Code of Federal Regulations, 2011 CFR
2011-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units 1 Table 1 to Subpart AAAA of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... Combustion Units For the following pollutants You must meet thefollowing emission limits a Using the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Units a b c ER31JA03.008 ...
Gaseous emissions from waste combustion.
Werther, Joachim
2007-06-18
An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration... own or operate an existing commercial or industrial combustion unit that combusted a fuel or non-waste... internal and external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration... own or operate an existing commercial or industrial combustion unit that combusted a fuel or non-waste... external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of water or a...
Toxic-Waste Disposal by Combustion in Containers
NASA Technical Reports Server (NTRS)
Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.
1986-01-01
Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.
Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan
2005-01-01
In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...
40 CFR 62.15410 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced are combusted... gas temperature measured at the inlet of the particulate matter control device during 4 consecutive... combusts solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected...
Co-combustion of E+E waste plastics in the TAMARA test plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J.; Wanke, T.; Bergfeldt, B.
1997-12-01
The co-combustion of different amounts of various plastic fractions of electrical and electronic (E+E) waste together with municipal solid waste has been tested in the Karlsruhe test incinerator TAMARA. The tests revealed no negative influences upon the combustion process. In general the increased heating value of the fuel causes an improved burnout in all residue streams. The halogens Cl and Br added with the plastics are mainly transferred as HCl or HBr into the flue gas. An influence upon the formation of chlorinated dioxins and furans could not be observed. With increasing Br feed bromine containing homologues were detected inmore » the raw gas. The furans formed easier than the dioxins and those homologues carrying one Br atom were by far prevailing. Even at high Br input the total amount of mixed halogenated species was limited to approximately 30% of the total load of such compounds which did not leave the typical operation window for PCDD/PCDF in TAMARA. The co-combustion tests demonstrated that MSW combustion is an ecologically acceptable and economically sound disposal route for limited amounts of specific E+E waste.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...
Code of Federal Regulations, 2014 CFR
2014-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...
Code of Federal Regulations, 2012 CFR
2012-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...
Code of Federal Regulations, 2011 CFR
2011-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...
Code of Federal Regulations, 2010 CFR
2010-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...
30 CFR 816.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
30 CFR 817.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...
Code of Federal Regulations, 2012 CFR
2012-07-01
... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...
Code of Federal Regulations, 2014 CFR
2014-07-01
... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...
Code of Federal Regulations, 2010 CFR
2010-07-01
... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...
Code of Federal Regulations, 2013 CFR
2013-07-01
... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...
Method and apparatus for reducing mixed waste
Elliott, Michael L.; Perez, Jr., Joseph M.; Chapman, Chris C.; Peters, Richard D.
1995-01-01
The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...
Comparison of fuel value and combustion characteristics of two different RDF samples.
Sever Akdağ, A; Atımtay, A; Sanin, F D
2016-01-01
Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling indices of its ash were found to be higher than the limit values producing slagging and fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.
Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
Leckner, Bo
2015-03-01
The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...
40 CFR 60.1130 - How do I make my siting analysis available to the public?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30... area where you will construct your municipal waste combustion unit. (b) Publish a notice of a public... waste combustion unit. (2) The areas where the waste that your municipal waste combustion unit combusts...
Co-combustion of tannery sludge in a commercial circulating fluidized bed boiler.
Dong, Hao; Jiang, Xuguang; Lv, Guojun; Chi, Yong; Yan, Jianhua
2015-12-01
Co-combusting hazardous wastes in existing fluidized bed combustors is an alternative to hazardous waste treatment facilities, in shortage in China. Tannery sludge is a kind of hazardous waste, considered fit for co-combusting with coal in fluidized bedboilers. In this work, co-combustion tests of tannery sludge and bituminous coal were conducted in a power plant in Jiaxing, Zhejiang province. Before that, the combustion behavior of tannery sludge and bituminous were studied by thermogravimetric analysis. Tannery sludge presented higher reactivity than bituminous coal. During the co-combustion tests, the emissions of harmful gases were monitored. The results showed that the pollutant emissions met the Chinese standard except for NOx. The Concentrations of seven trace elements (As, Cr, Cd, Ni, Cu, Pb, Mn) in three exit ash flows (bottom ash in bed, fly ash in filter, and submicrometer aerosol in flue gas) were analyzed. The results of mono-combustion of bituminous coal were compared with those of co-combustion with tannery sludge. It was found that chromium enriched in fly ash. At last, the leachability of fly ash and bottom ash was analyzed. The results showed that most species were almost equal to or below the limits except for As in bottom ashes and Cr in the fly ash of co-combustion test. The concentrations of Cr in leachates of co-combustion ashes are markedly higher than that of coal mono-combustion ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
76 FR 34147 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... carbamate wastewaters to be treated using combustion, chemical oxidation, biodegradation or carbon..., biodegradation or carbon adsorption for wastewaters. The numeric treatment standard concentration limits were... in the table 40 CFR 268.42) for nonwastewaters; and, combustion, chemical oxidation, biodegradation...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2012 CFR
2012-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Code of Federal Regulations, 2014 CFR
2014-07-01
... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...
Characterization of household waste in Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisted, Rasmus, E-mail: raei@env.dtu.dk; Christensen, Thomas H.
2011-07-15
The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important materialmore » fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.« less
NASA Astrophysics Data System (ADS)
Korzhuev, M. A.
2011-02-01
It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
40 CFR 60.1015 - What is a new municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
Code of Federal Regulations, 2010 CFR
2010-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2013 CFR
2013-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2011 CFR
2011-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Code of Federal Regulations, 2012 CFR
2012-07-01
... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...
40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...
Priorities for Microgravity Combustion Research and Goals for Workshop Discussions
NASA Technical Reports Server (NTRS)
Faeth, Gerard M.
1993-01-01
Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...
40 CFR 60.1175 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (e) Procedures for maintaining a proper level of combustion air supply. (f... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... municipal waste combustion units. (c) Procedures for receiving, handling, and feeding municipal solid waste...
Code of Federal Regulations, 2010 CFR
2010-07-01
... substance easily liquifiable on warming which occurs naturally in the earth, including drip gasoline or..., either combustible or noncombustible, which is produced in a natural state from the earth and which..., including but not limited to, salt water or any other injurious or toxic chemical, waste oil or waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... substance easily liquifiable on warming which occurs naturally in the earth, including drip gasoline or..., either combustible or noncombustible, which is produced in a natural state from the earth and which..., including but not limited to, salt water or any other injurious or toxic chemical, waste oil or waste...
Code of Federal Regulations, 2014 CFR
2014-07-01
... substance easily liquifiable on warming which occurs naturally in the earth, including drip gasoline or..., either combustible or noncombustible, which is produced in a natural state from the earth and which..., including but not limited to, salt water or any other injurious or toxic chemical, waste oil or waste...
Code of Federal Regulations, 2011 CFR
2011-07-01
... substance easily liquifiable on warming which occurs naturally in the earth, including drip gasoline or..., either combustible or noncombustible, which is produced in a natural state from the earth and which..., including but not limited to, salt water or any other injurious or toxic chemical, waste oil or waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... substance easily liquifiable on warming which occurs naturally in the earth, including drip gasoline or..., either combustible or noncombustible, which is produced in a natural state from the earth and which..., including but not limited to, salt water or any other injurious or toxic chemical, waste oil or waste...
Burnet, George; Gokhale, Ashok J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.
Burnet, G.; Gokhale, A.J.
1990-07-10
A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...
40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2013 CFR
2013-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2012 CFR
2012-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
40 CFR 60.1465 - What definitions must I know?
Code of Federal Regulations, 2014 CFR
2014-07-01
... produces gases, liquids, or solids by heating municipal solid waste. The gases, liquids, or solids produced... arithmetic average flue gas temperature measured at the inlet of the particulate matter control device during... solid, liquid, or gasified municipal solid waste including, but not limited to, field-erected combustion...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
40 CFR 60.1380 - What must I include in my notice of construction?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...
Investigating alternative solutions for adsorption-contact drying when burning vegetable wastes
NASA Astrophysics Data System (ADS)
Golubkovich, A. V.
2007-06-01
Results are presented from investigation of three alternative solutions for adsorption-contact drying: combined (with cooling by means of outdoor air), with afterburning of combustible matters, and with limited adsorption of moisture using solid products of fuel combustion. Mathematical models and simplified expressions for calculating the time taken for the fuel drying to proceed are proposed.
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...
Systems and methods of storing combustion waste products
Chen, Shen-En; Wang, Peng; Miao, Xiexing; Feng, Qiyan; Zhu, Qianlin
2016-04-12
In one aspect, methods of storing one or more combustion waste products are described herein. Combustion waste products stored by a method described herein can include solid combustion waste products such as coal ash and/or gaseous combustion products such as carbon dioxide. In some embodiments, a method of storing carbon dioxide comprises providing a carbon dioxide storage medium comprising porous concrete having a macroporous and microporous pore structure and flowing carbon dioxide captured from a combustion flue gas source into the pore structure of the porous concrete.
Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M
2013-02-01
Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically encountered in solid fuel combustion. DyNOR™ measures temperature in small furnace segments and delivers the reducing reagent to the exact location where it is most effective. The DyNOR™ distributor reacts precisely and dynamically to rapid changes in combustion conditions, resulting in very low NO(x) emissions from the stack. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bulky waste quantities and treatment methods in Denmark.
Larsen, Anna W; Petersen, Claus; Christensen, Thomas H
2012-02-01
Bulky waste is a significant and increasing waste stream in Denmark. However, only little research has been done on its composition and treatment. In the present study, data about collection methods, waste quantities and treatment methods for bulky waste were obtained from two municipalities. In addition a sorting analysis was conducted on combustible waste, which is a major fraction of bulky waste in Denmark. The generation of bulky waste was found to be 150-250 kg capita(-1) year(-1), and 90% of the waste was collected at recycling centres; the rest through kerbside collection. Twelve main fractions were identified of which ten were recyclable and constituted 50-60% of the total quantity. The others were combustible waste for incineration (30-40%) and non-combustible waste for landfilling (10%). The largest fractions by mass were combustible waste, bricks and tile, concrete, non-combustible waste, wood, and metal scrap, which together made up more than 90% of the total waste amounts. The amount of combustible waste could be significantly reduced through better sorting. Many of the waste fractions consisted of composite products that underwent thorough separation before being recycled. The recyclable materials were in many cases exported to other countries which made it difficult to track their destination and further treatment.
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas
2015-08-01
This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects.
NASA Astrophysics Data System (ADS)
Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.
2016-12-01
Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2.5° results in 21% fewer mortalities attributed to waste-combustion PM2.5. Owing to coarse model resolution, our global estimates of premature mortality from waste-combustion PM2.5 are likely a lower bound.
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...
MUNICIPAL WASTE COMBUSTION ASSESSMENT ...
The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...
40 CFR 60.1665 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
40 CFR 62.15120 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...
Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.
Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep
2005-01-01
Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...
Non-combustible waste vitrification with plasma torch melter.
Park, J K; Moon, Y P; Park, B C; Song, M J; Ko, K S; Cho, J M
2001-05-01
Non-combustible radioactive wastes generated from Nuclear Power Plants (NPPs) are composed of concrete, glass, asbestos, metal, sand, soil, spent filters, etc. The melting tests for concrete, glass, sand, and spent filters were carried out using a 60 kW plasma torch system. The surrogate wastes were prepared for the tests. Non-radioactive Co and Cs were added to the surrogates in order to simulate the radioactive waste. Several kinds of surrogate prepared by their own mixture or by single waste were melted with the plasma torch system to produce glassy waste forms. The characteristics of glassy waste forms were examined for the volume reduction factor (VRF) and the leach rate. The VRFs were estimated through the density measurement of the surrogates and the glassy waste forms, and were turned out to be 1.2-2.4. The EPA (Environmental Protection Agency) Toxicity Characteristic Leaching Procedure (TCLP) was used to determine the leach resistance for As, Ba, Hg, Pb, Cd, Cr, Se, Co, and Cs. The leaching index was calculated using the total content of each element in both the waste forms and the leachant. The TCLP tests resulted in that the leach rates for all elements except Co and Cs were lower than those of the Universal Treatment Standard (UTS) limits. There were no UTS limits for Co and Cs, and their leach rate & index from the experiments were resulted in around 10 times higher than those of other elements.
EMISSIONS OF PCDD/F FROM UNCONTROLLED, DOMESTIC WASTE BURNING
Emissions of polychlorinated bibenzodioxin and dibenzofuran (PCDD/F) result from inefficiencies of combustion processes, most typically waste combustion. Uncontrolled combustion, such as occurs during so-called "backyard burning" of domestic waste, may therefore produce optimal ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 60.1220 Section 60.1220 Protection of Environment... Emission Limits § 60.1220 What happens to the emission limits during periods of startup, shutdown, and... waste combustion unit startup, shutdown, or malfunction. (b) Each startup, shutdown, or malfunction must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 62.15165 Section 62.15165 Protection of Environment... emission limits during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...
Plasma gasification of municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, G.W.; Tsangaris, A.V.
1995-12-31
Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less
Toxic emissions during co-combustion of biomass-waste wood-lignite blends in an industrial boiler.
Samaras, P; Skodras, G; Sakellaropoulos, G P; Blumenstock, M; Schramm, K W; Kettrup, A
2001-01-01
The objectives of this work were to study the PCDD/F emissions during the co-combustion of waste wood/coal co-combustion in an industrial boiler and to determine the relation of the toxic emissions to the fuel properties. Co-combustion experiments were performed in a 13.8 MWthermal industrial moving grate combustor. The fuels which were examined in this study included Greek lignite, natural uncontaminated wood, power poles and medium density fibers (MDFs) which were by-products of the plant production process. Fuel blends were prepared by mixing single components in various concentrations. PCDD/F emissions were collected during experimental runs and were analyzed according to standard methods. Low PCDD/F emissions were obtained during the co-combustion tests, lower than the limit value of 0.1 ng TEQ/Nm3. The lowest values were observed during the combustion of fuel blends containing MDF, possibly due to the inhibitory action of some of the N-containing MDF ingredients, such as urea. No direct correlation was found between the PCDD/F and the copper emissions, while examination of the PCDD/F homologue patterns revealed the predominance of the lower chlorinated isomers over the higher ones.
APTI (Air Pollution Training Institute) Course 427: combustion evaluation, student manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.
1980-02-01
This Student Manual is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. This manual was prepared by the EPA Air Pollution Training Institute (APTI) to supplement the course lecture materials and to present detailed reference information on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission evaluations, combustion control, gas, oil, and coal burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, waste gas flares, hazardous waste combustion, NOx control, and improved combustion systems. Note: There is also an Instructor's Guide to be used in conductingmore » the training course - (EPA-450/2-80-065) and a Student Workbook to be used for homework and in-class problem solving - (EPA-450/2-80-64).« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...
SEMINAR PUBLICATION: OPERATIONAL PARAMETERS FOR HAZARDOUS WASTE COMBUSTION DEVICES
The information in the document is based on presentations at the EPA-sponsored seminar series on Operational Parameters for Hazardous Waste Combustion Devices. This series consisted of five seminars held in 1992. Hazardous waste combustion devices are regulated under the Resource...
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO-FIRING
The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...
MUNICIPAL WASTE COMBUSTION ASSESSMENT: WASTE CO- FIRING
The report is an overview of waste co-firing and auxiliary fuel fired technology and identifies the extent to which co-firing and auxiliary fuel firing are practised. Waste co-firing is defined as the combustion of wastes (e. g., sewage sludge, medical waste, wood waste, and agri...
Fuel and Combustion Characteristics of Organic Wastes
NASA Astrophysics Data System (ADS)
Namba, Kunihiko; Ida, Tamio
From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...
EPA office of solid waste (OSW) report to Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derkics, D.
1996-12-31
An EPA Office of Solid Waste Report to Congress is presented in outline form. The following topics are discussed: special waste chronology; statutory hazardous waste exemption; 1988 report to Congress findings; 1993 regulatory determination; current (1996), regulatory status of fossil fuel combustion wastes; co-management study; Electric Power Research Institute (EPRI) activities; EPRI coal ash field study sites; oil ash total combustion; fossil fuel combustion; current EPA activities; and Federal Register Notice.
APTI (Air Pollution Training Institute) course 427: combustion evaluation, instructor's guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beard, J.T.; Iachetta, F.A.; Lilleleht, L.U.
1980-02-01
This Instructor's Guide is used in conjunction with Course No. 427, 'Combustion Evaluation' as applied to air pollution control situations. The teaching guide was prepared by the EPA Air Pollution Training Institute (APTI) to assist instructors in presenting course No. 427. The guide contains sections on the following topics: combustion fundamentals, fuel properties, combustion system design, pollutant emission calculations, combustion control, gas, oil, and burning, solid waste and wood burning, incineration of wastes, sewage sludge incineration, flame and catalytic incineration, waste gas flares, hazardous waste combustion, NOx control, improved combustion systems. Note: There is also a Student Workbook to bemore » used for homework and in-class problem solving (EPA-450/2-80-064) and a Student Manual for reference and additional subject material (EPA-450/2-80-063).« less
COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS
The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...
40 CFR 60.1110 - Who must submit a siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... construction of a small municipal waste combustion unit after December 6, 2000. (b) If you commence construction on your municipal waste combustion unit after August 30, 1999, but before December 6, 2000, you...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1050 - Who must submit a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
Code of Federal Regulations, 2013 CFR
2013-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2012 CFR
2012-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2011 CFR
2011-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
Code of Federal Regulations, 2014 CFR
2014-07-01
... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
A new bomb-combustion system for tritium extraction.
