Testing and Analysis of the First Plastic Melt Waste Compactor Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John W.
2005-01-01
A half scale Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the testing being done on the prototype Plastic Melt Waste Compactor by the Solid Waste Management group at NASA Ames Research Center. The tests are designed to determine the prototype's functionality, simplicity of operation, ability to contain and control noxious off-gassing, biological stability of the processed waste, and water recovery potential using a waste composite that is representative of the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions.
Development of the Plastic Melt Waste Compactor- Design and Fabrication of the Half-Scale Prototype
NASA Technical Reports Server (NTRS)
Pace, Gregory S.; Fisher, John
2005-01-01
A half scale version of a device called the Plastic Melt Waste Compactor prototype has been developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This report details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.
The design and fabrication of a prototype trash compacting unit. [for long duration space missions
NASA Technical Reports Server (NTRS)
1973-01-01
A prototype trash compactor, that is compatible with the anticipated requirements of future long-term space missions, is described. Preliminary problem definition studies were conducted to identify typical types and quantities of waste materials to be expected from a typical mission. Bench-scale compaction tests were then conducted on typical waste materials to determine force/compaction curves. These data were used to design a boilerplate compactor that was fabricated to prove the feasibility of the basic design concept. A final design was then prepared from which the deliverable unit was fabricated. Design concepts are presented for suggested further development of the compactor, including a version that is capable of handling wet biodegradable wastes.
Development of a Plastic Melt Waste Compactor for Space Missions Experiments and Prototype Design
NASA Technical Reports Server (NTRS)
Pace, Gregory; Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John
2004-01-01
This paper describes development at NASA Ames Research Center of a heat melt compactor that can be used on both near term and far term missions. Experiments have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Experiments were conducted to characterize the volume reduction, bonding, encapsulation and biological stability of the waste composite and also to investigate other key design issues such as plastic extrusion, noxious off-gassing and removal of the of the plastic waste product from the processor. The experiments provided the data needed to design a prototype plastic melt waste processor, a description of which is included in the paper.
NASA Technical Reports Server (NTRS)
Autrey, David (Inventor); Morrison, Terrell Lee (Inventor); Kaufman, Cory (Inventor)
2017-01-01
A toilet for use on a space vehicle has a toilet bowl having a storage canister at a remote end for receiving human waste. The compactor includes a cable connected to a lever which pulls the cable in a direction forcing the compactor into the storage canister to compact the captured waste when the lever is actuated.
An improved waste collection system for space flight
NASA Technical Reports Server (NTRS)
Thornton, William E.; Lofland, William W., Jr.; Whitmore, Henry
1986-01-01
Waste collection systems are a critical part of manned space flight. Systems to date have had a number of deficiencies. A new system, which uses a simple mechanical piston compactor and disposable pads allows a clean area for defecation and maximum efficiency of waste collection and storage. The concept has been extensively tested. Flight demonstration units are being built, tested, and scheduled for flight. A prototype operational unit is under construction. This system offers several advantages over existing or planned systems in the areas of crew interface and operation, cost, size, weight, and maintenance and power consumption.
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations on pavements, houses, commercial buildings, and other structures. (j) Curb collection means... demolition wastes; and infectious wastes. (z) Stationary compactor means a powered machine which is designed...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations on pavements, houses, commercial buildings, and other structures. (j) Curb collection means... demolition wastes; and infectious wastes. (z) Stationary compactor means a powered machine which is designed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations on pavements, houses, commercial buildings, and other structures. (j) Curb collection means... demolition wastes; and infectious wastes. (z) Stationary compactor means a powered machine which is designed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations on pavements, houses, commercial buildings, and other structures. (j) Curb collection means... demolition wastes; and infectious wastes. (z) Stationary compactor means a powered machine which is designed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations on pavements, houses, commercial buildings, and other structures. (j) Curb collection means... demolition wastes; and infectious wastes. (z) Stationary compactor means a powered machine which is designed...
Measuring space radiation shielding effectiveness
NASA Astrophysics Data System (ADS)
Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven
2017-09-01
Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.
Space Mission Utility and Requirements for a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Fisher, John W.; Lee, Jeffrey M.
2016-01-01
Management of waste on long-duration space missions is both a problem and an opportunity. Uncontained or unprocessed waste is a crew health hazard and a habitat storage problem. A Heat Melt Compactor (HMC) such as NASA has been developing is capable of processing space mission trash and converting it to useful products. The HMC is intended to process space mission trash to achieve a number of objectives including: volume reduction, biological safening and stabilization, water recovery, radiation shielding, and planetary protection. This paper explores the utility of the HMC to future space missions and how this translates into HMC system requirements.
Source Contaminant Control for the Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Roman, Monsi; Howard, David
2015-01-01
The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS CHILD LABOR REGULATIONS, ORDERS AND... American National Standard for Equipment Technology and Operations for Wastes and Recyclable Materials... Standard ANSI Z245.5-2004 American National Standard for Equipment Technology and Operations for Wastes and...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
40 CFR 246.200-6 - Recommended procedures: Storage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Recommended procedures: Storage. 246....200-6 Recommended procedures: Storage. Among the alternatives for paper storage are on-site bailing, the use of stationary compactors, or storage in corrugated boxes or normal waste containers. Stored...
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Layne, Andrew; Hummerick, Mary
2013-01-01
Topics covered: 1. Project Structure 2. "Trash to Gas" 3. "Smashing Trash! The Heat Melt Compactor" 4. "Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste" Thermal degradation of trash reduces volume while creating water, carbon dioxide and ash. CO2 can be fed to Sabatier reactor for CH4 production to fuel LOX/LCH4 ascent vehicle. Optimal performance: HFWS, full temperature ramp to 500-600 C. Tar challenges exist. Catalysis: Dolomag did eliminate allene byproducts from the product stream. 2nd Gen Reactor Studies. Targeting power, mass, time efficiency. Gas separation, Catalysis to reduce tar formation. Microgravity effects. Downselect in August will determine where we should spend time optimizing the technology.
Tape Placement Head for Applying Thermoplastic Tape to an Object
NASA Technical Reports Server (NTRS)
Cope, Ralph D. (Inventor); Funck, Steve B. (Inventor); Gruber, Mark B. (Inventor); Lamontia, Mark A. (Inventor); Johnson, Anthony D. (Inventor)
2008-01-01
A tape placement head for applying thermoplastic tape to an object includes a heated feeder which guides the tape/tow to a heated zone. The heated zone has a line compactor having a single row of at least one movable heated member. An area compactor is located in the heated zone downstream from the line compactor. The area compactor includes a plurality of rows of movable feet which are extendable toward the tape/tow different distances with respect to each other to conform to the shape of the object. A shim is located between the heated compactors and the tape/tow. A chilled compactor is in a chilled zone downstream from the heated zone. The chilled zone includes a line chilled compactor and an area chilled compactor. A chilled shim is mounted between the chilled compactor and the tape/tow.
Characterization of Heat Melt Compactor (HMC) Product Water
NASA Technical Reports Server (NTRS)
Harris, Linden; Wignarajah, Kanapathipi; Alba, Richard Gilbert; Pace, Gregory S.; Fisher, John W.
2013-01-01
The Heat Melt Compactor (HMC) is designed to sterilize and process wastes produced during space missions. Benefits of the HMC include reduction of biohazards to the crew, reduction in volume of wastes that would otherwise require storage, production of radiation shielding tiles, and recovery of water and other resources. Water reuse is critical onboard spacecrafts; it reduces the need for resupply missions and saves valuable storage space. The main sources of water in HMC batches are food, beverages, shampoo, disinfecting wipes, toothpaste, and diapers. Water reclaimed by the HMC was analyzed for concentrations of Na+, NH4+, K+, Mg2+, Ca2+, Cl--, NO2--, Br--, NO3--, PO43--, SO42--, total organic carbon (TOC), total inorganic carbon (TIC), % total solids, and pH. The data are discussed in relation to the current water input characteristics established for the International Space Station Water Processor Assembly system. Batches with higher than average amounts of food produced HMC product water with higher sulfate content, and batches with higher proportions of disinfectant wipes and food yielded HMC product water with higher ammonium concentration. We also compared theoretical chemical composition of HMC product water based on food labels and literature values to experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
An Ultrasonic Compactor for Oil and Gas Exploration
NASA Astrophysics Data System (ADS)
Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret
The Badger Explorer is a rig-less oil and gas exploration tool which drills into the subsea environment to collect geological data. Drill spoil is transported from the front end of the system to the rear, where the material is compacted. Motivated by the need to develop a highly efficient compaction system, an ultrasonic compactor for application with granular geological materials encountered in subsea environments is designed and fabricated as part of this study. The finite element method is used to design a compactor configuration suitable for subsea exploration, consisting of a vibrating ultrasonic horn called a resonant compactor head, which operates in a longitudinal mode at 20 kHz, driven by a Langevin piezoelectric transducer. A simplified version of the compactor is also designed, due to its ease of incorporating in a lab-based experimental rig, in order to demonstrate enhanced compaction using ultrasonics. Numerical analysis of this simplified compactor system is supported with experimental characterisation using laser Doppler vibrometry. Compaction testing is then conducted on granular geological material, showing that compaction can be enhanced through the use of an ultrasonic compactor.
Superpave gyratory compactor internal angle of gyration study
DOT National Transportation Integrated Search
2007-05-01
This study on the angle of gyration for Superpave compactors was done to determine if there is a difference in the bulk specific gravity (Gmb) and ultimately the volumetric properties when calibrating the compactors angle of gyration inter...
Continuous overturn control of compactors/rollers by rollover protective structures
Myers, Melvin L.
2009-01-01
The objective of this article is to report on the effectiveness of Rollover Protective Structures (ROPS) in preventing continuous overturns of compactors/rollers. This study is a case-based analysis of government investigation reports of injury-related overturns of compactors/rollers. The overturns were predominately on construction sites including road and embankment construction in the USA. Other sites included driveway and roadway maintenance or repair and transporting of compactors/rollers either by driving or when loading on or unloading from trailers. The principle intervention observed in controlling a continuous overturn (a roll beyond 90° relative to the impact surface) was the presence of a ROPS on a compactor/roller that serves as an anti-roll bar. The main outcome measures are cases of compactor/roller overturns that are restricted to a 90° roll or are continuous (exceed a 90° roll.) All cases of an overturn in which a ROPS was present resulted in no continuous overturn, and the cases involved with no ROPS averaged an overturn of 301°, showing a propensity for a continuous overturn. This case-based analysis identified a ROPS on compactors/rollers as an effective control for reducing the risk of an overturn to 90° relative to the impact plane. PMID:21765649
Water Recovery with the Heat Melt Compactor in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Goo, Jonathan; Fisher, John
2015-01-01
The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.
Evaluation of Superpave Gyratory Compactors
DOT National Transportation Integrated Search
1999-01-01
This is the third report from the South Central Superpave Center (SCSC). It presents the results, findings, conclusions, and recommendations based on a comprehensive 12-month laboratory study of gyratory compactors conducted at the center.
Microbial Characterization Space Solid Wastes Treated with a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2012-01-01
The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all were showed negative growth when run through the manufacturer's protocol, meaning that the 106 or so spores impregnated into the strips were dead. Control test strips, i.e., not exposed to the HMC conditions were all strongly positive. One area of concern is that the identities of isolates from the cultivable counts included several human pathogens, namely Staphylococcus aureus. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
DOT National Transportation Integrated Search
1966-12-01
The primary objective of this study was to evaluate the gyratory kneading compactor and to investigate the possibilities and capabilities of this type of equipment. : Curves were developed for six different asphaltic concrete mixes with varying compa...
Evaluation of the internal angle of gyration of Superpave gyratory compactors in Alabama
DOT National Transportation Integrated Search
2003-12-01
The application of a compaction effort that will produce similar densities from one Superpave Gyratory Compactor (SGC) to another is crucial to the proper design, production control, and acceptance of HMA mixes. Currently in Alabama, differences in a...
Reference guide for the soil compactor analyzer.
DOT National Transportation Integrated Search
2009-07-01
The Soil Compactor Analyzer (SCA) attaches to the automatic tamper used for Test Methods Tex-113-E and 114-E and uses rapid sampling of the hammer displacement to measure impact velocity. With the known mass of the hammer and the determined velocity,...
Collector/Compactor for Waste or Debris
NASA Technical Reports Server (NTRS)
Mangialiardi, John K.
1987-01-01
Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.
Implementation of the soil compactor analyzer into test method TEX-113-E : technical report.
DOT National Transportation Integrated Search
2012-04-01
Test method Tex-113-E prepares laboratory aggregate base test specimens with an impact hammer : compactor. These specimens are used for compaction characteristics and design tests. Although the : historical Tex-113-E required a certain amount of comp...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
..., freezers, water heaters, dishwashers, trash compactors, air conditioners, ovens, microwave ovens, and other... appliance product. A large appliance product is also defined as any organic surface-coated metal range, oven, microwave, refrigerator, freezer, washer, dryer, dishwasher, water heater, or trash compactor manufactured...
Development of the compaction machine for the production of new shapes of pressed biofuels
NASA Astrophysics Data System (ADS)
Šooš, Ľubomír; Matúš, Miloš; Beniak, Juraj; Križan, Peter
2018-01-01
Briquettes and especially pellets became the fuel of the 21st century. These are pressed biofuels made from the biomass which have the required heat, shape, size, density and mechanical properties. Today, these pressed biofuels are made in the form of a block, cylinder, n-angle octagonal, either without or with the holes. Several analyses confirm that neither a block, nor the cylinder is the optimal shape for the production of pressed biofuels, both in terms of the production, storage, automated transport in the combustion process and the optimum combustion process. For this reason, we began to analyse different shape, size, density and mechanical properties of briquettes and pellets. In the first part of this article, the biofuel is described from these points of view. The result of this analysis is the new optimized spheroid shape of the pressed biofuels. The goal of the second part of the article is the construction design of a new compacting machine for manufacturing of the optimized shape of the compacted piece. The task is demanding due to the fact that in comparison to the production of cylindrical or square-shaped compacted pieces, the manufacturing of ‘quasi-spherical’ compacted pieces is discontinuous. Furthermore, unlike the standard types of compaction presses which compact the material between the two cylinders, it is necessary to hold the compacted piece for certain time under high pressure and at the high temperature. In this way, the lignin contained in compacted raw material becomes plastic and no further binding material needs to be added. The kinematics of a new compactor was therefore divided into two stages- ‘the stage of compacting’ and ‘the stage of load bearing capacity. This article describes an innovative and patent protected principle of compactor construction. The prototype of a designed machine has already been produced in our department. The first test results of this machine production as described in the conclusion of the paper confirm that kinematics and compactor construction were both correct.
Developing and Evaluating Prototype of Waste Volume Monitoring Using Internet of Things
NASA Astrophysics Data System (ADS)
Fathhan Arief, Mohamad; Lumban Gaol, Ford
2017-06-01
In Indonesia, especially Jakarta have a lot of garbage strewn that can be an eyesore and also cause pollution that can carry diseases. Garbage strewn can cause many things, one of her dues is bins are overflowing due to the full so it can not accommodate the waste dumped from other people. Thus, the author created a new method for waste disposal more systematic. In creating new method requires a technology to supports, then the author makes a prototype for waste volume monitoring. By using the internet of things prototype of waste volume monitoring may give notification to the sanitary agency that waste in the trash bin needs to be disposal. In this study, conducted the design and manufactured of prototype waste volume monitoring using LinkItONE board based by Arduino and an ultrasonic sensor for appliance senses. Once the prototype is completed, evaluation in order to determine whether the prototype will function properly. The result showed that the expected function of a prototype waste volume monitoring can work well.
Trash-to-Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Hintze, Paul E.
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
Trash to Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Nur, Mononita
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
29 CFR 570.128 - Loading of certain scrap paper balers and paper box compactors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Loading of certain scrap paper balers and paper box... Amended Exemptions § 570.128 Loading of certain scrap paper balers and paper box compactors. (a) Section... 16- and 17-year-olds to load, but not operate or unload, certain power-driven scrap paper balers and...
Analysis of Water Recovery Rate from the Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Hegde, U.; Gokoglu, S.
2013-01-01
Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
Knowledge-based fault diagnosis system for refuse collection vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, CheeFai; Juffrizal, K.; Khalil, S. N.
The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledgemore » that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.« less
Space Shuttle Orbiter waste collection system conceptual study
NASA Technical Reports Server (NTRS)
Abbate, M.
1985-01-01
The analyses and studies conducted to develop a recommended design concept for a new fecal collection system that can be retrofited into the space shuttle vehicle to replace the existing troublesome system which has had limited success in use are summarized. The concept selected is a cartridge compactor fecal collection subsystem which utilizes an airflow collection mode combined with a mechanical compaction and vacuum drying mode that satisfies the shuttle requirements with respect to size, weight, interfaces, and crew comments. A follow-on development program is recommended which is to result in flight test hardware retrofitable on a shuttle vehicle. This permits NASA to evaluate the system which has space station applicablity before committing production funds for the shuttle fleet and space station development.
Life Science Research Facility materials management requirements and concepts
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.
1986-01-01
The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.
Revolutionary advances in medical waste management. The Sanitec system.
Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A
2006-01-01
It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the medical waste issue. The Sanitec system is the right choice for healthcare and medical waste professionals around the world.
Elaboration d'une structure de collecte des matieres residuelles selon la Theorie Constructale
NASA Astrophysics Data System (ADS)
Al-Maalouf, George
Currently, more than 80% of the waste management costs are attributed to the waste collection phase. In order to reduce these costs, one current solution resides in the implementation of waste transfer stations. In these stations, at least 3 collection vehicles transfer their load into a larger hauling truck. This cost reduction is based on the principle of economy of scale applied to the transportation sector. This solution improves the efficiency of the system; nevertheless, it does not optimize it. Recent studies show that the compactor trucks used in the collection phase generate significant economic losses mainly due to the frequent stops and the transportation to transfer stations often far from the collection area. This study suggests the restructuring of the waste collection process by dividing it into two phases: the collection phase, and the transportation to the transfer station phase. To achieve this, a deterministic theory called: "the Constructal Theory" (CT) is used. The results show that starting a certain density threshold, the application of the CT minimizes energy losses in the system. In fact, the collection is optimal if it is done using a combination of low capacity vehicle to collect door to door and transfer their charge into high-capacity trucks. These trucks will then transport their load to the transfer station. To minimize the costs of labor, this study proposes the use of Cybernetic Transport System (CTS) as an automated collection vehicle to collect small amounts of waste. Finally, the optimization method proposed is part of a decentralized approach to the collection and treatment of waste. This allows the implementation of multi-process waste treatment facilities on a territory scale.
Advanced Life Support Technologies and Scenarios
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2011-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
Design and Testing of a Lyophilizer for Water Recovery from Solid Waste
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-12-31
Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less
Heat Melt Compactor Development Progress
NASA Technical Reports Server (NTRS)
Lee, Jeffrey M.; Fisher, John W.; Pace, Gregory
2017-01-01
The status of the Heat Melt Compactor (HMC) development project is reported. HMC Generation 2 (Gen 2) has been assembled and initial testing has begun. A baseline mission use case for trash volume reduction, water recovery, trash sterilization, and the venting of effluent gases and water vapor to space has been conceptualized. A test campaign to reduce technical risks is underway. This risk reduction testing examines the many varied operating scenarios and conditions needed for processing trash during a space mission. The test results along with performance characterization of HMC Gen 2 will be used to prescribe requirements and specifications for a future ISS flight Technology Demonstration. We report on the current status, technical risks, and test results in the context of an ISS vent-to-space Technology Demonstration.
Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.
2013-01-01
This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard; McCoy, LaShelle; Richard, Jeffrey; Ruby, Anna; Wheeler, Raymond
2012-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature, required to achieve a sterile, stable product. The work reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Ceo bacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180 C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180 C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130 C-150 C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
Ratanatamskul, Chavalit; Saleart, Tawinan
2016-04-01
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m(3)/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.
Lyophilization for Water Recovery III, System Design
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Reinhard, Martin; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground- based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Yeap, Kong Seng; Mohd Yaacob, Naziaty; Rao, Sreenivasaiah Purushothama; Hashim, Nor Rasidah
2012-12-01
This article presents lessons learned from a design project that explored the possibility of incorporating waste into the design of a school prototype. The authors worked with professional architects, a waste artist, environmental scientists and local waste operators to uncover new uses and applications for discarded items. As a result, bottles, aluminium cans, reclaimed doors, crushed concrete and second-hand bricks, etc. were identified, explored and integrated into the architectural design. This article serves as a catalyst that advocates the use of reclaimed materials in the field of design and planning. In particular, it highlights the challenges and issues that need to be addressed in carrying out design work with waste. Designers and practitioners interested in minimizing waste generation by proposing the use of reclaimed materials will find this article useful.
Evaluation of hydraulic plate compactor.
DOT National Transportation Integrated Search
2014-12-01
This report presents the results of two parallel field investigations consisting of utility trench backfill compaction tests. The field : investigation at State College, Pa. was conducted to establish baseline measurements using a walk-behind vibrato...
12. Jet Lowe, Photographer, June 1979. FIRST FLOOR INTERIOR LOOKING ...
12. Jet Lowe, Photographer, June 1979. FIRST FLOOR INTERIOR LOOKING NORTH. SHOWING SELF-RISING FLOUR BIN AND SALEM MACHINE WORKS' WHEAT ROLLER MILLS AND FLOUR BAGGER/COMPACTOR. - Womack's Mill, Yanceyville, Caswell County, NC
Field evaluation of a portable gyratory compactor : final report.
DOT National Transportation Integrated Search
2002-06-01
Application of quality management concepts to asphalt paving evolved because recipe specifications frequently proved inadequate for ensuring pavement performance. Quality management of asphalt concrete is founded on the premise that the producer cont...
Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2011-01-01
The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John
2013-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
Comparing Trash Disposal and Reuse Options for Deep Space Gateway and Mars Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael; Broyan, James; Goodliff, Kandyce; Clowdsley, Martha; Singleterry, Robert
2017-01-01
Taking out the trash at NASA's newly proposed Deep Space Gateway (DSG) will not be a trivial task. While not the most important aspect of planning this cislunar outpost, there are several options that should be carefully considered since they may affect the crew as well as mission mass and volume. This study extends an earlier one, which focused on waste disposal options for a Mars Transit Vehicle. In that study, gasifying and venting trash along the way was found to noticeably reduce propellant needs and launch mass, whereas keeping processed trash on board in the form of radiation shielding tiles would significantly lower the crew's radiation dose during a solar particle event. Another favorable strategy was packing trash in a used logistics module for disposal. Since the DSG does not need much propulsion to maintain its orbit and Orion will be present with its own radiation storm shelter at the Gateway, the driving factors of the waste disposal trade study are different than for the Mars mission. Besides reviewing the propulsion and radiation shielding factors, potential drivers such as mass, power, volume, crew time, and human factors (e.g. smell) were studied. Disposal options for DSG include jettison of a used logistics module containing waste after every human stay, jettison of the same logistics module after several missions once it is full, regular disposal of trash via an airlock, or gasifying waste products for easier disposal or reuse. Conversely, a heat melt compactor device could be used to remove water and stabilize trash into tiles which could be more compactly stored on board and used as radiation shielding. Equivalent system mass analysis is used to tally the benefits and costs (mass, volume, power, crew time) of each case on an equivalent mass basis. Other more subjective factors are also discussed. Recommendations are made for DSG and Mars mission waste disposal.
Flight test of an improved solid waste collection system
NASA Technical Reports Server (NTRS)
Thornton, W.; Brasseaux, H.; Whitmore, H.
1991-01-01
A system for human waste collection is described and evaluated on the basis of a prototype employed for the shuttle flight STS-35. The manually operated version of the unit is designed to collect, compact, and store human waste and cleaning material in replaceable volumes. The system is presented with illustrations and descriptions of the disposable pads that are used to clean the cylinder and occlusive air valves as well as seal the unit. Temporary retention and waste entrainment are provided by the variable airflow in the manual unit tested. The prototype testing indicates that sufficient airflow is achieved at 45 CFM and that the stowage volume (18.7 cu in.) is adequate for storing human waste with minimal logistical support. Higher compaction pressure and the use of a directed airstream are proposed for improving the packing efficiency of the unit.
NASA Technical Reports Server (NTRS)
Fisher, John; Wignarajah, K.; Howard, Kevin; Serio, Mike; Kroo, Eric
2004-01-01
The prototype dry pyrolyser delivered to Ames Research Center is the end-product of a Phase I1 Small Business Initiative Research (SBIR) project. Some of the major advantages of pyrolysis for processing solid wastes are that it can process solid wastes, it permits elemental recycling while conserving oxygen use, and it can function as a pretreatment for combustion processes. One of the disadvantages of pyrolysis is the formation of tars. By controlling the rate of heating, tar formation can be minimized. This paper presents data on the pyrolysis of various space station wastes. The performance of the pyrolyser is also discussed and appropriate modifications suggested to improve the performance of the dry pyrolyzer.
Comparison of several asphalt design methods.
DOT National Transportation Integrated Search
1998-01-01
This laboratory study compared several methods of selecting the optimum asphalt content of surface mixes. Six surface mixes were tested using the 50-blow Marshall design, the 75-blow Marshall design, two brands of SHRP gyratory compactors, and the U....
Research note : field control of asphalt concrete paving mixtures.
DOT National Transportation Integrated Search
1995-01-01
The goal of this study was to develop information and evaluate new methods for controlling quality of the AC mixture in the mat. Specifically, this research project evaluated a gyratory compactor in the field laboratory to determine mix quality. Spec...
Commander Lousma stows trash bags in middeck CO2 Absorber Stowage volume
NASA Technical Reports Server (NTRS)
1982-01-01
Commander Lousma uses his body as a zero gravity garbage compactor to stow plastic bags full of empty containers and trash in the Carbon Dioxide (CO2) Absorber Stowage volume in front of the airlock hatch.
Evaluating Georgia DOT's compaction requirements for stone matrix asphalt mixes.
DOT National Transportation Integrated Search
2006-06-01
This study determined a compactive effort for Stone Mastic Asphalt (SMA) mixes with the Superpave gyratory compactor (SGC) that would match a 50-blow Marshall compactive effort using aggregates and mix designs common in Georgia. SMA mix designs were ...
NASA Technical Reports Server (NTRS)
Labak, L. J.; Remus, G. A.; Mansnerus, R.
1971-01-01
Three transport system concepts were experimentally evaluated for transferring human and nonhuman wastes from a collection site to an incineration unit onboard spacecraft. The operating parameters, merits, and shortcomings of a porous-pneumatic, nozzle-pneumatic, and a mechanical screw-feed system were determined. An analysis of the test data was made and a preliminary design of two prototype systems was prepared.
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PROTOTYPE PRINTED CIRCUIT BOARDS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
Evaluation of the Superpave Gyratory Compactor for Low Volume Roads
DOT National Transportation Integrated Search
2000-06-01
There is evidence that some Kansas mixes, which have performed well in the past, will not meet the currently proposed design requirements for a Superpave level I mix. The major problem is low voids in the mineral aggregate (VMA). The major reasons fo...
Compaction of mixtures of hard rocks and soft shales and non-durable shales using impact compactors.
DOT National Transportation Integrated Search
2007-06-01
Impact roller compaction has been used to improve embankment and highway subgrades in South Africa, Australia, Europe, and China and other areas of the world. In September of 2003, the International Technology Scanning Program, sponsored by the Feder...
OPERATING THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. GRUETZMACHER; ET AL
2001-01-01
Two prototype systems for low-density Green is Clean (GIC) waste at Los Alamos National Laboratory (LANL) have been in operation for three years at the Solid Waste Operation's (SWOs) non-destructive assay (NDA) building. The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) are used to verify the waste generator's acceptable knowledge (AK) that low-density waste is nonradioactive. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAs) that has been actively segregated as ''clean'' (i.e., nonradioactive) through the use of waste generator AK. GIC waste that is verifiedmore » clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from RCAs at LANL might be free of contamination. To date, with pilot programs at five facilities at LANL, 3000 cubic feet of GIC waste has been verified clean by these two prototype systems. Both the WAND and HERCULES systems are highly sensitive measurement systems optimized to detect very small quantities of common LANL radionuclides. Both of the systems use a set of phoswich scintillation detectors in close proximity to the waste, which have the capability of detecting plutonium-239 concentrations below 3 pCi per gram of low density waste. Both systems detect low-energy x-rays and a broad range of gamma rays (10-2000 keV), while the WAND system also detects high energy beta particles (>100 keV). The WAND system consists of a bank of six shielded detectors which screen low density shredded waste or stacked sheets of paper moving under the detectors in a twelve inch swath on a conveyor belt. The WAND system was developed and tested at the Los Alamos Plutonium Facility in conjunction with instrument system designers from the Los Alamos Safeguards Science and Technology group. The HERCULES system consists of a bank of three shielded detectors which screen low-density waste in two cubic foot cardboard boxes or in bags sitting on a turntable. Waste that does not pass the verification process can be examined within the facility to determine the type and quantity of the contamination and its origin within a waste container. The paper discusses lessons learned that have helped generators improve their AK segregation.« less
Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Prototype wash water renovation system integration with government-furnished wash fixture
NASA Technical Reports Server (NTRS)
1984-01-01
The requirements of a significant quantity of proposed life sciences experiments in Shuttle payloads for available wash water to support cleansing operations has provided the incentive to develop a technique for wash water renovation. A prototype wash water waste renovation system which has the capability to process the waste water and return it to a state adequate for reuse in a typical cleansing fixture designed to support life science experiments was investigated. The resulting technology is to support other developments efforts pertaining to water reclamation by serving as a pretreatment step for subsequent reclamation procedures.
NASA Astrophysics Data System (ADS)
Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2014-03-01
Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.
POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS
This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...
Upgrading of Sergiev Posad department of Moscow NPO Radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debieve, Pierre; Delecaut, Gregory; Vanleeuw, Daniel
Available in abstract form only. Full text of publication follows: BELGATOM and IRE Consortium has been awarded by the European Commission end of 2005 to conduct a project entitled 'Upgrading of Sergiev Posad Department of Moscow NPO Radon and the assessment of the radiological impact in the area nearby'. The main aims to achieve in the frame of this Europe-aid Project are: - Improvement of the performance and the safety level of the present radwaste management system, taking into account the additional waste expected from the Kurchatov Institute rehabilitation and from the forecast decommissioning of Research Reactors on the territorymore » of Moscow. - Basic design and assistance for the procurement of upgrading equipment related to: - radwaste sorting and pretreatment - replacement of the hydraulic system of the existing super-compactor - characterisation system for radwaste 'Support for preparing the PSAR and PEIAR for new licensing' Assessment of the radiological impact in an area of 50 km radius around Sergiev Posad Department. - The initial duration of this Project is 3 years, starting beginning of 2006. This paper describes the difficulties encountered to start and implement the Project and its status at the half of the planned time schedule. (authors)« less
Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.
2015-06-12
This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less
NASA Astrophysics Data System (ADS)
Leege, Brian J.
The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.
NASA Technical Reports Server (NTRS)
Sines, Jeffrey L.; Banks, Joel; Efatpenah, Keyanoush
1990-01-01
Recent developments have made it possible for scientists and engineers to consider returning to the Moon to build a manned lunar base. The base can be used to conduct scientific research, develop new space technology, and utilize the natural resources of the Moon. Areas of the base will be separated, connected by a system of roads that reduce the power requirements of vehicles traveling on them. Feasible road types for the lunar surface were analyzed and a road construction system was designed for initial lunar base operations. A model was also constructed to show the system configuration and key operating features. The alternate designs for the lunar road construction system were developed in four stages: analyze and select a road type; determine operations and machinery needed to produce the road; develop machinery configurations; and develop alternates for several machine components. A compacted lunar soil road was selected for initial lunar base operations. The only machinery required to produce this road were a grader and a compactor. The road construction system consists of a main drive unit which is used for propulsion, a detachable grader assembly, and a towed compactor.
Improving feeding powder distribution to the compaction zone in the roller compaction.
Yu, Mingzhe; Omar, Chalak; Schmidt, Alexander; Litster, James D; Salman, Agba D
2018-07-01
In the roller compaction process, powder flow properties have a significant influence on the uniformity of the ribbon properties. The objective of this work was to improve the powder flow in the feeding zone by developing novel feeding guiders which are located in the feeding zone close to the rollers in the roller compactor (side sealing system). Three novel feeding guiders were designed by 3D printing and used in the roller compactor, aiming to control the amount of powder passing across the roller width. The new feeding guiders were used to guide more powder to the sides between the rollers and less powder to the centre comparing to the original feeding elements. Temperature profile and porosity across the ribbon width indicated the uniformity of the ribbon properties. Using the novel feeding guiders resulted in producing ribbons with uniform temperature profile and porosity distribution across the ribbon width. The design of the feeding guiders contributed to improving the tensile strength of the ribbons produced from the compaction stage as well as reducing the fines produced from the crushing stage. Copyright © 2018 Elsevier B.V. All rights reserved.
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Logistics Reduction and Repurposing Technology for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.
2014-01-01
One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.
Logistics Reduction and Repurposing Technology for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Broyan, James L.; Chu, Andrew; Ewert, Michael K.
2014-01-01
One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology. And benefits analysis of all LRR technologies have been updated with the latest test and analysis results.
NASA Technical Reports Server (NTRS)
Manning, J. R.
1974-01-01
The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.
NASA Astrophysics Data System (ADS)
Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.
2015-05-01
Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.
2012-03-22
Fabric 3.85% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 1.32% Yard waste 5.67% PVC (Class 3...plastics, milk jugs) 1.23% Cardboard 31.33% Polypropylene (PP) (Class 5 plastics, soda cups, yogurt boxes, syrup bottles, prescription bottles) 0.62
Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it
2015-10-15
Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.« less
NASA Technical Reports Server (NTRS)
1971-01-01
The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.
Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahey, N.M.; Smith, M.M.; Voeks, A.M.
The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less
NASA Technical Reports Server (NTRS)
Trabanino, Rudy; Murphy, George L.; Yakut, M. M.
1986-01-01
An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.
A practical approach for the scale-up of roller compaction process.
Shi, Weixian; Sprockel, Omar L
2016-09-01
An alternative approach for the scale-up of ribbon formation during roller compaction was investigated, which required only one batch at the commercial scale to set the operational conditions. The scale-up of ribbon formation was based on a probability method. It was sufficient in describing the mechanism of ribbon formation at both scales. In this method, a statistical relationship between roller compaction parameters and ribbon attributes (thickness and density) was first defined with DoE using a pilot Alexanderwerk WP120 roller compactor. While the milling speed was included in the design, it has no practical effect on granule properties within the study range despite its statistical significance. The statistical relationship was then adapted to a commercial Alexanderwerk WP200 roller compactor with one experimental run. The experimental run served as a calibration of the statistical model parameters. The proposed transfer method was then confirmed by conducting a mapping study on the Alexanderwerk WP200 using a factorial DoE, which showed a match between the predictions and the verification experiments. The study demonstrates the applicability of the roller compaction transfer method using the statistical model from the development scale calibrated with one experiment point at the commercial scale. Copyright © 2016 Elsevier B.V. All rights reserved.
The Design and Development of a Web-Interface for the Software Engineering Automation System
2001-09-01
application on the Internet. 14. SUBJECT TERMS Computer Aided Prototyping, Real Time Systems , Java 15. NUMBER OF...difficult. Developing the entire system only to find it does not meet the customer’s needs is a tremendous waste of time. Real - time systems need a...software prototyping is an iterative software development methodology utilized to improve the analysis and design of real - time systems [2]. One
Automotive Thermoelectric Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Meisner, Gregory P.
2015-03-01
Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.
Fahmy, Raafat; Kona, Ravikanth; Dandu, Ramesh; Xie, Walter; Claycamp, Gregg; Hoag, Stephen W
2012-12-01
As outlined in the ICH Q8(R2) guidance, identifying the critical quality attributes (CQA) is a crucial part of dosage form development; however, the number of possible formulation and processing factors that could influence the manufacturing of a pharmaceutical dosage form is enormous obviating formal study of all possible parameters and their interactions. Thus, the objective of this study is to examine how quality risk management can be used to prioritize the number of experiments needed to identify the CQA, while still maintaining an acceptable product risk profile. To conduct the study, immediate-release ciprofloxacin tablets manufactured via roller compaction were used as a prototype system. Granules were manufactured using an Alexanderwerk WP120 roller compactor and tablets were compressed on a Stokes B2 tablet press. In the early stages of development, prior knowledge was systematically incorporated into the risk assessment using failure mode and effect analysis (FMEA). The factors identified using FMEA were then followed by a quantitative assessed using a Plackett-Burman screening design. Results show that by using prior experience, literature data, and preformulation data the number of experiments could be reduced to an acceptable level, and the use of FMEA and screening designs such as the Plackett Burman can rationally guide the process of reducing the number experiments to a manageable level.
NASA Astrophysics Data System (ADS)
Yusha, V. L.; Chernov, G. I.; Kalashnikov, A. M.
2017-08-01
The paper examines the mobile compressor unit (MCU) heat losses recovery system waste heat exchanger prototype external thermal insulation types influence on the operational efficiency. The study is conducted by means of the numerical method through the modellingof the heat exchange processes carried out in the waste heat exchanger in ANSUS. Thermaflex, mineral wool, penofol, water and air were applied as the heat exchanger external insulation. The study results showed the waste heat exchanger external thermal insulationexistence or absence to have a significant impact on the heat exchanger operational efficiency.
RFID technology for hazardous waste management and tracking.
Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia
2014-09-01
The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.
The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology.more » The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)« less
New system speeds bundling of split firewood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
A firewood compacting and strapping machine is manufactured by Carolson Stapler and Shippers Supply, Omaha, and FMC Industrial Packaging Division, Philadelphia. A hydraulic compactor applies 20,000 lbs of compressive force to each bundle of split logs, reducing each package to a diameter of about 12 inches. A polypropylene band is applied and heat sealed around each bundle. Bundles are stacked on end, twenty-four to a pallet, and the entire load is banded with one horizontal strap.
NASA Technical Reports Server (NTRS)
Murray, R. W.
1973-01-01
A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.
1983-12-01
ql.udge treatment studies, and preparation of preliminary designs . First Lieutenant James Aldrich was the RDV Project Officer. This technical report has...METAL REMOVA STUDY.. . .. .. .. . . .. 51 VI INVESTIGATING SLUDGE TREATMENT TECHNOLOGIES . 76 VII PROTOTYPE DESIGNS . . . . . . . . . . . . . . 98 viii...Task V was directed at developing basic design and cost data for prototype systems that employ the most promising methods developed under Tasks III and
NASA Astrophysics Data System (ADS)
Mahon, D. F.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2013-12-01
Cosmic-ray muons are highly penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. A prototype scintillating-fibre detector has been developed for this application, consisting of two tracking modules above and below the volume to be assayed. Each module comprises two orthogonal planes of 2 mm fibres. The modular configuration allows the reconstruction of the initial and scattered muon trajectories which enable the container content, with respect to atomic number Z, to be determined. Fibre signals are read out by Hamamatsu H8500 MAPMTs with two fibres coupled to each pixel via dedicated pairing schemes developed to avoid space point ambiguities and retain the high spatial resolution of the fibres. A likelihood-based image reconstruction algorithm was developed and tested using a GEANT4 simulation of the prototype system. Images reconstructed from this simulation are presented in comparison with experimental results taken with test objects. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.
Characterising encapsulated nuclear waste using cosmic-ray muon tomography
NASA Astrophysics Data System (ADS)
Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Yang, G.; Zimmerman, C.
2015-03-01
Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the U.K. Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.
Quantity and management of spent fuel from prototype and research reactors in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorr, Sabine; Bollingerfehr, Wilhelm; Filbert, Wolfgang
Within the scope of an R and D project (project identification number FKZ 02 S 8679) sponsored by BMBF (Federal Ministry of Education and Research), the current state of storage and management of fuel elements from prototype and research reactors was established, and an approach for their future storage/management was developed. The spent fuels from prototype and research reactors in Germany that require disposal were specified and were described in regard to their repository-relevant characteristics. As there are currently no casks licensed for disposal in Germany, descriptions of casks that were considered to be suitable were provided. Based on themore » information provided on the spent fuel from prototype and research reactors and the potential casks, a technical disposal concept was developed. In this context, concepts to integrate the spent fuel from prototype and research reactors into existing disposal concepts for spent fuel from German nuclear power plants and for waste from reprocessing were developed for salt and clay formations. (authors)« less
Space Station Freedom food management
NASA Technical Reports Server (NTRS)
Whitehurst, Troy N., Jr.; Bourland, Charles T.
1992-01-01
This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. Lounge records his height. The two crewmembers are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids.
Method for shearing spent nuclear fuel assemblies
Weil, Bradley S.; Watson, Clyde D.
1977-01-01
A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.
Car companies look to generate power from waste heat
NASA Astrophysics Data System (ADS)
Schirber, Michael
2008-04-01
You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.; Fowley, M. D.; Miller, D. H.
2016-05-01
The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less
Numerical Modeling of ROM Panel Closures at WIPP
NASA Astrophysics Data System (ADS)
Herrick, C. G.
2016-12-01
The Waste Isolation Pilot Plant (WIPP) in New Mexico is a U.S. DOE geologic repository for permanent disposal of defense-related transuranic (TRU) waste. Waste is emplaced in panels excavated in a bedded salt formation (Salado Fm.) at 655 m bgs. In 2014 the U.S. EPA approved the new Run-of-Mine Panel Closure System (ROMPCS) for WIPP. The closure system consists of 100 feet of run-of-mine (ROM) salt sandwiched between two barriers. Nuclear Waste Partnership LLC (the M&O contractor for WIPP) initiated construction of the ROMPCS. The design calls for three horizontal ROM salt layers at different compaction levels ranging from 70-85% intact salt density. Due to panel drift size constraints and equipment availability the design was modified. Three prototype panel closures were constructed: two having two layers of compacted ROM salt (one closure had 1% water added) and a third consisting of simply ROM salt with no layering or added water. Sampling of the prototype ROMPCS layers was conducted to determine the following ROM salt parameters: thickness, moisture content, emplaced density, and grain-size distribution. Previous modeling efforts were performed without knowledge of these ROM salt parameters. This modeling effort incorporates them. The program-accepted multimechanism deformation model is used to model intact salt room creep closure. An advanced crushed salt model is used to model the ROM salt. Comparison of the two models' results with the prototypes' behavior is given. Our goal is to develop a realistic, reliable model that can be used for ROM salt applications at WIPP. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy SAND2016-7259A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Althouse, P.; McKannay, R. H.
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.
Biodigester Feasibility and Design for Space & Earth
NASA Technical Reports Server (NTRS)
Shutts, Stacy; Ewert, Mike; Bacon, Jack
2016-01-01
Anaerobic digestion converts organic waste into methane gas and fertilizer effluent. The ICA-developed prototype system is designed for planetary surface operation. It uses passive hydrostatic control for reliability, and is modular and redundant. The serpentine configuration accommodates tight geometric constraints similar to the ISS ECLSS rack architectures. Its shallow, low-tilt design enables (variable) lower-g convection than standard Earth (1 g) digesters. This technology will reuse and recycle materials including human waste, excess food, as well as packaging (if biodegradable bags are used).
FEMOS - Advanced Neutron Monitor System for Waste Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, G.G.; Sokcic-Kostic, M.
