  20. National Leaders in Innovation. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    Washington's community and technical colleges set a national example for innovative policies, practices and research for student success. Washington's community and technical college system ranks 12th in the nation for graduation rates, and 7th for certificates and degrees produced. Olympic College and Renton Technical College in March 2015 were…

  1. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington, DC... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Urban design of Washington...

  2. 36 CFR 910.13 - Urban design of Washington, DC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.13 Urban design of Washington, DC... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Urban design of Washington...

  3. 11. Photocopy of photograph by Commission of Fine Arts, Washington, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopy of photograph by Commission of Fine Arts, Washington, DC. Date and photographer unknown. CLOSE UP OF ARMILLARY SPHERE - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC

  4. 76 FR 52566 - Drawbridge Operation Regulations; Anacostia River, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Lift Bridge across the Anacostia River, mile 3.4, at Washington, DC. This deviation will test a change... regulations for the CSX Railroad Vertical Lift Bridge, across the Anacostia River, mile 3.4, at Washington, DC...

  5. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  6. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    NASA Astrophysics Data System (ADS)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  7. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  8. Implementation agreement between the Washington State Department of Ecology and the Washington State Department of Transportation regarding the use of water quality modification general order

    DOT National Transportation Integrated Search

    1997-04-01

    This implementation agreement was adopted by the Washington State Department of Ecology and the Washington State Department of Transportation. It requires that the agencies work together in dealing with short term modifications of water quality requi...

  9. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  10. Logging residue in Washington, Oregon, California: volume and characteristics.

    Treesearch

    James O. Howard

    1973-01-01

    This report makes available data on the volume and characteristics of logging residue resulting from 1969 logging operations in Oregon, Washington, and California. The results indicate highest volumes of logging residue are found in the Douglas-fir region of western Oregon and western Washington. Average gross volume of residue in this region ranged...

  11. 77 FR 15787 - Washington; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... declaration of a major disaster for the State of Washington (FEMA-4056-DR), dated March 5, 2012, and related determinations. DATES: Effective Date: March 5, 2012. FOR FURTHER INFORMATION CONTACT: Peggy Miller, Office of... determined that the damage in certain areas of the State of Washington resulting from a severe winter storm...

  12. The Washington National Cathedral: A Place to Gather Together

    ERIC Educational Resources Information Center

    Groce, Eric; Groce, Robin

    2011-01-01

    Washington, D.C. is a city widely recognized for its monuments, memorials, and landmarks. Visitors are routinely drawn to the great sites that mark the nation's history such as the Vietnam Veterans Memorial, Arlington National Cemetery, the Lincoln Memorial, and the Washington Memorial, among others. One site that is often overlooked is the…

  13. Educator Supply and Demand in Washington State. 2004 Report

    ERIC Educational Resources Information Center

    Lashway, Larry; Maloney, Rick; Hathaway, Randy; Bryant, B. J.

    2005-01-01

    This report describes the findings of the third Educator Supply and Demand Research study in the State of Washington. The intent of these Washington studies is to provide data to inform and shape decisions and activities in the following ways: (1) Provide useful information for educational policymakers, including the legislature, the State Board…

  14. Trends and determinants of cycling in the Washington, DC region.

    DOT National Transportation Integrated Search

    2011-01-01

    This report analyzes cycling trends, policies, and commuting in the Washington, DC area. The analysis is divided into two parts. : Part 1 focuses on cycling trends and policies in Washington (DC), Alexandria (VA), Arlington County (VA), Fairfax Count...

  15. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  16. Washington Community Colleges Factbook.

    ERIC Educational Resources Information Center

    Meier, Terre

    The 109 tables and graphs in this six-chapter factbook present a statistical profile of the Washington Community College System for Fall 1979. Chapter I presents background information on the history and organization of the 27 state-supported colleges. Chapter II outlines data on annual and quarterly enrollments from 1969 through 1979; student…

  17. Alternative Fuels for Washington's School Buses: A Report to the Washington State Legislature.

    ERIC Educational Resources Information Center

    Lyons, John Kim; McCoy, Gilbert A.

    This document presents findings of a study that evaluated the use of both propane and compressed natural gas as alternative fuels for Washington State school buses. It discusses air quality improvement actions by state- and federal-level regulators and summarizes vehicle design, development, and commercialization activities by all major engine,…

  18. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Namba, Masao

    2012-08-01

    it is essentially important to include the dose by secondary neutrons in the assessment of the secondary cancer risk of patients receiving carbon-ion radiotherapy with active as well as passive beams. We established a calculation method with a Monte Carlo simulation to estimate the distribution of dose equivalent in the body as a first step toward routine risk assessment and an epidemiological study of carbon-ion radiotherapy at NIRS. This method has the advantage of being verifiable by the measurement.

  19. Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment.

    PubMed

    Kageji, Teruyoshi; Nagahiro, Shinji; Mizobuchi, Yoshifumi; Matsuzaki, Kazuhito; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2014-01-01

    The purpose of this study was to evaluate the clinical outcome of boron neutron capture therapy (BNCT) and conventional treatment in patients with newly diagnosed glioblastoma. Since 1998 we treated 23 newly-diagosed GBM patients with BNCT without any additional chemotherapy. Their median survival time was 19.5 months; the 2-, 3-, and 5-year survival rates were 31.8%, 22.7%, and 9.1%, respectively. The clinical results of BNCT in patients with GBM are similar to those of recent conventional treatments based on radiotherapy with concomitant and adjuvant temozolomide.

  20. 77 FR 33307 - Drawbridge Operation Regulation; Lake Washington Ship Canal, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Operation Regulation; Lake Washington Ship Canal, Seattle, WA AGENCY: Coast Guard, DHS. ACTION: Notice of... operating schedule that governs the Montlake Bridge across the Lake Washington Ship Canal, mile 5.2, at... crosses the Lake Washington Ship Canal at mile 5.2 and while in the closed position provides 30 feet of...

  1. 76 FR 69131 - Drawbridge Operation Regulation; Lake Washington Ship Canal, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Operation Regulation; Lake Washington Ship Canal, Seattle, WA AGENCY: Coast Guard, DHS. ACTION: Notice of... Bridge across the Lake Washington Ship Canal, mile 0.1, at Seattle, WA. The deviation is necessary to... Bascule Bridge across the Lake Washington Ship Canal, mile 0.1, for vessel traffic for a 14 day period to...

  2. 1. WASHINGTON SQUARE IN CENTER, LOOKING SOUTHWEST. CURTIS PUBLISHING COMPANY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WASHINGTON SQUARE IN CENTER, LOOKING SOUTHWEST. CURTIS PUBLISHING COMPANY IS AT RIGHT. THE BUILDING IN FRONT OF PHOTO IS THE PENN MUTUAL LIFE INSURANCE COMPANY - Washington Square Area Study, Sixth, Seventh, Walnut & Locust Streets, Philadelphia, Philadelphia County, PA

  3. 77 FR 11582 - Notice of Inventory Completion: Central Washington University Department of Anthropology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ...: Central Washington University Department of Anthropology, Ellensburg, WA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Central Washington University Department of Anthropology has... Central Washington University Department of Anthropology. Repatriation of the human remains and associated...

  4. Residential Energy Efficiency Potential: Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Eric J

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Financial Roadblocks to Renewing and Enhancing Washington's Public Schools.

    ERIC Educational Resources Information Center

    Theobald, Neil D.

    Many states are trying to balance interests in school between taxpayers' concerns and providing students with a good education. Washington is trying to overcome these problems and renew and enhance its public schools. Three court decisions in the late 1970s and early 1980s set strict constraints within which Washington's school funding system must…

  6. The Proving Grounds: School "Rheeform" in Washington, D.C.

    ERIC Educational Resources Information Center

    Dingerson, Leigh

    2010-01-01

    Washington, D.C., is leading the transformation of urban public education across the country--at least according to "Time" magazine, which featured D.C. Schools Chancellor Michelle Rhee on its cover, wearing black and holding a broom. But there is nothing remarkably visionary going on in Washington. The model of school reform that is…

  7. Neutron spectrometry in a mixed field of neutrons and protons with a phoswich neutron detector Part I: response functions for photons and neutrons of the phoswich neutron detector

    NASA Astrophysics Data System (ADS)

    Takada, M.; Taniguchi, S.; Nakamura, T.; Nakao, N.; Uwamino, Y.; Shibata, T.; Fujitaka, K.

    2001-06-01

    We have developed a phoswich neutron detector consisting of an NE213 liquid scintillator surrounded by an NE115 plastic scintillator to distinguish photon and neutron events in a charged-particle mixed field. To obtain the energy spectra by unfolding, the response functions to neutrons and photons were obtained by the experiment and calculation. The response functions to photons were measured with radionuclide sources, and were calculated with the EGS4-PRESTA code. The response functions to neutrons were measured with a white neutron source produced by the bombardment of 135 MeV protons onto a Be+C target using a TOF method, and were calculated with the SCINFUL code, which we revised in order to calculate neutron response functions up to 135 MeV. Based on these experimental and calculated results, response matrices for photons up to 20 MeV and neutrons up to 132 MeV could finally be obtained.

  8. Measurement of Continuous-Energy Neutron-Incident Neutron-Production Cross Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigyo, Nobuhiro; Kunieda, Satoshi; Watanabe, Takehito

    Continuous energy neutron-incident neutron-production double differential cross sections were measured at the Weapons Neutron Research (WNR) facility of the Los Alamos Neutron Science Center. The energy of emitted neutrons was derived from the energy deposition in a detector. The incident-neutron energy was obtained by the time-of-flight method between the spallation target of WNR and the emitted neutron detector. Two types of detectors were adopted to measure the wide energy range of neutrons. The liquid organic scintillators covered up to 100 MeV. The recoil proton detectors that constitute the recoil proton radiator and phoswich type NaI (Tl) scintillators were used formore » neutrons above several tens of MeV. Iron and lead were used as sample materials. The experimental data were compared with the evaluated nuclear data, the results of GNASH, JQMD, and PHITS codes.« less

  9. 78 FR 67295 - Amendment of Class E Airspace; Washington, KS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Airport has made reconfiguration necessary for standard instrument approach procedures and for the safety and management of Instrument Flight Rule (IFR) operations at the airport. Geographic coordinates are... approach procedures at Washington County Memorial Airport, Washington, KS. Airspace configuration is...

  10. [Heavy charged particles radiotherapy--mainly carbon ion beams].

    PubMed

    Yanagi, Takeshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2003-12-01

    Carbon ion beams have superior dose distribution allowing selective irradiation to the tumor while minimizing irradiation to the surrounding normal tissues. Furthermore, carbon ions produce an increased density of local energy deposition with high-energy transfer (LET) components, resulting in radiobiological advantages. Stimulated by the favorable results in fast neutrons, helium ions, and neon ions, a clinical trial of carbon ion therapy was begun at the National Institute of Radiological Sciences in 1994. Carbon ions were generated by a medically dedicated accelerator (HIMAC, Heavy Ion Medical Accelerator in Chiba, Japan), which was the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. In general, patients were selected for treatment when their tumors could not be expected to respond favorably to conventional forms of therapy. A total of 1601 patients were registered in this clinical trial so far. The normal tissue reactions were acceptable, and there were no carbon related deaths. Carbon ion radiotherapy seemed to be a clinically feasible curative treatment modality, and appears to offer improved results not only over conventional X-rays but also even over surgery in some selected carcinomas.

  11. The fifth International Geological Congress, Washington, 1891

    USGS Publications Warehouse

    Nelson, C.M.

    2006-01-01

    The 5th International Geological Congress (IGC), the initial meeting in North America, was the first of the three IGCs that have been held in the United States of America (USA). Of the 538 registrants alive when the 5th IGC convened in Washington, 251 persons, representing fifteen countries, actually attended the meeting. These participants included 173 people from the USA, of whom forty-two represented the US Geological Survey (USGS). Fourteen of the US State geological surveys sent representatives to Washington. Eight participants came from other countries in the Western Hemisphere - Canada (3), Chile (1), Mexico (3), and Peru (1). The sixty-six European geologists and naturalists at the 5th IGC represented Austro-Hungary (3), Belgium (3), Britain (12), France (7), Germany (23), Norway (1), Romania (3), Russia (8), Sweden (4), and Switzerland (2). The USGS and the Columbian College (now the George Washington University) acted as the principal hosts. The American Association for the Advancement of Science and then the Geological Society of America (GSA) met in the Capital immediately before the Congress convened (26 August-1 September 1891). The 5th IGC's formal discussions treated the genetic classification of Pleistocene rocks, the chronological correlation of clastic rocks, and the international standardization of colors, symbols, and names used on geologic maps. The third of those topics continued key debates at the 1st through 4th IGCs. The GSA, the Korean Embassy, the Smithsonian Institution's US National Museum, the USGS, and one of the two Secretaries-General hosted evening receptions. Field excursions examined Paleozoic exposures in New York (18-25 August), Cretaceous-Pleistocene localities along the Potomac River south of Washington (30 August), and classic Precambrian-Pleistocene sequences and structures in the Great Plains, Yellowstone, Rocky Mountains, and Great Basin (2-26 September), with optional trips to the Grand Canyon (19-28 September) and Lake

  12. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  13. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less

  14. Neutron-$$\\gamma$$ competition for β-delayed neutron emission

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Moller, Peter

    2016-12-19

    Here we present a coupled quasiparticle random phase approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information, which starts with Gamow-Teller strength distributions in the daughter nucleus and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is γ-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-γ competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. Finally, a second consequence of this formalismmore » is a prediction of more neutrons on average being emitted after β decay for nuclei near the neutron drip line compared to models that do not consider the statistical decay.« less

  15. Washington State Board of Education Strategic Plan, 2010-2011

    ERIC Educational Resources Information Center

    Washington State Board of Education, 2011

    2011-01-01

    In 2005, the Washington State Legislature significantly changed the role of the State Board of Education (SBE). While the Board retains some administrative duties, SBE is now mandated to play a broad leadership role in strategic oversight and policy for K-12 education in the state. This paper presents the strategic plan of Washington State Board…

  16. Updates on clinical studies of selenium supplementation in radiotherapy

    PubMed Central

    2014-01-01

    To establish guidelines for the selenium supplementation in radiotherapy we assessed the benefits and risks of selenium supplementation in radiotherapy. Clinical studies on the use of selenium in radiotherapy were searched in the PubMed electronic database in January 2013. Sixteen clinical studies were identified among the 167 articles selected in the initial search. Ten articles were observational studies, and the other 6 articles reported studies on the effects of selenium supplementation in patients with cancer who underwent radiotherapy. The studies were conducted worldwide including European, American and Asian countries between 1987 and 2012. Plasma, serum or whole blood selenium levels were common parameters used to assess the effects of radiotherapy and the selenium supplementation status. Selenium supplementation improved the general conditions of the patients, improved their quality of life and reduced the side effects of radiotherapy. At the dose of selenium used in these studies (200–500 μg/day), selenium supplementation did not reduce the effectiveness of radiotherapy, and no toxicities were reported. Selenium supplementation may offer specific benefits for several types of cancer patients who undergo radiotherapy. Because high-dose selenium and long-term supplementation may be unsafe due to selenium toxicity, more evidence-based information and additional research are needed to ensure the therapeutic benefits of selenium supplementation. PMID:24885670

  17. 10. Photocopy of photograph by Commission of Fine Arts, Washington, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph by Commission of Fine Arts, Washington, DC. Date and photographer unknown. LOWER TERRACE POOL, CASCADE, LOOKING SOUTHWEST, SHOWS EXEDRA WITH ARMILLARY SPHERE - Meridian Hill Park, Bounded by Fifteenth, Sixteenth, Euclid & W Streets, Northwest, Washington, District of Columbia, DC

  18. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  19. 75 FR 52023 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service... of the Thomas Burke Memorial Washington State Museum (Burke Museum), University of Washington...