Marsh, Richard I; Croudace, Ian W; Warwick, Phillip E; Cooper, Natasha; St-Amant, Nadereh
2017-01-01
Quantitative extraction of tritium from a sample matrix is critical to efficient measurement of the low-energy pure beta emitter. Oxidative pyrolysis using a tube furnace (Pyrolyser) has been adopted as an industry standard approach for the liberation of tritium (Warwick et al. in Anal Chim Acta 676:93-102, 2010) however pyrolysis of organic-rich materials can be problematic. Practically, the mass of organic rich sample combusted is typically limited to <1 g to minimise the possibility of incomplete combustion. This can have an impact on both the limit of detection that can be achieved and how representative the subsample is of the bulk material, particularly in the case of heterogeneous soft waste. Raddec International Ltd (Southampton, UK), in conjunction with GAU-Radioanalytical, has developed a new high-capacity oxygen combustion bomb (the Hyperbaric Oxidiser; HBO 2 ) to address this challenge. The system is capable of quantitatively combusting samples of 20-30 g under an excess of oxygen, facilitating rapid extraction of total tritium from a wide range sample types.
40 CFR 62.14106 - Emission limits for municipal waste combustor fugitive ash emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the atmosphere from that affected facility visible emissions of combustion ash from an ash conveying... paragraph (a) of this section does cover visible emissions discharged to the atmosphere from buildings or...
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Janikowski, Stuart K.
2000-01-01
A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
..., yard wastes, food wastes, plastics, leather, rubber, and other combustibles, and noncombustible... subpart A of this part. (a) Incinerator means any furnace used in the process of burning solid waste for the purpose of reducing the volume of the waste by removing combustible matter. (b) Solid waste means...
49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).
Code of Federal Regulations, 2010 CFR
2010-10-01
... the material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or are... waste, or a marine pollutant. (3) A combustible liquid that is in a bulk packaging or a combustible liquid that is a hazardous substance, a hazardous waste, or a marine pollutant is not subject to the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion units. 241.3 Section 241.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Code of Federal Regulations, 2012 CFR
2012-07-01
... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... during periods of startup, shutdown, and malfunction? 60.1710 Section 60.1710 Protection of Environment... during periods of startup, shutdown, and malfunction? (a) The emission limits of this subpart apply at all times except during periods of municipal waste combustion unit startup, shutdown, or malfunction...
Hedman, Björn; Näslund, Morgan; Nilsson, Calle; Marklund, Stellan
2005-11-15
To assess emissions of dioxins (chlorinated dibenzodioxins and dibenzofurans) and PCB from uncontrolled domestic combustion of waste ("backyard burning"), test combustions in barrels and open fires were monitored. The waste fuels used were garden waste, paper, paper and plastic packaging, refuse-derived fuel (RDF), PVC, and electronic scrap. Combustions including PVC and electronic scrap emitted several orders of magnitude more dioxins than the other waste fuels. Emissions from the other fuels had considerable variations, but the levels were difficult to relate to waste composition. Emission factors of PCDD/F and PCB from the backyard burning ranged from 2.2 to 13 000 ng (WHO-TEQ)/kg. The levels found in ash usually were less than 5% of the total. For assessment of total emissions of dioxins and PCB from backyard burning of low and moderately contaminated wastes, an emission factor range of 4-72 ng (WHO-TEQ)/kg is suggested. These figures implythat combusting waste in the backyard could contribute substantially to total emissions, even if the amounts of fuel involved are equivalent to just a few tenths of a percent of the amounts combusted in municipal waste incinerators.
Di Marco, Giuseppe; Manuzzi, Raffaella
2018-03-01
The recovery of off-gas, waste, and biomass in Large Combustion Plants for energy production gives the opportunity to recycle waste and by-products and to recover materials produced in agricultural and industrial activities. The paper illustrates the Italian situation regarding the production of energy from off-gas, biomass, and waste in Large Combustion Plants subject to Integrated Pollution Prevention and Control (IPPC) National Permit. Moreover, it focuses on the 4 Italian Large Combustion Plants producing energy from biomass and waste. For these ones it illustrates the specific issues related to and provides a description of the solutions adopted in the 4 Italian plants. Given that air emission performance is the most relevant aspect of this kind of plants, the paper specifically focuses and reports results about this subject. In particular, in Italy among 113 LCPs subject to IPPC National Permit we have found that 4 plants use as fuel waste (i.e. solid or liquid biomasses and Solid Recovered Fuels), or a mixture of waste and traditional fuels (co-combustion of Solid Recovered Fuels and coal), and that 11 plants use as fuel off-gases listed in Annex X (i.e. Refinery Fuel Gas, Syngas, and gases produced in iron and steel industries). Moreover, there are 2 IPPC chemical plants that recovery energy from different off-gases not listed in Annex X. Regarding the 4 LCPs that produce energy from waste combustion or co-combustion, we find that they take into account all the specific issues related to this kind of plants (i.e. detailed waste characterization, waste acceptance procedures, waste handling and storage, waste pretreatment and emissions to air), and adopt solutions that are best available techniques to prevent pollution. Moreover for one of these plants, the only one for which we have a significant set of monitoring data because it obtained the IPPC National Permit in 2008, we find that energy efficiency and air emissions of the principal pollutants are in good compliance with European coal- and lignite-fired combustion plants co-incinerating waste and with BAT-AELs reported in the BREF document. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental investigation of wood combustion in a fixed bed with hot air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovic, Miladin, E-mail: m.markovic@utwente.nl; Bramer, Eddy A.; Brem, Gerrit
Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignitionmore » occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.« less
40 CFR 62.14107 - Emission limits for air curtain incinerators.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid... level of up to 35 percent (6-minute average) is permitted during startup periods during the first 30...
Hatanaka, T; Imagawa, T; Kitajima, A; Takeuchi, M
2001-12-15
Combustion experiments in a laboratory-scale fluidized-bed reactor were performed to elucidate the effects of combustion temperature on PCDD/Fs formation during incineration of model wastes with poly(vinyl chloride) or sodium chloride as a chlorine source and copper chloride as a catalyst. Each temperature of primary and secondary combustion zones in the reactor was set independently to 700, 800, and 900 degrees C using external electric heaters. The PCDD/Fs concentration is reduced as the temperature of the secondary combustion zone increases. It is effective to keep the temperature of the secondary combustion zone high enough to reduce their release during the waste incineration. On the other hand, as the temperature of the primary combustion zone rises, the PCDD/Fs concentration also increases. Lower temperature of the primary combustion zone results in less PCDD/Fs concentration in these experimental conditions. This result is probably related to the devolatilization rate of the solid waste in the primary combustion zone. The temperature decrease slows the devolatilization rate and promotes mixing of oxygen and volatile matters from the solid waste. This contributes to completing combustion reactions, resulting in reducing the PCDD/Fs concentration.
Shaaban, A F
2007-06-25
Management of medical wastes generated at different hospitals in Egypt is considered a highly serious problem. The sources and quantities of regulated medical wastes have been thoroughly surveyed and estimated (75t/day from governmental hospitals in Cairo). From the collected data it was concluded that the most appropriate incinerator capacity is 150kg/h. The objective of this work is to develop the process engineering design of an integrated unit, which is technically and economically capable for incinerating medical wastes and treatment of combustion gases. Such unit consists of (i) an incineration unit (INC-1) having an operating temperature of 1100 degrees C at 300% excess air, (ii) combustion-gases cooler (HE-1) generating 35m(3)/h hot water at 75 degrees C, (iii) dust filter (DF-1) capable of reducing particulates to 10-20mg/Nm(3), (iv) gas scrubbers (GS-1,2) for removing acidic gases, (v) a multi-tube fixed bed catalytic converter (CC-1) to maintain the level of dioxins and furans below 0.1ng/Nm(3), and (vi) an induced-draft suction fan system (SF-1) that can handle 6500Nm(3)/h at 250 degrees C. The residence time of combustion gases in the ignition, mixing and combustion chambers was found to be 2s, 0.25s and 0.75s, respectively. This will ensure both thorough homogenization of combustion gases and complete destruction of harmful constituents of the refuse. The adequate engineering design of individual process equipment results in competitive fixed and operating investments. The incineration unit has proved its high operating efficiency through the measurements of different pollutant-levels vented to the open atmosphere, which was found to be in conformity with the maximum allowable limits as specified in the law number 4/1994 issued by the Egyptian Environmental Affairs Agency (EEAA) and the European standards.
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Code of Federal Regulations, 2014 CFR
2014-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
Code of Federal Regulations, 2012 CFR
2012-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
Code of Federal Regulations, 2013 CFR
2013-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Code of Federal Regulations, 2011 CFR
2011-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Code of Federal Regulations, 2010 CFR
2010-07-01
... certification, who may operate the municipal waste combustion unit? 62.15135 Section 62.15135 Protection of... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operator Certification... combustion unit? After the required date for full or provisional certification, you must not operate your...
40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...
Chien, Y C; Yang, S H
2013-01-01
Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.