2006-07-01
FEMOS is a specially developed monitor to detect fissile materials for waste characterisation and it is also suitable to identify the main neutron emitters. The latest measuring prototype is in routine operation at FZK-HDB (Germany) for determining Plutonium content and alpha activity in 2001 and 4001 drums from the reprocessing plant Karlsruhe (WAK). Authorities license the measurement procedure. Routine measurements conducted over a period of about 6 years and the results show that all specified prerequisites are met with the required reliability. (authors)
Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano
2017-03-01
A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-09-01
A knowledge-based decision support system (KBDSS) has been developed to examine the potentials for reuse, co-treatment, recycling and disposal of wastes from different industrial facilities. Four plants on the Point Lisas Industrial Estate in Trinidad were selected to test this KBDSS; a gas processing plant, a methanol plant, a fertilizer/ammonia plant and a steel processing plant. A total of 77 wastes were produced by the plants (51,481,500 t year{sup {minus}1}) with the majority being released into the ocean or emitted into the air. Seventeen wastes were already being recycled off-site so were not included in the database. Using a knowledgemore » base of 25 possible treatment processes, the KBDSS generated over 4,600 treatment train options for managing the plant wastes. The developed system was able to determine treatment options for the wastes which would minimize the number of treatments and the amount of secondary wastes produced and maximize the potential for reuse, recycling and co-treatment of wastes.« less
Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology
NASA Astrophysics Data System (ADS)
Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.
2017-05-01
Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.
NASA Technical Reports Server (NTRS)
Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.
1981-01-01
The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.
WASTE INFORMATION MODELING (WIM) FOR CONSTRUCTION OF THE BUILT ENVIRONMENT
The outcomes will include the construction of full-scale building prototypes. As full-scale pieces are constructed they will be installed throughout the community, and could potentially be used as installations within the local community to demonstrate the use of recycled prod...
Development of Two Intelligent Spray Systems for Ornamental Nurseries
USDA-ARS?s Scientific Manuscript database
Current application technology for floral, nursery, and other specialty crop production wastes significant amounts of pesticides. Two different real-time variable-rate sprayer prototypes for ornamental nursery and tree crops were developed to deliver chemicals on target areas as needed. The first pr...
Baumbaugh, Alan E.; Knickerbocker, Kelly L.
1988-06-04
A method and apparatus for suppressing from transmission, non-informational data words from a source of data words such as a video camera. Data words having values greater than a predetermined threshold are transmitted whereas data words having values less than a predetermined threshold are not transmitted but their occurrences instead are counted. Before being transmitted, the count of occurrences of invalid data words and valid data words are appended with flag digits which a receiving system decodes. The original data stream is fully reconstructable from the stream of valid data words and count of invalid data words.
NASA Astrophysics Data System (ADS)
de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit
2017-04-01
The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.
An overview of radioactive waste disposal procedures of a nuclear medicine department
Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.
2011-01-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225
An overview of radioactive waste disposal procedures of a nuclear medicine department.
Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S
2011-04-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, N.J.; Meier, T.E.
1995-04-01
Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at DOE laboratories, in US industry, and academia. During the past 5 years, PNL has developed prototype instrumentation to automate the data collection required for electrochemical determination of corrosion rates and behavior of materials in various electrically conductive environments. The last version is labeled the Sentry 100 prototype corrosion data scanner. Applications include these in the pulp and paper industry and at hazardous waste sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-09-01
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-12-31
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. The authors have developed and tested the first prototype of a dual-gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
Piccoli, Giorgina Barbara; Mery, David
2017-11-01
In our high-technology, highly polluted world, medicine plays an important role balancing saving lives with the expenses of growing amounts of waste products, not only biologically dangerous (the potentially "contaminated" or "hazardous" waste) but also potentially harmful for the planet (nonrecyclable, plastic waste). Dialysis, the prototype of high-technology medicine, is central to these problems, as the present treatment of about 2 million patients produces an enormous quantity of waste (considering hazardous waste only about 2 kg per session, with 160 sessions per year, that is 320 kg per patient, or about 640,000 tons of hazardous waste per year for 2 million patients, roughly corresponding to 6 nuclear aircraft carriers). Furthermore, obsolete dialysis machines, and water treatments are discharged, adding to the "technological waste." Water produced by the reverse osmosis is also discharged; this is the only nonhazardous, nonpolluting waste, but in particular in dry areas, wasting water is a great ecologic concern. The present review is aimed at discussing strategies already in place and to be further implemented for reducing this particular "uremic toxin" for the earth: dialysis waste, including dialysis disposables, water, and dialysis machines. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre
NASA Astrophysics Data System (ADS)
Hainin, M. R.; Idham, M. K.; Yaro, N. S. A.; Hussein, S. O. A. E.; Warid, M. N. M.; Mohamed, A.; Naqibah, S. N.; Ramadhansyah, P. J.
2018-04-01
Kenaf fibre has been recognised to increase the strength of concrete, but its application in asphalt concrete is still unanswered. This research investigated the performance of Hot Mix Asphalt (HMA) incorporated with different percentages of kenaf fibre (0.1 %, 0.2% and 0.3% by weight of dry aggregate) in term of resilient modulus, rutting performance using Asphalt Pavement analyser (APA) and moisture damage using the Modified Lottman test (AASHTO-T283). The fibre was interweaved to a diameter of about 5-10 mm and length of 30 mm which is three times the nominal maximum aggregate size used in the mix. Asphaltic mixtures of asphalt concrete (AC) 10 were prepared and compacted using Marshall compactor which were subsequently tested to evaluate the resilient modulus and moisture susceptibility. Twelve cylindrical specimens (150mm diameter) from AC10, two control samples with two modified ones for each percentage of kenaf fibres compacted using Gyratory compactor were used for rutting test using APA. The laboratory results reveal that the addition of kenaf fibres slightly reduce the resilient modulus of the mixes and that asphaltic mix with 0.3% kenaf fibre can mitigate both rutting and moisture damage which makes the pavement more sustain to the loads applied even in the presence of water. 0.3% kenaf fibre content is considered to be the optimal content which had the least rut depth and the highest TSR of 81.07%. Based on grid analysis, addition of 0.3% kenaf fibre in asphaltic concrete was recommended in modifying the samples.
NASA Astrophysics Data System (ADS)
Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.
2018-02-01
Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.
Innovative Technology Reduces Power Plant Emissions - Commercialization Success
NASA Technical Reports Server (NTRS)
Parrish, Clyde
2004-01-01
Emission control system development includes: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on. power plant (3) Development of method to oxidize NO. to N02 (4) Experience gained from licensing NASA technology
Prototype pushing robot for emplacing vitrified waste canisters into horizontal disposal drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londe, L.; Seidler, W.K.; Bosgiraud, J.M.
2007-07-01
Within the French Underground Disposal concept, as described in ANDRA's (Agence Nationale pour la Gestion des Dechets Radioactifs) Dossier 2005, the Pushing Robot is an application envisaged for the emplacement (and the potential retrieval) of 'Vitrified waste packages', also called 'C type packages'. ANDRA has developed a Prototype Pushing Robot within the framework of the ESDRED Project (Engineering Studies and Demonstration of Repository Design) which is co-funded by the European Commission as part of the sixth EURATOM Research and Training Framework Programme (FP6) on nuclear energy (2002 - 2006). The Rationale of the Pushing Robot technology comes from various considerations,more » including the need for (1) a simple and robust system, capable of moving (and potentially retrieving) on up to 40 metres (m), a 2 tonne C type package (mounted on ceramic sliding runners) inside the carbon steel sleeve constituting the liner (and rock support) of a horizontal disposal cell, (2) small annular clearances between the package and the liner, (3) compactness of the device to be transferred from surface to underground, jointly with the package, inside a shielding cask, and (4) remote controlled operations for the sake of radioprotection. The initial design, based on gripping supports, has been replaced by a 'technical variant' based on inflatable toric jacks. It was then possible, using a test bench, to check that the Pushing Robot worked properly. Steps as high as 7 mm were successfully cleared by a dummy package pushed by the Prototype.. Based on the lessons learned by ANDRA's regarding the Prototype Pushing Robot, a new Scope of Work is being written for the Contract concerning an Industrial Scale Demonstrator. The Industrial Scale Demonstration should be completed by the end of the second Quarter of 2008. (authors)« less
Test results of a shower water recovery system
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Price, Donald F.; Garcia, Rafael; Pierson, Duane L.; Sauer, Richard L.
1987-01-01
A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.
Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography
NASA Astrophysics Data System (ADS)
Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.
2016-03-01
The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
Tracy, J.C.; Bernknopf, R.; Forney, W.; Hill, K.
2004-01-01
The Federal Clean Water Act (Section 303(d)) mandates that states develop Total Maximum Daily Load (TMDL) plans for water bodies that are on the Section 303(d) list. To be placed on the 303(d) list, a water body must be found to have water quality conditions that limit its ability to meet its designated beneficial uses. The TMDL for a water body is defined in 40 CFR 130 as the sum of waste load allocations from identified points sources and non-point sources within the water body's watershed. The TMDL plan for a listed water body should identify the current waste loads to the water body, the waste load capacity of the water body and then allocate the waste load capacity to the known point and non-point sources of pollution within the water body's watershed. Copyright 2004 ASCE.
Lyophilization -Solid Waste Treatment
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin
2004-01-01
This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
1990-12-10
STS035-19-021 (December 1990) --- STS-35 Mission Specialist Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. (Mike) Lounge records his height. The two crew members are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids. This image was selected by the Public Affairs Office (PAO) for public release.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.
2005-01-01
Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.
Innovative Technology Reduces Power Plant Emissions-Commercialization Success
NASA Technical Reports Server (NTRS)
Parrish, Clyde; Chung, Landy
2004-01-01
Overview of emission control system development: (1) Development of new oxidizer scrubber system to eliminate NOx waste and produce fertilizer (2) Technology licensed and a 1 to 3 MWatt-scale prototype installed on power plant (3) Development of method to oxidize NO to NO2 (4) Experience gained from licensing NASA technology.
Fabricating Structural Stiffeners By Superplastic Forming
NASA Technical Reports Server (NTRS)
Bales, Thomas T.; Shinn, Joseph M., Jr.; Hales, Stephen J.; James, William F.
1994-01-01
Superplastic forming (SPF) of aluminum alloys effective technique for making strong, lightweight structural components conforming to close dimensional tolerances. Technique applied in experimental fabrication of prototypes of stiffening ribs for cylindrical tanks. When making structural panel, stiffening ribs spot-welded to metal skin. Use of discrete eliminates machining waste, and use of SPF. Cost of fabrication reduced.
NREL Technologies Win National Awards
percent for a prototype module, 7.6 percent for a commercial module) from amorphous silicon, which is less expensive to produce than crystalline silicon used in most commercial solar cells. The resulting product is biomass resources such as wood waste or plant material into gas for electric power generation. The new
NASA Technical Reports Server (NTRS)
Fields, S. F.; Labak, L. J.; Honegger, R. J.
1974-01-01
A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.
NASA Technical Reports Server (NTRS)
Jagow, R. B.
1972-01-01
Laboratory investigations to define optimum process conditions for oxidation of fecal/urine slurries were conducted in a one-liter batch reactor. The results of these tests formed the basis for the design, fabrication, and testing of an initial prototype system, including a 100-hour design verification test. Areas of further development were identified during this test. Development of a high pressure slurry pump, materials corrosion studies, oxygen supply trade studies, comparison of salt removal water recovery devices, ammonia removal investigation, development of a solids grinder, reactor design studies and bearing life tests, and development of shutoff valves and a back pressure regulator were undertaken. The development work has progressed to the point where a prototype system suitable for manned chamber testing can be fabricated and tested with a high degree of confidence of success.
Sonntag, Frank; Schilling, Niels; Mader, Katja; Gruchow, Mathias; Klotzbach, Udo; Lindner, Gerd; Horland, Reyk; Wagner, Ilka; Lauster, Roland; Howitz, Steffen; Hoffmann, Silke; Marx, Uwe
2010-07-01
Dynamic miniaturized human multi-micro-organ bioreactor systems are envisaged as a possible solution for the embarrassing gap of predictive substance testing prior to human exposure. A rational approach was applied to simulate and design dynamic long-term cultures of the smallest possible functional human organ units, human "micro-organoids", on a chip the shape of a microscope slide. Each chip contains six identical dynamic micro-bioreactors with three different micro-organoid culture segments each, a feed supply and waste reservoirs. A liver, a brain cortex and a bone marrow micro-organoid segment were designed into each bioreactor. This design was translated into a multi-layer chip prototype and a routine manufacturing procedure was established. The first series of microscopable, chemically resistant and sterilizable chip prototypes was tested for matrix compatibility and primary cell culture suitability. Sterility and long-term human cell survival could be shown. Optimizing the applied design approach and prototyping tools resulted in a time period of only 3 months for a single design and prototyping cycle. This rapid prototyping scheme now allows for fast adjustment or redesign of inaccurate architectures. The designed chip platform is thus ready to be evaluated for the establishment and maintenance of the human liver, brain cortex and bone marrow micro-organoids in a systemic microenvironment. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Cadmium telluride leaching behavior: Discussion of Zeng et al. (2015).
Sinha, Parikhit
2015-11-01
Zeng et al. (2015) evaluate the leaching behavior and surface chemistry of II-VI semiconductor materials, CdTe and CdSe, in response to pH and O2. Under agitation in acidic and aerobic conditions, the authors found approximately 3.6%-6.4% (w/w) solubility of Cd content in CdTe in the Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET), and dissolution test, with lower solubility (0.56-0.58%) under agitation in acidic and anoxic conditions. This range is comparable with prior long-term transformation and dissolution testing and bio-elution testing of CdTe (2.3%-4.1% w/w solubility of Cd content in CdTe). The implications for potential leaching behavior of CdTe-containing devices require further data. Since CdTe PV modules contain approximately 0.05% Cd content by mass, the starting Cd content in the evaluation of CdTe-containing devices would be lower by three orders of magnitude than the starting Cd content in the authors' study, and leaching potential would be further limited by the monolithic glass-adhesive laminate-glass structure of the device that encapsulates the semiconductor material. Experimental evaluation of leaching potential of CdTe PV modules crushed by landfill compactor has been conducted, with results of TCLP and WET tests on the crushed material below regulatory limits for Cd. CdTe PV recycling technology has been in commercial operation since 2005 with high yields for semiconductor (95%) and glass (90%) recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications
NASA Technical Reports Server (NTRS)
Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.
2015-01-01
Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.
U-PLANT GEOGRAPHIC ZONE CLEANUP PROTOTYPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROMINE, L.D.
2006-02-01
The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as ''cleanup items'') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is availablemore » to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will provide a focal point for integrating UPZ actions, including field cleanup activities, waste staging and handling, and post-cleanup monitoring and institutional controls.« less
Next Generation Loading System for Detonators and Primers
Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed
A Fruit of Yucca Mountain: The Remote Waste Package Closure System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Skinner; Greg Housley; Colleen Shelton-Davis
2011-11-01
Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.
1997-12-01
DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less
Developing an institutional strategy for transporting defense transuranic waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, J.V.; Kresny, H.S.
In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less
Corrosion impact of reductant on DWPF and downstream facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.
2014-12-01
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less
Jassby, D.L.
1987-09-04
A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.
Jassby, Daniel L.
1988-01-01
A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.
Vapor compression distillation module
NASA Technical Reports Server (NTRS)
Nuccio, P. P.
1975-01-01
A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.
A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldiges, Olaf; Blenski, Hans-Juergen
2003-02-27
Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less
Advances in Additive Manufacturing
2016-07-14
of 3D - printed structures. Analysis examples will include quantification of tolerance differences between the designed and manufactured parts, void...15. SUBJECT TERMS 3-D printing , validation and verification, nondestructive inspection, print -on-the-move, prototyping 16. SECURITY CLASSIFICATION...researching the formation of AM-grade metal powder from battlefield scrap and operating base waste, 2) potential of 3-D printing with sand to make
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Elementary Curriculum Development.
This prototypic curriculum is designed to develop awareness of the challenges man faces in his crowded communities to insure clean water, pest control, waste removal, safe food handling and adequate community health facilities. It distinguishes between the prevention of future environmental abuse and compensation for past abuses. Both the gaining…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Jebali, Ramsey; Mahon, David; Clarkson, Anthony
2015-07-01
A prototype scintillating-fibre detector system has been developed at the University of Glasgow in collaboration with the UK National Nuclear Laboratory (NNL) for the nondestructive assay of UK legacy nuclear waste containers. This system consists of two tracking modules above, and two below, the container under interrogation. Each module consists of two orthogonal planes of 2 mm-pitch fibres yielding one space point. Per plane, 128 fibres are read out by a single Hamamatsu H8500 64-channel MAPMT with two fibres multiplexed onto each pixel. A dedicated mapping scheme has been developed to avoid space point ambiguities and retain the high spatialmore » resolution provided by the fibres. The configuration allows the reconstruction of the incoming and scattered muon trajectories, thus enabling the container content, with respect to atomic number Z, to be determined. Results are shown from experimental data collected for high-Z objects within an air matrix and, for the first time, within a shielded, concrete-filled container. These reconstructed images show clear discrimination between the low, medium and high-Z materials present, with dimensions and positions determined with sub-centimetre precision. (authors)« less
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water is crucial for realizing long-term human space missions. The National Aeronautics and Space Admininstration and Honeywell co-developed a five-stage vacuum rotary distillation water recovery system referred to as the Cascade Distillation Subsystem (CDS). Over the past three years, NASA's Advanced Exploration Systems (AES) Water Recovery Project (WRP) has been working toward the development of a flight-forward CDS design. In 2012 the original CDS prototype underwent a series of incremental upgrades and tests intened to both demonstrate the feasibility of a on-orbit demonstration of the system and to collect operational and performance data to be used to inform a second generation design. The latest testing of the CDS Generation 1.0 prototype was conducted May 29 through July 2, 2014. Initial system performance was benchmarked by processing deionized water and sodium chloride. Following, the system was challenged with analogue urine waste stream solutions stabilized with an Oxone-based and the two International Space Station baseline and alternative pretreatment solutions. During testing, the system processed more than 160 kilograms of wastewater with targeted water recoveries between 75 and 85% depending on the specific waste stream tested. For all wastewater streams, contaminant removals from wastewater feed to product water distillate, were estimated at greater than 99%. The average specific energy of the system was less than 120 Watt-hours/kilogram. The following paper provides detailed information and data on the performance of the CDS as challenged per the WRP test objectives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S.R.
A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different frommore » the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.« less
Valorisation of food waste to produce new raw materials for animal feed.
San Martin, D; Ramos, S; Zufía, J
2016-05-01
This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473). Copyright © 2015 Elsevier Ltd. All rights reserved.
On-line remote monitoring of radioactive waste repositories
NASA Astrophysics Data System (ADS)
Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria
2014-12-01
A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dooge, P.M.
1996-12-31
The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less
Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler
NASA Astrophysics Data System (ADS)
Brazdil, Marian; Pospisil, Jiri
2013-07-01
The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.
Development of a Universal Waste Management System
NASA Technical Reports Server (NTRS)
Baccus, Shelley; Broyan, James L., Jr.
2013-01-01
A concept for a Universal Waste Management System (UWMS) has been developed based on the knowledge gained from over 50 years of space travel. It is being designed for Commercial Orbital Transportation Services (COTS) and Multi ]Purpose Crew Vehicle (MPCV) and is based upon the Extended Duration Orbiter (EDO) commode. The UMWS was modified to enhance crew interface and reduce volume and cost. The UWMS will stow waste in fecal canisters, similar to the EDO, and urine will be stowed in bags for in orbit change out. This allows the pretreated urine to be subsequently processed and recovered as drinking water. The new design combines two fans and a rotary phase separator on a common shaft to allow operation by a single motor. This change enhances packaging by reducing the volume associated with an extra motor, associated controller, harness, and supporting structure. The separator pumps urine to either a dual bag design for COTS vehicles or directly into a water reclamation system. The commode is supported by a concentric frame, enhancing its structural integrity while further reducing the volume from the previous design. The UWMS flight concept development effort is underway and an early output of the development will be a ground based UMWS prototype for manned testing. Referred to as the Gen 3 unit, this prototype will emulate the crew interface included in the UWMS and will offer a great deal of knowledge regarding the usability of the new design, allowing the design team the opportunity to modify the UWMS flight concept based on the manned testing.
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; DIENER G
2011-12-29
The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less
Hazardous and Medical Waste Destruction Using the AC Plasmatron Final Report CRADA No. TC-1560-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Bucher, K.; Tulupov, A.
The goal of this project was to develop a prototype medical waste destruction facility based on the AC plasma torch capable of processing 150 kg of waste per hour while satisfying US EPA emission standards. The project was to provide the first opportunity for a joint U.S.-Russian project using an AC Plasma Torch in a hazardous waste destruction system to be assembled and operated in the U.S. thus promoting the commercialization in the U.S. of this joint U.S.-Russian developed technology. This project was a collaboration between the Russian Institute Soliton- NTT, the U.S industrial partner Scientific Utilization Inc. (SUI) andmore » Lawrence Livermore National Laboratory ( LLNL). The project was funded by DOE for a total of $1.2 million with $600K for allocated for Phase I and $600K for Phase II. The Russian team received about $800K over the two (2) year period while LLNL received $400K. SUI was to provide in kind matching funds totaling $1.2 million.« less
NASA Astrophysics Data System (ADS)
Soehardjo, K. A.; Basuki, A.
2017-07-01
The bridge railway sleepers is an essential component in the construction of railways, as the foundation of the rail support in order to withstand the load a train that runs above it. Sleepers used in bridge construction are expected to have a longer service life, lighter weight and durable so that can be used more efficient. This research was carried out to create a model of bridges railway sleepers made of sandwich structured composite from fiber glass, epoxy resin with fillers waste of bagasse (sugar cane pulp mill) or coconut fiberboard (copra industry) that using polyurethane as an adhesive. The process of making was conditioned for small and medium industrial applications. Railway sleepers’ specifications adapted to meet the requirements of end user. The process steps in this research include; lay-up fiberglass combined with bagasse/coconut fiberboard (as fillers), gluing with epoxy resin, molded it with pressure to be solid, curing after solidification process. The specimens of composite, bagasse and coconut fiber board were tested for tensile and compressive strength. The prototype were tested of mechanical test: flexural moment test to the stand rail, flexural moment test to the middle of the sleepers and tensile strength test on one side of the sleepers, in accordance to SNI 11-3388-1994 Method testing of single block concrete sleepers and bearing single rail fastening systems. The results of mechanical testing all variations meet the technical specifications of end user such as test results for flexural moment on all prototypes, after load test, there is no visible crack. While in the tensile strength test, it seem the prototype with coconut fiberboard filler, shows better performance than bagasse fiberboard filler, the decisions is just depended on techno economic and lifetime.
Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications
NASA Astrophysics Data System (ADS)
Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.
2013-07-01
This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.
2010 Annual Report (National Defense Center for Energy and Environment)
2010-01-01
a prototype system for reforming JP-8 to enable the use of fuel cells in theater. Energy, water, and waste reduction are tied to NDCEE efforts to...modernize Army ammunition plants , reducing costs and ensuring a steady supply of ammunition to the warfighter. At Fort Campbell, KY, newly...operating costs at Holston and Radford Army Ammunition Plants . Weapon systems ESOHE efforts also included optimizing various depot maintenance processes
A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
Yu, Shen; Gururajan, Bindhu; Reynolds, Gavin; Roberts, Ron; Adams, Michael J; Wu, Chuan-Yu
2012-05-30
Roll compaction is widely adopted as a dry granulation method in the pharmaceutical industry. The roll compaction behaviour of feed powders is primarily governed by two parameters: the maximum pressure and the nip angle. Although the maximum pressure can be measured directly using pressure sensors fitted in the rolls, it is not a trivial task to determine the nip angle, which is a measure of the size of the compaction zone and hence the degree of compression. Thus a robust approach based upon the calculation of the pressure gradient, which can be obtained directly from experiments using an instrumented roll compactor, was developed. It has been shown that the resulting nip angles are comparable to those obtained using the methods reported in literature. Nevertheless, the proposed approach has distinctive advantages including (1) it is based on the intrinsic features of slip and no-slip interactions between the powder and roll surface and (2) it is not necessary to carry out wall friction measurements that involve plates that may not be representative of the roll compactor in terms of the surface topography and surface energy. The method was evaluated by investigating the effect of roll speed for two pharmaceutical excipients with distinctive material properties: microcrystalline cellulose (MCC) and di-calcium phosphate dihydrate (DCPD). It was found that the maximum pressure and nip angle for DCPD, which is a cohesive powder, decrease sharply with increasing roll speed whereas they are essentially independent of roll speed for MCC, which is an easy flowing powder. The roll compaction behaviour of MCC-DCPD mixtures with various compositions was also investigated in order to evaluate the effect of flowability. It was found that the nip angle and maximum pressure generally increased with improved flowability of the feed powders. Copyright © 2012 Elsevier B.V. All rights reserved.
Rovetta, Alberto; Xiumin, Fan; Vicentini, Federico; Minghua, Zhu; Giusti, Alessandro; Qichang, He
2009-12-01
The present study describes a novel application for use in the monitoring of municipal solid waste, based on distributed sensor technology and geographical information systems. Original field testing and evaluation of the application were carried out in Pudong, Shanghai (PR China). The local waste management system in Pudong features particular requirements related to the rapidly increasing rate of waste production. In view of the fact that collected waste is currently deployed to landfills or to incineration plants within the context investigated, the key aspects to be taken into account in waste collection procedures include monitoring of the overall amount of waste produced, quantitative measurement of the waste present at each collection point and identification of classes of material present in the collected waste. The case study described herein focuses particularly on the above mentioned aspects, proposing the implementation of a network of sensorized waste containers linked to a data management system. Containers used were equipped with a set of sensors mounted onto standard waste bins. The design, implementation and validation procedures applied are subsequently described. The main aim to be achieved by data collection and evaluation was to provide for feasibility analysis of the final device. Data pertaining to the content of waste containers, sampled and processed by means of devices validated on two purpose-designed prototypes, were therefore uploaded to a central monitoring server using GPRS connection. The data monitoring and management modules are integrated into an existing application used by local municipal authorities. A field test campaign was performed in the Pudong area. The system was evaluated in terms of real data flow from the network nodes (containers) as well as in terms of optimization functions, such as collection vehicle routing and scheduling. The most important outcomes obtained were related to calculations of waste weight and volume. The latter data were subsequently used as parameters for the routing optimization of collection trucks and material density evaluation.
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
A Centrifugal Contactor Design to Facilitate Remote Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Jack. D. Law; Troy G. Garn
2011-03-01
Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. A three stage, 12.5 cm diameter rotor module has been constructed and ismore » being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take about 30 minutes, perhaps fast enough to support a contactor change without loss of process equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute.« less
NASA Technical Reports Server (NTRS)
1983-01-01
Future long term spaceflights require extensive recycling of wastes to minimize the need for resupplying the vessel. The recycling occurs in a fully or partially closed environment life support system (CELSS or PCELSS). The National Aeronautics and Space Administration (NASA) is interested in converting wastewater into potable water or water for hydroponic farming as part of a CELSS. The development of technologies for wastewater treatment that produce a minimum of by-products is essential. One process that achieves good conversion of moderately concentrated organic wastes in water (1 to 20% by weight) completely to carbon dioxide and water is oxidation in supercritical water. Both air (or oxygen) and many organics are completely miscible with supercritical water, so there are no interphase mass transport resistances that limits the overall oxidation reaction. The temperature of supercritical water, which must be above 374 C, is also sufficient to have rapid reaction kinetics for the oxidations.
NASA Technical Reports Server (NTRS)
1978-01-01
The electrically heated ski goggles shown incorporate technology similar to that once used in Apollo astronauts' helmet visors, and for the same reason-providing fog-free sight in an activity that demands total vision. Defogging is accomplished by applying heat to prevent moisture condensation. Electric heat is supplied by a small battery built into the h goggles' headband. Heat is spread across the lenses by means of an invisible coating of electrically conductive metallic film. The goggles were introduced to the market last fall. They were designed by Sierracin Corporation, Sylmar, California, specialists in the field of heated transparent materials. The company produces heated windshields for military planes and for such civil aircraft as the Boeing 747, McDonnell Douglas DC-10 and Lockheed L-1011 TriStar.
He-Ne and CW CO2 laser long-path systems for gas detection
NASA Technical Reports Server (NTRS)
Grant, W. B.
1986-01-01
This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.
NASA Astrophysics Data System (ADS)
Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant
2018-01-01
In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.
Deep Borehole Field Test Requirements and Controlled Assumptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest
2015-07-01
This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientificmore » characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.« less
NASA Technical Reports Server (NTRS)
Swider, J. E., Jr.
1974-01-01
The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.
'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.
Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara
2015-01-01
This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust telerobotics - an integrated system for waste handling, characterization and sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.
The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less
Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, William G.; Esparza, Brian P.
2013-07-01
Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less
AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J; R. H. Hsu, R
2007-07-02
Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature risemore » monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joon H.; Arnold, Bill W.; Swift, Peter N.
2012-07-01
A deep borehole repository is one of the four geologic disposal system options currently under study by the U.S. DOE to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic deep borehole repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a deep borehole. A prototype performance assessment model for a generic deep borehole repository has been developed using themore » approach for a mined geological repository. The preliminary results from the simplified deep borehole generic repository performance assessment indicate that soluble, non-sorbing (or weakly sorbing) fission product radionuclides, such as I-129, Se-79 and Cl-36, are the likely major dose contributors, and that the annual radiation doses to hypothetical future humans associated with those releases may be extremely small. While much work needs to be done to validate the model assumptions and parameters, these preliminary results highlight the importance of a robust seal design in assuring long-term isolation, and suggest that deep boreholes may be a viable alternative to mined repositories for disposal of both HLW and UNF. (authors)« less
Guan, Yidong; Zhang, Yuan; Zhao, Dongye; Huang, Xiaofeng; Li, Haini
2015-06-01
Lack of access to adequate sanitation facilities has serious health implications for rural dwellers and can degrade the ecosystems. This study offers a systemantic and quantitative overview of historical data on rural domestic waste (RDW) production and past and current management practices in a prototype region in China, where rural areas are undergoing rapid urbanization and are confronted with great environmental challenges associated with poor RDW management practices. The results indicate that RDW is characterized with a large fraction of kitchen waste (42.9%) and high water content (53.4%). The RDW generation (RDWG) per capita between 2012 and 2020 is estimated to increase from 0.68 to 1.01 kg/d-cap. The Hill 1 model is able to adequately simulate/project the population growth in a rural area from 1993 to 2020. The annual RDWG in the region is estimated to double from 6,033,000 tons/year in 2008 to 12,030,000 tons/year by 2020. By comparing three RDW management scenarios based on the life-cycle inventory approach and cost-benefit analysis, it is strongly recommended that the present Scenario 2 (sanitary landfill treatment) be upgraded to Scenario 3 (source separation followed by composting and landfill of RDW) to significantly reduce the ecological footprint and to improve the cost-effectiveness and long-term sustainability. Rural domestic waste (RDW) is affecting 720 million people in China and more than 3221 million people worldwide. Consequently, handling and disposal of RDW have serious health implications to rural dwellers and the ecosystems. This study offers a systemantic and quantitative overview and analysis of historical data on RDW production and management practices in a prototype region in China, which is confronted with great environmental challenges associated with RDW. Then we predict future production of RDW and propose a sustainable RDW management strategy, which holds the promise of greatly mitigating the mounting environmental pressure associated with RDW and provides science-based guidance for decision makers and practitioners for assuring rapid yet "green" economic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.
2009-12-04
Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.« less
Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R
2017-11-01
Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post; Zia, Jalal
2013-09-01
This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating,more » evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.« less
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Software For Design Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1991-01-01
Design Assistant Workstation (DAWN) computer program is prototype of expert software system for analysis and design of regenerative, physical/chemical life-support systems that revitalize air, reclaim water, produce food, and treat waste. Incorporates both conventional software for quantitative mathematical modeling of physical, chemical, and biological processes and expert system offering user stored knowledge about materials and processes. Constructs task tree as it leads user through simulated process, offers alternatives, and indicates where alternative not feasible. Also enables user to jump from one design level to another.
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures
NASA Astrophysics Data System (ADS)
She, Xuefeng; Zhang, Zhuo; Baek, Minki; Yong, Kijung
2018-01-01
Over the decades, researchers have made great efforts to turn the world into a cleaner place through efficient recycling of industrial waste and developing of green energy. Here we demonstrate a prototype heterostructure photoelectrochemical (PEC) cell fabricated using recycled industrial waste. ZnFe2O4 (ZFO) nanorod (NR) clusters were synthesized on the BiVO4@ZnO hetero-nanostructures using recycled rare earth oxide (REO) slags as Fe source. The NR-based PEC cell exhibited a significantly enhanced photon to hydrogen conversion efficiency over the entire UV and visible spectrum. Further study demonstrates that the photo-carrier separation and migration processes can be facilitated by the cascade band alignment of the heterostructure and the clustered nanostructure network. In addition, the life-time of the photo-carriers can be enhanced by the REO passivation layer, leading to a further increased PEC performance. Our results present a novel approach for high efficiency PEC cells, and offer great promises to the efficient recycling of industrial waste for clean renewable energy applications.
Medical waste to energy: experimental study.
Arcuri, C; Luciani, F; Piva, P; Bartuli, F N; Ottria, L; Mecheri, B; Licoccia, S
2013-04-01
Although waste is traditionally assessed as a pollutant which needs to be reduced or lessened, its management is certainly necessary. Nowadays, biological fuel cells, through the direct conversion of organic matter to electricity using biocatalysts, represent a technology able to produce sustainable energy by means of waste treatment. This study aims to propose a mean to generate energy from blood and saliva, that are common risk-infectious medical waste. Material employed (purchased by Sigma-Aldrich) were: Glucose oxidase (GOx), Nafion perfluorinated resin solution at 5% in a mixture of lower aliphatic alcohols and water, Polyethylene oxide. Stock solutions of D (+) glucose were prepared in a 0.1 M phosphate buffer solution and stored at 4 °C for at least 24 h before use. Carbon cloth electrode ELAT HT 140 E-W with a platinum loading of 5 gm-2 was purchased by E-Tek. Electrospun Nafion fibers were obtained as follows. Scanning electron microscopy was used to characterize the electrode morphologies. In order to develop an effective immobilization strategy of GOx on the electrode surface, Nafion fibers (a fully fluorinated ion conducting polymer used as a membrane material in enzymatic fuel cells - EFC) were selected as immobilizing polymer matrix. In this work, exploiting the nafion fibers capability of being able to cathalize Gox activity, we have tried to produce an enzymatic fuel cell which could produce energy from the blood and the saliva within medical-dental waste. Medical waste refers to all those materials produced by the interaction among doctor and patient, such as blood and saliva. During our research we will try to complete an EFC prototype able to produce energy from blood and saliva inside the risk-infectious medical waste in order to contribute to the energy requirements of a consulting room.
Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier.
Zhang, Zhuanfang Fred; Strickland, Christopher E; Link, Steven O
2017-02-01
Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. After establishing a set of design and performance objectives, a package of design solutions was developed for 1000-year surface barriers over nuclear waste sites. The Prototype Hanford Barrier (PHB) was then constructed in 1994 in the field over an existing waste site as a demonstration. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barrier satisfied nearly all objectives in the past two decades. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford's semiarid climate, limited drainage to well below the 0.5 mm yr -1 performance criterion, limited runoff, and minimized erosion and bio-intrusion. Given the two-decade record of successful performance and consideration of the processes and mechanisms that could affect barrier stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the basis for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Treating contaminated organics using the DETOX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsberry, K.D.; Dhooge, P.M.
1993-05-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less
Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.
García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R
2007-08-15
Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.
NASA Astrophysics Data System (ADS)
Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.
2005-12-01
Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, {open_quotes}Engineering Development of a Coal-Fired High Performance Power Generation System{close_quotes} between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of (1) > 47% thermal efficiency; (2) NO{sub x}, SO{sub x} and particulates {<=}25% NSPS; (3) cost {>=}65% of heat input; (4) all solid wastes benign. In our design consideration, we have tried to render all waste streams benign andmore » if possible convert them to a commercial product. It appears that vitrified slag has commercial values. If the flyash is reinjected through the furnace, along with the dry bottom ash, then the amount of the less valuable solid waste stream (ash) can be minimized. A limitation on this procedure arises if it results in the buildup of toxic metal concentrations in either the slag, the flyash or other APCD components. We have assembled analytical tools to describe the progress of specific toxic metals in our system. The outline of the analytical procedure is presented in the first section of this report. The strengths and corrosion resistance of five candidate refractories have been studied in this quarter. Some of the results are presented and compared for selected preparation conditions (mixing, drying time and drying temperatures). A 100 hour pilot-scale stagging combustor test of the prototype radiant panel is being planned. Several potential refractory brick materials are under review and five will be selected for the first 100 hour test. The design of the prototype panel is presented along with some of the test requirements.« less
Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhuanfang Fred; Strickland, Christopher E.; Link, Steven O.
Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. The Prototype Hanford Barrier (PHB) was designed as a 1000-year barrier with pre-determined design and performance objectives and demonstrated in field from 1994 to present. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barriermore » satisfied nearly all key objectives. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Hanford’s semiarid climate, limited drainage to well below the 0.5 mm yr-1 performance criterion, limited runoff, and minimized erosion. Given the two-decade record of successful performance and consideration of all the processes and mechanisms that could degrade the stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the base for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste.« less
NASA Astrophysics Data System (ADS)
Dhoble, Abhishek S.; Pullammanappallil, Pratap C.
2014-10-01
Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20-50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.
Offline detection of broken rotor bars in AC induction motors
NASA Astrophysics Data System (ADS)
Powers, Craig Stephen
ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.
Rock Melt Borehole Sealing System, Final Technical Report for SBIR Phase I Grant No. DE-SC0011888
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osnes, John D.; Vining, Cody A.; Nopola, Jay R.
Purpose of Research Deep borehole disposal is one option that has received attention in recent years as a possible strategy for long-term disposal of the tens of thousands of tons of spent nuclear fuel. The feasibility of the deep borehole option relies upon designing and constructing an effective seal within the borehole to ensure that the waste package does not communicate with the shallow subsurface biosphere through the borehole itself. Some of the uncertainty associated with the long-term suitability of the deep borehole option is related to (1) the degradation of traditional sealing materials over time and (2) the inabilitymore » of traditional sealing methods to adequately seal a Disturbed Rock Zone surrounding the borehole. One possible system to address these concerns consists of encapsulating the waste in a melt generated from either the waste itself or a plug above the waste. This current project expanded on previous work to further advance the deep borehole disposal concept. Research Objectives & Findings The overarching objective of the study was to evaluate the feasibility of constructing a downhole heater that is capable of meeting the technical and logistical requirements to melt rock. This ultimate objective was accomplished by two primary approaches. The first approach was to define the heater requirements and conceptually design a system that is capable of melting rock. The second approach was to determine the feasibility of conducting an in situ, field-scale melting experiment to validate the suitability of the rock melt seal concept. The evaluation and conceptual design of the heater system resulted in the following primary findings: • Borehole wall temperatures capable of producing a partial melt are achievable under most expected thermal conductivities with a 12-kilowatt heater. • Commercially available components have been identified that meet the requirements of the heater system, including resistive elements that are capable of providing the required heat generation, container materials that can withstand the anticipated temperatures, and a system capable of providing power to the heater. Evaluating the feasibility of performing field-scale experiments resulted in the following major findings: • The Sanford Underground Research Facility (SURF) has been identified as a host site for field testing of prototype heaters. The technical and logistical requirements for performing the rock melt tests can be met by using or expanding the existing infrastructure at SURF with on-site personnel and contractors. • In situ hydraulic conductivity test using packers can test the effectiveness of the rock melt seal, while a mine back performed from a lower level can further evaluate the recrystallized melt. • Preliminary costing indicates that a field-scale melting experiment at SURF is feasible within a Phase II Small Business Innovation Research budget while allowing sufficient budget for refining the heater design, coordinating the test program, and interpreting the results. Application of Research The rock melt sealing concept has the potential to reduce uncertainty associated with the long-term storage of nuclear waste. Preliminary efforts of this study defined the requirements of a downhole heater system capable of melting rock and indicated that developing such a system is feasible using available technology. The next logical step is designing and manufacturing prototype heaters. Concurrent with prototype development is coordinating robust field-scale experiments that are capable of validating the design for marketing to potential users.« less
Furuta, Etsuko; Ito, Takeshi
2018-02-01
A new apparatus for measuring tritiated water in expired air was developed using plastic scintillator (PS) pellets and a low-background liquid scintillation counter. The sensitivity of the apparatus was sufficient when a large adapted Teflon vial was used. The measurement method generated low amounts of organic waste because the PS pellets were reusable by rinsing, and had adequate detection limits. The apparatus is useful for the safety management of workers that are exposed to radioactive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
Sellgren, Katelyn L.; Klem, Ethan J. D.; Piascik, Jeffrey R.; Stoner, Brian R.
2017-01-01
Abstract Decentralized, energy‐efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water‐ and energy‐scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field. PMID:29242713
Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development
NASA Technical Reports Server (NTRS)
Hall, Jeffrey L.; Jones, J. A.; Kerzhanovich, V. V.; Lachenmeier, T.; Mahr, P.; Pauken, M.; Plett, G. A.; Smith, L.; VanLuvender, M. L.; Yavrouian, A. H.
2006-01-01
This paper describes experimental results from a development program focused in maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope thermal generator waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creasy, W.R.; Brickhouse, M.D.; Morrisse, K.M.
1999-07-01
Decontamination waste from chemical weapons (CW) agents has been stored in ton containers on Johnston Atoll since 1971. The waste was recently sampled and analyzed to determine its chemical composition in preparation for future cleanups. Due to the range of products and analytical requirements, multiple chromatographic and spectroscopic methods were necessary, including gas chromatography/mass spectrometry (GC/MS), gas chromatography/atomic emission detection (GC/AED), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis (CE), and nuclear magnetic resonance spectroscopy (NMR). The samples were screened for residual agents. No residual sarin (GB) or VX was found to detection limits of 20 ng/mL, but 3% of the samplesmore » contained residual sulfur mustard (HD) at < 140 ng/mL. Decontamination products of agents were identified. The majority (74%) of the ton containers were documented correctly, in that the observed decontamination products were in agreement with the labeled agent type, but for a number of the containers, the contents were not in agreement with the labels. In addition, arsenic compounds that are decontamination products of the agent lewisite (L) were observed in a few ton containers, suggesting that lewisite was originally present but not documented. This study was a prototype to demonstrate the level of effort required to characterize old bulk CW-related waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett; Harold Vance
2007-08-31
The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texasmore » A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.« less
Decontamination systems information and research program. Quarterly report, April--June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steammore » reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.« less
Fatta, D; Naoum, D; Loizidou, M
2002-04-01
Leachates are generated as a result of water or other liquid passing through waste at a landfill site. These contaminated liquids originate from a number of sources, including the water produced during the decomposition of the waste as well as rain-fall which penetrates the waste and dissolves the material with which it comes into contact. The penetration of the rain-water depends on the nature of the landfill (e.g. surface characteristics, type and quantity of vegetation, gradient of layers, etc). The uncontrolled infiltration of leachate into the vadose (unsaturated) zone and finally into the saturated zone (groundwater) is considered to be the most serious environmental impact of a landfill. In the present paper the water flow and the pollutant transport characteristics of the Ano Liosia Landfill site in Athens (Greece) were simulated by creating a model of groundwater flows and contaminant transport. A methodology for the model is presented. The model was then integrated into the Ecosim system which is a prototype funded by the EU, (Directorate General XIII: Telematics and Environment). This is an integrated environmental monitoring and modeling system, which supports the management of environmental planning in urban areas.
Ni and Cr addition to alloy waste forms to reduce radionuclide environmental releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, L.