  20. Forest statistics for northeast Washington.

    Treesearch

    John W. Hazard

    1963-01-01

    This publication summarizes the results of the third inventory of six northeast Washington counties: Ferry, Lincoln, Pend Oreille, Spokane, Stevens, and Whitman. The collection of field data was made during the years 1957 to 1961 in three separate inventory projects.

  1. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study

    NASA Astrophysics Data System (ADS)

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-01

    Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g-1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current

  2. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study.

    PubMed

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-21

    Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g -1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current

  3. Hydration and Cooling Practices Among Farmworkers in Oregon and Washington.

    PubMed

    Bethel, Jeffrey W; Spector, June T; Krenz, Jennifer

    2017-01-01

    Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat.

  4. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    PubMed

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  5. Washington School Finance Primer.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    The proportion of state funding for public schools in Washington is among the highest in the nation: about 75 percent of school-district General Fund revenue comes from the state. Almost 60 percent of all state General Fund expenditures are for education (about 46 percent for grades K-12 and 12 percent for higher education). The state…

  6. Radiotherapy demand and activity in England 2006-2020.

    PubMed

    Round, C E; Williams, M V; Mee, T; Kirkby, N F; Cooper, T; Hoskin, P; Jena, R

    2013-09-01

    This paper compares the predictions of radiotherapy demand for England from the Malthus model with those from the earlier National Radiotherapy Advisory Group (NRAG) model, from the international literature and also with observed radiotherapy usage in England as a whole as recorded in the English radiotherapy dataset (RTDS). We reviewed the evidence base for radiotherapy for each type and stage of cancer using national and international guidelines, meta-analyses, systematic reviews and key clinical trials. Twenty-two decision trees were constructed and radiotherapy demand was calculated using English cancer incidence data for 2007, 2008 and 2009, accurate to the Primary Care Trust (PCT) level (population 91,500-1,282,384). The stage at presentation was obtained from English cancer registry data. In predictive mode, the model can take account of changes in cancer incidence as the population grows and ages. The Malthus model indicates reduced indications for radiotherapy, principally for lung cancer and rarer tumours. Our estimate of the proportion of patients who should receive radiotherapy at some stage of their illness is 40.6%. This is lower than previous estimates of about 50%. Nevertheless, the overall estimate of demand in terms of attendances is similar for the NRAG and Malthus models. The latter models that 48,827 attendances should have been delivered per million population in 2011. National data from RTDS show 32,071 attendances per million in 2011. A 50% increase in activity would be required to match estimated demand. This underprovision extends across all cancers and represents reduced access and the use of dose fractionation at odds with international norms of evidence-based practice. By 2016, demand is predicted to grow to about 55,206 attendances per million and by 2020 to 60,057. Services have increased their activity by 14% between 2006 and 2011, but estimated demand has increased by 11%. Access remains low and English radiotherapy dose

  7. SELF-REACTIVATING NEUTRON SOURCE FOR A NEUTRONIC REACTOR

    DOEpatents

    Newson, H.W.

    1959-02-01

    Reactors of the type employing beryllium in a reflector region around the active portion and to a neutron source for use therewith are discussed. The neutron source is comprised or a quantity of antimony permanently incorporated in, and as an integral part of, the reactor in or near the beryllium reflector region. During operation of the reactor the natural occurring antimony isotope of atomic weight 123 absorbs neutrons and is thereby transformed to the antimony isotope of atomic weight 124, which is radioactive and emits gamma rays. The gamma rays react with the beryllium to produce neutrons. The beryllium and antimony thus cooperate to produce a built in neutron source which is automatically reactivated by the operation of the reactor itself and which is of sufficient strength to maintain the slow neutron flux at a sufficiently high level to be reliably measured during periods when the reactor is shut down.

  8. 75 FR 81560 - Buckhorn Exploration Project 2010, Okanogan-Wenatchee National Forest, Okanogan County, Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... of the Interior; and Department of Ecology, Washington State. On November 26, 2010, the Department of... (BLM), Washington State Department of Natural Resources (DNR), and Washington Department of Ecology...

  9. Model of Dredging Impact on Dungeness Crab in Grays Harbor, Washington

    DTIC Science & Technology

    1987-06-01

    Washington. 43 pp. Barry, Steve. 1986. Personal communication . Washington Dept. of Fisheries , Montesano, Washington. Bella, D.A. and K.J. Williamson. 1980... FISHERIES 18SHERIES RESEARCH INSTITUTE *~~ ~~~~~~~ Z *;r. .’."*,* U.-~0 SECURITY CLASSIFICATION OF THIS PAGE REPORT DOCUMENTATION PAGE Form Approved...School of Fisheries U.S.Ary Corps of Engineers, Seattle District 6c. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code

  10. 75 FR 36672 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... made by the Burke Museum professional staff in consultation with representatives of the Lummi Tribe of... Memorial Washington State Museum, University of Washington, Seattle, WA AGENCY: National Park Service... of the Thomas Burke Memorial Washington State Museum (Burke Museum), University of Washington...

  11. 76 FR 4102 - Washington 10 Storage Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-80-000] Washington 10 Storage Corporation; Notice of Filing January 13, 2011. Take notice that on January 12, 2011, Washington 10 Storage Corporation filed a revised Statement of Operating Conditions (SOC) to correct...

  12. Geologic Map of the North Cascade Range, Washington

    USGS Publications Warehouse

    Haugerud, Ralph A.; Tabor, Rowland W.

    2009-01-01

    The North Cascade Range, commonly referred to as the North Cascades, is the northern part of the Cascade Range that stretches from northern California into British Columbia, where it merges with the Coast Mountains of British Columbia at the Fraser River. The North Cascades are generally characterized by exposure of plutonic and metamorphic rocks in contrast to the volcanic terrain to the south. The rocks of the North Cascades are more resistant to erosion, display greater relief, and show evidence of more pronounced uplift and recent glaciation. Although the total length of the North Cascade Range, extending north from Snoqualmie Pass in Washington, is about 200 mi (320 km), this compilation map at 1:200,000 scale covers only that part (~150 mi) in the United States. The compilation map is derived mostly from eight 1:100,000-scale quadrangle maps that include all of the North Cascade Range in Washington and a bit of the mostly volcanic part of the Cascade Range to the south (fig. 1, sheet 2). Overall, the area represented by this compilation is about 12,740 mi2 (33,000 km2). The superb alpine scenery of the North Cascade Range and its proximity to major population centers has led to designation of much of the area for recreational use or wilderness preservation. A major part of the map area is in North Cascade National Park. Other restricted use areas are the Alpine Lakes, Boulder River, Clearwater, Glacier Peak, Henry M. Jackson, Lake Chelan-Sawtooth, Mount Baker, Noisy-Diobsud, Norse Peak, and Pasayten Wildernesses and the Mount Baker, Lake Chelan, and Ross Lake National Recreation Areas. The valleys traversed by Washington State Highway 20 east of Ross Lake are preserved as North Cascades Scenic Highway. The map area is traversed by three major highways: U.S. Interstate 90, crossing Snoqualmie Pass; Washington State Highway 2, crossing Stevens Pass; and Washington State Highway 20, crossing Washington Pass. Major secondary roads, as well as a network of U

  13. Radiotherapy for Vestibular Schwannomas: A Critical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Erin S., E-mail: murphye3@ccf.or; Suh, John H.

    2011-03-15

    Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation tomore » >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.« less

  14. Locally Advanced Stage IV Squamous Cell Carcinoma of the Head and Neck: Impact of Pre-Radiotherapy Hemoglobin Level and Interruptions During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk; Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg; Stoehr, Monika

    2008-03-15

    Purpose: Stage IV head and neck cancer patients carry a poor prognosis. Clear understanding of prognostic factors can help to optimize care for the individual patient. This study investigated 11 potential prognostic factors including pre-radiotherapy hemoglobin level and interruptions during radiotherapy for overall survival (OS), metastases-free survival (MFS), and locoregional control (LC) after radiochemotherapy. Methods and Materials: Eleven factors were investigated in 153 patients receiving radiochemotherapy for Stage IV squamous cell head and neck cancer: age, gender, Karnofsky performance score (KPS), tumor site, grading, T stage, N stage, pre-radiotherapy hemoglobin level, surgery, chemotherapy type, and interruptions during radiotherapy >1 week.more » Results: On multivariate analysis, improved OS was associated with KPS 90-100 (relative risk [RR], 2.36; 95% confidence interval [CI], 1.20-4.93; p = .012), hemoglobin {>=}12 g/dL (RR, 1.88; 95% CI, 1.01-3.53; p = .048), and no radiotherapy interruptions (RR, 2.59; 95% CI, 1.15-5.78; p = .021). Improved LC was significantly associated with lower T stage (RR, 2.17; 95% CI, 1.16-4.63; p = .013), hemoglobin {>=}12 g/dL (RR, 4.12; 95% CI, 1.92-9.09; p < .001), surgery (RR, 2.67; 95% CI, 1.28-5.88; p = .008), and no radiotherapy interruptions (RR, 3.32; 95% CI, 1.26-8.79; p = .015). Improved MFS was associated with KPS 90-100 (RR, 3.41; 95% CI, 1.46-8.85; p = .012). Conclusions: Significant predictors for outcome in Stage IV head and neck cancer were performance status, stage, surgery, pre-radiotherapy hemoglobin level, and interruptions during radiotherapy >1 week. It appears important to avoid anemia and radiotherapy interruptions to achieve the best treatment results.« less

  15. 77 FR 50157 - Notice of Public Meeting, Eastern Washington Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ...; HAG 12-0260] Notice of Public Meeting, Eastern Washington Resource Advisory Council Meeting AGENCY.... Department of the Interior, Bureau of Land Management (BLM) Eastern Washington Resource Advisory Council... Bureau of Land Management's Eastern Washington and San Juan Resource Management Plan and the U.S. Forest...

  16. Radiotherapy Treatment Planning for Testicular Seminoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, Richard B., E-mail: richardbwilder@yahoo.com; Buyyounouski, Mark K.; Efstathiou, Jason A.

    2012-07-15

    Virtually all patients with Stage I testicular seminoma are cured regardless of postorchiectomy management. For patients treated with adjuvant radiotherapy, late toxicity is a major concern. However, toxicity may be limited by radiotherapy techniques that minimize radiation exposure of healthy normal tissues. This article is an evidence-based review that provides radiotherapy treatment planning recommendations for testicular seminoma. The minority of Stage I patients who choose adjuvant treatment over surveillance may be considered for (1) para-aortic irradiation to 20 Gy in 10 fractions, or (2) carboplatin chemotherapy consisting of area under the curve, AUC = 7 Multiplication-Sign 1-2 cycles. Two-dimensional radiotherapymore » based on bony anatomy is a simple and effective treatment for Stage IIA or IIB testicular seminoma. Centers with expertise in vascular and nodal anatomy may consider use of anteroposterior-posteroanterior fields based on three-dimensional conformal radiotherapy instead. For modified dog-leg fields delivering 20 Gy in 10 fractions, clinical studies support placement of the inferior border at the top of the acetabulum. Clinical and nodal mapping studies support placement of the superior border of all radiotherapy fields at the top of the T12 vertebral body. For Stage IIA and IIB patients, an anteroposterior-posteroanterior boost is then delivered to the adenopathy with a 2-cm margin to the block edge. The boost dose consists of 10 Gy in 5 fractions for Stage IIA and 16 Gy in 8 fractions for Stage IIB. Alternatively, bleomycin, etoposide, and cisplatin chemotherapy for 3 cycles or etoposide and cisplatin chemotherapy for 4 cycles may be delivered to Stage IIA or IIB patients (e.g., if they have a horseshoe kidney, inflammatory bowel disease, or a history of radiotherapy).« less

  17. Internet-based computer technology on radiotherapy.

    PubMed

    Chow, James C L

    2017-01-01

    Recent rapid development of Internet-based computer technologies has made possible many novel applications in radiation dose delivery. However, translational speed of applying these new technologies in radiotherapy could hardly catch up due to the complex commissioning process and quality assurance protocol. Implementing novel Internet-based technology in radiotherapy requires corresponding design of algorithm and infrastructure of the application, set up of related clinical policies, purchase and development of software and hardware, computer programming and debugging, and national to international collaboration. Although such implementation processes are time consuming, some recent computer advancements in the radiation dose delivery are still noticeable. In this review, we will present the background and concept of some recent Internet-based computer technologies such as cloud computing, big data processing and machine learning, followed by their potential applications in radiotherapy, such as treatment planning and dose delivery. We will also discuss the current progress of these applications and their impacts on radiotherapy. We will explore and evaluate the expected benefits and challenges in implementation as well.