Chang, N B; Lin, K S; Sun, Y P; Wang, H P
2001-12-01
This paper confirms both technical feasibility and economic potential via the use of redundant brick kilns as an alternative option for disposal of the combustible fractions of construction and demolition wastes by a three-stage analysis. To assess such an idea, one brick kiln was selected for performing an engineering feasibility study. First of all, field sampling and lab-analyses were carried out to gain a deeper understanding of the physical, chemical, and thermodynamic properties of the combustible fractions of construction and demolition wastes. Kinetic parameters for the oxidation of the combustible fractions of construction and demolition wastes were therefore numerically calculated from the weight loss data obtained through a practice of thermogravimetric analyzer (TGA). Secondly, an engineering assessment for retrofitting the redundant brick kiln was performed based on integrating several new and existing unit operations, consisting of waste storage, shredding, feeding, combustion, flue gas cleaning, and ash removal. Such changes were subject to the operational condition in accordance with the estimated mass and energy balances. Finally, addressing the economic value of energy recovery motivated a renewed interest to convert the combustible fractions of construction and demolition wastes into useful hot water for secondary uses.
System catalytic neutralization control of combustion engines waste gases in mining technologies
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Solnitsev, R. I.
2017-10-01
The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration...-to-fuel switch. (4) If you own or operate an existing commercial or industrial combustion unit that... internal and external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... NEW STATIONARY SOURCES Standards of Performance for Commercial and Industrial Solid Waste Incineration...-to-fuel switch. (4) If you own or operate an existing commercial or industrial combustion unit that... internal and external corrosion. (3) Use a pressure sensor with a minimum tolerance of 1.27 centimeters of...
Method for storing radioactive combustible waste
Godbee, H.W.; Lovelace, R.C.
1973-10-01
A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soko, W.A.; Biaecka, B.
1998-12-31
In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less
Pietrzykowski, Marcin; Woś, Bartłomiej; Pająk, Marek; Wanic, Tomasz; Krzaklewski, Wojciech; Chodak, Marcin
2018-06-01
Combustion wastes are characterised by extremely low N contents. Therefore, introduction of nitrogen-fixing species at the first stage of their biological reclamation is required. This paper presents an assessment of the growth parameters of alders (Alnus sp.) 10 years after their introduction to a disposal site of lignite combustion waste in Central Poland. Black (Alnus glutinosa) and grey alders (Alnus incana) were planted directly in the combustion waste. The soil amendment included three variants: control with pure combustion waste, admixture of lignite culm and addition of acid sand. Both alder species displayed good growth parameters comparable to those of alders in natural habitats. However, black alder had better growth parameters, such as stand density index (SDI), diameter at breast height (DBH) and height (H) than grey alder. The lignite amendment exerted a positive effect on tree growth, reflected in a higher SDI and H, whereas the acid sand amendment did not affect any of the growth parameters of the studied alder species. Despite the good growth parameters, the measured N:P and N:K ratios in the alder leaves largely differed from the optimal values indicating insufficient P and K supply at the combustion waste disposal site. This may pose a threat to further development of the introduced tree plantings. The introduction of alders along with the lignite addition into the planting holes seems to be a successful method of combustion waste revegetation.
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
40 CFR 60.1055 - What is a materials separation plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separating certain components of municipal solid waste for a given service area prior to waste combustion and...
Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities
Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann
2016-01-01
Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393
Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.
Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann
2017-02-01
Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1 a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.
Gaseous emissions from the combustion of a waste mixture containing a high concentration of N2O.
Dong, Changqing; Yang, Yongping; Zhang, Junjiao; Lu, Xuefeng
2009-01-01
This paper is focused on reducing the emissions from the combustion of a waste mixture containing a high concentration of N2O. A rate model and an equilibrium model were used to predict gaseous emissions from the combustion of the mixture. The influences of temperature and methane were considered, and the experimental research was carried out in a tabular reactor and a pilot combustion furnace. The results showed that for the waste mixture, the combustion temperature should be in the range of 950-1100 degrees C and the gas residence time should be 2s or higher to reduce emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module presents a general overview of the issues EPA has addressed in the hazardous waste minization and combustion strategy. It provides a detailed description of the history and goals of the strategy. It presents an in-depth discussion of hazardous waste minimization and combustion issues and includes a section on environmental justice.
APPLICATION OF PULSE COMBUSTION TO SOLID AND HAZARDOUS WASTE INCINERATION
The paper discusses the application of pulse combustion to solid and hazardous waste incineration. otary kiln incinerator simulator was retrofitted with a frequency-tunable pulse combustor to enhance the efficiency of combustion. he pulse combustor excites pulsations in the kiln ...
EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION
The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.Y.; Valenti, J.C.; Tabor, D.G.
The use of waste wood as fuel for producing energy is a promising supplement to fossil fuels for many regions of the country. In addition to recovering energy and conserving landfill space, burning waste wood fuels also mitigates global warming created by fossil fuel combustion. However, the environmental consequences resulting from emissions generated by combustion of waste wood which contains paints, resins, or preservatives are not well understood. The combustion of waste wood treated with chemicals may produce potentially hazardous products of incomplete combustion (PIC) emissions such as dioxins. Characterization of PIC emissions from the combustion of waste wood previouslymore » treated with pentachlorophenol is reported in this study. Utility poles and crossbars are typically treated with a preservative such as pentachlorophenol in order to prolong their service life. They are disposed of by landfilling after being taken out of service. Burning such wood waste in boilers for steam generation becomes an increasingly attractive waste management alternative as it contains substantial energy value and reduces landfilling costs. Pilot-scale combustion tests were conducted under well controlled conditions in a 0.58 MW (2 million Btu/hr) combustor to compare PIC emissions from burning untreated wood and pentachlorophenol-treated wood. Sampling and analyses for a wide variety of PICs, including volatile organic compounds (VOCs), semivolatile organic compounds, and dioxins and furans, were performed to assess the effect of pentachlorophenol preservative present in wood on PIC emissions.« less
PRODUCTS OF INCOMPLETE COMBUSTION FROM DIRECT BURNING OF PENTACHLOROPHENOL-TREATED WOOD WASTES
The report gives results of a study to identify potential air pollution problems from the combustion of waste wood treated with pentachlorophenol preservative for energy production in a boiler. The study emphasized the characterization of the products of incomplete combustion (PI...
76 FR 15455 - Identification of Non-Hazardous Secondary Materials That Are Solid Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... waste incineration units. Preamble Outline I. Statutory Authority II. List of Abbreviations and Acronyms... Programs Are Not Solid Waste When Used in Combustion Units Under this provision--40 CFR 241.3(b)(2)(i)--EPA... combustion units, are ``solid wastes'' under the Resource Conservation and Recovery Act (RCRA). This RCRA...
WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...
40 CFR 60.56b - Standards for air curtain incinerators.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the capacity to combust greater than 250 tons per day of municipal solid waste and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...
The report gives results of pilot-scale incineration testing to develop a comprehensive list of products of incomplete combustion (PICs) from hazardous waste combustion (HWC) systems. Project goals were to: (1) identify the total mass of organic compounds sufficiently to estimate...
Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M
2015-05-01
In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermal Pretreatment For TRU Waste Sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, T.; Aoyama, Y.; Miyamoto, Y.
2008-07-01
Japan Atomic Energy Agency conducted a study on thermal treatment of TRU waste to develop a removal technology for materials that are forbidden for disposal. The thermal pretreatment in which hot nitrogen and/or air is introduced to the waste is a process of removing combustibles, liquids, and low melting point metals from PVC wrapped TRU waste. In this study, thermal pretreatment of simulated waste was conducted using a desktop thermal treatment vessel and a laboratory scale thermal pretreatment system. Combustibles and low melting point metals are effectively separated from wastes by choosing appropriate temperature of flowing gases. Combustibles such asmore » papers, PVC, oil, etc. were removed and low melting point metals such as zinc, lead, and aluminum were separated from the simulated waste by the thermal pretreatment. (authors)« less
Quantification and classification of ship scraping waste at Alang-Sosiya, India.
Srinivasa Reddy, M; Basha, Shaik; Sravan Kumar, V G; Joshi, H V; Ghosh, P K
2003-12-01
Alang-Sosiya located on the Western Coast of Gulf of Cambay, is the largest ship recycling yard in the world. Every year on average 365 ships having a mean weight (2.10x10(6)+/-7.82x10(5) LDT) are scrapped. This industry generates a huge quantity of solid waste in the form of broken wood, rubber, insulation materials, paper, metals, glass and ceramics, plastics, leather, textiles, food waste, chemicals, paints, thermocol, sponge, ash, oil mixed sponges, miscellaneous combustible and non-combustible. The quantity and composition of solid waste was collected for a period of three months and the average values are presented in this work. Sosiya had the most waste 15.63 kg/m(2) compared to Alang 10.19 kg/m(2). The combustible solid waste quantity was around 83.0% of the total solid waste available at the yard, which represents an average weight of 9.807 kg/m(2); whereas, non-combustible waste is 1.933 kg/m(2). There is not much difference between the average of total solid waste calculated from the sampling data (96.71 MT/day) and the data provided by the port authorities (96.8 MT/day).