2016-10-11
Reference alloy waste forms (RAW) were fabricated and underwent hybrid corrosion/immersion testing to parameterize the ANL analytical oxidative-dissolution model to enable the calculation of fractional release rates and to determine the effectiveness of Ni and Cr trim additions in reducing release rates of radionuclide surrogates. Figure 1 shows the prototypical multiphase microstructure of the alloys with each phase type contributing about equally to the exposed surface area. The waste forms tested at SRNL were variations of the RAW-6 formulation that uses HT9 as the main alloy component, and are meant to enable evaluation of the impact of Ni and Crmore » trim additions on the release rates of actinides and Tc-99. The test solutions were deaerated alkaline and acidic brines, ranging in pH 3 to pH 10, representing potential repositories with those conditions. The testing approach consisted of 4 major steps; 1) bare surface corrosion measurements at pH values of 3, 5, 8, and 10, 2) hybrid potentiostatic hold/exposure measurements at pH 3, 3) measurement of radionuclide concentrations and relations to anodic current from potentiostatic holds, and 4) identification of corroding phases using SEM/EDS of electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buelt, J.L.; Stottlemyre, J.A.; White, M.K.
1991-09-01
Because of the great complexity and number of potential waste sites facing the US Department of Energy (DOE) for potential cleanup, the DOE is supporting the development of a computer-based methodology to streamline the remedial investigations/feasibility study process required for DOE operable units. DOE operable units are generally more complex in nature because of the existence of multiple waste sites within many of the operable units and the presence of mixed radioactive and hazardous chemical wastes. Consequently, Pacific Northwest Laboratory (PNL) is developing the Remedial Action Assessment System (RAAS), which is aimed at screening, linking, and evaluating establishment technology processmore » options in support of conducting feasibility studies under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). It is also intended to do the same in support of corrective measures studies requires by the Resource Conservation and Recovery Act (RCRA). This paper presents the characteristics of two RAAS prototypes currently being developed. These include the RAAS Technology Information System, which accesses information on technologies in a graphical and tabular manner, and the main RAAS methodology, which screens, links, and evaluates remedial technologies. 4 refs., 3 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buelt, J.L.; Stottlemyre, J.A.; White, M.K.
1991-02-01
Because of the great complexity and number of potential waste sites facing the US Department of Energy (DOE) for potential cleanup, the DOE is supporting the development of a computer-based methodology to streamline the remedial investigation/feasibility study process required for DOE operable units. DOE operable units are generally more complex in nature because of the existence of multiple waste sites within many of the operable units and the presence of mixed radioactive and hazardous chemical wastes. Consequently, Pacific Northwest Laboratory (PNL) is developing the Remedial Action Assessment System (RAAS), which is aimed at screening, linking, and evaluating established technology processmore » options in support of conducting feasibility studies under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). It is also intended to do the same in support of corrective measures studies required by the Resource Conservation and Recovery Act (RCRA). This paper presents the characteristics of two RAAS prototypes currently being developed. These include the RAAS Technology Information System, which accesses information on technologies in a graphical and tabular manner, and the main RAAS methodology, which screens, links, and evaluates remedial technologies. 4 refs., 3 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Snyder, C. T.; Frank, Steven
This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na 2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions andmore » degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.« less
Development Of The Prototype Space Non-Foam Membrane Bioreactor
NASA Astrophysics Data System (ADS)
Guo, S.; Xi, W.; Liu, X.
The essential method of making Controlled Ecological Life Support System (CELSS) operate and regenerate efficiently, is to transform and utilize the recycleable materials in the system rapidly. Currently, it is generally recognized that the fundamental way of achieving the goal is to utilize micro-biotechnology. Exactly based on this thinking, a Groundbased Prototype of Space Waste-treating-microbially Facility(GPSWF) was developed in our laboratory, with the purpose of transforming biologically-degradeable waste including inedible plant biomass into plant nutrient solution for attaining future regenerated utilization of materials in the space environment. The facility holds the automatic measurement and control systems of temperature, pH and dissolved oxygen (DO) in treated solution, and the systems of non-foam membrane oxygen provision and post-treated liquid collection. The experimental results showed that the facility could maintain a stable operating state; the pH and DO in the liquid were controlled automatically and precisely; the oxygen in the liquid was non-foamedly provided by membrane technology; the plant inedible biomass could be completely degraded by three species of microbes selected; the decreasing rates of total organic carbon(TOC) and chemical oxygen demand(COD) reached to 92.1% and 95.5% respectively; the post-treated liquid could be automatically drained and collected; the plants could grow almost normally when the post-treated liquid was used as nutrient liquid. Therefore, it can be concluded that the facility possesses a reasonably-designed structure, and its working principle is nearly able to meet the condition of space microgravity environment. So it's hopeful to be applied in space for biological degradation of materials after further improvement.
Bong, Cassendra Phun-Chien; Goh, Rebecca Kar Yee; Lim, Jeng-Shiun; Ho, Wai Shin; Lee, Chew-Tin; Hashim, Haslenda; Abu Mansor, Nur Naha; Ho, Chin Siong; Ramli, Abdul Rahim; Takeshi, Fujiwara
2017-12-01
Rapid population growth and urbanisation have generated large amount of municipal solid waste (MSW) in many cities. Up to 40-60% of Malaysia's MSW is reported to be food waste where such waste is highly putrescible and can cause bad odour and public health issue if its disposal is delayed. In this study, the implementation of community composting in a village within Iskandar Malaysia is presented as a case study to showcase effective MSW management and mitigation of GHG emission. The selected village, Felda Taib Andak (FTA), is located within a palm oil plantation and a crude palm oil processing mill. This project showcases a community-composting prototype to compost food and oil palm wastes into high quality compost. The objective of this article is to highlight the economic and environment impacts of a community-based composting project to the key stakeholders in the community, including residents, oil palm plantation owners and palm oil mill operators by comparing three different scenarios, through a life cycle approach, in terms of the greenhouse gas emission and cost benefit analysis. First scenario is the baseline case, where all the domestic waste is sent to landfill site. In the second scenario, a small-scale centralised composting project was implemented. In the third scenario, the data obtained from Scenario 2 was used to do a projection on the GHG emission and costing analysis for a pilot-scale centralised composting plant. The study showed a reduction potential of 71.64% on GHG emission through the diversion of food waste from landfill, compost utilisation and significant revenue from the compost sale in Scenario 3. This thus provided better insight into the feasibility and desirability in implementing a pilot-scale centralised composting plant for a sub-urban community in Malaysia to achieve a low carbon and self-sustainable society, in terms of environment and economic aspects. Copyright © 2016 Elsevier Ltd. All rights reserved.
SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures
Chen, Qun
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes. PMID:23818830
SGC tests for influence of material composition on compaction characteristic of asphalt mixtures.
Chen, Qun; Li, Yuzhi
2013-01-01
Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture) was studied using Superpave gyratory compactor (SGC) simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.
Dynamic wavefront creation for processing units using a hybrid compactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthoor, Sooraj; Beckmann, Bradford M.; Yudanov, Dmitri
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment tomore » be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.« less
Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit
NASA Astrophysics Data System (ADS)
Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.
2014-12-01
This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.
STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck
1990-12-10
STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.
U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorptionmore » of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.« less
The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, J.M.; Newsom, J.C.
1994-12-01
The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from sevenmore » holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain.« less
Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.
NASA Technical Reports Server (NTRS)
Mir, L.; Simard, C.; Grana, D.
1973-01-01
Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.
Flowpath evaluation and reconnaissance by remote field Eddy current testing (FERRET)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoak, A.E.; Zollinger, W.T.
1993-12-31
This document describes the design and development of FERRET (Flowpath Evaluation and Reconnaisance by Remote-field Eddy current Testing). FERRET is a system for inspecting the steel pipes which carry cooling water to underground nuclear waste storage tanks. The FERRET system has been tested in a small scale cooling pipe mock-up, an improved full scale mock-up, and in flaw detection experiments. Early prototype designs of FERRET and the FERRET launcher (a device which inserts, moves, and retrieves probes from a piping system) as well as the field-ready design are discussed.
‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, David C., E-mail: waste@davidcwilson.com; Rodic, Ljiljana; Cowing, Michael J.
Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The papermore » presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prindle, N.H.; Mendenhall, F.T.; Trauth, K.
1996-05-01
The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the secondmore » iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umari, A.M.J.; Geldon, A.; Patterson, G.
1994-12-31
Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less
Development and demonstration of a telerobotic excavation system
NASA Technical Reports Server (NTRS)
Burks, Barry L.; Thompson, David H.; Killough, Stephen M.; Dinkins, Marion A.
1994-01-01
Oak Ridge National Laboratory is developing remote excavation technologies for the Department of Energy's Office (DOE) of Technology Development, Robotics Technology Development Program, and also for the Department of Defense (DOD) Project Manager for Ammunition Logistics. This work is being done to meet the need for remote excavation and removal of radioactive and contaminated buried waste at several DOE sites and unexploded ordnance at DOD sites. System requirements are based on the need to uncover and remove waste from burial sites in a way that does not cause unnecessary personnel exposure or additional environmental contamination. Goals for the current project are to demonstrate dexterous control of a backhoe with force feedback and to implement robotic operations that will improve productivity. The Telerobotic Small Emplacement Excavator is a prototype system that incorporates the needed robotic and telerobotic capabilities on a commercially available platform. The ability to add remote dexterous teleoperation and robotic operating modes is intended to be adaptable to other commercially available excavator systems.
A survey of some regenerative physico-chemical life support technology
NASA Technical Reports Server (NTRS)
Wydeven, Theodore
1988-01-01
To date, manned spaceflight has used the relatively simple support methodology of bringing all the necessary water, oxygen, and food for the duration of the mission, and collecting and storing waste products for return to Earth. This is referred to as an open system. It was recognized early, as manned missions became longer and crew size increased, that the weight, volume, and transportation penalties of storing or routinely resupplying consumables would at some point become too expensive. Since the early 1960's regenerative ECLSS technology has been under development, and there now exists a foundation in both systems definition and subsystem technology to support long-duration manned missions. In many cases this development has reached the engineering prototype stage for physico-chemical subsystems and in this article some of these subsystems are described. Emphasis is placed on physico-chemical waste conversion and related processes which provide sustenance and not on environmental factors or subsystems, e.g., temperature and humidity control, spacecraft architecture, lighting, etc.
Design jeans for recycling: a supply chain case study in The Netherlands.
van Bommel, Harrie; Goorhuis, Maarten
2014-11-01
Because the insight is raising that waste prevention needs an integral product chain approach, a product chain project was awarded with an International Solid Waste Association grant. The project decided to focus on jeans because of the large environmental impacts of cotton and the low recycling rates. The project used an open innovative approach by involving many actors from the different phases of the chain and included student and applied researchers. In a 'design jeans for recycling' students' workshop, prototypes of jeans that are easier to recycle have been developed. Integrating the new generation from different disciplines in the project proved to be very successful. The results show that an open innovation process can lead to very creative ideas and that lessons learned from this project could be used to develop new chain projects for other products. An important condition is that key actors are willing to cooperate in an open innovation approach. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REICH, F.R.
The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system willmore » fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.« less
Schaffner, Beatrice; Meier, Anton; Wuillemin, Daniel; Hoffelner, Wolfgang; Steinfeld, Aldo
2003-01-01
A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. It features two cavities in series, with the inner one functioning as the solar absorber and the outer one functioning as the reaction chamber. The solar reactor can handle thermochemical processes at temperatures above 1,300 K involving multiphases and controlled atmospheres. It further allows for batch or continuous mode of operation and for easy adjustment of the residence time of the reactants to match the kinetics of the reaction. A 10-kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2,000 kW m(-2) and operated in both batch and continuous mode within the temperature range of 1,120-1,400 K. Extraction of over 90% of the toxic compounds originally contained in the EAFD was achieved while the condensable products of the off-gas contained mainly Zn, Pb, and Cl. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles.
NASA Astrophysics Data System (ADS)
Setiawan, T.; Subekti, W. Y.; Nur'Adya, S. S.; Ilmiah, K.; Ulfa, S. M.
2018-01-01
The DSSC prototype using activated carbon (AC) and natural dye from Robusta coffee bean peels have been investigated. The natural dye obtained from the extraction of Robusta coffee bean peels is identified as anthocyanin by UV-Vis spectrophotometer at maximum wavelength 219.5 nm and 720.0 nm in methanol. From the FT-IR analysis, the vibration of O-H observed at 3385 cm-1, C=O at 1618 cm-1, and C-O-C at 1065 cm-1. The counter electrode prepared by calcined the peels at 300°C. Surface analyser of AC showed the larger surface area compared prior activation. The DSSC prototype was prepared using FTO glass (2x2 cm) coated with carbon paste in various thickness. The working electrode is coated with the TiO2 paste. The optimum voltage measured was 395mV (300 μL of CA), 334 mV (200 μL AC), and 254 mV (100 μL AC). From this result, we understand that the thickness of counter electrode influent the voltage of the DSSC.
Development of service-oriented products based on the inverse manufacturing concept.
Fujimoto, Jun; Umeda, Yasushi; Tamura, Tetsuya; Tomiyama, Tetsuo; Kimura, Fumihiko
2003-12-01
To achieve sustainability, resource consumption and waste generation must be drastically decreased. For societal acceptance, preservation of both quality of life and corporate profits are essential. One promising approach is to shift the source of value from the amount of product sold to the quality of services the product provides. This paper describes the need for redesigning recycling systems from a manufacturing perspective and then discusses the possibility of this "servicification" of products, describing our experience with prototype development. We discuss development of product prototypes and their business, using consumer facsimile machines as an example of "service-oriented products". Traditional thought presumes that only products comprising new materials and components are valuable. Consideration of a service-oriented product can serve as a stimulus to revise this mode of thought and to control delivery and quality of disposed products. This paper also provides a life cycle simulation of the developed service-oriented business. Simulation results indicate that service-oriented business can potentially reduce environmental impact while extending business opportunities from the viewpoint of whole product life cycles.
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)
1998-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.
Sintering of Lunar and Simulant Glass
NASA Technical Reports Server (NTRS)
Cooper, Bonnie L.
2007-01-01
Most oxygen-extraction techniques are temperature-dependent, with higher temperatures resulting in higher oxygen yield. An example is hydrogen reduction, in which the optimum process temperature is 1050 C. However, glass-rich lunar soil begins to show the effects of sintering at temperatures of 900 C or lower. Sintering welds particles together due to viscous relaxation of the glass in the sample. One approach to avoid problems related to sintering, such as difficulty in removing waste material from the reactor, is to keep the soil in motion. One of several methods being studied to accomplish this is fluidized-bed processing techniques, in which the grains are kept in motion by the action of flowing reductant gas. The spent material can be removed from the chamber while still fluidized, or the fluidizing motion can continue until the material has cooled below approx. 500 C. Until end-to-end prototypes are built that can remove the heated soil, the most practical option is to keep the bed fluidized while cooling the waste material. As ISRU technology advances, another option will become valuable, which is to intentionally sinter the material to a great enough extent that it becomes a brick. The free iron in lunar soil is magnetic, and ferromagnetic bricks can be manipulated by robotic systems using electromagnetic end effectors. Finally, if an electromagnetic field is applied to the soil while the brick is being formed, the brick itself will become a magnet. This property can be used to create self-aligning bricks or other building materials that do not require fasteners. Although sintering creates a challenge for early lunar surface systems, knowledge gained during prototype development will be valuable for the advanced lunar outpost.
NASA Astrophysics Data System (ADS)
Kozicki, Janek
This talk focuses on recent advances in the construction of a prototype 1000 m2 Martian out-post for 8 inhabitants. The architectural design for such a Martian base has been presented previously on COSPAR 2008, the presentation being entitled ,,Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission". The presentation was welcomed with warm interest by various institutions, some of which offered help in building a prototype such as providing the building site or funding. This year's oral presentation will focus on a progress report and will briefly describe the architectural design. The architectural design is inspired by terrestrial pneumatic architecture. It has small volume, can be easily transported and provides a large habitable space. An architectural solution analo-gous to a terrestrial house with a studio and a workshop was assumed. The spatial placement of the following zones was carefully considered: residential, agricultural and science, as well as garage and workshop. Further attention was paid to transportation routes and a control and communications center. The issues of a life support system, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least one and a half year. An Open Plan architectural solution was assumed, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation. The prototype of such a Polish-origin Martian outpost will be used in a manner similar to MDRS or FMARS but to a larger extent. The prototype's design itself will be tested and corrected to achieve a design which can be used on Mars. The procedure of unfolding the pneumatic modules and floor leveling will be tested. The 1000 m2 interior will be used for various simulation exercises: socio-psychological testing, interior arrangement experiments, agricultural simulations, growing plants in Martian conditions and other kinds of tests. The presented prototype focuses on the ergonomic and psychological aspects of longer stay in a Martian environment. It provides the Martian crew with a comfortable habitable space larger than DRM modules. The practical proposal is to send this base to Mars in a DRM transpor-tation module after prototype testing is completed. The author hopes that this or other similar Martian base designs will help in establishing a permanent presence of humans on Mars.
Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization.
Lozano, Álvaro; Caridad, Javier; De Paz, Juan Francisco; Villarrubia González, Gabriel; Bajo, Javier
2018-05-08
New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, R.J.; Streier, G.G.
1997-03-01
During FY-96, a performance test was carried out with funding from the Mixed Waste Focus Area (MWFA) of the Department of Energy (DOE) to determine the noninvasive elemental assay capabilities of commercial companies for Resource Conservation and Recovery Act (RCRA) metals present in 8-gal drums containing surrogate waste. Commercial companies were required to be experienced in the use of prompt gamma neutron activation analysis (PGNAA) techniques and to have a prototype assay system with which to conduct the test assays. Potential participants were identified through responses to a call for proposals advertised in the Commerce Business Daily and through personalmore » contacts. Six companies were originally identified. Two of these six were willing and able to participate in the performance test, as described in the test plan, with some subsidizing from the DOE MWFA. The tests were conducted with surrogate sludge waste because (1) a large volume of this type of waste awaits final disposition and (2) sludge tends to be somewhat homogeneous. The surrogate concentrations of the above RCRA metals ranged from {approximately} 300 ppm to {approximately} 20,000 ppm. The lower limit was chosen as an estimate of the expected sensitivity of detection required by noninvasive, pretreatment elemental assay systems to be of value for operational and compliance purposes and to still be achievable with state-of-the-art methods of analysis. The upper limit of {approximately} 20,000 ppm was chosen because it is the opinion of the author that assay above this concentration level is within current state-of-the-art methods for most RCRA constituents. This report is organized into three parts: Part 1, Test Plan to Evaluate the Technical Status of Noninvasive Elemental Assay Techniques for Hazardous Waste; Part 2, Participants` Results; and Part 3, Evaluation of and Comments on Participants` Results.« less
Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization
De Paz, Juan Francisco
2018-01-01
New solutions for managing waste have emerged due to the rise of Smart Cities and the Internet of Things. These solutions can also be applied in rural environments, but they require the deployment of a low cost and low consumption sensor network which can be used by different applications. Wireless technologies such as LoRa and low consumption microcontrollers, such as the SAM L21 family make the implementation and deployment of this kind of sensor network possible. This paper introduces a waste monitoring and management platform used in rural environments. A prototype of a low consumption wireless node is developed to obtain measurements of the weight, filling volume and temperature of a waste container. This monitoring allows the progressive filling data of every town container to be gathered and analysed as well as creating alerts in case of incidence. The platform features a module for optimising waste collection routes. This module dynamically generates routes from data obtained through the deployed nodes to save energy, time and consequently, costs. It also features a mobile application for the collection fleet which guides every driver through the best route—previously calculated for each journey. This paper presents a case study performed in the region of Salamanca to evaluate the efficiency and the viability of the system’s implementation. Data used for this case study come from open data sources, the report of the Castilla y León waste management plan and data from public tender procedures in the region of Salamanca. The results of the case study show a developed node with a great lifetime of operation, a large coverage with small deployment of antennas in the region, and a route optimization system which uses weight and volume measured by the node, and provides savings in cost, time and workforce compared to a static collection route approach. PMID:29738472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indacochea, J. E.; Gattu, V. K.; Chen, X.
The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite materials made with added lanthanide and uranium oxides. These analyses show the corrosion behaviors of the alloy/ceramic composite materials are very similar to the corrosion behaviors of multi-phase alloy waste forms, and that the presence of oxide inclusions does not impact the corrosion behaviors of the alloy phases. Mixing with metallic waste streams is beneficial to lanthanide and uranium oxides in that they react with Zr in the fuel waste to form highly durable zirconates. The measured corrosion behaviors suggest properly formulated composite materials would be suitable waste forms for combined metallic and oxide waste streams generated during electrometallurgical reprocessing of spent nuclear fuel. Electrochemical methods are suitable for evaluating the durability and modeling long-term behavior of composite waste forms: the degradation model developed for metallic waste forms can be applied to the alloy phases formed in the composite and an affinity-based mineral dissolution model can be applied to the ceramic phases.« less
NASA Astrophysics Data System (ADS)
Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.
2017-02-01
A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.
The Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Greenwood, F. H.; Thompson, C. D.; Willis, N. C.
1974-01-01
The Representative Shuttle Environmental Control System (RSECS) program was conceived to provide NASA with a prototype system representative of the Shuttle Environmental Control System (ECS). Discussed are the RSECS program objectives, predicated on updating and adding to the early system as required to retain its usefulness during the Shuttle ECS development and qualification effort. Ultimately, RSECS will be replaced with a flight-designed system using either refurbished development or qualification equipment to provide NASA with a flight simulation capability during the Shuttle missions. The RSECS air revitalization subsystem and the waste management support subsystem are being tested. A water coolant subsystem and a freon coolant subsystem are in the development and planning phases.
NASA Astrophysics Data System (ADS)
Borquist, Eric
Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.