  18. Neutron imaging integrated circuit and method for detecting neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarkar, Vivek V.; More, Mitali J.

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less

  19. Thermal Neutron Radiography using a High-flux Compact Neutron Generator

    NASA Astrophysics Data System (ADS)

    Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross

    A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.

  20. 77 FR 23495 - Notice of Public Meeting, Eastern Washington Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ...; HAG 12-0164] Notice of Public Meeting, Eastern Washington Resource Advisory Council Meeting AGENCY... 1972, the U.S. Department of the Interior, Bureau of Land Management (BLM) Eastern Washington Resource... of Land Management's Eastern Washington and San Juan Resource Management Plan, and the U.S. Forest...

  1. 40 CFR 81.100 - Eastern Washington-Northern Idaho Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Eastern Washington-Northern Idaho... Designation of Air Quality Control Regions § 81.100 Eastern Washington-Northern Idaho Interstate Air Quality Control Region. The Eastern Washington-Northern Idaho Interstate Air Quality Control Region consists of...

  2. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source.

    PubMed

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed.

  3. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOEpatents

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  4. Neutronic Reactor Design to Reduce Neutron Loss

    DOEpatents

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  5. Hydration and Cooling Practices Among Farmworkers in Oregon and Washington

    PubMed Central

    Bethel, Jeffrey W.; Spector, June T.; Krenz, Jennifer

    2018-01-01

    Objectives Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. Methods A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Results Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. Conclusions These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat. PMID:28402203

  6. Heat-related illness in Washington State agriculture and forestry sectors.

    PubMed

    Spector, June T; Krenz, Jennifer; Rauser, Edmund; Bonauto, David K

    2014-08-01

    We sought to describe heat-related illness (HRI) in agriculture and forestry workers in Washington State. Demographic and clinical Washington State Fund workers' compensation agriculture and forestry HRI claims data (1995-2009) and Washington Agriculture Heat Rule citations (2009-2012) were accessed and described. Maximum daily temperature (Tmax) and Heat Index (HImax) were estimated by claim date and location using AgWeatherNet's weather station network. There were 84 Washington State Fund agriculture and forestry HRI claims and 60 Heat Rule citations during the study period. HRI claims and citations were most common in crop production and support subsectors. The mean Tmax (HImax) was 95°F (99°F) for outdoor HRI claims. Potential HRI risk factors and HRI-related injuries were documented for some claims. Agriculture and forestry HRI cases are characterized by potential work-related, environmental, and personal risk factors. Further work is needed to elucidate the relationship between heat exposure and occupational injuries. © 2014 Wiley Periodicals, Inc.

  7. Heat-Related Illness in Washington State Agriculture and Forestry Sectors

    PubMed Central

    Spector, June T.; Krenz, Jennifer; Rauser, Edmund; Bonauto, David K.

    2017-01-01

    Background We sought to describe heat-related illness (HRI) in agriculture and forestry workers in Washington State. Methods Demographic and clinical Washington State Fund workers’ compensation agriculture and forestry HRI claims data (1995–2009) and Washington Agriculture Heat Rule citations (2009–2012) were accessed and described. Maximum daily temperature (Tmax) and Heat Index (HImax) were estimated by claim date and location using AgWeatherNet’s weather station network. Results There were 84 Washington State Fund agriculture and forestry HRI claims and 60 Heat Rule citations during the study period. HRI claims and citations were most common in crop production and support subsectors. The mean Tmax (HImax) was 95°F (99°F) for outdoor HRI claims. Potential HRI risk factors and HRI-related injuries were documented for some claims. Conclusions Agriculture and forestry HRI cases are characterized by potential work-related, environmental, and personal risk factors. Further work is needed to elucidate the relationship between heat exposure and occupational injuries. PMID:24953344

  8. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer.

    PubMed

    James, Nicholas D; Hussain, Syed A; Hall, Emma; Jenkins, Peter; Tremlett, Jean; Rawlings, Christine; Crundwell, Malcolm; Sizer, Bruce; Sreenivasan, Thiagarajan; Hendron, Carey; Lewis, Rebecca; Waters, Rachel; Huddart, Robert A

    2012-04-19

    Radiotherapy is an alternative to cystectomy in patients with muscle-invasive bladder cancer. In other disease sites, synchronous chemoradiotherapy has been associated with increased local control and improved survival, as compared with radiotherapy alone. In this multicenter, phase 3 trial, we randomly assigned 360 patients with muscle-invasive bladder cancer to undergo radiotherapy with or without synchronous chemotherapy. The regimen consisted of fluorouracil (500 mg per square meter of body-surface area per day) during fractions 1 to 5 and 16 to 20 of radiotherapy and mitomycin C (12 mg per square meter) on day 1. Patients were also randomly assigned to undergo either whole-bladder radiotherapy or modified-volume radiotherapy (in which the volume of bladder receiving full-dose radiotherapy was reduced) in a partial 2-by-2 factorial design (results not reported here). The primary end point was survival free of locoregional disease. Secondary end points included overall survival and toxic effects. At 2 years, rates of locoregional disease-free survival were 67% (95% confidence interval [CI], 59 to 74) in the chemoradiotherapy group and 54% (95% CI, 46 to 62) in the radiotherapy group. With a median follow-up of 69.9 months, the hazard ratio in the chemoradiotherapy group was 0.68 (95% CI, 0.48 to 0.96; P=0.03). Five-year rates of overall survival were 48% (95% CI, 40 to 55) in the chemoradiotherapy group and 35% (95% CI, 28 to 43) in the radiotherapy group (hazard ratio, 0.82; 95% CI, 0.63 to 1.09; P=0.16). Grade 3 or 4 adverse events were slightly more common in the chemoradiotherapy group than in the radiotherapy group during treatment (36.0% vs. 27.5%, P=0.07) but not during follow-up (8.3% vs. 15.7%, P=0.07). Synchronous chemotherapy with fluorouracil and mitomycin C combined with radiotherapy significantly improved locoregional control of bladder cancer, as compared with radiotherapy alone, with no significant increase in adverse events. (Funded by Cancer

  9. Quality assurance in radiotherapy.

    PubMed

    Kouloulias, V E

    2003-03-01

    In 1999, the European Organisation for Research and Treatment of Cancer (EORTC), being a European pioneer in the field of cancer research as well as in quality assurance (QA), launched an Emmanuel van der Schueren fellowship for QA in radiotherapy. In this paper, the work that has been done during the first E. van der Schueren fellowship is reported, focusing on four phase III EORTC clinical trials: 22921 for rectal cancer, 22961 and 22991 for prostate cancer and 22922 for breast cancer. A historical review of the QA programme of the EORTC Radiotherapy group during the past 20 years is included.

  10. Reaching Higher. A Parent's Guide to the Washington Assessment of Learning. Revised = Para llegar mas arriba. Una guia para padres sobre la evaluacion del aprendizaje de los estudiantes del estado de Washington (Washington Assessment of Student Learning). Revisado.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    This guide in English and Spanish is designed to answer questions parents may have about the Washington Assessment of Student Learning (WASL), including how it will help improve their children's education, how it is scored, and how to use the information it provides. In Washington, clear educational goals for subject content, thinking skills, and…

  11. Adjuvant radiotherapy for stage I endometrial cancer.

    PubMed

    Kong, A; Johnson, N; Cornes, P; Simera, I; Collingwood, M; Williams, C; Kitchener, H

    2007-04-18

    The role of adjuvant radiotherapy (both pelvic external beam radiotherapy and vaginal intracavity brachytherapy) in stage I endometrial cancer following total abdominal hysterectomy and bilateral salpingo-oophorectomy (TAH and BSO) remains unclear. To assess the efficacy of adjuvant radiotherapy following surgery for stage I endometrial cancer. The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CancerLit, Physician Data Query (PDQ) of National Cancer Institute. Handsearching was also carried out where appropriate. Randomised controlled trials (RCTs) which compared adjuvant radiotherapy versus no radiotherapy following surgery for patients with stage I endometrial cancer were included. Quality of the studies was assessed and data collected using a predefined data collection form. The primary endpoint was overall survival. Secondary endpoints were locoregional recurrence, distant recurrence and endometrial cancer death. Data on quality of life (QOL) and morbidity were also collected. A meta-analysis on included trials was performed using the Cochrane Collaboration Review Manager Software 4.2. The meta-analysis was performed on four trials (1770 patients). The addition of pelvic external beam radiotherapy to surgery reduced locoregional recurrence, a relative risk (RR) of 0.28 (95% confidence interval (CI) 0.17 to 0.44, p < 0.00001), which is a 72% reduction in the risk of pelvic relapse (95% CI 56% to 83%) and an absolute risk reduction of 6% (95% CI of 4 to 8%). The number needed to treat (NNT) to prevent one locoregional recurrence is 16.7 patients (95% CI 12.5 to 25). The reduction in the risk of locoregional recurrence did not translate into either a reduction in the risk of distant recurrence or death from all causes or endometrial cancer death. A subgroup analysis of women with multiple high risk factors (including stage 1c and grade 3) showed a trend toward the reduction in the risk of death from all causes and endometrial cancer

  12. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  13. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  14. 77 FR 27479 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... officially filed in the Bureau of Land Management Oregon/ Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 15 S., R. 2 W., accepted April 20...

  15. 76 FR 2368 - Washington 10 Storage Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-78-000] Washington 10 Storage Corporation; Notice of Filing January 5, 2011. Take notice that on January 4, 2011, Washington 10 Storage Corporation filed a Statement of Operating Conditions to revise certain provisions of its Firm and...

  16. [Current status and potential perspectives in classical radiotherapy technology].

    PubMed

    Dabić-Stanković, Kata M; Stanković, Jovan B; Radosević-Jelić, Ljiljana M

    2004-01-01

    After purchase of radiotherapy equipment in 2003, classic radiation therapy in Serbia will reach the highest world level. In order to define the highest standards in radiation technology, we analyzed the current status and potential perspectives of radiation therapy. An analysis of present situation in the USA, assumed as the most developed in the world, was done. Available data, collected in the last 3 years (equipment assortment, therapy modalities, workload and manpower) for 284 radiotherapy centers, out of potential 2050, were analyzed. Results were presented as crude percentage and matched to point current status. The analysis showed that CLINAC accelerators are the most popular (82.7%), as well as, ADAC (43.7%) and Focus (CMS) (27.4%) systems for therapy planning. Movement towards virtual simulation is evident (59.3%), although classic "simulation" is not fully eliminated from the radiotherapy chain. The most popular brachytherapy afterloader is Microselectron HDR (71%). About 64.4% centers use IMPAC communication/verification/record system that seems more open than Varis. All centers practice modern radiotherapy modalities and techniques (CPRT, IMRT, SRS/SRT, TBI, IORT, IVBHRT, HDR BHRT, etc.). CT and MRI availability is out of question, but PET is available in 3% of centers, however this percentage is rapidly growing. Up to 350 new patients per year are treated by one accelerator (about 35 pts. a day). Centers are relatively small and utilize 2-3 accelerators on average. Average FTE staffing norm is 4 radiation oncologists, 2-3 medical radiotherapy physicists, about 3 certified medical dosimetrists and about 6 radiotherapy technologists. In the past 5 years relative stagnation in classic radiotherapy has been observed. In spite of substantial investments in technology and consequent improvements, as well as wide introduction of computers in radiotherapy, radiotherapy results have not changed significantly. Vendor developement strategies do not point that

  17. Radiotherapy-induced hypopituitarism: a review.

    PubMed

    Sathyapalan, Thozhukat; Dixit, Sanjay

    2012-05-01

    Hypopituitarism is a disorder caused by impaired hormonal secretions from the hypothalamic-pituitary axis. Radiotherapy is the most common cause of iatrogenic hypopituitarism. The hypothalamic-pituitary axis inadvertently gets irradiated in patients receiving prophylactic cranial radiotherapy for leukemia, total body irradiation and radiotherapy for intracranial, base skull, sinonasal and nasopharyngeal tumors. Radiation-induced hypopituitarism (RIH) is insidious, progressive and largely nonreversible. Mostly, RIH involves one hypothalamic-pituitary axis; however, multiple hormonal axes deficiency starts developing at higher doses. Although the clinical effects of the hypopituitarism are more profound in children and young adults, its implications in older adults are being increasingly recognized. The risk continues to persist or increase up to 10 years following radiation exposure. The clinical management of hypopituitarism is challenging both for the patients and healthcare providers. Here we have reviewed the scale of the problem, the risk factors and the management of RIH.

  18. Metropolitan Washington Airports Authority : contracting practices do not always comply with airport lease requirements

    DOT National Transportation Integrated Search

    2002-03-01

    The Metropolitan Washington Airports Act of 1986 provided for the lease of Washington Dulles International Airport (Dulles) and Ronald Reagan Washington National Airport (Reagan National)and the transfer of operating responsibility from the federal g...

  19. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  20. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  1. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  2. Neutron collimator design of neutron radiography based on the BNCT facility

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Peng; Yu, Bo-Xiang; Li, Yi-Guo; Peng, Dan; Lu, Jin; Zhang, Gao-Long; Zhao, Hang; Zhang, Ai-Wu; Li, Chun-Yang; Liu, Wan-Jin; Hu, Tao; Lü, Jun-Guang

    2014-02-01

    For the research of CCD neutron radiography, a neutron collimator was designed based on the exit of thermal neutron of the Boron Neutron Capture Therapy (BNCT) reactor. Based on the Geant4 simulations, the preliminary choice of the size of the collimator was determined. The materials were selected according to the literature data. Then, a collimator was constructed and tested on site. The results of experiment and simulation show that the thermal neutron flux at the end of the neutron collimator is greater than 1.0×106 n/cm2/s, the maximum collimation ratio (L/D) is 58, the Cd-ratio(Mn) is 160 and the diameter of collimator end is 10 cm. This neutron collimator is considered to be applicable for neutron radiography.