Experimental investigation of wood combustion in a fixed bed with hot air.
Markovic, Miladin; Bramer, Eddy A; Brem, Gerrit
2014-01-01
Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical and radiological risk factors associated with waste from energy production.
Christensen, T; Fuglestvedt, J; Benestad, C; Ehdwall, H; Hansen, H; Mustonen, R; Stranden, E
1992-04-01
We have tried to estimate the toxic potential of waste from nuclear power plants and from power plants burning fossil fuels. The potential risks have been expressed as 'risk potentials' or 'person equivalents.' These are purely theoretical units and represent only an attempt to quantify the potential impact of different sources and substances on human health. Existing concentration limits for effects on human health are used. The philosophy behind establishing limits for several carcinogenic chemicals is based on a linear dose-effect curve. That is, no lower concentration of no effect exists and one has to accept a certain small risk by accepting the concentration limit. This is in line with the establishment of limits for radiation. Waste products from coal combustion have the highest potential risk among the fossil fuel alternatives. The highest risk is caused by metals, and the fly ash represents the effluent stream giving the largest contribution to the potential risk. The waste from nuclear power production has a lower potential risk than coal if today's limit values re used. If one adjusts the limits for radiation dose and the concentration limit values so that a similar risk is accepted by the limits, nuclear waste seems to have a much higher potential risk than waste from fossil fuel. The possibility that such risk estimates may be used as arguments for safe storage of the different types of waste is discussed. In order to obtain the actual risk from the potential risk, the dispersion of the waste in the environment and its uptake and effects in man have to be taken into account.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification of non-hazardous secondary materials that are solid wastes when used as fuels or ingredients in...) SOLID WASTES SOLID WASTES USED AS FUELS OR INGREDIENTS IN COMBUSTION UNITS Identification of Non-Hazardous Secondary Materials That Are Solid Wastes When Used as Fuels or Ingredients in Combustion Units...
Experimental evaluation of main emissions during coal processing waste combustion.
Dmitrienko, Margarita A; Legros, Jean C; Strizhak, Pavel A
2018-02-01
The total volume of the coal processing wastes (filter cakes) produced by Russia, China, and India is as high as dozens of millions of tons per year. The concentrations of CO and CO 2 in the emissions from the combustion of filter cakes have been measured directly for the first time. They are the biggest volume of coal processing wastes. There have been many discussions about using these wastes as primary or secondary components of coal-water slurries (CWS) and coal-water slurries containing petrochemicals (CWSP). Boilers have already been operationally tested in Russia for the combustion of CWSP based on filter cakes. In this work, the concentrations of hazardous emissions have been measured at temperatures ranging from 500 to 1000°С. The produced CO and CO 2 concentrations are shown to be practically constant at high temperatures (over 900°С) for all the coal processing wastes under study. Experiments have shown the feasibility to lowering the combustion temperatures of coal processing wastes down to 750-850°С. This provides sustainable combustion and reduces the CO and CO 2 emissions 1.2-1.7 times. These relatively low temperatures ensure satisfactory environmental and energy performance of combustion. Using CWS and CWSP instead of conventional solid fuels significantly reduces NO x and SO x emissions but leaves CO and CO 2 emissions practically at the same level as coal powder combustion. Therefore, the environmentally friendly future (in terms of all the main atmospheric emissions: CO, CO 2 , NO x , and SO x ) of both CWS and CWSP technologies relies on low-temperature combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan
Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less
Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.
Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan
2002-10-14
The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE MANAGEMENT OF COAL COMBUSTION WASTES PART 1 AND 2
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and b...
Characterization of gaseous emissions and ashes from the combustion of furniture waste.
Moreno, Ana Isabel; Font, Rafael; Conesa, Juan A
2016-12-01
Gaseous emissions and ash obtained in the combustion of furniture waste have been studied, with particular emphasis on the emissions of hazardous pollutants, such as PCDD/Fs and dl-PCBS. Two different combustion procedures were carried out, one of them in a conventional residential stove (without an automatic control of combustion air and bad mixing of combustion gases with air), and the other in a laboratory-scale reactor (operating under substoichiometric conditions). Three different experiments were carried out in the residential stove, in which the gaseous emissions and ashes obtained were analysed. The fuel burnt out in two of the experiments was furniture wood waste and in one of the experiments, the fuel burnt out was briquettes composed of a mixture of furniture wood with 10wt.% of polyurethane foam. One of the purposes of these experiments was the evaluation of the possible inhibition effect of the higher nitrogen content on the formation of PCDD/Fs. Slight inhibition of the PCDD/F formation was found although, it is noteworthy that the lowest yield of PAHs, volatile and semi-volatile compounds were obtained in the combustion of these briquettes. In all experiments, the emission factors of polychlorinated dibenzo-p-dioxins and dibenzofurans and dioxin-like polychlorinated biphenyls (PCDD/Fs and dl-PCBs) were between 29 and 74ng WHO-TEQ/kg sample burnt, lower than that obtained by other authors in the burning of pine needles and cones. PCDD/Fs and dl-PCBs emissions from furniture wood waste combustion were also analysed in the laboratory scale reactor at 850°C and the results were compared with the values obtained from the combustion of solid wood (untreated wood). The total equivalent toxicity obtained was 21.1ng WHO-TEQ/kg sample for combustion of furniture wood waste, which is low in comparison with those obtained for other waste combustion in similar conditions. In the laboratory scale reactor, PCDFs were the dominant compounds in the profiles of PCDD/Fs, by contrast, in the combustion in the residential stove, the majority compounds were PCDDs, due to the different operation conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. XI Appendix XI to Part 268—Metal Bearing Wastes Prohibited From Dilution in a Combustion... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Metal Bearing Wastes Prohibited From...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. XI Appendix XI to Part 268—Metal Bearing Wastes Prohibited From Dilution in a Combustion... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Metal Bearing Wastes Prohibited From...
40 CFR 60.1000 - What does this subpart do?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which...? This subpart establishes new source performance standards for new small municipal waste combustion...
40 CFR 60.1000 - What does this subpart do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which...? This subpart establishes new source performance standards for new small municipal waste combustion...
NASA Astrophysics Data System (ADS)
Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat
2017-09-01
Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.
Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes
This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.
40 CFR 60.1105 - How do I submit my final materials separation plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... part of the notice of construction for the municipal waste combustion unit. Preconstruction...
Waste burning and heat recovery characteristics of a mass burn incineration system.
Chen, Wei-Hsin
2003-02-01
An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.
49 CFR 173.150 - Exceptions for Class 3 (flammable and combustible liquids).
Code of Federal Regulations, 2011 CFR
2011-10-01
... material meets the definition of a hazardous substance, hazardous waste, marine pollutant, or is offered... that is a hazardous substance, a hazardous waste, or a marine pollutant is not subject to the... liquid in a non-bulk packaging unless the combustible liquid is a hazardous substance, a hazardous waste...
40 CFR 62.8855 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...
40 CFR 62.8855 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...
40 CFR 62.3645 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...
40 CFR 62.8855 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...
40 CFR 62.8855 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...
40 CFR 62.3335 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...
40 CFR 62.3645 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...
40 CFR 62.3335 - Identification of plan-negative declaration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...
40 CFR 62.3645 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...
40 CFR 62.3335 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...
40 CFR 62.3335 - Identification of plan-negative declaration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...
40 CFR 62.3645 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...
40 CFR 62.8855 - Identification of plan-negative declaration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...
40 CFR 62.3335 - Identification of plan-negative declaration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...
40 CFR 62.3645 - Identification of plan-negative declaration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
40 CFR 60.1155 - What types of training must I do?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... operators of municipal waste combustion units using the U.S. Environmental Protection Agency (EPA) or a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less
THE ROLE OF CHLORINE IN DIOXIN FORMATION
There is poor correlation between total chlorine in waste streams and formation of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) during waste combustion. This is because the active chlorine (Cl) species are strongly dependent upon combustion conditions. ...
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-12-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less
Skodras, G; Palladas, A; Kaldis, S P; Sakellaropoulos, G P
2007-04-01
In this paper, the co-combustion behaviour of coal with wastes and biomass and the related toxic gaseous emissions were investigated. The objective of this work is to add on towards a cleaner co-combustion of lignite-waste-biomass blends by utilizing compounds that could inhibit the formation of toxic pollutants. A series of co-combustion tests was performed in a pilot scale incinerator, and the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) were measured. The co-combustion behaviour of lignite with olive kernels, MDF and sawdust was studied and the ability of additives such as urea, almond shells and municipal sewage sludge to reduce the PCDD/F emissions was examined. All blends were proven good fuels and reproducible combustion conditions were achieved. The addition of inhibitors prior to combustion showed in some cases, relatively high PCDD/F emissions reduction. Among the inhibitors tested, urea seems to achieve a reduction of PCDD/F emissions for all fuel blends, while an unstable behaviour was observed for the others.