Effectiveness of three bulking agents for food waste composting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Bijaya K.; Barrington, Suzelle; Martinez, Jose
2009-01-15
Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends.more » Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.« less
STS-35: Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
Live footage shows the crewmembers of STS-35, Commander Vance D. Brand, Pilot Guy S. Gardner, Mission Specialists Jeffrey A. Hoffman, John M. Lounge, and Robert A. Parker, and Payload Specialists Samuel T. Durrance, and Ronald A. Parise, participating in the traditional breakfast prior to launch. The crew is seen suiting up, and walking out to the Astro-Van for their 1 a.m. launch. Also shown are some beautiful panoramic shots of the shuttle on the launch pad, main engine start, ignition, liftoff, and various shots of the Launch Control Center (LCC). The crew is also shown during flight performing some routine functions such as operating the trash compactor, eating, and getting into and out of their sleeping quarters. The crew is seen taking part in a conversation with the Secretary of State, and the Foreign Minister of the Soviet Union. Footage also includes the landing of Columbia, its rollout on the runway, and its crew as they depart from the vehicle.
Conductivity and transit time estimates of a soil liner
Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.
1990-01-01
A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.
Rivard, C J; Duff, B W; Dickow, J H; Wiles, C C; Nagle, N J; Gaddy, J L; Clausen, E C
1998-01-01
Early evaluations of the bioconversion potential for combined wastes such as tuna sludge and sorted municipal solid waste (MSW) were conducted at laboratory scale and compared conventional low-solids, stirred-tank anaerobic systems with the novel, high-solids anaerobic digester (HSAD) design. Enhanced feedstock conversion rates and yields were determined for the HSAD system. In addition, the HSAD system demonstrated superior resiliency to process failure. Utilizing relatively dry feedstocks, the HSAD system is approximately one-tenth the size of conventional low-solids systems. In addition, the HSAD system is capable of organic loading rates (OLRs) on the order of 20-25 g volatile solids per liter digester volume per d (gVS/L/d), roughly 4-5 times those of conventional systems. Current efforts involve developing a demonstration-scale (pilot-scale) HSAD system. A two-ton/d plant has been constructed in Stanton, CA and is currently in the commissioning/startup phase. The purposes of the project are to verify laboratory- and intermediate-scale process performance; test the performance of large-scale prototype mechanical systems; demonstrate the long-term reliability of the process; and generate the process and economic data required for the design, financing, and construction of full-scale commercial systems. This study presents conformational fermentation data obtained at intermediate-scale and a snapshot of the pilot-scale project.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Modeling and Prototyping of Automatic Clutch System for Light Vehicles
NASA Astrophysics Data System (ADS)
Murali, S.; Jothi Prakash, V. M.; Vishal, S.
2017-03-01
Nowadays, recycling or regenerating the waste in to something useful is appreciated all around the globe. It reduces greenhouse gas emissions that contribute to global climate change. This study deals with provision of the automatic clutch mechanism in vehicles to facilitate the smooth changing of gears. This study proposed to use the exhaust gases which are normally expelled out as a waste from the turbocharger to actuate the clutch mechanism in vehicles to facilitate the smooth changing of gears. At present, clutches are operated automatically by using an air compressor in the four wheelers. In this study, a conceptual design is proposed in which the clutch is operated by the exhaust gas from the turbocharger and this will remove the usage of air compressor in the existing system. With this system, usage of air compressor is eliminated and the riders need not to operate the clutch manually. This work involved in development, analysation and validation of the conceptual design through simulation software. Then the developed conceptual design of an automatic pneumatic clutch system is tested with proto type.
Design and construction of miniature artificial ecosystem based on dynamic response optimization
NASA Astrophysics Data System (ADS)
Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu
The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and constructing a prototype of MAES is the reverse of mathematical modeling, and must have prerequisite assists from these results of computer simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.
This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been takenmore » to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137 source placed in the centre of the measurement chamber. Small sources have also been used to determine the spatial variation of the detection efficiency for various positions within the measurement chamber. The data have been used to establish sentencing limits and different 'fingerprints' for specific waste streams including waste streams containing fission products and others based on other radionuclides including Am-241. Some of the test data that are presented have been used to validate the instrument performance. The monitor is currently in routine use at a nuclear facility for the measurement and sentencing of low-density low activity radioactive waste. (authors)« less
Biosphere 2: a prototype project for a permanent and evolving life system for Mars base.
Nelson, M; Allen, J P; Dempster, W F
1992-01-01
As part of the ground-based preparation for creating long-term life systems needed for space habitation and settlement, Space Biospheres Ventures (SBV) is undertaking the Biosphere 2 project near Oracle, Arizona. Biosphere 2, currently under construction, is scheduled to commence its operations in 1991 with a two-year closure period with a crew of eight people. Biosphere 2 is a facility which will be essentialy materially-closed to exchange with the outside environment. It is open to information and energy flow. Biosphere 2 is designed to achieve a complex life-support system by the integration of seven areas or "biomes"--rainforest, savannah, desert, marsh, ocean, intensive agriculture and human habitat. Unique bioregenerative technologies, such as soil bed reactors for air purification, aquatic waste processing systems, real-time analytic systems and complex computer monitoring and control systems are being developed for the Biosphere 2 project. Its operation should afford valuable insight into the functioning of complex life systems necessary for long-term habitation in space. It will serve as an experimental ground-based prototype and testbed for the stable, permanent life systems needed for human exploration of Mars.
A microfluidic fuel cell with flow-through porous electrodes.
Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David
2008-03-26
A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.
Pesticides water decontamination in oxygen-limited conditions.
Suciu, Nicoleta Alina; Ferrari, Federico; Vasileiadis, Sotirios; Merli, Annalisa; Capri, Ettore; Trevisan, Marco
2013-01-01
This study was undertaken to develop a laboratory bioreactor, with a functioning principle similar with that of biobed systems but working in oxygen-limited conditions, suitable for decontaminating wastewater mixtures with pesticides. The system is composed by two cylindrical plastic containers. The first one, where the pesticides solution is collected, is open, whereas the second one, where the biomass is disposed, is closed. The pesticides solution was pumped at the biomass surface and subsequently recollected and disposed in the first container. Four pesticides with different physical-chemical characteristics were tested. The results obtained showed a relatively good capacity of the developed prototype to decontaminate waste water containing the mixture of pesticides. The time of the experiment, the number of cycles that the solution made in the system and the environmental temperature have a significantly influence for the decontamination of acetochlor and chlorpyrifos whereas for the decontamination of terbuthylazine and metalaxyl no significant influence was observed. Even if the present prototype could represent a valid solution to manage the water pesticides residues in a farm and to increase the confidence of bystanders and residents, the practical difficulties when replacing the biomass could represent a limit of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephson, Gary B.; Geeting, John GH; Bredt, Ofelia P.
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes." The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEPmore » also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3-8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. In both scenarios, following the caustic leach, the slurry was then concentrated to 17 wt% and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.« less
NASA Astrophysics Data System (ADS)
Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.
Evaluation of RO modules for the SSP ETC/LSS.
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Bambenek, R. A.
1973-01-01
During the past eight years the NASA Manned Spacecraft Center has supported the development of an Integrated Water and Waste Management System for use in the Space Station Prototype (SSP) Environmental Thermal Control/Life-Support System (ETC/LSS). This system includes the reverse osmosis (RO) process for recycling wash water and the compression distillation process for recovering useable water from urine, urinal flush water, humidity condensate, commode flush water and the wash water concentrated by RO. This paper summarizes the experimental work performed during the past four years to select the best commercially available RO module for this system and to also define which surfactants and germicides are most compatible with the selected module.
Microfluidic-Based Robotic Sampling System for Radioactive Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack D. Law; Julia L. Tripp; Tara E. Smith
A novel microfluidic based robotic sampling system has been developed for sampling and analysis of liquid solutions in nuclear processes. This system couples the use of a microfluidic sample chip with a robotic system designed to allow remote, automated sampling of process solutions in-cell and facilitates direct coupling of the microfluidic sample chip with analytical instrumentation. This system provides the capability for near real time analysis, reduces analytical waste, and minimizes the potential for personnel exposure associated with traditional sampling methods. A prototype sampling system was designed, built and tested. System testing demonstrated operability of the microfluidic based sample systemmore » and identified system modifications to optimize performance.« less
Long life reliability thermal control systems study
NASA Technical Reports Server (NTRS)
Scollon, T. R., Jr.; Killen, R. E.
1972-01-01
The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.
Design and Testing of a Solid-Liquid Interface Monitor for High-Level Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, D.; Awwad, A.; Roelant, D.
2008-07-01
A high-level waste (HLW) monitor has been designed, fabricated and tested at full-scale for deployment inside a Hanford tank. The Solid-Liquid Interface Monitor (SLIM) integrates a commercial sonar system with a mechanical deployment system for deploying into an underground waste tank. The system has undergone several design modifications based upon changing requirements at Hanford. We will present the various designs of the monitor from first to last and will present performance data from the various prototype systems. We will also present modeling of stresses in the enclosure under 85 mph wind loading. The system must be able to function atmore » winds up to 15 mph and must withstand a maximum loading of 85 mph. There will be several examples presented of engineering tradeoffs made as FIU analyzed new requirements and modified the design to accommodate. We will present our current plans for installing into the Cold Test Facility at Hanford and into a double-shelled tank at Hanford. Finally, we will present our vision for how this technology can be used at Hanford and Savannah River Site to improve the filling and emptying of high-level waste tanks. In conclusion: 1. The manually operated first-generation SLIM is a viable option on tanks where personnel are allowed to work on top of the tank. 2. The remote controlled second-generation SLIM can be utilized on tanks where personnel access is limited. 3. The totally enclosed fourth-generation SLIM, when the design is finalized, can be used when the possibility exists for wind dispersion of any HLW that maybe on the system. 4. The profiling sonar can be used effectively for real-time monitoring of the solid-liquid interface over a large area. (authors)« less
NASA Astrophysics Data System (ADS)
Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi
2015-01-01
Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.
Immobilization of Fast Reactor First Cycle Raffinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langley, K. F.; Partridge, B. A.; Wise, M.
This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less
Brunner, S; Fomin, P; Kargel, Ch
2015-04-01
The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance and throughput were experimentally quantified using 3 different types of polymers (Polyoxymethylene (POM), Polybutylenterephthalat (PBT) and Acrylonitrile Styrene Acrylate (ASA)) in colored and uncolored form. Overall, 12 classes of plastic flakes were investigated in this study, where 11 classes were labeled with unique binary combinations of 4 fluorescence markers and class 12 includes unlabeled plastic flakes of various colors. From approx. 68,000 investigated flakes it was found that the developed measurement prototype system achieves an average sensitivity (true positive rate) of 99.4% and a precision (positive predictive value) of 99.5%, while being able to handle up to approx. 1800 flakes per second. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dibari, Filippo; Diop, El Hadji I; Collins, Steven; Seal, Andrew
2012-05-01
According to the United Nations (UN), 25 million children <5 y of age are currently affected by severe acute malnutrition and need to be treated using special nutritional products such as ready-to-use therapeutic foods (RUTF). Improved formulations are in demand, but a standardized approach for RUTF design has not yet been described. A method relying on linear programming (LP) analysis was developed and piloted in the design of a RUTF prototype for the treatment of wasting in East African children and adults. The LP objective function and decision variables consisted of the lowest formulation price and the weights of the chosen commodities (soy, sorghum, maize, oil, and sugar), respectively. The LP constraints were based on current UN recommendations for the macronutrient content of therapeutic food and included palatability, texture, and maximum food ingredient weight criteria. Nonlinear constraints for nutrient ratios were converted to linear equations to allow their use in LP. The formulation was considered accurate if laboratory results confirmed an energy density difference <10% and a protein or lipid difference <5 g · 100 g(-1) compared to the LP formulation estimates. With this test prototype, the differences were 7%, and 2.3 and -1.0 g · 100 g(-1), respectively, and the formulation accuracy was considered good. LP can contribute to the design of ready-to-use foods (therapeutic, supplementary, or complementary), targeting different forms of malnutrition, while using commodities that are cheaper, regionally available, and meet local cultural preferences. However, as with all prototype feeding products for medical use, composition analysis, safety, acceptability, and clinical effectiveness trials must be conducted to validate the formulation.
Nelson, M; Alling, A; Dempster, W F; van Thillo, M; Allen, John
2003-01-01
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens (TM)" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
A CLINICIAN'S GUIDE TO X-LINKED HYPOPHOSPHATEMIA
Carpenter, Thomas O.; Imel, Erik A.; Holm, Ingrid A.; Jan de Beur, Suzanne M.; Insogna, Karl L.
2011-01-01
X-linked hypophosphatemia (XLH) is the prototypic disorder of renal phosphate wasting, and the most common form of heritable rickets. Physicians, patients, and XLH support groups have all expressed concerns about the dearth of information about this disease and the lack of treatment guidelines which frequently lead to missed diagnoses or mismanagement. This perspective addresses the recommendation by conferees for the dissemination of concise and accessible treatment guidelines for clinicians arising from the “Advances in Rare Bone Diseases Scientific Conference,” held at the National Institutes of Health in October 2008. We briefly review the clinical and pathophysiologic features of the disorder, and offer this guide in response to the conference recommendation, base on our collective accumulated experience in the management of this complex disorder. PMID:21538511
Experimental Results for Titan Aerobot Thermo-Mechanical Subsystem Development
NASA Technical Reports Server (NTRS)
Pauken, Michael T.; Hall, Jeffery L.
2006-01-01
This paper presents experimental results on a set of 4 thermo-mechanical research tasks aimed at Titan and Venus aerobots: 1. A cryogenic balloon materials development program culminating in the fabrication and testing of a 4.6 m long blimp prototype at 93K. 2. A combined computational and experimental thermal analysis of the effect of radioisotope power system (RPS) waste heat on the behavior of a helium filled blimp hull. 3. Aerial deployment and inflation testing using a blimp 4. A proof of concept experiment with an aerobot-mounted steerable high gain antenna These tasks were supported with JPL internal R&D funds and executed by JPL engineers with substantial industry collaboration for Task #1, the cryogenic balloon materials
Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert
This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less
Sustainable Waste Water Treatment in Developing Countries: A Case Study of IIT Kharagpur Campus
NASA Astrophysics Data System (ADS)
Das, Sutapa; Bokshi, Sanjit
2017-06-01
Treatment of wastewater and its reuse in irrigation and agriculture can mitigate the inevitable scarcity of safe drinking water in coming decades. For developing countries like India and especially in its under-privileged regions, it is high time to focus on sustainable wastewater treatment which will be economical and easy to construct, operate and maintain by unskilled users without much dependency on electricity. Addressing this issue, various sustainable methods of wastewater treatment was critically analyzed and the Waste Stabilization Pond system was selected. A facility was designed for 20,000 residents of Indian Institute of Technology Kharagpur campus based on its geo-climatic and wastewater characteristics. Detailed calculations were carried out to demonstrate the effluent quality with reduced BOD and E-coli is suitable for unrestricted irrigation. This project with minor customisation can act as a prototype for adjacent vast rural areas where land is available but water, electricity and skilled technicians are not. If implemented, this project will bear social benefits beyond campus such as water supply to drought prone areas, better harvest and rural employment. Moreover, it underpins government' several initiatives to develop rural infrastructure and inclusive growth of the country.
NASA Astrophysics Data System (ADS)
Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson
2017-03-01
In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.
Liu, M J J; Chou, S M; Chua, C K; Tay, B C M; Ng, B K
2013-02-01
To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Troy G. Garn; Jack D. Law
2009-09-01
Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This reportmore » includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.« less
EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.
2009-08-14
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and is to be operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processesmore » using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to dissolve solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct steam injection to accelerate the leaching process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP1, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard D. Boardman; B. H. O'Brien; N. R. Soelberg
About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in themore » New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.« less
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Astrophysics Data System (ADS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-03-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
Advanced Aerospace Materials by Design
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu
2004-01-01
The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.
Modeling a Thermoelectric HVAC System for Automobiles
NASA Astrophysics Data System (ADS)
Junior, C. S.; Strupp, N. C.; Lemke, N. C.; Koehler, J.
2009-07-01
In automobiles thermal energy is used at various energy scales. With regard to reduction of CO2 emissions, efficient generation of hot and cold temperatures and wise use of waste heat are of paramount importance for car manufacturers worldwide. Thermoelectrics could be a vital component in automobiles of the future. To evaluate the applicability of thermoelectric modules in automobiles, a Modelica model of a thermoelectric liquid-gas heat exchanger was developed for transient simulations. The model uses component models from the object-oriented Modelica library TIL. It was validated based on experimental data of a prototype heat exchanger and used to simulate transient and steady-state behavior. The use of the model within the energy management of an automobile is successfully shown for the air-conditioning system of a car.
Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, William L.; Arm, Stuart T.; Huckaby, James L.
Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled “Undemonstrated Leaching Processes” and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describesmore » the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.« less
Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration
NASA Technical Reports Server (NTRS)
Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.
1981-01-01
A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizia, R.E.; Atteridge, D.G.; Buckentin, J.
1994-08-01
The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less
Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W
2014-10-07
The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.
Yost, Erin E.; Meyer, Michael T.; Dietze, Julie E.; Williams, C. Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W.
2017-01-01
The inflow, transformation, and attenuation of natural steroid hormones, phytoestrogens, and estrogenic activity was assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet; particularly daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at two months post-application. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a lagoon/sprayfield system, and provides global insight into the fate of these analytes in this widely used waste management system. PMID:25148584
Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, B.
1980-05-01
The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will bemore » digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.« less
Lightweight thermal energy recovery system based on shape memory alloys: a DOE ARPA-E initiative
NASA Astrophysics Data System (ADS)
Browne, Alan L.; Keefe, Andrew C.; Alexander, Paul W.; Mankame, Nilesh; Usoro, Patrick; Johnson, Nancy L.; Aase, Jan; Sarosi, Peter; McKnight, Geoffrey P.; Herrera, Guillermo; Churchill, Christopher; Shaw, John; Brown, Jeff
2012-04-01
Over 60% of energy that is generated is lost as waste heat with close to 90% of this waste heat being classified as low grade being at temperatures less than 200°C. Many technologies such as thermoelectrics have been proposed as means for harvesting this lost thermal energy. Among them, that of SMA (shape memory alloy) heat engines appears to be a strong candidate for converting this low grade thermal output to useful mechanical work. Unfortunately, though proposed initially in the late 60's and the subject of significant development work in the 70's, significant technical roadblocks have existed preventing this technology from moving from a scientific curiosity to a practical reality. This paper/presentation provides an overview of the work performed on SMA heat engines under the US DOE (Department of Energy) ARPA-E (Advanced Research Projects Agency - Energy) initiative. It begins with a review of the previous art, covers the identified technical roadblocks to past advancement, presents the solution path taken to remove these roadblocks, and describes significant breakthroughs during the project. The presentation concludes with details of the functioning prototypes developed, which, being able to operate in air as well as fluids, dramatically expand the operational envelop and make significant strides towards the ultimate goal of commercial viability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J.; Conca, J.
1996-10-01
The objective of this Cooperative Research and Development Agreement (CRADA) was to develop and commercialize a technology conceived by scientists at Pacific Northwest National Laboratory (PNNL) and manufactured by Beckman Instruments, Inc. (Beckman), and to apply this technology to the characterization of and soils. The technology is the Unsaturated Flow Apparatus (UFA). The UFA provides a highly efficient method of direct, rapid measurement of hydraulic conductivity and other flow properties according to Darcy-Buckingham principles because the operator controls both the fluid driving force, using an ultracentrifuge, and the flow into the sample while it is spinning, with a rotating sealmore » assembly. The concept of using centrifugation to significantly decrease the time needed, from years or months to days, for study of subsurface transport, particularly under unsaturated conditions, was conceived by James Conca, Ph.D., and Judith Wright, Ph.D., in 1986. The prototype UFA was developed in 1988 because there was a need to rapidly and accurately determine transport parameters in soils, sediments, and rocks for the Grout Waste Disposal Program. Transport parameters are critical to modeling outcomes for site-specific solutions to environmental remediation and waste disposal problems.« less
Near Two-Decade Instrument Performance for Hydrological Monitoring at the Prototype Hanford Barrier
NASA Astrophysics Data System (ADS)
Zhang, Z. F.; Strickland, C. E.; Clayton, R. E.
2012-12-01
Surface barriers have been proposed for use at the Department of Energy's Hanford Site as a means to isolate certain radioactive waste sites that, for reasons of cost or worker safety, may not be exhumed. The Hanford Prototype Barrier was constructed in 1994 using mostly natural materials to demonstrate its long-term performance. The barrier is expected to perform for at least 1000 years by limiting water, plant, animal, and human intrusion and minimizing erosion. Extensive instrumentation is used to monitor the hydrological regime above, within, below, and around the barrier. Specifically, natural precipitation and irrigation are measured with rain gauges, runoff water with a runoff flume, soil water content within the barrier at 12 stations with a neutron probe, a capacitance probe, and time-domain-reflectometry probes, and soil water pressure with gypsum blocks and heat-dissipation-units. Drainage through the barrier and the side slopes is measured with 12 water collection vaults, respectively, for 12 zones. Each drainage vault is equipped with a dosing siphon, a dose counter, a pressure transducer to measure the water level, and a tipping bucket to measure the inflow. During the near two-decade monitoring period, some of the instruments stopped functioning, while others still function normally till present. This presentation will summarize the performance of these instruments. Recommendations for future barrier monitoring will be given.
Field Testing of Environmentally Friendly Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett
2009-05-31
The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less
Ultralightweight Fresnel Lens Solar Concentrators for Space Power
NASA Technical Reports Server (NTRS)
ONeill, M. J.; McDanal, A. J.
2000-01-01
The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.