  3. 77 FR 70432 - Washington Gas Light Company; Notice of Petition for Rate Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. PR13-6-000; PR13-7-000] Washington Gas Light Company; Notice of Petition for Rate Approval Take notice that on November 9, 2012, Washington Gas Light Company (Washington Gas) filed its Lost and unaccounted-for Gas (LAUF) as provided for...

  4. 78 FR 38829 - Special Local Regulations; Seattle Seafair Hydroplane Race, Lake Washington, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... Local Regulations; Seattle Seafair Hydroplane Race, Lake Washington, WA AGENCY: Coast Guard, DHS. ACTION... Hydroplane Race Special Local Regulation on Lake Washington, WA from 8 a.m. on August 2, 2013, through 11:59... restrict general navigation in the following area; The waters of Lake Washington bounded by the Interstate...

  5. Institutional Paralysis in the Press: The Cold War in Washington State.

    ERIC Educational Resources Information Center

    Baldasty, Gerald J.; Winfield, Betty Houchin

    1981-01-01

    A content analysis of four Washington state newspapers published in 1948 reveals that they did not provide fair coverage of the House UnAmerican Activities Committee's investigation of communist infiltration at the University of Washington. (FL)

  6. 2010 Washington State collision data summary

    DOT National Transportation Integrated Search

    2011-07-08

    The Washington State Department of Transportations (WSDOT) Statewide Travel and Collision Data Office (STCDO) is responsible for : collecting, processing, analyzing and disseminating traffic, roadway and collision data pertaining to all public roa...

  7. 77 FR 42003 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: The plats of survey of the following described lands are scheduled to be officially filed in the... survey must file a notice that they wish to protest (at the above address) with the Oregon/Washington...

  8. 77 FR 51822 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: The plats of survey of the following described lands are scheduled to be officially filed in the... survey must file a notice that they wish to protest (at the above address) with the Oregon/Washington...

  9. Long-Term Economic and Labor Forecast Trends for Washington. 1996.

    ERIC Educational Resources Information Center

    Lefberg, Irv; And Others

    This publication provides actual historical and long-term forecast data on labor force, total wage and salary employment, industry employment, and personal income for the state of Washington. The data are based upon the Washington Office of Financial Management long-term population forecast. Chapter 1 presents long-term forecasts of Washington…

  10. Area of old-growth forests in California, Oregon, and Washington.

    Treesearch

    Charles L. Bolsinger; Karen L. Waddell

    1993-01-01

    Area of old-growth forests in California, Oregon, and Washington has declined significantly in the second half of the 20th century. This report summarizes available information on old-growth forest area by ownership in California, Oregon, and Washington. Old-growth definitions used by the various owners and agencies are provided.

  11. Evaluation of the Washington state target zero teams project : traffic tech.

    DOT National Transportation Integrated Search

    2015-01-01

    In late 2006, the Washington State Patrol (WSP) assembled : a full-time, high-visibility saturation patrol called the Night : Emphasis Enforcement Team (NEET). This pilot program, : based in Snohomish County and funded by the Washington : Traffic Saf...

  12. Marijuana, other drugs, and alcohol use by drivers in Washington State.

    DOT National Transportation Integrated Search

    2016-07-01

    In Washington State legal sales of marijuana began July 8, 2014. A voluntary, anonymous roadside study was conducted to assess the prevalence of drivers testing positive for alcohol and other drugs, including marijuana, on Washingtons roads. Data ...

  13. Goldman visits Washington, D.C.

    NASA Image and Video Library

    2009-03-24

    Stennis Space Center Director Gene Goldman (right) visited Washington, D.C,. last month, where he called on Louisiana and Mississippi leaders to update them on work at the rocket engine testing facility. Rep. Gene Taylor, D-Miss., was among those visited by Goldman on March 24.

  14. The 1963 March on Washington.

    ERIC Educational Resources Information Center

    Lloyd, Natalie; Schamel, Wynell; Potter, Lee Ann

    2001-01-01

    Provides historical information on the "March on Washington for Jobs and Freedom" and the role of A. Philip Randolph who originally conceived the idea for the March. Features a letter from A. Philip Randolph to President John F. Kennedy. Includes a list of teaching activities. (CMK)

  15. Surgery Followed by Radiotherapy Versus Radiotherapy Alone for Metastatic Spinal Cord Compression From Unfavorable Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rades, Dirk, E-mail: Rades.Dirk@gmx.net; Huttenlocher, Stefan; Bajrovic, Amira

    Purpose: Despite a previously published randomized trial, controversy exists regarding the benefit of adding surgery to radiotherapy for metastatic spinal cord compression (MSCC). It is thought that patients with MSCC from relatively radioresistant tumors or tumors associated with poor functional outcome after radiotherapy alone may benefit from surgery. This study focuses on these tumors. Methods and Materials: Data from 67 patients receiving surgery plus radiotherapy (S+RT) were matched to 134 patients (1:2) receiving radiotherapy alone (RT). Groups were matched for 10 factors and compared for motor function, ambulatory status, local control, and survival. Additional separate matched-pair analyses were performed formore » patients receiving direct decompressive surgery plus stabilization of involved vertebrae (DDSS) and patients receiving laminectomy (LE). Results: Improvement of motor function occurred in 22% of patients after S+RT and 16% after RT (p = 0.25). Posttreatment ambulatory rates were 67% and 61%, respectively (p = 0.68). Of nonambulatory patients, 29% and 19% (p = 0.53) regained ambulatory status. One-year local control rates were 85% and 89% (p = 0.87). One-year survival rates were 38% and 24% (p = 0.20). The matched-pair analysis of patients receiving LE showed no significant differences between both therapies. In the matched-pair analysis of patients receiving DDSS, improvement of motor function occurred more often after DDSS+RT than RT (28% vs. 19%, p = 0.024). Posttreatment ambulatory rates were 86% and 67% (p = 0.30); 45% and 18% of patients regained ambulatory status (p = 0.29). Conclusions: Patients with MSCC from an unfavorable primary tumor appeared to benefit from DDSS but not LE when added to radiotherapy in terms of improved functional outcome.« less

  16. Recruitment in Radiotherapy

    ERIC Educational Resources Information Center

    Deeley, T. J.; And Others

    1976-01-01

    The Faculty Board of Radiotherapy and Oncology of the Royal College of Radiobiologists surveyed the factors thought to influence recruitment into the specialty. Possible factors listed in replies of 36 questionnaires are offered. (LBH)

  17. The accelerator neutron source for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  18. Development of fast neutron radiography system based on portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. Themore » raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.« less

  19. Tsunami Preparedness in Washington (video)

    USGS Publications Warehouse

    Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Washington distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Washington Emergency Management Division (EMD) and with funding by the National Tsunami Hazard Mitigation Program.

  20. Water use trends in Washington, 1985-2005

    USGS Publications Warehouse

    Lane, R.C.

    2010-01-01

    Since 1950, the U.S. Geological Survey Washington Water Science Center (USGS-WAWSC) has collected, compiled, and published, at 5-year intervals, statewide estimates of the amounts of water withdrawn and used for various purposes in Washington State. As new data and methods became available, some of the original datasets were recompiled. The most recent versions of these datasets were used in this fact sheet. The datasets are available online along with other USGS-WAWSC water-use publications at the USGS-WAWSC water use web page: http://wa.water.usgs.gov/data/wuse/. Values on these datasets and in this fact sheet may not sum to the indicated total due to independent rounding. Due to variations in data requirements, collection methods, terminology, and data sources, the direct assessment of water-use trends between compilations is difficult. This fact sheet focuses on the trends in total State and public-supplied populations, freshwater withdrawals and use, public-supply withdrawals and deliveries, and crop irrigation withdrawals and acreage in Washington from 1985 through 2005. These four categories were included in all five compilations and were the most stable in terms of data requirements, collection methods, terminology, and data sources.

  1. Geologic map of the Priest Rapids 1:100,000 quadrangle, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, S.P.; Fecht, K.R.

    1993-09-01

    This map of the Priest Rapids 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of those quadrangles are being released as DGER open-file reports (listed below). The map of the Wenatchee quadrangle has been published by the US Geological Surveymore » (Tabor and others, 1982), and the Moses Lake (Gulick, 1990a), Ritzville (Gulick, 1990b), and Rosalia (Waggoner, 1990) quadrangles have already been released. The geology of the Priest Rapids quadrangle has not previously been compiled at 1:100,000 scale. Furthermore, this is the first 1:100,000 or smaller scale geologic map of the area to incorporate both bedrock and surficial geology. This map was compiled in 1992, using published and unpublished geologic maps as sources of data.« less

  2. Development of high flux thermal neutron generator for neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.

    2015-05-01

    The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.

  3. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  4. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  5. 77 FR 10555 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 25 S., R. 1 W., accepted February 1, 2012 T. 16 S., R. 7 W...

  6. 75 FR 4103 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 39 S., R. 1 W., accepted December 18, 2009 T. 27 S., R. 2 W...

  7. 76 FR 3157 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 21 S., R. 27 E., accepted December 3, 2010 T. 27 S., R. 11 W...

  8. 75 FR 28647 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 7 S., R. 9 W., accepted April 12, 2010 T. 39 S., R. 2 E., accepted...

  9. 77 FR 57111 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 5 S., 14 E., accepted August 21, 2012 T. 26 S., R. 2 W., accepted...

  10. 76 FR 78020 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 23 S., R. 5 W., accepted November 16, 2011. T. 31 S., R. 9 W...

  11. 76 FR 26314 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 30 S., R. 11 W., accepted March 24, 2011 T. 28 S., R. 3 W...

  12. 75 FR 12563 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 3 S., R. 41 E., accepted January 15, 2010 T. 30 S., R. 11 W...

  13. 77 FR 47435 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 9 S., 19 E., accepted July 23, 2012 T. 18 S., R. 1 W., accepted...

  14. 75 FR 49944 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 41 S., R. 4 W., accepted June 29, 2010 T. 39 S., R. 1 W., accepted...

  15. 76 FR 12752 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 23 S., R. 8 W., accepted January 25, 2011 T. 22 S., R. 7 W...

  16. 76 FR 17669 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 20 S., R. 4 W., accepted March 1, 2011. T. 19 S., R. 1 E., accepted...

  17. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  18. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms

    NASA Astrophysics Data System (ADS)

    Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald

    2008-02-01

    Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the

  19. Timber resource statistics for southwest Washington.

    Treesearch

    Patricia M. Bassett; Daniel D. Oswald

    1981-01-01

    This report summarizes a 1978 timber-resource inventory of six counties in southwest Washington: Clark, Cowlitz, Lewis, Pacific, Skamania, and Wahkiakum. Detailed tables of forest area, timber volume, growth, mortality, and harvest are presented.

  20. [Description of latest generation equipment in external radiotherapy].

    PubMed

    Pellejero, S; Lozares, S; Mañeru, F

    2009-01-01

    Both the planning systems and the form of administering radiotherapy have changed radically since the introduction of 3D planning. At present treatment planning based on computerised axial tomography (CAT) images is standard practice in radiotherapy services. In recent years lineal accelerators for medical use have incorporated technology capable of administering intensity modulated radiation beams (IMRT). With this mode distributions of conformed doses are generated that adjust to the three dimensional form of the white volume, providing appropriate coverage and a lower dose to nearby risk organs. The use of IMRT is rapidly spreading amongst radiotherapy centres throughout the world. This growing use of IMRT has focused attention on the need for greater control of the geometric uncertainties in positioning the patient and control of internal movements. To this end, both flat and volumetric image systems have been incorporated into the treatment equipment, making image-guided radiotherapy (IGRT) possible. This article offers a brief description of the latest advances included in the planning and administration of radiotherapy treatment.

  1. PET imaging in adaptive radiotherapy of gastrointestinal tumours.

    PubMed

    Bulens, Philippe; Thomas, Melissa; Deroose, Christophe M; Haustermans, Karin

    2018-06-04

    Radiotherapy is the standard of care in the multimodality treatment of a variety of gastrointestinal (GI) tumours, such as oesophageal cancer, gastric cancer, rectal cancer and anal cancer. Additionally, radiotherapy has served as an alternative for surgery in patients with liver cancer, cancer of the biliary tract and pancreatic cancer. Positron-emission tomography (PET), generally in combination with computed tomography (CT), has an established role in the diagnosis, response assessment and (re-)staging of several GI tumours. However, the additional value of PET in adaptive radiotherapy, i.e. during the radiation treatment course and in the delineation process, is still unclear. When performed during radiotherapy, PET aims at assessing treatment-induced variations in functional tumour volumes to reduce the radiation target volume. Moreover, in the radiation treatment planning, tumour delineation could be more accurate by incorporating PET to identify the metabolic tumour volume. This review focuses on the additional value of PET for adaptive radiotherapy protocols as well as for the target volume adaptation for individualised treatment strategies in oesophageal, gastric, pancreatic, liver, biliary tract, rectal and anal neoplasms.

  2. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  3. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  4. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  5. Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors

    DOE PAGES

    Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect

  6. Physical interactions of charged particles for radiotherapy and space applications.

    PubMed

    Zeitlin, Cary

    2012-11-01

    In this paper, the basic physics by which energetic charged particles deposit energy in matter is reviewed. Energetic charged particles are used for radiotherapy and are encountered in spaceflight, where they pose a health risk to astronauts. They interact with matter through nuclear and electromagnetic forces. Deposition of energy occurs mostly along the trajectory of the incoming particle, but depending on the type of incident particle and its energy, there is some nonzero probability for energy deposition relatively far from the nominal trajectory, either due to long-ranged knock-on electrons (sometimes called delta rays) or from the products of nuclear fragmentation, including neutrons. In the therapy setting, dose localization is of paramount importance, and the deposition of energy outside nominal treatment volumes complicates planning and increases the risk of secondary cancers as well as noncancer effects in normal tissue. Statistical effects are also important and will be discussed. In contrast to radiation therapy patients, astronauts in space receive comparatively small whole-body radiation doses from energetic charged particles and associated secondary radiation. A unique aspect of space radiation exposures is the high-energy heavy-ion component of the dose. This is not present in terrestrial exposures except in carbon-ion radiotherapy. Designers of space missions must limit exposures to keep risk within acceptable limits. These limits are, at present, defined for low-Earth orbit, but not for deep-space missions outside the geomagnetosphere. Most of the uncertainty in risk assessment for such missions comes from the lack of understanding of the biological effectiveness of the heavy-ion component, with a smaller component due to uncertainties in transport physics and dosimetry. These same uncertainties are also critical in the therapy setting.