CLEANING OF FLUE GASES FROM WASTE COMBUSTORS
The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-27
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 (Renewal... Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 (Renewal). ICR...
40 CFR 60.1140 - Where and when must I hold a public meeting on the siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... will construct your municipal waste combustion unit. (c) You must schedule the public meeting to occur...
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com
2011-09-15
Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vories, K.C.
2003-07-01
Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less
Comparison of waste combustion and waste electrolysis - A systems analysis
NASA Technical Reports Server (NTRS)
Holtzapple, Mark T.; Little, Frank E.
1989-01-01
A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.
30 CFR 56.4104 - Combustible waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
30 CFR 56.4104 - Combustible waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
30 CFR 56.4104 - Combustible waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
30 CFR 56.4104 - Combustible waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... properly, waste or rags containing flammable or combustible liquids that could create a fire hazard shall... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and...
Reddy, M Srinivasa; Basha, Shaik; Joshi, H V; Sravan Kumar, V G; Jha, B; Ghosh, P K
2005-01-01
Alang-Sosiya is the largest ship-scrapping yard in the world, established in 1982. Every year an average of 171 ships having a mean weight of 2.10 x 10(6)(+/-7.82 x 10(5)) of light dead weight tonnage (LDT) being scrapped. Apart from scrapped metals, this yard generates a massive amount of combustible solid waste in the form of waste wood, plastic, insulation material, paper, glass wool, thermocol pieces (polyurethane foam material), sponge, oiled rope, cotton waste, rubber, etc. In this study multiple regression analysis was used to develop predictive models for energy content of combustible ship-scrapping solid wastes. The scope of work comprised qualitative and quantitative estimation of solid waste samples and performing a sequential selection procedure for isolating variables. Three regression models were developed to correlate the energy content (net calorific values (LHV)) with variables derived from material composition, proximate and ultimate analyses. The performance of these models for this particular waste complies well with the equations developed by other researchers (Dulong, Steuer, Scheurer-Kestner and Bento's) for estimating energy content of municipal solid waste.
Zhao, Xuyuan; Zhan, Lu; Xie, Bing; Gao, Bin
2018-09-01
In this study, hydrothermal method was applied for the treatment of five typical waste plastics (PC, HIPS, ABS, PP and PA6). The hydrothermal products of oils and solid residues were analyzed for the product slate and combustion behaviors. Some predominant chemical feedstock were detected in the oils, such as phenolic compounds and bisphenol A (BPA) in PC oils, single-ringed aromatic compounds and diphenyl-sketetons compounds in HIPS and ABS oils, alkanes in PP oils, and caprolactam (CPL) in PA6 oils. The hydrothermal solid residues were subjected to DSC analysis. Except the solid residues of PA6, all the solid residues had enormous improvement on the enthalpy of combustion. The solid residues of PC had the maximum promotion up to 576.03% compared to the raw material. The hydrothermal treatment significantly improved the energy density and facilitated effective combustion. Meanwhile, the glass fiber was recovered from the PA6 plastics. In addition, the combustion behaviors of the uplifting residues were investigated to provide the theoretical foundation for further study of combustion optimization. All the results indicated that the oils of waste plastics after hydrothermal treatment could be used as chemical feedstock; the solid residues of waste plastics after hydrothermal treatment could be used as potentially clean and efficient solid fuels. The hydrothermal treatment for various waste plastics was verified as a novel waste-to-energy technique. Copyright © 2018 Elsevier Ltd. All rights reserved.
CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION
Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
Potential SRF generation from a closed landfill in northern Italy.
Passamani, Giorgia; Ragazzi, Marco; Torretta, Vincenzo
2016-01-01
The aim of this work is to assess the possibility of producing solid recovered fuel (SRF) and "combustible SRF" from a landfill located in the north of Italy, where the waste is placed in cylindrical wrapped bales. Since the use of landfills for the disposal of municipal solid waste has many technical limitations and is subject to strict regulations and given that landfill post-closure care is very expensive, an interesting solution is to recover the bales that are stored in the landfill. The contents of the bales can then be used for energy recovery after specific treatments. Currently the landfill is closed and the local municipal council together with an environmental agency are considering constructing a mechanical biological treatment (MBT) plant for SRF production. The municipal solid waste that is stored in the landfill, the bio-dried material produced by the hypothetically treated waste in a plant for bio-drying, and the SRF obtained after the post-extraction of inert materials, metals and glass from the bio-dried material were characterized according to the quality and classification criteria of regulations in Italy. The analysis highlighted the need to treat the excavated waste in a bio-drying plant and later to remove the inert waste, metals and glass. Thus in compliance with Italian law, the material has a high enough LHV to be considered as "combustible SRF", (i.e. an SRF with enhanced characteristics). Copyright © 2015 Elsevier Ltd. All rights reserved.
TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)
... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals Water ...
Circular economy and waste to energy
NASA Astrophysics Data System (ADS)
Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.
2018-05-01
Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.
NASA Astrophysics Data System (ADS)
Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Cao, Gang; Fang, Yanhua; Wang, Junxia; Zhu, Tong; Yu, Jianzhen; Hu, Di
2018-04-01
Water-soluble humic-like substances (HULISWS) are a major redox-active component of ambient fine particulate matter (PM2.5); however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT) activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( > 59 %) to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for > 70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.
Chemical looping combustion: A new low-dioxin energy conversion technology.
Hua, Xiuning; Wang, Wei
2015-06-01
Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste. Copyright © 2015. Published by Elsevier B.V.
Ke, Chuncheng; Ma, Xiaoqian; Tang, Yuting; Zheng, Weihua; Wu, Zhendong
2017-11-01
The volatilization of three heavy metals (Cd, Cr and Zn) during food waste and PVC and their blending combustion in N 2 /O 2 or CO 2 /O 2 atmosphere in a lab-scale tubular furnace was investigated. The concentration of heavy metals in combustion ash was decreased with the increment of furnace temperature in most cases. The replacement of 80N 2 /20O 2 by 80CO 2 /20O 2 decreased the volatilization rate of Cd and Cr, but increased Zn. The increased amount of PVC added into food waste led to less content of Zn in combustion ash, 5% PVC added into food waste decreased the volatilization rate of Cr but 15% PVC added led to the higher volatilization. The volatilization rate of Zn in 70CO 2 /30O 2 was significantly lower than in 85CO 2 /15O 2 or 80CO 2 /20O 2 . The result contributes to the understanding of heavy metal volatilization during incineration and emission control of MSW oxy-fuel combustion. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, J.D.; Hecklinger, R.S.
1995-11-01
This paper by Roger S. Hecklinger is a good contribution to the understanding of municipal solid waste combustion. The traditional test methods used on residue testing were summarized in a clear manner. Mr. Hecklinger describes sampling problems using coal and coke ash testing methods, which are similar to those experienced in testing the solid waste itself for its fuel content. The author gives several comments regarding the importance of the sampling program. This article also contains the original author`s reply to the comments and questions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea
2015-03-15
Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30–31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20–24%. Other types of technical solutions – gasification with syngas use in internally fired devices, pyrolysis and plasma gasification – are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency.« less
Towards a coherent European approach for taxation of combustible waste.
Dubois, Maarten
2013-08-01
Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO(x) emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albertson, O.E.; Baturay, A.
1990-04-17
This patent describes the method for disposal of waste organic sludge of the type which contains at least one certain waste material that is either a low melting eutectic that softens or heavy metal that fumes at the highest temperature required to effect incineration of the sludge and cleansing by burning of the resultant gases. It comprises: the steps of combusting the sludge in a single combustion mass overlain by a gas-filled freeboard thereby to effect burning of substantially the entire content of combustible solids while yielding wet gases which contain entrained particulates as well as combustible and non-combustible constituents,more » volatiles and condensible matter.« less
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...
40 CFR 264.345 - Operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... variations in the physical or chemical properties of the waste feed which will not affect compliance with the... (CO) level in the stack exhaust gas; (2) Waste feed rate; (3) Combustion temperature; (4) An appropriate indicator of combustion gas velocity; (5) Allowable variations in incinerator system design or...
MECHANISTIC STEPS IN THE PRODUCTION OF PCDD AND PCDF DURING WASTE COMBUSTION
Research has shown that synthesis of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during municipal waste combustion can proceed through a three step mechanism including 1) production of Cl2 from a metal-catalyzed reaction of HCl a...
Combustion Of Poultry-Derived Fuel in a CFBC
NASA Astrophysics Data System (ADS)
Jia, Lufei; Anthony, Edward J.
Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.
Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong
2016-01-01
Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover, pyrolysis can be a better choice for treatment of solid waster in terms of controlling heavy metals. PVC and Tire should be separated and treated individually due to high possibility of heavy metal emission. This information may then serve as a guideline for the design of the subsequent gas cleaning plant, necessary to reduce the final emissions to the atmosphere to an acceptable level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waterland, L.; Lee, J.W.