In-plant testing of membranes to treat electroplating wastewater
NASA Technical Reports Server (NTRS)
Shah, D. B.; Talu, Orhan
1995-01-01
This is the final report submitted for the work performed under the NASA Cooperative Agreement NCC3-301 for the project entitled 'In-Plant Testing of Membranes To Treat Electroplating Waste water'. The main objective of the research project was to determine if the crosslinked polyacrylic acid salt films developed by NASA scientists could be used for heavy metal removal from the wastewater generated by the metals-finishing or electroplating industry. A variety of tasks identified in the original proposal were completed. These included: (1) analysis of our industrial partner Aetna Plating's zinc electroplating process and its wastewater treatment needs for zinc removal; (2) design and construction of a laboratory-scale unit to continuously supply and remove the ion exchange films from the zinc wastewater; (3) performance of a series of runs on such a unit to determine its operating characteristics; and (4) design of a prototype unit for use at the industrial site. In addition, there were a number of tasks that had not been identified in the original proposal but were later judged to be necessary for the successful completion of the project. These were: (1) batch equilibrium and kinetic experiments with analysis of the experimental results to accurately determine the equilibrium and kinetic parameters for the ion exchange films; (2 ) simulation studies for proper design of the prototype unit; and (3) preliminary runs to exchange the films from H form to Calcium form.
NASA Astrophysics Data System (ADS)
Falsafioon, Mehdi; Aidoun, Zine; Poirier, Michel
2017-12-01
A wide range of industrial refrigeration systems are good candidates to benefit from the cooling and refrigeration potential of supersonic ejectors. These are thermally activated and can use waste heat recovery from industrial processes where it is abundantly generated and rejected to the environment. In other circumstances low cost heat from biomass or solar energy may also be used in order to produce a cooling effect. Ejector performance is however typically modest and needs to be maximized in order to take full advantage of the simplicity and low cost of the technology. In the present work, the behavior of ejectors with different nozzle exit positions has been investigated using a prototype as well as a CFD model. The prototype was used in order to measure the performance advantages of refrigerant (R-134a) flowing inside the ejector. For the CFD model, it is assumed that the ejectors are axi-symmetric along x-axis, thus the generated model is in 2D. The preliminary CFD results are validated with experimental data over a wide range of conditions and are in good accordance in terms of entrainment and compression ratios. Next, the flow patterns of four different topologies are studied in order to discuss the optimum geometry in term of ejector entrainment improvement. Finally, The numerical simulations were used to find an optimum value corresponding to maximized entrainment ratio for fixed operating conditions.
Automated baseline change detection -- Phases 1 and 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byler, E.
1997-10-31
The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrelmore » and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.« less
Ambler - An autonomous rover for planetary exploration
NASA Technical Reports Server (NTRS)
Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom
1989-01-01
The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.
NASA Astrophysics Data System (ADS)
McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.
2014-03-01
Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.
Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers.
Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma
2009-08-15
In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas.
A Thermoelectric Energy Harvesting System for Powering Wireless Sensors in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Chen, Jie; Klein, Jackson; Wu, Yongjia; Xing, Shaoxu; Flammang, Robert; Heibel, Michael; Zuo, Lei
2016-10-01
Safety is the most important issue in the development of nuclear energy. This paper reports experimental studies of a thermoelectric energy harvesting system designed for integration in a nuclear power plant capable of performing in radiation rich environments and producing enough power to run wireless sensors meant to increase plant safety. Furthermore, the system, which utilizes wasted heat present in coolant system piping, has the unique ability to provide power in both normal and accidental situations, to run the sensors without the need for external power. Two energy harvesting prototypes were designed utilizing a heat pipe for heat transfer. The first can supply a maximum power of 2.25 W using two Bi2Te3 thermoelectric modules of 2.79cm (1.1") × 2.79 cm (1.1”), in a source temperature near 250 °C. A second design was put forward to extend the application in higher-temperature primary loops, in which one PbTe-Bi2Te3 hybrid TEG module of 5.6cm (2.2") × 5.6 cm (2.2") can provide a power of 3.0 W when the hot side temperature reaches 340 °C. In addition to the energy harvester, wireless communication circuits were developed along with an integrated power management circuit for wireless data transmission. A high intensity gamma radiation experiment was conducted during which each component was irradiated. A total dose of 200 kGy±10% (20M rads) was applied to the first prototype in order to approximate the expected lifetime accumulation for one implemented thermoelectric generator. Results showed that thermoelectric modules used in the prototype had no reduction in voltage output throughout irradiation. Throughout the experiment the harvester system witnessed a small voltage drop in open circuit voltage attributed to a reduction in heat pipe performance from radiation exposure. We also acquired a baseline radiation survivability level for non-hardened, non-shielded electronics of 102 Gy.
Rapid and cheap prototyping of a microfluidic cell sorter.
Islam, M Z; McMullin, J N; Tsui, Y Y
2011-05-01
Development of a microfluidic device is generally based on fabrication-design-fabrication loop, as, unlike the microelectronics design, there is no rigorous simulation-based verification of the chip before fabrication. This usually results in extremely long, and hence expensive, product development cycle if micro/nano fabrication facilities are used from the beginning of the cycle. Here, we illustrate a novel approach of device prototyping that is fast, cheap, reliable, and most importantly, this technique can be adopted even if no state-of-the-art microfabrication facility is available. A water-jet machine is used to cut the desired microfluidic channels into a thin steel plate which is then used as a template to cut the channels into a thin sheet of a transparent and cheap polymer material named Surlyn® by using a Hot Knife™. The feature-inscribed Surlyn sheet is bonded in between two microscope glass slides by utilizing the techniques which has been being used in curing polymer film between dual layer automotive glasses for years. Optical fibers are inserted from the sides of chip and are bonded by UV epoxy. To study the applicability of this prototyping approach, we made a basic microfluidic sorter and tested its functionalities. Sample containing microparticles is injected into the chip. Light from a 532-nm diode laser is coupled into the optical fiber that delivers light to the interrogation region in the channel. The emitted light from the particle is collected by a photodiode (PD) placed over the detection window. The device sorts the particles into the sorted or waste outlets depending on the level of the PD signal. We used fluorescent latex beads to test the detection and sorting functionalities of the device. We found that the system could detect all the beads that passed through its geometric observation region and could sort almost all the beads it detected. Copyright © 2011 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.
2013-05-01
Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management and health monitoring capabilities to sensor nodes which are not connected to the energy grid.
Materials Design for Joinable, High Performance Aluminum Alloys
NASA Astrophysics Data System (ADS)
Glamm, Ryan James
An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron microscopy are used to characterize the composition, size, and phase fraction evolution for the automotive alloy strengthening precipitates. It is determined that the dominant precipitate at peak hardness is a metastable T' phase. The automotive alloy is friction stir processed and found to lose hardness in the heat affected zones surrounding the nugget. A post weld heat treatment nearly recovers the heat affected zones to base hardness. The post weld heat treatment is compatible with the current automotive paint bake step, showing design for processability. Tensile tests confirm the base alloy strength meets the automotive strength goal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Bob
Electron-ion colliders (EIC) have been identified as an ideal tool to study the next frontier of nuclear physics – the gluon force that holds the building blocks of matter together, and which is a fundamental component of the theory of Quantum Chromodynamics (QCD). Future electron-ion colliders under consideration can be based on the Energy Recovery Linac (ERL) architecture. The beam lines for this architecture could be built of the newly developed Non-Scaling Fixed Field Alternating Gradient (NS FFAG) structure, so that they can transfer multiple energies within the same aperture. This structure allows for the use of compact, economical quadupolemore » permanent magnets. In this SBIR, we propose to design and to manufacture prototype quadrupole permanent magnets of focusing/defocusing combined function for use in this beam line. For our SBIR project, we proposed to design and build the focusing/defocusing quadrupole with a gradient strength of 50 T/m and with a beam gap of 16mm. The proposed permanent magnet material is SmCo because of its higher radiation resistance as compared to NdBFe2. The use of permanent magnets will reduce the overall cost. For Phase I, we took a recent design by Dr. Dejan Trbojevic, and reran Tosca code on the design to optimize the iron yoke with respect to the thickness of SmCo. We then fabricated one prototype focusing/defocusing combined function quadruple and measured field quality dG/Go. Our plan for Phase II is that, based on our Phase I prototype experience, we shall improve the design and fabricate a production quadruple, and design and incorporate coils for skew dipoles and normal quadrupole correctors, etc. In addition, we shall fabricate enough quadrupoles for one cell. The development of quadrupole permanent magnets is of fundamental importance for there application in the future electron-ion colliders. This accelerator structure will also advance the development of muon accelerators and allow for the development of compact, simplified, less expensive proton accelerators which will promote their use in areas such as proton cancer therapy, and for high-power proton drivers for tritium and neutron production, waste transmutation, driving a sub-critical nuclear reactor to produce energy, cargo contain inspection, and radioisotope production. Proton cancer therapy has been identified as a particularly attractive and viable commercial application for the immediate future.« less
Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, E.J.
A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination.more » Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.« less
Novice designers’ use of prototypes in engineering design
Deininger, Michael; Daly, Shanna R.; Sienko, Kathleen H.; Lee, Jennifer C.
2017-01-01
Prototypes are essential tools in product design processes, but are often underutilized by novice designers. To help novice designers use prototypes more effectively, we must first determine how they currently use prototypes. In this paper, we describe how novice designers conceptualized prototypes and reported using them throughout a design project, and compare reported prototyping use to prototyping best practices. We found that some of the reported prototyping practices by novice designers, such as using inexpensive prototypes early and using prototypes to define user requirements, occurred infrequently and lacked intentionality. Participants’ initial descriptions of prototypes were less sophisticated than how they later described using them and only upon prompted reflection did participants recognize more specific benefits of using prototypes. PMID:29398740
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)
1997-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Overview of the Government of Canada Nuclear Legacy Liabilities Program - 13551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metcalfe, D.; McCauley, D.; Miller, J.
Nuclear legacy liabilities have resulted from more than 60 years of nuclear research and development carried out on behalf of Canada. The liabilities are located at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories in Ontario and Whiteshell Laboratories in Manitoba, as well as three shutdown prototype reactors in Ontario and Quebec that are being maintained in a safe storage state. Estimated at about $7.4 billion (current day dollars), these liabilities consist of disused nuclear facilities and associated infrastructure, a wide variety of buried and stored waste, and contaminated lands. In 2006, the Government of Canada adopted a long-termmore » strategy to deal with the nuclear legacy liabilities and initiated a five-year, $520 million start-up phase, thereby creating the Nuclear Legacy Liabilities Program (NLLP). The Government of Canada renewed the NLLP in 2011 with a $439-million three-year second phase that ends March 31, 2014. The projects and activities carried out under the Program focus on infrastructure decommissioning, environmental restoration, improving the management of legacy radioactive waste, and advancing the long-term strategy. The NLLP is being implemented through a Memorandum of Understanding between Natural Resources Canada (NRCan) and AECL whereby NRCan is responsible for policy direction and oversight, including control of funding, and AECL is responsible for implementing the program of work and holding and administering all licences, facilities and lands. (authors)« less
NASA Astrophysics Data System (ADS)
Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar
2016-01-01
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Fowley, M.; Miller, D.
2016-12-01
Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods.more » Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National Laboratory, and coordinated with modeling efforts underway at Idaho National Laboratory.« less
NASA Technical Reports Server (NTRS)
Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini
2006-01-01
Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.
Zhao, Xinyan; Dong, Tao
2013-01-01
Bacterial waterborne pathogens often threaten the water safety of the drinking water system. In order to protect the health of home users, a household lab-on-a-chip (LOC) device was developed for online monitoring bacterial pathogens in drinking water, which are in accord with green design concept. The chip integrated counter-flow micromixers, a T-junction droplet generator and time-delay channels (TD-Cs), which can mix water sample and reactants into droplets in air flow and incubate the droplets in the LOC for about 18 hours before observation. The detection module was simplified into a transparent observation chamber, from which the home users can evaluate the qualitative result by naked eyes. The liquid waste generated by the LOC system was sterilized and absorbed by quicklime powders. No secondary pollution was found. The preliminary test of the prototype system met its design requirements.
Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Wakalopulos, G.
This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams.more » During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.« less
Ni Based Powder Reconditioning and Reuse for LMD Process
NASA Astrophysics Data System (ADS)
Renderos, M.; Girot, F.; Lamikiz, A.; Torregaray, A.; Saintier, N.
LMD is an additive manufacturing process based on the injection of metallic powder into a melt-pool created by a heat laser source on a substrate. One of the benefits of this technology is the reduction of the wasted material since it is a near-shape process. Moreover one of the main drawbacks is the relatively low efficiency of the trapped powder, which can be loss than 5% in some cases. The non-trapped powder represents a significant cost in the LMD process, since powder metal material is very expensive and usually is not reused. This article proposes a methodology of the reconditioning and posterior reuse of a nickel base powder commonly used in the aerospace industry, with the main objectives of cost saving, higher environmental cleanup and increase of the overall efficiency in the LMD process. The results are checked by the development of a prototype part built up from reused powder.
On designing low pressure loss working spaces for a planar Stirling micromachine
NASA Astrophysics Data System (ADS)
Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.
2015-12-01
In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis.
Manzanares Palenzuela, C Lorena; Novotný, Filip; Krupička, Petr; Sofer, Zdeněk; Pumera, Martin
2018-05-01
Additive manufacturing provides a unique tool for prototyping structures toward electrochemical sensing, due to its ability to produce highly versatile, tailored-shaped devices in a low-cost and fast way with minimized waste. Here we present 3D-printed graphene electrodes for electrochemical sensing. Ring- and disc-shaped electrodes were 3D-printed with a Fused Deposition Modeling printer and characterized using cyclic voltammetry and scanning electron microscopy. Different redox probes K 3 Fe(CN) 6 :K 4 Fe(CN) 6 , FeCl 3 , ascorbic acid, Ru(NH 3 ) 6 Cl 3 , and ferrocene monocarboxylic acid) were used to assess the electrochemical performance of these devices. Finally, the electrochemical detection of picric acid and ascorbic acid was carried out as proof-of-concept analytes for sensing applications. Such customizable platforms represent promising alternatives to conventional electrodes for a wide range of sensing applications.
Thermal loading of natural streams
Jackman, Alan P.; Yotsukura, Nobuhiro
1977-01-01
The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)
16 CFR 1633.5 - Prototype pooling and confirmation testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Prototype pooling and confirmation testing... Prototype pooling and confirmation testing requirements. (a) Prototype pooling. One or more manufacturers may rely on a qualified prototype produced by another manufacturer or prototype developer provided...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazile, F.
2007-07-01
The sustainability of an energy policy depends on the manner in which it satisfies environmental, economical and social requirements. Nuclear energy is not an exception. The objectives of the future nuclear systems, as defined in the Generation IV International Forum, tend to optimize the ability of nuclear energy to satisfy sustainable development goals. In this regard, they involve strong commitments concerning waste management policy : five designs in six are based on a closed fuel cycle, in order to minimize the volume and radiotoxicity of final waste, and to recycle the fissile materials to save natural resources. Since its beginnings,more » the French civil nuclear programme has considered a long-term perspective and has developed spent fuel reprocessing. The French current industrial technology has already permitted to recycle 96% of spent fuel materials, to save 30% of natural resources, to reduce by 5 the amount of waste and to reduce by 10 the waste radiotoxicity, all these benefits for less than 6% of the kWh total cost. This strategy has always been criticized by the nuclear opponents, precisely because they saw that it was a sustainable way, and didn't accept to consider nuclear energy as a sustainable source of power. Two arguments were put forward these criticisms. First, the cost of reprocessing versus once-through cycle and second, the risk of proliferation induced by U-Pu partitioning process. These arguments were also invoked in international debates, and they have also been pleaded by the anti-nukes during the National Debate on HLLLW, at the end of 2005, preceding the vote of a new law in 2006 by the French parliament. Fortunately they have not convinced public opinion in France nor political decision-makers. A majority of people with no regard to technical background understand that recycling and saving the natural resources are sustainable principles. And, from a technical point of view, the 6% over cost does not seem significant considering the economics of nuclear power. Lastly, the risk proliferation is more related to the front-end technologies than to the back-end ones. So, the 2006 French Law 'for a sustainable radioactive waste management' has reinforced the closed-cycle strategy and has paved the way for a long-term development of nuclear energy in the 21. century and beyond, towards the third and fourth generations of nuclear systems. It has defined an R and D programme including the continuation of partitioning-transmutation of minor actinides and their recycling in 4. generation fast reactors. In parallel, the French president has committed the French Atomic Energy Commission to implement a 4. generation prototype reactor by 2020, with international cooperation, to guarantee the permanence of technology progress. In this regard, the waste management strategy can't be built without taking into account the perspectives of development of nuclear energy. These perspectives must include the best available technologies and, in the other hand, an adaptation to the political evolutions of societies. (authors)« less
Prototype Effect and the Persuasiveness of Generalizations.
Dahlman, Christian; Sarwar, Farhan; Bååth, Rasmus; Wahlberg, Lena; Sikström, Sverker
An argument that makes use of a generalization activates the prototype for the category used in the generalization. We conducted two experiments that investigated how the activation of the prototype affects the persuasiveness of the argument. The results of the experiments suggest that the features of the prototype overshadow and partly overwrite the actual facts of the case. The case is, to some extent, judged as if it had the features of the prototype instead of the features it actually has. This prototype effect increases the persuasiveness of the argument in situations where the audience finds the judgment more warranted for the prototype than for the actual case (positive prototype effect), but decreases persuasiveness in situations where the audience finds the judgment less warranted for the prototype than for the actual case (negative prototype effect).
van Lettow, Britt; de Vries, Hein; Burdorf, Alex; Conner, Mark; van Empelen, Pepijn
2015-05-01
Prototypes (i.e., social images) predict health-related behaviours and intentions within the context of the Theory of Planned Behaviour (TPB). This study tested the moderating role of temporal stability of drinker prototype perceptions on prototype-intentions and prototype-behaviour relationships, within an augmented TPB. The study examined abstainer, moderate drinker, heavy drinker, tipsy, and drunk prototypes. An online prospective study with 1-month follow-up was conducted among 410 young adults (18-25 years old, Mage = 21.0, SD = 2.14, 21.7% male). Assessed were prototype perceptions (favourability and similarity, T1, T2), stability of prototype perceptions, TPB variables (T1), intentions (T2), and drinking behaviour (T2). Intention analyses were corrected for baseline behaviour; drinking behaviour analyses were corrected for intentions and baseline behaviour. Hierarchical regressions showed that prototype stability moderated the relationships of drunk and abstainer prototype similarity with intentions. Similarity to the abstainer prototype explained intentions to drink sensibly more strongly among individuals with stable perceptions than among those with unstable perceptions. Conversely, intentions were explained stronger among individuals with stable perceptions of dissimilarity to the drunk prototype than among those with unstable perceptions. No moderation effects were found for stability of favourability or for relationships with behaviour. Stable prototype similarity perceptions were more predictive of intentions than unstable perceptions. These perceptions were most relevant in enhancing the explanation of young adults' intended drinking behaviour. Specifically, young adults' health intentions seem to be guided by the dissociation from the drunk prototype and association with the abstainer prototype. Statement of contribution What is already known on this subject? Prototypes have augmented the Theory of Planned Behaviour in explaining risk behaviour. Temporal stability has been shown to successfully extend the TPB in explaining intentions. Temporal stability of TPB variables can moderate the relationships with behaviour and intentions. What does this study add? Stability of prototype perceptions moderates the prototype-intentions relationship. Stability of abstainer and drunk prototype similarity enhances the explanation of (intentional) drinking. Stable prototype perceptions are more explanatory than unstable perceptions. © 2014 The British Psychological Society.
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James Lee, Jr.
2013-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules.
Bacher, C; Olsen, P M; Bertelsen, P; Sonnergaard, J M
2008-02-12
The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10 size fractions between 0 and 2000 microm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate. The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds (the calcium carbonate: calcium carbonate bonds) and consequently exposed the weakest areas of bond formation on the surface of the granules. Accordingly, the non-uniform allocation of the interparticulate attractive forces in a tablet would cause a lowering of the compactibility. Furthermore, the ability of the powder to agglomerate in the roller compactor was demonstrated to be related to the ability of the powder to be compacted into a tablet, thus the most compactable calcium carbonate and the smallest sized sorbitol improved the homogeneity by decreasing the demixing potential.
Paper Spray Mass Spectrometry for the Forensic Analysis of Black Ballpoint Pen Inks
NASA Astrophysics Data System (ADS)
Amador, Victoria Silva; Pereira, Hebert Vinicius; Sena, Marcelo Martins; Augusti, Rodinei; Piccin, Evandro
2017-09-01
This article describes the use of paper spray mass spectrometry (PS-MS) for the direct analysis of black ink writings made with ballpoint pens. The novel approach was developed in a forensic context by first performing the classification of commercially available ballpoint pens according to their brands. Six of the most commonly worldwide utilized brands (Bic, Paper Mate, Faber Castell, Pentel, Compactor, and Pilot) were differentiated according to their characteristic chemical patterns obtained by PS-MS. MS on the negative ion mode at a mass range of m/ z 100-1000 allowed prompt discrimination just by visual inspection. On the other hand, the concept of relative ion intensity (RII) and the analysis at other mass ranges were necessary for the differentiation using the positive ion mode. PS-MS combined with partial least squares (PLS) was utilized to monitor changes on the ink chemical composition after light exposure (artificial aging studies). The PLS model was optimized by variable selection, which allowed the identification of the most influencing ions on the degradation process. The feasibility of the method on forensic investigations was also demonstrated in three different applications: (1) analysis of overlapped fresh ink lines, (2) analysis of old inks from archived documents, and (3) detection of alterations (simulated forgeries) performed on archived documents. [Figure not available: see fulltext.
A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery
NASA Technical Reports Server (NTRS)
Chen, Weibo; Conboy, Thomas; Ewert, Michael
2016-01-01
Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.