  7. Podiatrists Licensed in Washington.

    ERIC Educational Resources Information Center

    Washington State Dept. of Social and Health Services, Olympia. Health Manpower Project.

    This survey, based on a 95 0/0 response rate, determined that of all the podiatrists licensed in the state of Washington, 69 0/0 live within the state, 95 0/0 were actively employed in that profession, and almost all were in private practice. The primary work function of 83 0/0 was direct patient care, and over half of the respondents worked 40 to…

  8. Washington STAR Events Manual. Revised.

    ERIC Educational Resources Information Center

    Future Homemakers of America, Olympia, WA. Washington Association.

    This manual specifies the criteria for all STAR (Students Taking Action for Recognition) events available to Future Homemakers of America or Home Economics Related Occupations (HERO) chapters and chapter members in Washington State. The first section covers the following topics: general guidelines and requirements, adviser information, tips,…

  9. Stereotactic body radiotherapy for lung cancer: how much does it really cost?

    PubMed

    Lievens, Yolande; Obyn, Caroline; Mertens, Anne-Sophie; Van Halewyck, Dries; Hulstaert, Frank

    2015-03-01

    Despite the lack of randomized evidence, stereotactic body radiotherapy (SBRT) is being accepted as superior to conventional radiotherapy for patients with T1-2N0 non-small-cell lung cancer in the periphery of the lung and unfit or unwilling to undergo surgery. To introduce SBRT in a system of coverage with evidence development, a correct financing had to be determined. A time-driven activity-based costing model for radiotherapy was developed. Resource cost calculation of all radiotherapy treatments, standard and innovative, was conducted in 10 Belgian radiotherapy centers in the second half of 2012. The average cost of lung SBRT across the 10 centers (6221&OV0556;) is in the range of the average costs of standard fractionated 3D-conformal radiotherapy (5919&OV0556;) and intensity-modulated radiotherapy (7379&OV0556;) for lung cancer. Hypofractionated 3D-conformal radiotherapy and intensity-modulated radiotherapy schemes are less costly (3993&OV0556; respectively 4730&OV0556;). The SBRT cost increases with the number of fractions and is highly dependent of personnel and equipment use. SBRT cost varies more by centre than conventional radiotherapy cost, reflecting different technologies, stages in the learning curve and a lack of clear guidance in this field. Time-driven activity-based costing of radiotherapy is feasible in a multicentre setup, resulting in real-life resource costs that can form the basis for correct reimbursement schemes, supporting an early yet controlled introduction of innovative radiotherapy techniques in clinical practice.

  10. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  11. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOEpatents

    Peurrung, A.J.

    1997-08-19

    An improved method is disclosed for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue. 1 fig.

  12. 75 FR 41881 - Filing of Plats of Survey: Oregon/Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ...] Filing of Plats of Survey: Oregon/Washington AGENCY: Bureau of Land Management, Interior. ACTION: Notice... Bureau of Land Management Oregon/Washington State Office, Portland, Oregon, 30 days from the date of this publication. Willamette Meridian Oregon T. 3 S., R. 6 W., accepted May 7, 2010 T 2 S., R. 6 W., accepted May 7...

  13. Charging Up in King County, Washington

    ScienceCinema

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David

    2018-02-14

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  14. Charging Up in King County, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay

    2011-04-05

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  15. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  16. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  17. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  18. Adjuvant radiotherapy after breast conserving surgery - a comparative effectiveness research study.

    PubMed

    Corradini, Stefanie; Niyazi, Maximilian; Niemoeller, Olivier M; Li, Minglun; Roeder, Falk; Eckel, Renate; Schubert-Fritschle, Gabriele; Scheithauer, Heike R; Harbeck, Nadia; Engel, Jutta; Belka, Claus

    2015-01-01

    The purpose of this retrospective outcome study was to validate the effectiveness of postoperative radiotherapy in breast conserving therapy (BCT) and to evaluate possible causes for omission of radiotherapy after breast conserving surgery (BCS) in a non-trial population. Data were provided by the population-based Munich Cancer Registry. The study included epidemiological data of 30.811 patients diagnosed with breast cancer from 1998 to 2012. The effect of omitting radiotherapy was analysed using Kaplan-Meier-estimates and Cox proportional hazard regression. Variables predicting omission of radiotherapy were analysed using multivariate logistic regression. Use of postoperative radiotherapy after BCS was associated with significant improvements in local control and survival. 10-year loco-regional recurrence-free-survival was 90.8% with postoperative radiotherapy vs. 77.6% with surgery alone (p<0.001). 10-year overall survival rates were 55.2% with surgery alone vs. 82.2% following postoperative radiotherapy (p<0.001). Variables predicting omission of postoperative radiotherapy included advanced age (women ⩾80 years; OR: 0.082; 95% CI: 0.071-0.094, p<0.001). This study shows a decrease in local control and a survival disadvantage if postoperative radiotherapy after breast conserving surgery is omitted in an unselected cohort of primary breast cancer patients. Due to its epidemiological nature, it cannot answer the question in whom postoperative radiotherapy can be safely omitted. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Radiotherapy in poor risk patients with stage I cancer of the endometrium: results of not giving external beam radiotherapy.

    PubMed

    DeCruze, B; Guthrie, D

    1999-01-01

    Poor prognosis (poorly differentiated and/or deep myometrial invasion) Stage I endometrial cancer can have a relapse rate as high as 50%. Traditionally, most clinical oncologists treat these patients with external beam radiotherapy after surgery but there is no evidence to show that this improves survival. The retrospective study looks at the results of not giving external beam radiotherapy in 25 consecutive patients and compares the results with a group of 13 consecutive patients who did have such treatment. The two groups were comparable with regard to age, degree of differentiation and degree of invasion. Survival was comparable in the two groups. There is no evidence of any obvious decrease in survival from withholding external beam radiotherapy, but this was not a prospective randomized controlled trial. This study illustrates that it is essential that the Medical Research Council ASTEC trial should be supported because this will determine the true place of external beam radiotherapy in such patients.

  20. The possible use of a spallation neutron source for neutron capture therapy with epithermal neutrons.

    PubMed

    Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G

    1990-01-01

    Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.

  1. Neutron capture therapies

    DOEpatents

    Yanch, Jacquelyn C.; Shefer, Ruth E.; Klinkowstein, Robert E.

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  2. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  3. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  4. Vaginal dilator therapy for women receiving pelvic radiotherapy.

    PubMed

    Miles, Tracie; Johnson, Nick

    2014-09-08

    Vaginal dilation therapy is advocated after pelvic radiotherapy to prevent stenosis (abnormal narrowing of the vagina), but can be uncomfortable and psychologically distressing. To assess the benefits and harms of different types of vaginal dilation methods offered to women treated by pelvic radiotherapy for cancer. Searches included the Cochrane Central Register of Controlled Trials (CENTRAL 2013, Issue 5), MEDLINE (1950 to June week 2, 2013), EMBASE (1980 to 2013 week 24) and CINAHL (1982 to 2013). Comparative data of any type, which evaluated dilation or penetration of the vagina after pelvic radiotherapy treatment for cancer. Two review authors independently assessed whether potentially relevant studies met the inclusion criteria. We found no trials and therefore analysed no data. We identified no studies for inclusion in the original review or for this update. However, we felt that some studies that were excluded warranted discussion. These included one randomised trial (RCT), which showed no improvement in sexual scores associated with encouraging women to practise dilation therapy; a recent small RCT that did not show any advantage to dilation over vibration therapy during radiotherapy; two non-randomised comparative studies; and five correlation studies. One of these showed that objective measurements of vaginal elasticity and length were not linked to dilation during radiotherapy, but the study lacked power. One study showed that women who dilated tolerated a larger dilator, but the risk of objectivity and bias with historical controls was high. Another study showed that the vaginal measurements increased in length by a mean of 3 cm after dilation was introduced 6 to 10 weeks after radiotherapy, but there was no control group; another case series showed the opposite. Three recent studies showed less stenosis associated with prophylactic dilation after radiotherapy. One small case series suggested that dilation years after radiotherapy might restore the

  5. Timber resource statistics for eastern Washington.

    Treesearch

    Patricia M. Bassett; Daniel D. Oswald

    1983-01-01

    This report summarizes a 1980 timber resource inventory of the 16 forested counties in Washington east of the crest of the Cascade Range. Detailed tables of forest area, timber volume, growth, mortality, and harvest are presented.

  6. Impact of low-level laser therapy on hyposalivation, salivary pH, and quality of life in head and neck cancer patients post-radiotherapy.

    PubMed

    Palma, Luiz Felipe; Gonnelli, Fernanda Aurora Stabile; Marcucci, Marcelo; Dias, Rodrigo Souza; Giordani, Adelmo José; Segreto, Roberto Araújo; Segreto, Helena Regina Comodo

    2017-05-01

    Late effects of radiotherapy for head and neck cancer treatment have been increasingly investigated due to its impact on patients' quality of life. The purpose of this study was to evaluate the effect of low-level laser therapy on hyposalivation, low salivary pH, and quality of life in head and neck cancer patients post-radiotherapy. Twenty-nine patients with radiation-induced xerostomia received laser sessions twice a week, during 3 months (24 sessions). For this, a continuous wave Indium-Gallium-Aluminium-Phosphorus diode laser device was used punctually on the major salivary glands (808 nm, 0.75 W/cm 2 , 30 mW, illuminated area 0.04 cm 2 , 7.5 J/cm 2 , 10 s, 0.3 J). Six extraoral points were illuminated on each parotid gland and three on each submandibular gland, as well as two intraoral points on each sublingual gland. Stimulated and unstimulated salivary flow rate, pH (two scales with different gradations), and quality of life (University Of Washington Quality of Life Questionnaire for Patients with Head and Neck Cancer) were assessed at baseline and at the end of the treatment. There were significant increases in both mean salivary flow rates (unstimulated: p = 0.0012; stimulated: p < 0.0001), mean pH values (p = 0.0002 and p = 0.0004), and mean score from the quality of life questionnaire (p < 0.0001). Low-level laser therapy seems to be effective to mitigate salivary hypofunction and increase salivary pH of patients submitted to radiotherapy for head and neck cancer, thereby leading to an improvement in quality of life.

  7. 50 CFR 660.385 - Washington coastal tribal fisheries management measures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tribal allocation is 694 mt per year. This allocation is, for each year, 10 percent of the Monterey... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Washington coastal tribal fisheries... rockfish off Washington State, a harvest guideline of: 30,000 lb (13,608 kg) north of Cape Alava, WA (48°10...

  8. NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell

    Science.gov Websites

    World Record to 13.4 Percent | NREL | News | NREL NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell World Record to 13.4 Percent News Release: NREL, University of Washington Scientists Elevate Quantum Dot Solar Cell World Record to 13.4 Percent October 27, 2017 Researchers at the

  9. Washington's public and private forests.

    Treesearch

    Charles L. Bolsinger; Neil McKay; Donald FL Gedney; Carol Alerich

    1997-01-01

    This report summarizes and analyzes 1988-91 timber inventories of western and eastern Washington. These inventories were conducted on all private and public lands except National Forests. Timber resource statistics from National Forest inventories also are presented. Detailed tables provide estimates of forest area, timber volume, growth, mortality, and harvest. Data...

  10. Oral mucosal melanoma treated with carbon ion radiotherapy: a case report.

    PubMed

    Musha, Atsushi; Saitoh, Jun-Ichi; Shirai, Katsuyuki; Yokoo, Satoshi; Ohno, Tatsuya; Nakano, Takashi

    2016-10-18

    Oral mucosal melanoma is a rare disease with a relatively poor prognosis. Carbon ion radiotherapy has been shown to be effective against radiotherapy-resistant tumors owing to its excellent dose concentration and high biological effect. Our patient was a 66-year-old Japanese man with oral mucosal melanoma of his right maxillary gingiva (T4aN0M0). He received carbon ion radiotherapy at 57.6 Gy (relative biological effectiveness) in 16 fractions for 4 weeks. Concomitant chemotherapy (dacarbazine + nimustine + vincristine) was administered at the same time as carbon ion radiotherapy initiation. Two courses of adjuvant chemotherapy were given after carbon ion radiotherapy. Although he experienced grade 2 acute oral mucositis, his symptoms improved within a few weeks of undergoing carbon ion radiotherapy. He was alive at the time of reporting, 35 months after treatment, without any recurrence. Late toxicity has not been observed. Carbon ion radiotherapy for oral mucosal melanoma resulted in a good local effect.

  11. Refining aging criteria for northern sea otters in Washington State

    USGS Publications Warehouse

    Schuler, Krysten L.; Baker, Bridget B.; Mayer, Karl A.; Perez-Heydrich, Carolina; Holahan, Paula M.; Thomas, Nancy J.; White, C. LeAnn

    2018-01-01

    Measurement of skull ossification patterns is a standard method for aging various mammalian species and has been used to age Russian, Californian, and Alaskan sea otter populations. Cementum annuli counts have also been verified as an accurate aging method for the Alaskan sea otter population. In this study, cementum annuli count results and skull ossification patterns were compared as methods for aging the northern sea otter (Enhydra lutris kenyoni) population in Washington State. Significant agreement was found between the two methods suggesting that either method could be used to age the Washington population of otters. This study also found that ossification of the squamosal-jugal suture at the ventral glenoid fossa can be used to differentiate male subadults from adults. To assist field biologists or others without access to cementum annuli or skull ossification analysis techniques, a suite of morphologic, physiologic, and developmental characteristics were analyzed to assess whether a set of these more easily accessible parameters could also predict age class for the Washington population of otters. Tooth condition score, evidence of reproductive activity in females, and tooth eruption pattern were identified as the most useful criteria for classifying Washington sea otters as pups, juveniles, subadults, or adults/aged adults. A simple decision tree based on characteristics accessible in the field or at necropsy was created that can be used to reliably predict age class of Washington sea otters as determined by cementum annuli.