1989-04-01
A series of demonstration tests of the American Combustion, Inc., Thermal Destruction System was performed under the SITE program. This oxygen-enhanced combustion system was retrofit to the rotary-kiln incinerator at EPA's Combustion Research Facility. The system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a coal tar waste (KO87). Comparative performance with conventional incinerator operation was also tested. Compliance with the incinerator performance standards of 99.99% principal organic hazardous constituents (POHC) destruction and removal efficiency and particulate emissions of less than 180 mg/dscm at 7% O2 was measured for all tests. Themore » Pyretron system was capable of in-compliance performance at double the mixed waste feedrate and at a 60% increase in batch waste charge mass than possible with conventional incineration. Scrubber blowdown and kiln ash contained no detectable levels of any of the POHCs chosen.« less
A synthesis of biomass utilization for bioenergy production in the Western United States.
David L. Nicholls; Robert A. Monserud; Dennis P. Dykstra
2008-01-01
We examine the use of woody residues, primarily from forest harvesting or wood products manufacturing operations (and to a limited degree from urban wood wastes), as a feedstock for direct-combustion bioenergy systems for electrical or thermal power applications. We examine opportunities for utilizing biomass for energy at several scales, with an emphasis on larger...
Photostabilization of a landfill containing coal combustion waste
Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake
2005-01-01
The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...
Phytostabilization of a landfill containing coal combustion waste
Christopher Barton; Donald Marx; Domy Adriano; Bon Jun Koo; Lee Newman; Stephen Czapka; John Blake
2005-01-01
The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...
Analysis of Indirect Emissions Benefits of Wind, Landfill Gas, and Municipal Solid Waste Generation
Techniques are introduced to calculate the hourly indirect emissions benefits of three types of green power resources: wind energy, municipal solid waste (MSW) combustion, and landfill gas (LFG) combustion. These techniques are applied to each of the U.S. EPA's eGRID subregions i...
The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...
Waste combustion as a source of ambient air polybrominated diphenylesters (PBDEs)
The first comprehensive set of U.S. data on PBDE concentrations from waste combustion, with more than 40 BDE congeners reported, was compared to ambient air levels of bromodiphenylethers in the U.S. Concentrations of PBDEs were determined in the raw, pre-air pollution control sys...
40 CFR 60.1885 - What must I include in my annual report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates... municipal waste combustion units only, nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load...
40 CFR 60.1410 - What must I include in my annual report?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates recorded during the most recent..., nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load level of the municipal waste combustion...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...
The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...
This memorandum sets out a Statement of Policy under the RCRA clarifying the application of the Land Disposal Restrictions (LDR) prohibition on dilution (see 40 CFR 268.3) to combustion of certain inorganic metal-bearing hazardous wastes.
40 CFR 60.1115 - What is a siting analysis?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... § 60.1115 What is a siting analysis? The siting analysis addresses how your municipal waste combustion... environmental and social costs resulting from its location and construction. The analysis must also consider...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Illinois Solid Waste Management Act, enacted in September 1986, established the State`s commitment to adress solid waste handling, based on a solid waste management hierarchy as folloew: (1) volume reduction at the source; (2) recycling and reuse; (3) combustion with energy recovery; (4) combustion for volume reduction; and (5) disposal in landfill facilities. Under this Act, the Illinois Environmental Protection Agency (IEPA) is required to publish an annual report `regarding the projected disposal capacity available for solid waste in sanitary landfills`. The information presented in this report reflects the reporting period January 1, 1994 - Decenber 31, 1994.
Minimizing excess air could be wasting energy in process heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, N.P.
1988-02-01
Operating a process heater simply to achieve a minimum excess oxygen target in the flue gas may be wasting energy in some process heaters. That's because the real minimum excess oxygen percentage is that required to reach the point of absolute combustion in the furnace. The oxygen target required to achieve absolute combustion may be 1%, or it may be 6%, depending on the operating characteristics of the furnace. Where natural gas is burned, incomplete combustion can occur, wasting fuel dollars. Energy can be wasted because of some misconceptions regarding excess air control. These are: 2-3% excess oxygen in themore » flue gas is a universally good target, too little excess oxygen will always cause the evolution of black smoke in the stack, and excess air requirements are unaffected by commissioning an air preheater.« less
NASA Microgravity Combustion Science Program
NASA Technical Reports Server (NTRS)
King, Merrill K.
1997-01-01
Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.
Publication sites productive uses of combustion ash
Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public waste combustion ash in landfills. The new technology brief describes recent studies where ash was used
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim
The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to thatmore » of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.« less
Yang, Yao Bin; Swithenbank, Jim
2008-01-01
Packed bed combustion is still the most common way to burn municipal solid wastes. In this paper, a dispersion model for particle mixing, mainly caused by the movement of the grate in a moving-burning bed, has been proposed and transport equations for the continuity, momentum, species, and energy conservation are described. Particle-mixing coefficients obtained from model tests range from 2.0x10(-6) to 3.0x10(-5)m2/s. A numerical solution is sought to simulate the combustion behaviour of a full-scale 12-tonne-per-h waste incineration furnace at different levels of bed mixing. It is found that an increase in mixing causes a slight delay in the bed ignition but greatly enhances the combustion processes during the main combustion period in the bed. A medium-level mixing produces a combustion profile that is positioned more at the central part of the combustion chamber, and any leftover combustible gases (mainly CO) enter directly into the most intensive turbulence area created by the opposing secondary-air jets and thus are consumed quickly. Generally, the specific arrangement of the impinging secondary-air jets dumps most of the non-uniformity in temperature and CO into the gas flow coming from the bed-top, while medium-level mixing results in the lowest CO emission at the furnace exit and the highest combustion efficiency in the bed.
Submergible torch for treating waste solutions and method thereof
Mattus, Alfred J.
1995-01-01
A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.
Submergible torch for treating waste solutions and method thereof
Mattus, Alfred J.
1994-01-01
A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 62.15290 - Where must I keep my records and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... records onsite in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records...
40 CFR 60.1835 - Where must I keep my records and for how long?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model... in paper copy or electronic format unless the Administrator approves another format. (b) Keep all records on each municipal waste combustion unit for at least 5 years. (c) Make all records available for...
Combustion Power Unit--400: CPU-400.
ERIC Educational Resources Information Center
Combustion Power Co., Palo Alto, CA.
Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…
Of the identified current and proposed construction projects in which municipal solid waste combustion residues replace traditionally used materials, approximately half are located on landfills or other property controlled by project sponsors, one third are in publicly accessible...
Yan, Mi; Qi, Zhi-Fu; Li, Xiao-Dong; Hu, Yan-Jun; Chen, Tong
2014-01-01
Chlorobenzene (CBz) is the precursor of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/Fs) generated in the processes of waste incineration, and it is regarded as a good indicator of PCDD/Fs for realizing PCDD/Fs online monitoring, moreover, pentachlorobenzene (PeCBz) and Hexachlorobenzene (HxCBz) belong to Persistent Organic Pollutants (POPs). However, the emission control of CBz in waste incineration does not attract enough attention, so this study focused on the inhibition of the 3 CBz formation routes in waste combustion by ammonium sulfate and urea, including CB formation from fly ash, CB formation from 1,2-dichlorobenzene (1,2-DiCBz) and the combustion of model medical waste. The results showed that both ammonium sulfate and urea reduced CBz yield during these three thermal processes. For instance, the inhibition rates of tetrachlorobenzene (TeCBz), PeCBz and HxCBz were 66.8%, 57.4% and 50.4%, respectively, when 1% urea was co-combusted with medical waste. By comparing the effect of ammonium sulfate and urea on CBz formation by three routes, urea was considered as a comparatively stable inhibitor for CBz.
The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.
Reyoung Kim, Hee
2013-09-01
The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morozov, Yegor; Tikhomirov, Alexander A.; Saltykov, Mikhail; Trifonov, Sergey V.; Kudenko, D.. Yurii A.
2016-07-01
An original method for "wet combustion" of organic wastes, which is being developed at the IBP SB RAS, is a very promising approach for regeneration of nutrient solutions for plants in future spacecraft closed Bioregenerative Life Support Systems (BLSS). The method is quick, ecofriendly, does not require special conditions such as high pressure and temperature, and the resulting nitrogen stays in forms easy for further preparation of the fertilizer. An experimental testbed of a new-generation closed ecosystem is being currently run at the IBP SB RAS to examine compatibility of the latest technologies for accelerating the cycling. Integration of "wet combustion" of organic wastes into the information system of closed ecosystem experimental testbed has been studied as part of preparatory work. Digital automation and real-time monitoring of original "wet combustion" installation operation parameters have been implemented. The new system enabled remotely controlled or automatic work of the installation. Data are stored in standard easily processed formats, allowing further mathematical processing where necessary. During ongoing experiments on improving "wet combustion" of organic wastes, automatic monitoring can notice slight changes in process parameters and record them in more detail. The ultimate goal of the study is to include the "wet combustion" installation into future full-scale experiment with humans, thus reducing the time spent by the crew on life support issues while living in the BLSS. The work was carried out with the financial support of the Russian Scientific Foundation (project 14-14-00599).