  12. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  13. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  14. 76 FR 41589 - Irish Potatoes Grown in Washington; Decreased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... FIR] Irish Potatoes Grown in Washington; Decreased Assessment Rate AGENCY: Agricultural Marketing... established for the State of Washington Potato Committee (Committee) for the 2011-2012 and subsequent fiscal periods from $0.0035 to $0.003 per hundredweight of potatoes handled. The Committee locally administers...

  15. A Partnership for Modeling the Marine Environment of Puget Sound, Washington

    DTIC Science & Technology

    2009-03-30

    Northwest National Marine Renewable Energy Center, a joint University of Washington - Oregon State project funded by the U.S. Department of Energy. e. A... Marine Renewable Energy Center (NNMREC), a joint Washington - Oregon State project to investigate extraction of wave and tidal energy sponsored by

  16. Booker T. Washington's Educational Contributions to Contemporary Practices of Sustainable Development

    ERIC Educational Resources Information Center

    Grant, Brett G.

    2014-01-01

    This article discusses Booker T. Washington's educational contributions to contemporary practices of sustainable development. In particular, the article looks at Washington's contributions in the areas of economic sustainability and entrepreneurship, character development, and aesthetics. As states continue to contemplate and evaluate the value of…

  17. 75 FR 74706 - Washington 10 Storage Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-37-002] Washington 10 Storage Corporation; Notice of Baseline Filing November 23, 2010. Take notice that on November 19, 2010, Washington 10 Storage Corporation submitted a revised baseline filing of its Statement of Operating...

  18. Barriers to radiotherapy access at the University College Hospital in Ibadan, Nigeria.

    PubMed

    Anakwenze, Chidinma P; Ntekim, Atara; Trock, Bruce; Uwadiae, Iyobosa B; Page, Brandi R

    2017-08-01

    Nigeria has the biggest gap between radiotherapy availability and need, with one machine per 19.4 million people, compared to one machine per 250,000 people in high-income countries. This study aims to identify its patient-level barriers to radiotherapy access. This was a cross sectional study consisting of patient questionnaires ( n  = 50) conducted in January 2016 to assess patient demographics, types of cancers seen, barriers to receiving radiotherapy, health beliefs and practices, and factors leading to treatment delay. Eighty percent of patients could not afford radiotherapy without financial assistance and only 6% of the patients had federal insurance, which did not cover radiotherapy services. Of the patients who had completed radiotherapy treatment, 91.3% had experienced treatment delay or often cancellation due to healthcare worker strike, power failure, machine breakdown, or prolonged wait time. The timeliness of a patient's radiotherapy care correlated with their employment status and distance from radiotherapy center ( p  < 0.05). Barriers to care at a radiotherapy center in a low- and middle-income country (LMIC) have previously not been well characterized. These findings can be used to inform efforts to expand the availability of radiotherapy and improve current treatment capacity in Nigeria and in other LMICs.

  19. Biological Testing of Solid Phase and Suspended Phase Dredged Material from Commencement Bay, Tacoma, Washington

    DTIC Science & Technology

    1983-04-01

    BAY, TACOMA, WASHINGTON PREPARED BY: FISHERIES RESEARCH INSTITUTE University of Washington DTIC C. A ELECTE JUL11 1985 DISTRIBUTIONSTATEMENT A...Nakatani 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Fisheries Research Institute AREA & WORK UNIT NUMBERS School of... Fisheries WH-10 University of Washington Seattle, Washington 98195 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE US Army Corps of Engineers

  20. Bladder filling variation during conformal radiotherapy for rectal cancer

    NASA Astrophysics Data System (ADS)

    Sithamparam, S.; Ahmad, R.; Sabarudin, A.; Othman, Z.; Ismail, M.

    2017-05-01

    Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients.

  1. 1966 Washington timber harvest.

    Treesearch

    Brian R. Wall

    1967-01-01

    The 1966 Washington timber harvest of 6.1 billion board feet was 6.8 percent below the 1965 level. This was the first decline since 1961. In part, the lower harvest in 1966 was due to completion of salvage logging of the 1962 blowdown. The volume of dead timber salvaged in 1966 was only 6 percent of the total, compared with 15 percent in 1965. The live timber harvest...

  2. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  3. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  4. Coccidioidomycosis acquired in Washington State.

    PubMed

    Marsden-Haug, Nicola; Goldoft, Marcia; Ralston, Cindy; Limaye, Ajit P; Chua, Jimmy; Hill, Heather; Jecha, Larry; Thompson, George R; Chiller, Tom

    2013-03-01

    Clinical, laboratory, and epidemiologic evidence suggest that 3 individuals with acute coccidioidomycosis were exposed in Washington State, significantly beyond previously identified endemic areas. Given the patients' lack of recent travel, coccidioidomycosis was not suspected, leading to delays in diagnosis and appropriate therapy. Clinicians should be aware of this possibility and consider the diagnosis.

  5. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS.

    PubMed

    Kneževic, Ž; Ambrozova, I; Domingo, C; De Saint-Hubert, M; Majer, M; Martínez-Rovira, I; Miljanic, S; Mojzeszek, N; Porwol, P; Ploc, O; Romero-Expósito, M; Stolarczyk, L; Trinkl, S; Harrison, R M; Olko, P

    2017-11-18

    Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Evidence-Based Medicine and State Health Care Coverage: The Washington Health Technology Assessment Program.

    PubMed

    Rothman, David J; Blackwood, Kristy L; Adair, Whitney; Rothman, Sheila M

    2018-04-01

    To evaluate the Washington State Health Technology Assessment Program (WHTAP). Washington State Health Technology Assessment Program proceedings in Seattle, Washington. We assessed the program through observation of its proceedings over a 5-year period, 2009-2014. We conducted detailed analyses of the documents it produced and reviewed relevant literature. Washington State Health Technology Assessment Program is unique compared to other state and federal programs. It has successfully applied evidence-based medicine to health care decision making, limited by the strength of available data. It claims cost savings, but they are not substantiated. Washington State Health Technology Assessment Program is a useful model for other states considering implementation of technology assessment programs. We provide key lessons for improving WHTAP's process. © Health Research and Educational Trust.

  7. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  8. Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol.

    PubMed

    Leonard, Charles E; Tallhamer, Michael; Johnson, Tim; Hunter, Kari; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L

    2010-02-01

    To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Children Undergoing Radiotherapy: Swedish Parents’ Experiences and Suggestions for Improvement

    PubMed Central

    Mullaney, Tara; Nilsson, Kristina; Wickart-Johansson, Gun; Svärd, Anna-Maja; Nyholm, Tufve; Lindh, Jack; Lindh, Viveca

    2015-01-01

    Approximately 300 children, from 0 to 18 years old, are diagnosed with cancer in Sweden every year. Of these children, 80–90 of them undergo radiotherapy treatment for their cancer. Although radiotherapy is an encounter with advanced technology, few studies have investigated the child’s and the parent’s view of the procedure. As part of an ongoing multicenter study aimed to improve patient preparation and the care environment in pediatric radiotherapy, this article reports the findings from interviews with parents at baseline. The aim of the present study was twofold: to describe parents’ experience when their child undergoes radiotherapy treatment, and to report parents’ suggestions for improvements during radiotherapy for their children. Sixteen mothers and sixteen fathers of children between 2–16 years old with various cancer diagnoses were interviewed. Data were analyzed using content analysis. The findings showed that cancer and treatment turns people’s lives upside down, affecting the entire family. Further, the parents experience the child’s suffering and must cope with intense feelings. Radiotherapy treatment includes preparation by skilled and empathetic staff. The parents gradually find that they can deal with the process; and lastly, parents have suggestions for improvements during the radiotherapy treatment. An overarching theme emerged: that despair gradually turns to a sense of security, with a sustained focus on and close interaction with the child. In conclusion, an extreme burden was experienced around the start of radiotherapy, though parents gradually coped with the process. PMID:26509449

  10. An annotated checklist of the vascular flora of Washington County Mississippi

    USDA-ARS?s Scientific Manuscript database

    Field explorations have yielded 257 species new to Washington County, Mississippi and Calandrinia ciliata (Ruiz & Pav.) DC. and Ruellia nudiflora (Engelm. & Gray) Urban new to the state. An annotated list of 796 taxa for Washington County is provided and excludes 62 species that were reported from ...

  11. 75 FR 37786 - Washington 10 Storage Corporation; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-37-000] Washington 10 Storage Corporation; Notice of Baseline Filing June 23, 2010. Take notice that on June 18, 2010, Washington 10 Storage Corporation submitted a baseline filing of its Statement of Operating Conditions for...

  12. 75 FR 61464 - Washington 10 Storage Corporation; Notice of Compliance Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Storage Corporation; Notice of Compliance Filing September 24, 2010. Take notice that on September 22, 2010, Washington 10 Storage Corporation, in compliance with the Commission's September 17, 2010 Letter... an effective date of June 18, 2010. \\1\\ See Washington 10 Storage Corporation, Docket No. PR10-37...

  13. Nuclear reactor neutron shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less

  14. STEM-ING the Skills Gap. Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2013

    2013-01-01

    Washington could add as many as 110,000 new jobs by 2017 by closing skill gaps--the mismatch between the skills people have and those employers need, according to a March 2013 Washington Roundtable report. STEM professions face the most critical demand. Of the 25,000 jobs vacant for three months or more due to a shortage of qualified candidates,…

  15. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  16. Radiotherapy access in Belgium: How far are we from evidence-based utilisation?

    PubMed

    Lievens, Y; De Schutter, H; Stellamans, K; Rosskamp, M; Van Eycken, L

    2017-10-01

    Underutilisation of radiotherapy has been observed worldwide. To evaluate the current situation in Belgium, optimal utilisation proportions (OUPs) adopted from the European SocieTy for Radiotherapy and Oncology - Health Economics in Radiation Oncology (ESTRO-HERO) project were compared to actual utilisation proportions (AUPs) and with radiotherapy advised during the multidisciplinary cancer team (MDT) meetings. In addition, the impact of independent variables was analysed. AUPs and advised radiotherapy were calculated overall and by cancer type for 110,810 unique cancer diagnoses in 2009-2010. Radiotherapy utilisation was derived from reimbursement data and distinguished between palliative and curative intent external beam radiotherapy (EBRT) and/or brachytherapy (BT). Sensitivity analyses regarding the influence of the follow-up period, the survival length and patient's age were performed. Advised radiotherapy was calculated based on broad treatment categories as reported at MDT meetings. The overall AUP of 37% (39% including BT) was lower than the OUP of 53%, but in line with advised radiotherapy (35%). Large variations by tumour type were observed: in some tumours (e.g. lung and prostate cancer) AUP was considerably lower than OUP, whereas in others there was reasonable concordance (e.g. breast and rectal cancer). Overall, 84% of treatments started within 9 months following diagnosis. Survival time influenced AUP in a cancer type-dependent way. Elderly patients received less radiotherapy. Although the actually delivered radiotherapy in Belgium aligns well to MDT advices, it is lower than the evidence-based optimum. Further analysis of potential barriers is needed for radiotherapy forecasting and planning, and in order to promote adequate access to radiotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  18. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  19. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  20. Radiotherapy in the treatment of solitary plasmacytoma.

    PubMed

    Jyothirmayi, R; Gangadharan, V P; Nair, M K; Rajan, B

    1997-05-01

    Solitary plasmacytoma of bone (SPB) and extramedullary plasmacytoma (EMP) are rare. High local control rates are reported with radiotherapy, although the optimal dose and extent of radiotherapy portals remains controversial. Between 1983 and 1993, 30 patients with solitary plasmacytoma were seen at the Regional Cancer Centre, Trivandrum, India. 23 patients had SPB and seven EMP. The mean age was 52 years and the male to female ratio 3.2:1. Diagnosis of SPB was confirmed by biopsy in 16 patients and tumour excision in seven. 20 patients received megavoltage radiotherapy to the bone lesion with limited margins, and one received chemotherapy. Two patients who underwent complete tumour excision received no further treatment. All seven patients with EMP received megavoltage radiotherapy, four following biopsy and three after tumour excision. Local control was achieved in all patients with SPB. Nine progressed to multiple myeloma and one developed a solitary plasmacytoma in another bone. Six patients with EMP achieved local control. Three later progressed to multiple myeloma and one had local relapse. Median time to relapse was 28 months in SPB and 30 months in EMP. 5-year overall survival rates were 82% and 57% for patients with SPB and EMP, respectively. The corresponding progression free survival rates were 55% and 50%, respectively. Age, sex, site of tumour, serum M protein and haemoglobin levels did not significantly influence progression free survival. The extent of surgery, radiotherapy dose or time to relapse were not significant prognostic factors. Radiotherapy appears to be an effective modality of treatment of solitary plasmacytoma. No dose-response relationship is observed, and high local control rates are achieved with limited portals. Progression to multiple myeloma is the commonest pattern of failure, although no prognostic factors for progression are identified. The role of chemotherapy in preventing disease progression needs further evaluation.

  1. SU-E-T-611: Photon and Neutron Peripheral Dose Ratio for Low (6 MV) and High (15 MV) Energy for Treatment Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irazola, L; Sanchez-Doblado, F; Servicio de Radiofisica, Hospital Universitario Virgen Macarena, Seville

    2015-06-15

    Purpose: Differences between radiotherapy techniques and energies, can offer improvements in tumor coverage and organs at risk preservation. However, a more complete decision should include peripheral doses delivered to the patient. The purpose of this work is the balance of photon and neutron peripheral doses for a prostate case solved with 6 different treatment modalities. Methods: Inverse and Forward IMRT and 3D-CRT in 6 and 15 MV for a Siemens Primus linac, using the same CT data set and contours. The methodology described in [1], was used with the TNRD thermal neutron detector [2] for neutron peripheral dose estimation atmore » 7 relevant organs (colon, esophagus, stomach, liver, lung, thyroid and skin). Photon doses were estimated for these organs by terms of the algorithm proposed in [3]. Plans were optimized with the same restrictions and limited to 30 segments in the Inverse case. Results: A similar photon peripheral dose was found comparing 6 and 15 MV cases with slightly higher values of (1.9 ± 1.6) % in mean, for the 6 MV cases. Neutron presence when using 15 MV, represents an increase in peripheral dose of (18 ± 17) % in average. Due to the higher number of MU used in Inverse IMRT, an increasing of (22 ± 3) % in neutron dose is found related to Forward and 3D-CRT plans. This corresponds to photon doses within 44 and 255 mSv along the organs, for a dose prescription of 68 Gy at the isocenter. Conclusion: Neutron and photon peripheral doses for a prostate treatment planified in 6 different techniques have been analyzed. 6 MV plans are slightly more demanding in terms of photon peripheral doses. Inverse technique in 15 MV has Result to be the most demanding one in terms of total peripheral doses, including neutrons and photons.« less

  2. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  3. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  4. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Science.gov Websites

    Analysis of NaH and NaD, DOE Technical Report, April 1947 The Diffraction of Neutrons by Crystalline Powders; DOE Technical Report; 1948 Neutron Diffraction Studies, DOE Technical Report, 1948 Laue Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction, DOE Technical Report, April

  5. Semiconductor neutron detector

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  6. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  7. The development and validation of a Monte Carlo model for calculating the out-of-field dose from radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Kry, Stephen

    Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was

  8. A Neutron Diffractometer for a Long Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Sokol, Paul; Wang, Cailin

    Long pulsed neutron sources are being actively developed as small university based sources and are being considered for the next generation of high powered sources, such as the European Neutron Source (ESS) and the Spallation Neutron Source (SNS) second target station. New instrumentation concepts will be required to effectively utilize the full spectrum of neutrons generated by these sources. Neutron diffractometers, which utilize time-of-flight (TOF) techniques for wavelength resolution, are particularly problematic. We describe an instrument for a long pulsed source that provides resolution comparable to that obtained on short pulsed sources without the need of long incident flight paths. We accomplish this by utilizing high speed choppers to impose a time structure on the spectrum of incident neutrons. By strategically positioning these choppers the response matrix assumes a convenient form that can be deconvoluted from the measured TOF spectrum to produce the diffraction pattern of the sample. We compare the performance of this instrument to other possible diffraction instruments that could be utilized on a long pulsed source.

  9. [Head and neck adaptive radiotherapy].

    PubMed

    Graff, P; Huger, S; Kirby, N; Pouliot, J

    2013-10-01

    Onboard volumetric imaging systems can provide accurate data of the patient's anatomy during a course of head and neck radiotherapy making it possible to assess the actual delivered dose and to evaluate the dosimetric impact of complex daily positioning variations and gradual anatomic changes such as geometric variations of tumors and normal tissues or shrinkage of external contours. Adaptive radiotherapy is defined as the correction of a patient's treatment planning to adapt for individual variations observed during treatment. Strategies are developed to selectively identify patients that require replanning because of an intolerable dosimetric drift. Automated tools are designed to limit time consumption. Deformable image registration algorithms are the cornerstones of these strategies, but a better understanding of their limits of validity is required before adaptive radiotherapy can be safely introduced to daily practice. Moreover, strict evaluation of the clinical benefits is yet to be proven. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  10. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  11. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  12. Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma

    PubMed Central

    Nath, Sameer K.; Simpson, Daniel R.; Rose, Brent S.; Sandhu, Ajay P.

    2009-01-01

    Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement. PMID:19644564

  13. A Kindler syndrome-associated squamous cell carcinoma treated with radiotherapy.

    PubMed

    Caldeira, Ademar; Trinca, William Correia; Flores, Thais Pires; Costa, Andrea Barleze; Brito, Claudio de Sá; Weigert, Karen Loureiro; Matos, Maryana Schwartzhaupt; Nicolini, Carmela; Obst, Fernando Mariano

    2016-01-01

    Kindler syndrome1, 2 is a genetic disorder mainly characterized by increased skin fragility and photosensitivity,3, 4 making the use of treatments based on radiation difficult or even prohibited. Thus, cases reporting Kindler syndrome patients treated with radiotherapy are rare. In this study, we report clinical outcomes and care provided for a rare case of a Kindler syndrome patient submitted to radiotherapy. Diagnosed with squamous cell carcinoma involving the buccal mucosa, the patient was exclusively treated with radiotherapy, with 70 Gy delivered on the PTV with the Volumetric Modulated Arc technique. The patient's reaction regarding control of the lesion is relevant compared to patients not affected by the syndrome. We noticed acute reactions of the skin and buccal mucosa after few radiotherapy sessions, followed by a fast reduction in the tumor volume. The efficacy of radiotherapy along with multidisciplinary actions allowed treatment continuity, leading to a complete control of the lesion and life quality improvement and showed that the use of radiotherapy on Kindler syndrome patients is possible.

  14. Social Marketing and the "New" Technology: Proceedings of a Washington Roundtable (Washington, DC, March 25, 1998).

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC.

    This document examines some of the key issues raised during the second Washington Roundtable on Social Marketing, convened by the Academy for Educational Development (AED) in 1998. AED invited participants to examine whether the interactive technologies that are revolutionizing commercial marketing--personal computers, the Internet (especially the…

  15. Marijuana, other drugs, and alcohol use by drivers in Washington state : appendices.

    DOT National Transportation Integrated Search

    2016-07-01

    In Washington State legal sales of marijuana began July 8, 2014. A voluntary, anonymous roadside study was conducted to assess the prevalence of drivers testing positive for alcohol and other drugs, including marijuana, on Washingtons roads. Data ...

  16. 75 FR 14463 - Notice of Inventory Completion: University of Washington, Department of Anthropology, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... Washington, Department of Anthropology, Seattle, WA AGENCY: National Park Service, Interior. ACTION: Notice... University of Washington, Department of Anthropology, Seattle, WA. The human remains were removed from... University of Washington, Department of Anthropology and Burke Museum staff in consultation with...

  17. 75 FR 41883 - Notice of Inventory Completion: Museum of Anthropology, Washington State University Pullman, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Anthropology, Washington State University Pullman, WA AGENCY: National Park Service, Interior. ACTION: Notice... associated funerary objects in the possession and control of the Museum of Anthropology, Washington State... made by Museum of Anthropology, Washington State University, professional staff in consultation with...

  18. 75 FR 36671 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA; Correction AGENCY: National Park... human remains and associated funerary objects in the possession of the Thomas Burke Memorial Washington...

  19. Collection Development Policy: Federal Government Publications at Eastern Washington University Libraries.

    ERIC Educational Resources Information Center

    Roselle, Ann; Chan, Karen

    This collection development policy serves as a guide for the selection and retention of depository government documents by the Government Publications Unit of the Kennedy Memorial Library of Eastern Washington University (EWU) in Cheney, Washington. The library selects approximately 65 percent of the depository items distributed by the U.S.…

  20. The Impact of Interstate Migration on Human Capital Development in Washington

    ERIC Educational Resources Information Center

    Spaulding, Randy

    2010-01-01

    Washington State is a leader in the innovation economy largely due to the combination of aerospace, software, and biomedical industries centered in the greater Seattle area; and, the state's high level of international trade. Despite Washington's national ranking, the state is overly reliant on importing educated workers from other states and…

  1. Labor Market Experiences of Central American Migrants in Washington, D.C.

    ERIC Educational Resources Information Center

    Repak, Terry A.

    1993-01-01

    Explores labor market experiences of Central American men and women in Washington, DC; analyzes variables determining wage levels; and assesses employment mobility. Results from 50 individuals and 100 households illustrate striking advantages in income and mobility of men. Most migrant women in Washington, DC, are segregated into low-paid service…

  2. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  3. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  4. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited).

    PubMed

    Yeamans, C B; Gharibyan, N

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 10 15 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  5. Combinations of Radiotherapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    PubMed Central

    Barker, Christopher A.; Postow, Michael A.

    2015-01-01

    Radiotherapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiotherapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiotherapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiotherapy. The cytokines interferon-alpha and interleukin-2 have been combined with radiotherapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiotherapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested radiotherapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiotherapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study. PMID:24661650

  6. Postoperative Radiotherapy Patterns of Care and Survival Implications for Medulloblastoma in Young Children.

    PubMed

    Kann, Benjamin H; Park, Henry S; Lester-Coll, Nataniel H; Yeboa, Debra N; Benitez, Viviana; Khan, Atif J; Bindra, Ranjit S; Marks, Asher M; Roberts, Kenneth B

    2016-12-01

    Postoperative radiotherapy to the craniospinal axis is standard-of-care for pediatric medulloblastoma but is associated with long-term morbidity, particularly in young children. With the advent of modern adjuvant chemotherapy strategies, postoperative radiotherapy deferral has gained acceptance in children younger than 3 years, although it remains controversial in older children. To analyze recent postoperative radiotherapy national treatment patterns and implications for overall survival in patients with medulloblastoma ages 3 to 8 years. Using the National Cancer Data Base, patients ages 3 to 8 years diagnosed as having histologically confirmed medulloblastoma in 2004 to 2012, without distant metastases, who underwent surgery and adjuvant chemotherapy with or without postoperative radiotherapy at facilities nationwide accredited by the Commission on Cancer were identified. Patients were designated as having "postoperative radiotherapy upfront" if they received radiotherapy within 90 days of surgery or "postoperative radiotherapy deferred" otherwise. Factors associated with postoperative radiotherapy deferral were identified using multivariable logistic regression. Overall survival (OS) was compared using Kaplan-Meier analysis with log-rank tests and multivariable Cox regression. Statistical tests were 2-sided. Postoperative radiotherapy utilization and overall survival. Among 816 patients, 123 (15.1%) had postoperative radiotherapy deferred, and 693 (84.9%) had postoperative radiotherapy upfront; 36.8% of 3-year-olds and 4.1% of 8-year-olds had postoperative radiotherapy deferred (P < .001). On multivariable logistic regression, variables associated with postoperative radiotherapy deferral were age (odds ratio [OR], 0.57 per year; 95% CI, 0.49-0.67 per year) and year of diagnosis (OR, 1.18 per year; 95% CI, 1.08-1.29 per year). On survival analysis, with median follow-up of 4.8 years, OS was improved for those receiving postoperative radiotherapy upfront vs

  7. Teaching the March on Washington

    ERIC Educational Resources Information Center

    Jones, William P.; Euchner, Charles; Hill, Norman; Hill, Velma Murphy

    2013-01-01

    One of the most historical events in American history, the non-violent protest "March on Washington," August 28, 1963, is detailed in an article of remembrance by William P. Jones. His article is crowned by highlights from the "I Have a Dream" speech by Dr. Martin Luther King, Jr., but also highlights the lessor known role…

  8. Road usage charge pilot project final evaluation report for Washington State participants.

    DOT National Transportation Integrated Search

    2013-05-01

    This report provides a summary of evaluation results of Washingtons participation in : the Road Usage Charge Pilot Program (RUCPP). The RUCPP was a trial of various : approaches and technologies for motorists in the States of Washington, Oregon, a...

  9. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  10. Secondary malignancy following radiotherapy for thyroid eye disease.

    PubMed

    Gillis, Christopher C; Chang, Eun Hae; Al-Kharazi, Khalid; Pickles, Tom

    2016-01-01

    To describe the first case of a secondary meningioma in a patient after radiation treatment for thyroid eye disease (TED). Secondarily to identify any additional cases of secondary malignancy resulting from radiotherapy for thyroid eye disease from our institutional experience. Thyroid eye disease (TED) is a self-limiting auto-immune disorder causing expansion of orbital soft tissue from deposition of glycosaminoglycans and collagen, leading to significant cosmetic and functional morbidity. Established management options for TED include: glucocorticosteroids, orbital radiotherapy, and surgical orbital decompression. Two large series on radiotherapy for TED have been reported without any cases of secondary malignancy. The case of a patient with visual failure, found to have a sphenoid wing meningioma after previous TED radiotherapy is described. We then reviewed 575 patients with at least 3-year follow-up receiving radiotherapy for TED at British Columbia Cancer Agency to identify other possible secondary malignancies. The patient had postoperative improvement in her vision without any identified complications. Three additional cases of hematologic malignancy were identified. The calculated risk in our population of developing a radiation-induced meningioma after TED with at least 3 years of follow-up of is 0.17% (1/575); with hematopoetic malignancies the risk for secondary malignancy is 0.7% (4/575). Our calculated risk for secondary malignancy (0.17%, 0.7%) is similar to the reported theoretical risk published in the literature (0.3-1.2%). There is real risk for the development of a secondary malignancy after radiotherapy treatment of TED and treatment options should include consideration for this potential.

  11. 77 FR 51564 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... the human remains was made by the Burke Museum professional staff in consultation with representatives... Inventory Completion: Thomas Burke Memorial Washington State Museum, University of Washington, Seattle, WA... State Museum (Burke Museum), University of Washington, has completed an inventory of human remains, in...

  12. 78 FR 45958 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... associated funerary objects was made by the Burke Museum professional staff in consultation with....R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of... Memorial Washington State Museum, University of Washington (Burke Museum), has completed an inventory of...

  13. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  14. History of the development of radiotherapy in Latin America.

    PubMed

    Pinillos, Luis; Pinto, Joseph A; Sarria, Gustavo

    2017-01-01

    Radiotherapy was the first nonsurgical treatment for malignant tumours and represents one of the oldest disciplines of oncology. In Latin America, as in many parts of the world, the history of modern oncology begins with the implementation of radiation therapy facilities. The development of radiotherapy in Latin America was possible thanks to the seminal work of radiation oncologists in different countries. As a large territory, there is a need to implement modern facilities and equipment, but unfortunately there are disparities in the access and quality of radiotherapy services across Latin America and even within individual countries. In this review, we describe the history, challenges and success in the implementation of radiotherapy and the frustration caused by the lack of facilities in several Latin American countries.