Combustion of textile residues in a packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Changkook; Phan, Anh N.; Sharifi, Vida N.
2007-08-15
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m{sup 2} h (0.027-0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard. Textile residues showed different combustion characteristics when compared to typical waste materialsmore » at low air flow rates below 819 kg/m{sup 2} h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200-1600 kg/m{sup 2} h (0.272-0.363 m/s), the bed had a maximum burning rate of about 240 kg/m{sup 2} h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density. (author)« less
China: A sleeping giant awakens to environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni Shaoxiang
1995-07-01
This article discusses the approach the Chinese government is taking to environmental issues. Included are the following topics: pollution abatement; improved rural environment by curbing the production and use of highly toxic pesticides; limiting erosion; natural reserves. Problems awaiting solutions are also discussed: air pollution (particularly coal combustion); water pollution; solid-waste pollution; rural pollution; soil erosion; desertification; soil salinization; deforestation; grassland deterioration; natural disasters.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment.
Chen, Chun-Chi; Lee, Wen-Jhy; Shih, Shun-I; Mou, Jin-Luh
2009-11-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.
Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.C.; Lee, W.J.; Shih, S.I.
2009-07-01
Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energymore » release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.« less
Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2016-04-01
To promote the utilization of waste material as alternative fuel, the mono- and co-combustion characteristics of sewage sludge (SS) and coal gangue (CG) were systematically investigated, with emphasis on environmental influences. The emission of SO2, NOx as well as the trace elements during combustion of SS and CG were studied with regard to the effects of their chemistries, structures and interactions. Results showed that co-combustion can be beneficial for ignition performance. A synergic effect on both desulfurization and denitrification can be expected at ca. 800°C. Further, an enhanced retention of trace elements during co-combustion was also observed, especially for Pb and Zn. On the basis of the results, it can be expected that, with proper operation, co-combustion of SS and CG can be a promising method for the disposal of these two wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Towards a coherent European approach for taxation of combustible waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be
2013-08-15
Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims tomore » create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.« less
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
Overview of IEA biomass combustion activities
NASA Astrophysics Data System (ADS)
Hustad, J. E.
1994-07-01
The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).
Modeling complex chemical effects in turbulent nonpremixed combustion
NASA Technical Reports Server (NTRS)
Smith, Nigel S. A.
1995-01-01
Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species equations.
Submergible torch for treating waste solutions and method thereof
Mattus, A.J.
1994-12-06
A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2020 - What combustion units are exempt from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from..., 2001 Applicability § 60.2020 What combustion units are exempt from this subpart? This subpart exempts... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
Combustion of a Pb(II)-loaded olive tree pruning used as biosorbent.
Ronda, A; Della Zassa, M; Martín-Lara, M A; Calero, M; Canu, P
2016-05-05
The olive tree pruning is a specific agroindustrial waste that can be successfully used as adsorbent, to remove Pb(II) from contaminated wastewater. Its final incineration has been studied in a thermobalance and in a laboratory flow reactor. The study aims at evaluating the fate of Pb during combustion, at two different scales of investigation. The flow reactor can treat samples approximately 10(2) larger than the conventional TGA. A detailed characterization of the raw and Pb(II)-loaded waste, before and after combustion is presented, including analysis of gas and solids products. The Pb(II)-loaded olive tree pruning has been prepared by a previous biosorption step in a lead solution, reaching a concentration of lead of 2.3 wt%. Several characterizations of the ashes and the mass balances proved that after the combustion, all the lead presents in the waste remained in ashes. Combustion in a flow reactor produced results consistent with those obtained in the thermobalance. It is thus confirmed that the combustion of Pb(II)-loaded olive tree pruning is a viable option to use it after the biosorption process. The Pb contained in the solid remained in the ashes, preventing possible environmental hazards. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential gases emissions from the combustion of municipal solid waste by bio-drying.
Zhang, Dong-Qing; He, Pin-Jing; Shao, Li-Ming
2009-09-15
One aerobic and two combined hydrolytic-aerobic processes were set up to investigate the influence of bio-drying on the potential emissions of combustion gases and the quantitative relationships of potential emissions with organics degradation. Results showed that the bio-drying would result in the increase of the HCl and SO(2) emissions and potential for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation, but the decrease of NO(x) emissions in the combustion. The potential emissions of combustion gases were correlated with organics degradation (correlation coefficient, r=0.67 for HCl, r=0.96 for SO(2), r=0.91 for PCDD/Fs and r=-0.60 for NO(x)). Interestingly, the total emissions of combustion gases based on input waste could be minimized by bio-drying. The bio-drying caused a reduction of NO(x) emissions but a negligible variation of total emissions of HCl and SO(2) as well as the potential for total PCDD/Fs formation. Moreover, the bio-drying could significantly improve the ratio of gas emissions to low heating values. The mixed waste after bio-drying was more favorable for combustion and the combined process with insufficient aeration during the hydrolytic stage was proposed for the bio-drying operation.
Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence
2011-01-01
Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
On the ASR and ASR thermal residues characterization of full scale treatment plant.
Mancini, G; Viotti, P; Luciano, A; Fino, D
2014-02-01
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material. Copyright © 2013 Elsevier Ltd. All rights reserved.
Characterization and thermal behaviour of textile waste from the industrial city of Aleppo in Syria.
Majanny, Abdulkader; Nassour, Abdallah; Gose, Sven; Scholz, Reinhard; Nelles, Michael
2011-03-01
This paper describes the present waste management practices in the industrial city Alsheikh Najjar of Aleppo, mainly with regard to textile waste materials, and provides some insights into future prospects. As a first exploration for energy recovery from textile waste materials, the thermal behaviour of seven different types of textile waste were studied by thermogravimetry. There were assorted differential thermogravimetry peaks found over a particular range of temperatures. Pyrolysis experiments were carried out to identify the pyrolysis products such as gas, liquid, and solid residues known as char. In a subsequent analysis, the combustion behaviour of textile waste was determined and analysed. Typical parameters - reaction front velocity, ignition rate - were considered for the evaluation of the combustion behaviour and the results were compared with values observed for waste wood.
Steam generation by combustion of processed waste fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudel, F.; Lengenfeld, P.
1993-12-31
The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which Modification or Reconstruction is... your municipal waste combustion unit. You must distribute the document at least to the main public...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota
2015-12-15
Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts fifteen... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2993 - Are any combustion units excluded from my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Are any combustion units excluded from... December 9, 2004 Applicability of State Plans § 60.2993 Are any combustion units excluded from my State..., that would otherwise be considered a very small municipal waste combustion unit, is excluded if the...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts the... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
40 CFR 60.2887 - What combustion units are excluded from this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are excluded from... § 60.2887 What combustion units are excluded from this subpart? This subpart excludes the types of... municipal waste combustion unit, is excluded if it meets the five requirements specified in paragraphs (b)(1...
40 CFR 60.2555 - What combustion units are exempt from my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are exempt from... State Plans § 60.2555 What combustion units are exempt from my State plan? This subpart exempts the... excluding the weight of auxiliary fuel and combustion air) of pathological waste, low-level radioactive...
From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv
2017-03-01
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.
CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
Frank, Alex; Castaldi, Marco J
2014-08-01
Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.
Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun
2017-07-11
Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.
The three-volumes document 82 presentations by authors from 15 countries at the Second International Conference on Municipal Waste Combustion (MWC) in Tampa, Florida, April 16-19, 1991. The Conference fostered the exchange of current information on research concerning MWC, ash di...
The three-volumes document 82 presentations by authors from 15 countries at the Second International Conference on Municipal Waste Combustion (MWC) in Tampa, Florida, April 16-19, 1991. The Conference fostered the exchange of current information on research concerning MWC, ash di...
The three-volumes document 82 presentations by authors from 15 countries at the Second International Conference on Municipal Waste Combustion (MWC) in Tampa, Florida, April 16-19, 1991. The Conference fostered the exchange of current information on research concerning MWC, ash di...
Pulsed atmospheric fluidized bed combustor apparatus and process
Mansour, Momtaz N.
1992-01-01
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.
Space Station Freedom combustion research
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1992-01-01
Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.
An experimental investigation of concentrated slop combustion characteristics in cyclone furnace
NASA Astrophysics Data System (ADS)
Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa
2018-02-01
Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.
Sandulescu, Elena
2004-12-01
Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.
40 CFR 240.200-2 - Recommended procedures: Design.
Code of Federal Regulations, 2013 CFR
2013-07-01
... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-2 Recommended procedures: Design. (a) In addition to the residential and commercial wastes...
40 CFR 60.2635 - What are the operator training and qualification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Environmental concerns, including types of emissions. (ii) Basic combustion principles, including products of combustion. (iii) Operation of the specific type of incinerator to be used by the operator, including proper startup, waste charging, and shutdown procedures. (iv) Combustion controls and monitoring. (v) Operation...