  15. Integrated Digital English Acceleration (I-DEA). Washington's Community and Technical Colleges

    ERIC Educational Resources Information Center

    Washington State Board for Community and Technical Colleges, 2015

    2015-01-01

    Washington state has a large and rapidly growing foreign-born population. In 2011, immigrants made up 16.5 percent of Washington's civilian employed workforce, up from 7.1 percent in 1990. These new arrivals create jobs by forming businesses, spending income in local economies and raising employers' productivity. Thanks to project I-DEA…

  16. Estimated Water Use in Washington, 2005

    USGS Publications Warehouse

    Lane, R.C.

    2009-01-01

    Water use in the State of Washington has evolved in the past century from meager domestic and stock water needs to the current complex requirements of domestic-water users, large irrigation projects, industrial plants, and numerous other uses such as fish habitat and recreational activities. Since 1950, the U.S. Geological Survey (USGS) has, at 5-year intervals, compiled data on the amount of water used in homes, businesses, industries, and on farms throughout the State. This water-use data, combined with other related USGS information, has facilitated a unique understanding of the effects of human activity on the State's water resources. As water availability continues to emerge as an important issue in the 21st century, the need for consistent, long-term water-use data will increase to support wise use of this essential natural resource. This report presents state and county estimates of the amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power purposes in the State of Washington during 2005. Offstream fresh-water use was estimated to be 5,780 million gallons per day (Mgal/d). Domestic water use was estimated to be 648 Mgal/d or 11 percent of the total. Irrigation water use was estimated to be 3,520 Mgal/d, or 61 percent of the total. Industrial fresh-water use was estimated to be 520 Mgal/d, or 9 percent of the total. These three categories accounted for about 81 percent (4,690 Mgal/d) of the total of the estimated offstream freshwater use in Washington during 2005.

  17. 78 FR 59955 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-WASO-NAGPRA-13881; PPWOCRADN0-PCU00RP14.R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of.... SUMMARY: The Thomas Burke Memorial Washington State Museum, University of Washington (Burke Museum), has...

  18. 78 FR 59955 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    .... Consultation A detailed assessment of the human remains was made by the Burke Museum professional staff in....R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of... Memorial Washington State Museum, University of Washington (Burke Museum), has completed an inventory of...

  19. Microcystic adnexal carcinoma following radiotherapy in childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borenstein, A.; Seidman, D.S.; Trau, H.

    1991-04-01

    A 36-year-old man was treated by radiotherapy for tinea capitis many years before discovery of microcystic adnexal carcinoma (MAC). Because of patient's refusal of any surgical intervention, we were able to follow the natural course of this tumor for 13 years. This case emphasizes the typical slow development of (MAC). The implication of the association of MAC and radiotherapy are discussed.

  20. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  1. 1996 Washington state highway accident report

    DOT National Transportation Integrated Search

    1996-01-01

    The Motor Vehicle Laws of the state of Washington require that standard Traffic Accident Report forms be : submitted by the operator of any vehicle in an accident resulting in injury or death to any person, or damage to the : property of any person t...

  2. George Washington and the Temple of Democracy. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Hunter, Kathleen A.

    This document, from the lesson plan series, "Teaching with Historic Places," provides a description of George Washington's life and the building of the U.S. Capitol. George Washington became the first U.S. President after leading the colonies through the revolutionary war. The U.S. Congress and the President decided to create a federal…

  3. 78 FR 64006 - Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... inventory of human remains under the control of the Burke Museum. The human remains were removed from Island....R50000] Notice of Inventory Completion: Thomas Burke Memorial Washington State Museum, University of... Memorial Washington State Museum, University of Washington (Burke Museum), has completed an inventory of...

  4. A citywide breeding bird survey for Washington, DC

    USGS Publications Warehouse

    Hadidian, J.; Sauer, J.R.; Swarth, C.; Handly, P.; Droege, S.; Williams, C.; Huff, J.; Didden, G.

    1997-01-01

    `DC Birdscape' was initiated in 1993 to systematically count the birds occurring throughout Washington D.C. during the breeding season. It involved a coordinated planning effort and partnership between the Audubon Naturalist Society, the National Park Service, and the National Biological Survey, and engaged the participation of more than 100 volunteers. A method for rapidly assessing the status of bird populations over a large area was developed and incorporated into a Geographic Information System to allow a multidimensional analysis of species presence and abundance across a variety of urban land use areas. A total of 91 species were observed, with an estimated total number of 115, making Washington D.C. almost as `bird rich' as nearby suburban counties. Data from the study clearly indicate that avian species are not randomly distributed throughout the Washington D.C. metropolitan area, and show affinity, at least in part, to some of the most broadly recognized land use patterns that are commonly used to zone and classify urban areas under development schemes. This study represents a prototype that will allow efficient and economical monitoring of urban bird populations.

  5. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  6. PERSONNEL NEUTRON DOSIMETER

    DOEpatents

    Fitzgerald, J.J.; Detwiler, C.G. Jr.

    1960-05-24

    A description is given of a personnel neutron dosimeter capable of indicating the complete spectrum of the neutron dose received as well as the dose for each neutron energy range therein. The device consists of three sets of indium foils supported in an aluminum case. The first set consists of three foils of indium, the second set consists of a similar set of indium foils sandwiched between layers of cadmium, whereas the third set is similar to the second set but is sandwiched between layers of polyethylene. By analysis of all the foils the neutron spectrum and the total dose from neutrons of all energy levels can be ascertained.

  7. Integer programming for improving radiotherapy treatment efficiency.

    PubMed

    Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili

    2017-01-01

    Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.

  8. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  9. Radiotherapy for breast cancer: The predictable consequences of an unmet need.

    PubMed

    Rodin, Danielle; Knaul, Felicia M; Lui, Tracey Y; Gospodarowicz, Mary

    2016-10-01

    Radiotherapy has had a transformative impact on the treatment of breast cancer, but is unavailable to the majority of breast cancer patients in low- and middle-income countries. In these settings, where many women present with advanced disease at an age when they are often the primary caregiver for their families, the lack of access to radiotherapy is particularly devastating. Until recently, this disparity has been largely neglected in the medical literature and it had been difficult to convince governments, industry, and policymakers of the importance of investing in radiotherapy, as well as broader cancer control strategies, in low-resource settings. The Lancet Radiotherapy Commission report published in 2015 challenged many assumptions about the affordability of radiotherapy treatment. Data from the Commission is presented here to support radiotherapy investment for breast cancer and discuss how the morbidity and premature mortality among adult women caused by breast cancer has a huge detrimental effect on both the health sector and the economy. Copyright © 2016. Published by Elsevier Ltd.

  10. Preliminary timber resource statistics for southwest Washington.

    Treesearch

    Colin D. MacLean; Janet L. Ohmann; Patricia M. Bassett

    1991-01-01

    This report summarizes a 1988 timber inventory of six counties in southwest Washington: Clark, Cowlitz, Lewis, Pacific, Skamania, and Wahkiakum. Detailed tables of forest area, timber volume, growth, mortality, and harvest are presented.

  11. Feasibility study of prompt gamma neutron activation for NDT measurement of moisture in stone and brick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, R. A.; Al-Sheikhly, M.; Grissom, C.

    2014-02-18

    The conservation of stone and brick architecture or sculpture often involves damage caused by moisture. The feasibility of a NDT method based on prompt gamma neutron activation (PGNA) for measuring the element hydrogen as an indication of water is being evaluated. This includes systematic characterization of the lithology and physical properties of seven building stones and one brick type used in the buildings of the Smithsonian Institution in Washington, D.C. To determine the required dynamic range of the NDT method, moisture-related properties were measured by standard methods. Cold neutron PGNA was also used to determine chemically bound water (CBW) content.more » The CBW does not damage porous masonry, but creates an H background that defines the minimum level of detection of damaging moisture. The CBW was on the order of 0.5% for all the stones. This rules out the measurement of hygric processes in all of the stones and hydric processed for the stones with fine scale pore-size distributions The upper bound of moisture content, set by porosity through water immersion, was on the order of 5%. The dynamic range is about 10–20. The H count rates were roughly 1–3 cps. Taking into account differences in neutron energies and fluxes and sample volume between cold PGNA and a portable PGNA instrument, it appears that it is feasible to apply PGNA in the field.« less

  12. New precision measurements of free neutron beta decay with cold neutrons

    DOE PAGES

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; ...

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  13. County portraits of Washington State.

    Treesearch

    Wendy J. McGinnis; Richard H. Phillips; Terry L. Raettig; Kent P. Connaughton

    1997-01-01

    This publication provides a general picture of the population, economy, and natural resources of the counties in Washington State. The intent of this report is to provide insight to changes in a county over the last 10 to 20 years, to compare county trends to statewide trends (and state trends to national trends), and to provide information on all the counties in a...

  14. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  15. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  16. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Death with dignity in Washington patients with amyotrophic lateral sclerosis

    PubMed Central

    Elliott, Michael A.; Jung Henson, Lily; Gerena-Maldonado, Elba; Strom, Susan; Downing, Sharon; Vetrovs, Jennifer; Kayihan, Paige; Paul, Piper; Kennedy, Kate; Benditt, Joshua O.; Weiss, Michael D.

    2016-01-01

    Objectives: To describe the amyotrophic lateral sclerosis (ALS) patients who sought medication under the Washington State Death with Dignity (DWD) Act since its inception in 2009. Methods: Chart review at 3 tertiary medical centers in the Seattle/Puget Sound region and comparison to publicly available data of ALS and all-cause DWD cohorts from Washington and Oregon. Results: In Washington State, 39 patients with ALS requested DWD from the University of Washington, Virginia Mason, and Swedish Medical Centers beginning in 2009. The median age at death was 65 years (range 46–86). Seventy-seven percent of the patients used the prescriptions. All of the patients who used the medications passed away without complications. The major reasons for patients to request DWD as reported by participating physicians were loss of autonomy and dignity and decrease in enjoyable activities. Inadequate pain control, financial cost, and loss of bodily control were less commonly indicated. These findings were similar to those of the 92 patients who sought DWD in Oregon. In Washington and Oregon, the percentage of patients with ALS seeking DWD is higher compared to the cancer DWD cohort. Furthermore, compared to the all-cause DWD cohort, patients with ALS are more likely to be non-Hispanic white, married, educated, enrolled in hospice, and to have died at home. Conclusions: Although a small number, ALS represents the disease with the highest proportion of patients seeking to participate in DWD. Patients with ALS who choose DWD are well-educated and have access to palliative or life-prolonging care. The use of the medications appears to be able to achieve the patients' goals without complications. PMID:27770068

  18. Death with dignity in Washington patients with amyotrophic lateral sclerosis.

    PubMed

    Wang, Leo H; Elliott, Michael A; Jung Henson, Lily; Gerena-Maldonado, Elba; Strom, Susan; Downing, Sharon; Vetrovs, Jennifer; Kayihan, Paige; Paul, Piper; Kennedy, Kate; Benditt, Joshua O; Weiss, Michael D

    2016-11-15

    To describe the amyotrophic lateral sclerosis (ALS) patients who sought medication under the Washington State Death with Dignity (DWD) Act since its inception in 2009. Chart review at 3 tertiary medical centers in the Seattle/Puget Sound region and comparison to publicly available data of ALS and all-cause DWD cohorts from Washington and Oregon. In Washington State, 39 patients with ALS requested DWD from the University of Washington, Virginia Mason, and Swedish Medical Centers beginning in 2009. The median age at death was 65 years (range 46-86). Seventy-seven percent of the patients used the prescriptions. All of the patients who used the medications passed away without complications. The major reasons for patients to request DWD as reported by participating physicians were loss of autonomy and dignity and decrease in enjoyable activities. Inadequate pain control, financial cost, and loss of bodily control were less commonly indicated. These findings were similar to those of the 92 patients who sought DWD in Oregon. In Washington and Oregon, the percentage of patients with ALS seeking DWD is higher compared to the cancer DWD cohort. Furthermore, compared to the all-cause DWD cohort, patients with ALS are more likely to be non-Hispanic white, married, educated, enrolled in hospice, and to have died at home. Although a small number, ALS represents the disease with the highest proportion of patients seeking to participate in DWD. Patients with ALS who choose DWD are well-educated and have access to palliative or life-prolonging care. The use of the medications appears to be able to achieve the patients' goals without complications. © 2016 American Academy of Neurology.

  19. Adenocarcinoma of the ethmoid following radiotherapy for bilateral retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, L.D.; Lane, R.; Snow, J.B. Jr.

    1980-01-01

    Adenocarcinoma of the ethmoid sinus is rare, representing only 4 to 8% of malignancies of the paranasal sinuses. An extraordinary case of papillary adenocarcinoma of the ethmoid sinus arising 30 years following high-dose radiotherapy for bilateral retinoblastoma is presented. Second fatal mesenchymal and epithelial primaries have been described in 8.5% of patients with bilateral retinoblastomas previously treated with radiotherapy; however, papillary adenocarcinoma arising within the paranasal sinuses has not been reported. Aggressive treatment including partial maxillectomy, radical pansinusectomy, radical neck dissection followed by regional radiotherapy and systemic chemotherapy failed to prevent the development of fatal hepatic metastases. The high incidencemore » of second fatal primary neoplasms in patients with bilateral retinoblastomas receiving radiation suggests an innate susceptibility that may add to the risk of radiotherapy.« less

  20. The 1930s survey of forest resources in Washington and Oregon.

    Treesearch

    Constance A. Harrington

    2003-01-01

    Forest resources in Washington and Oregon were surveyed in the early 1930s by employees of the Pacific Northwest Forest Experiment Station (the original name of the current Pacific Northwest Research Station). This was the first of many periodic forest surveys conducted nationwide by the USDA Forest Service. Many publications and maps were produced from the Washington...