Freeman, Tim; Brockbank, Katrina; Armstrong, Brian
2015-01-01
The pharmaceutical industry still produces the vast majority of their products, from powdered ingredients, in the form of solid doses. Despite their ubiquity, powders are difficult materials to characterise and understand, as evidenced by the frequent problems encountered during manufacture. The reason for this is their complex rheological behaviour coupled with numerous environmental variations, such as humidity. Equally, the range of processes used to manipulate powders subject them to extremes of stress from high compaction loads seen in compactors to the dispersed state seen in fluidised bed dryers. Thus, it is evident that ensuring that the powders characteristics are compatible with the way they are to be processed is a clear prerequisite for today's Quality by Design driven manufacturing. Modern, computer controlled instrumental techniques, including the dynamic, bulk and shear property measurements have enabled direct measurements of a powders response to aeration, consolidation and flow rate - all at low stresses - as well as quantifying shear and bulk properties (such as density, compressibility and permeability). In order to demonstrate how fully characterising a powder can be used in the design, operation and troubleshooting of processes, this paper will present examples of common pharmaceutical unit operations and the different powder characteristics that most influence the performance of each.
RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.
Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O
2018-06-06
Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James L.
2012-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
NASA Astrophysics Data System (ADS)
Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek
2017-10-01
Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.
Implicit face prototype learning from geometric information.
Or, Charles C-F; Wilson, Hugh R
2013-04-19
There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Teunissen, Hanneke A; Spijkerman, Renske; Kuntsche, Emmanuel; Engels, Rutger C M E; Scholte, Ron H J
2017-04-16
There is still limited understanding of how different kinds of drinker prototypes are associated with adolescent drinking. This study uses the strengths of multiple time-point diary measures (enhanced validity of alcohol use measurement) to test the predictive value of abstainer, moderate and heavy drinker prototypes in social situations. We examined whether the favorability of these prototypes (i.e., "prototype evaluation"), the perceived similarity of these prototypes to one's self-image (i.e., "prototype similarity") assessed at baseline, and their interaction predict alcohol use assessed in social situations. Drinker prototypes were assessed in a baseline sample of 599 adolescents. Subsequently, a sample of 77 alcohol-using 16 to 18-year-old males reported their Friday and Saturday evening drinking behavior the next day during eight weeks (resulting in 495 daily measures). Alcohol use was assessed in the company of peers. The more adolescents perceived themselves as similar to heavy drinker prototypes the higher their alcohol consumption in social situations. The more adolescents held favorable abstainer prototypes, the lower their alcohol consumption. The interaction between prototype evaluation and similarity was not significant. By using a more reliable and valid method to assess adolescents' alcohol use, the present study showed that more "extreme" drinker prototypes (i.e., heavy drinker and abstainer prototypes) are most predictive of adolescent alcohol use in social situations. Increasing the perceived dissimilarity to heavy drinker prototypes and the favorability of abstainer prototypes may therefore be important targets in interventions aimed at reducing adolescents' alcohol consumption.
A failure management prototype: DR/Rx
NASA Technical Reports Server (NTRS)
Hammen, David G.; Baker, Carolyn G.; Kelly, Christine M.; Marsh, Christopher A.
1991-01-01
This failure management prototype performs failure diagnosis and recovery management of hierarchical, distributed systems. The prototype, which evolved from a series of previous prototypes following a spiral model for development, focuses on two functions: (1) the diagnostic reasoner (DR) performs integrated failure diagnosis in distributed systems; and (2) the recovery expert (Rx) develops plans to recover from the failure. Issues related to expert system prototype design and the previous history of this prototype are discussed. The architecture of the current prototype is described in terms of the knowledge representation and functionality of its components.
Spotiton: A prototype for an integrated inkjet dispense and vitrification system for cryo-TEM
Jain, Tilak; Sheehan, Patrick; Crum, John; Carragher, Bridget; Potter, Clinton S.
2012-01-01
Over the last three decades, Cryo-TEM has developed into a powerful technique for high-resolution imaging of biological macromolecules in their native vitrified state. However, the technique for vitrifying specimens onto EM grids is essentially unchanged – application of ~ 3 µL sample to a grid, followed by blotting and rapid plunge freezing into liquid ethane. Several trials are often required to obtain suitable thin (few hundred nanometers or less) vitrified layers amenable for cryo-TEM imaging, which results in waste of precious sample and resources. While commercially available instruments provide some level of automation to control the vitrification process in an effort to increase quality and reproducibility, obtaining satisfactory vitrified specimens remains a bottleneck in the Cryo-TEM pipeline. We describe here a completely novel method for EM specimen preparation based on small volume (picoliter to nanoliter) dispensing using inkjet technology. A first prototype system (Spotiton v0.5) demonstrates feasibility of this new approach for specimen vitrification. A piezo-electric inkjet dispenser is integrated with optical real-time cameras (100 Hz frame rate) to analyze picoliter to nanoliter droplet profiles in-flight and spreading dynamics on the grid, and thus provides a method to optimize timing of the process. Using TEM imaging and biochemical assays we demonstrate that the piezo-electric inkjet mechanism does not disrupt the structural or functional integrity of macromolecules. These preliminary studies provide insight into the factors and components that will need further development to enable a robust and repeatable technique for specimen vitrification using this novel approach. PMID:22569522
The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo
S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less
Variable Emissivity Through MEMS Technology
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)
2000-01-01
This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama
2007-07-01
NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help formore » comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the initial stage including work analysis/modeling and the system conceptualization. (authors)« less
TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn E. Katz; R.S. Bowman; E.J. Sullivan
2003-11-01
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however,more » they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.« less
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Looking the part (to me): effects of racial prototypicality on race perception vary by prejudice
Sprout, Gregory T.; Freeman, Jonathan B.; Krendl, Anne C.
2017-01-01
Abstract Less racially prototypic faces elicit more category competition during race categorization. Top-down factors (e.g. stereotypes), however, affect categorizations, suggesting racial prototypicality may enhance category competition in certain perceivers. Here, we examined how prejudice affects race category competition and stabilization when perceiving faces varying in racial prototypicality. Prototypically low vs high Black relative to White faces elicited more category competition and slower response latencies during categorization (Experiment 1), suggesting a pronounced racial prototypicality effect on minority race categorization. However, prejudice predicted the extent of category competition between prototypically low vs high Black faces. Suggesting more response conflict toward less prototypic Black vs White faces, anterior cingulate cortex activity increased toward Black vs White faces as they decreased in racial prototypicality, with prejudice positively predicting this difference (Experiment 2). These findings extend the literature on racial prototypicality and categorization by showing that relative prejudice tempers the extent of category competition and response conflict engaged when initially perceiving faces. PMID:28077728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliwell, Stephen
2012-07-01
At the Hanford site, in the 1950's and 60's, radioactive waste materials, including Transuranic (TRU) wastes from a number of laboratories were stored in vertical pipe units (VPUs) in what are now the 618-10 and 618-11 burial grounds. Although the current physical condition of the VPUs is unknown, initial R and D studies had shown that in-ground size reduction and stabilization of VPU contents was feasible. This paper describes the R and D work and testing activities to validate the concept of in-ground size reduction and stabilization of VPU contents, and the design and pre-testing of major plant items andmore » augering systems on full size simulated VPUs. The paper also describes the full size prototype equipment which will be used in full size cold testing of simulated VPUs off the Hanford site, to prove the equipment, develop operating procedures, and train operators prior to deployment on site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. Safe and effective field remediation, removal and disposal of the VPUs in the 600 area are critical to the success of the River Corridor Closure Contract at the U.S. Department of Energy's Hanford Site. (authors)« less
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Development and optimization of a stove-powered thermoelectric generator
NASA Astrophysics Data System (ADS)
Mastbergen, Dan
Almost a third of the world's population still lacks access to electricity. Most of these people use biomass stoves for cooking which produce significant amounts of wasted thermal energy, but no electricity. Less than 1% of this energy in the form of electricity would be adequate for basic tasks such as lighting and communications. However, an affordable and reliable means of accomplishing this is currently nonexistent. The goal of this work is to develop a thermoelectric generator to convert a small amount of wasted heat into electricity. Although this concept has been around for decades, previous attempts have failed due to insufficient analysis of the system as a whole, leading to ineffective and costly designs. In this work, a complete design process is undertaken including concept generation, prototype testing, field testing, and redesign/optimization. Detailed component models are constructed and integrated to create a full system model. The model encompasses the stove operation, thermoelectric module, heat sinks, charging system and battery. A 3000 cycle endurance test was also conducted to evaluate the effects of operating temperature, module quality, and thermal interface quality on the generator's reliability, lifetime and cost effectiveness. The results from this testing are integrated into the system model to determine the lowest system cost in $/Watt over a five year period. Through this work the concept of a stove-based thermoelectric generator is shown to be technologically and economically feasible. In addition, a methodology is developed for optimizing the system for specific regional stove usage habits.
Test results on re-use of reclaimed shower water: Summary. [space stations
NASA Technical Reports Server (NTRS)
Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.
1988-01-01
A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.
Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen
2015-04-10
We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing andmore » new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.« less
Mass sensing AlN sensors for waste water monitoring
NASA Astrophysics Data System (ADS)
Porrazzo, R.; Potter, G.; Lydecker, L.; Foraida, Z.; Gattu, S.; Tokranova, N.; Castracane, J.
2014-08-01
Monitoring the presence of nanomaterials in waste water from semiconductor facilities is a critical task for public health organizations. Advanced semiconductor technology allows the fabrication of sensitive piezoelectric-based mass sensors with a detection limit of less than 1.35 ng/cm2 of nanomaterials such as nanoparticles of alumina, amorphous silica, ceria, etc. The interactions between acoustic waves generated by the piezoelectric sensor and nanomaterial mass attached to its surface define the sensing response as a shift in the resonant frequency. In this article the development and characterization of a prototype AlN film bulk acoustic resonator (FBAR) are presented. DC reactive magnetron sputtering was used to create tilted c-axis oriented AlN films to generate shear waves which don't propagate in liquids thus minimizing the acoustic losses. The high acoustic velocity of AlN over quartz allows an increase in resonance frequency in comparison with a quartz crystal microbalance (QCM) and results in a higher frequency shift per mass change, and thus greater sensitivity. The membrane and electrodes were fabricated using state of the art semiconductor technology. The device surface functionalization was performed to demonstrate selectivity towards a specific nanomaterial. As a result, the devices were covered with a "docking" layer that allows the nanomaterials to be selectively attached to the surface. This was achieved using covalent modification of the surface, specifically targeting ZnO nanoparticles. Our functionalization approach was tested using two different types of nanoparticles, and binding specificity was confirmed with various analytical techniques.
Improvement of home composting process of food waste using different minerals.
Margaritis, M; Psarras, K; Panaretou, V; Thanos, A G; Malamis, D; Sotiropoulos, A
2018-03-01
This article presents the experimental study of the process of composting in a prototype home-scale system with a special focus on process improvement by using different additives (i.e. woodchips, perlite, vermiculite and zeolite). The interventions with different bulking agents were realized through composting cycles using substrates with 10% additives in specific mixtures of kitchen waste materials. The pre-selected proportion of the mixtures examined was 3:1:1 in cellulosic:proteins:carbohydrates, in order to achieve an initial C/N ratio equal to 30. The control of the initial properties of the examined substrates aimed at the consequent improvement of the properties of the final product (compost). The results indicated that composting process was enhanced with the use of additives and especially the case of zeolite and perlite provided the best results, in terms of efficient temperature evolution (>55 °C for 4 consecutive days). Carbon to nitrogen ratios decreased by 40% from the initial values for the reactors were minerals were added, while for the bioreactor tested with woodchips the reduction was slight, showing slowest degradation rate. Moisture content of produced compost varied within the range of 55-64% d.m., while nutrient content (K, Na, Ca, Mg) was in accordance with the limit values reported in literature. Finally, the composts obtained, exhibited a satisfactory degree of maturity, fulfilling the criterion related to the absence of phytotoxic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prototyping Visual Learning Analytics Guided by an Educational Theory Informed Goal
ERIC Educational Resources Information Center
Hillaire, Garron; Rappolt-Schlichtmann, Gabrielle; Ducharme, Kim
2016-01-01
Prototype work can support the creation of data visualizations throughout the research and development process through paper prototypes with sketching, designed prototypes with graphic design tools, and functional prototypes to explore how the implementation will work. One challenging aspect of data visualization work is coordinating the expertise…
“In vitro” Implantation Technique Based on 3D Printed Prosthetic Prototypes
NASA Astrophysics Data System (ADS)
Tarnita, D.; Boborelu, C.; Geonea, I.; Malciu, R.; Grigorie, L.; Tarnita, D. N.
2018-06-01
In this paper, Rapid Prototyping ZCorp 310 system, based on high-performance composite powder and on resin-high strength infiltration system and three-dimensional printing as a manufacturing method are used to obtain physical prototypes of orthopaedic implants and prototypes of complex functional prosthetic systems directly from the 3D CAD data. These prototypes are useful for in vitro experimental tests and measurements to optimize and obtain final physical prototypes. Using a new elbow prosthesis model prototype obtained by 3D printing, the surgical technique of implantation is established. Surgical implantation was performed on male corpse elbow joint.
End effector monitoring system: An illustrated case of operational prototyping
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Land, Sherry A.; Thronesbery, Carroll
1994-01-01
Operational prototyping is introduced to help developers apply software innovations to real-world problems, to help users articulate requirements, and to help develop more usable software. Operational prototyping has been applied to an expert system development project. The expert system supports fault detection and management during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges among operational prototyping team members are illustrated in a specific prototyping session. We discuss the requirements for operational prototyping technology, types of projects for which operational prototyping is best suited and when it should be applied to those projects.
46 CFR 8.570 - Interim approval of prototype SIP company or vessel plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Interim approval of prototype SIP company or vessel... of prototype SIP company or vessel plans. (a) A company operating under an approved prototype SIP... continue operating under the plans while revisions are developed to bring the prototype SIP company or...
Looking the part (to me): effects of racial prototypicality on race perception vary by prejudice.
Cassidy, Brittany S; Sprout, Gregory T; Freeman, Jonathan B; Krendl, Anne C
2017-04-01
Less racially prototypic faces elicit more category competition during race categorization. Top-down factors (e.g. stereotypes), however, affect categorizations, suggesting racial prototypicality may enhance category competition in certain perceivers. Here, we examined how prejudice affects race category competition and stabilization when perceiving faces varying in racial prototypicality. Prototypically low vs high Black relative to White faces elicited more category competition and slower response latencies during categorization (Experiment 1), suggesting a pronounced racial prototypicality effect on minority race categorization. However, prejudice predicted the extent of category competition between prototypically low vs high Black faces. Suggesting more response conflict toward less prototypic Black vs White faces, anterior cingulate cortex activity increased toward Black vs White faces as they decreased in racial prototypicality, with prejudice positively predicting this difference (Experiment 2). These findings extend the literature on racial prototypicality and categorization by showing that relative prejudice tempers the extent of category competition and response conflict engaged when initially perceiving faces. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Schedule C-prototype tests for calibration or reference... Licensed Items § 32.102 Schedule C—prototype tests for calibration or reference sources containing..., conduct prototype tests, in the order listed, on each of five prototypes of the source, which contains...
Denham, Charles R; Guilloteau, Franck R
2012-09-01
The ultimate objective of this program is to provide an approach to understanding and communicating health-care harm and cost to compel health-care provider leadership teams to vote "yes" to investments in patient safety initiatives, with the confidence that clinical, financial, and operational performance will be improved by such programs. Through a coordinated combination of literature evaluations, careful mapping of high impact scenarios using simulated patients and consensus review of clinical, operational, and financial factors, we confirmed value in such approaches to decision support information for hospital leadership teams to invest in patient safety projects. The study resulted in the following preliminary findings: ·Communication between hospital quality and finance departments can be much improved by direct collaborative relationships through regular meetings to help both clarify direct costs, indirect costs, and the savings of waste and harm to patients by avoidance of infections. ·Governance leaders and the professional administrative leaders should consider establishing the structures and systems necessary to act on risks and hazards as they evolve to deploy resources to areas of harm and risk. ·Quality and Infection Control Professionals can best wage their war on healthcare waste and harm by keeping abreast of the latest literature regarding the latest measures, standards, and safe practices for healthcare-acquired infections and hospital-acquired conditions. ·Regular reviews of patients with health-careYassociated infections, with direct attention to the attributable cost of treatment and how financial waste and harm to patients may be avoided, may provide hospital leaders with new insights for improvement. ·If hospitals developed their own risk scenarios to determine impact of harm and waste from hospital-acquired conditions in addition to impact scenarios for specific processes through technology and process innovations, they would have more clear guidance for improvement efforts. ·Tools such as impact calculators, performance models, and simulated patient trajectories are no more tied to the reality of running a hospital or treating a patient as jet simulator metrics are to taking a real flight with real weather and real aircraftVthey provide a view to enhance decision making but do NOT provide the answers. The final result of this project was to demonstrate a prototype leadership decision-support investment model approach that addresses clinical, operational, and financial performance for typical hospitals.
Leichsenring, Falk; Ablon, Stuart; Barber, Jacques P; Beutel, Manfred; Gibbons, Mary Beth Connolly; Crits-Christoph, Paul; Klein, Susanne; Leweke, Frank; Steinert, Christiane; Wiltink, Jörg; Salzer, Simone
2016-07-01
A Psychotherapy Process Q-set (PQS) prototype characteristic of short-term psychodynamic therapy (STPP) does not yet exist. Experts in supportive-expressive (SE) therapy used the 100-Item PQS questionnaire to rate an ideal short-term SE therapy. Agreement between raters was high (Cronbach's alpha = 0.94). The prototype for SE therapy showed a significant correlation with the psychoanalytic prototype, but with 28% of variance explained, the majority of variance of the former was not explained by the latter or vice versa. Furthermore, the SE prototype showed significant correlations with the cognitive-behavioral prototype and the prototype of interpersonal therapy by Ablon and Jones (r = 0.69, 0.43). We recommend using the PQS prototype presented here for future process research on STPP.
Microbial battery for efficient energy recovery.
Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi
2013-10-01
By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.
Smart battery controller for lithium sulfur dioxide batteries
NASA Astrophysics Data System (ADS)
Atwater, Terrill; Bard, Arnold; Testa, Bruce; Shader, William
1992-08-01
Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.
NASA Astrophysics Data System (ADS)
Zorbas, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Kyratsi, Th.
2010-01-01
In recent years, thermoelectricity sees rapidly increasing usages in applications like portable refrigerators, beverage coolers, electronic component coolers etc. when used as Thermoelectric Cooler (TEC), and Thermoelectric Generators (TEG) which make use of the Seebeck effect in semiconductors for the direct conversion of heat into electrical energy and is of particular interest for systems of highest reliability or for waste heat recovery. In this work, we examine the performance of commercially available TEC and TEG. A prototype TEC-refrigerator has been designed, modeled and constructed for in-car applications. Additionally, a TEG was made, in order to measure the gained power and efficiency. Furthermore, a TEG module was tested on a small size car (Toyota Starlet, 1300 cc), in order to measure the gained power and efficiency for various engine loads. With the use of a modeling approach, we evaluated the thermal contact resistances and their influence on the final device efficiency.
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks
NASA Astrophysics Data System (ADS)
Magnetto, D.; Vidiella, G.
2012-06-01
The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger, thermoelectric modules and DC/DC converter. The main objective of the project is to design, optimize and produce a prototype system to be tested on a 2.3l diesel truck. The base case is a Thermo Electric Generator (TEG) producing 1 KWel at 130 km/h. We present the system design and estimated output power from benchmark Bi2Te3 modules. We discuss key drivers for the optimization of the thermal-to-electric efficiency, such as materials, thermo-mechanical aspects and integration.
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-01-01
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371
Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun
2015-09-02
Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.
Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
Lenz, Robert W; Marchessault, Robert H
2005-01-01
The discovery and chemical identification, in the 1920s, of the aliphatic polyester: poly(3-hydroxybutyrate), PHB, as a granular component in bacterial cells proceeded without any of the controversies which marked the recognition of macromolecules by Staudinger. Some thirty years after its discovery, PHB was recognized as the prototypical biodegradable thermoplastic to solve the waste disposal challenge. The development effort led by Imperial Chemical Industries Ltd., encouraged interdisciplinary research from genetic engineering and biotechnology to the study of enzymes involved in biosynthesis and biodegradation. From the simple PHB homopolyester discovered by Maurice Lemoigne in the mid-twenties, a family of over 100 different aliphatic polyesters of the same general structure has been discovered. Depending on bacterial species and substrates, these high molecular weight stereoregular polyesters have emerged as a new family of natural polymers ranking with nucleic acids, polyamides, polyisoprenoids, polyphenols, polyphosphates, and polysaccharides. In this historical review, the chemical, biochemical and microbial highlights are linked to personalities and locations involved with the events covering a discovery timespan of 75 years.
Microbial battery for efficient energy recovery
Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi
2013-01-01
By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
An experimental study on the effects of peer drinking norms on adolescents’ drinker prototypes
Teunissen, Hanneke A.; Spijkerman, Renske; Cohen, Geoffrey L.; Prinstein, Mitchell J.; Engels, Rutger C.M.E.; Scholte, Ron H.J.
2015-01-01
Background Adolescents form impressions about the type of peers who drink (i.e., drinker prototypes). The evaluation of, and perceived similarity to these prototypes are related to adolescents’ drinking. Peer drinking norms play an important role in the formation of prototypes. We experimentally examined whether manipulation of peer norms changed the evaluation of and perceived similarity to drinker prototypes and whether these changes were moderated by peers’ popularity. Methods In a pre-test, we assessed heavy drinker, moderate drinker and abstainer prototypes, drinking behaviors and peer-perceived popularity among 599 adolescents. Additionally, 88 boys from this sample participated in a simulated chat room, in which they interacted with peers from school. These peers were in fact pre-programmed e-confederates, who were either popular or unpopular and who communicated either pro-alcohol or anti-alcohol norms. After the chat room interaction we assessed participants’ drinker prototypes. Results Participants exposed to anti-alcohol norms were more negative about, and perceived themselves as less similar to heavy drinker prototypes, than participants exposed to pro-alcohol norms. We found no effects of peer norms on moderate drinker and abstainer prototypes. Effects were not moderated by peers’ popularity. We did find a main effect of popularity on perceived similarity to all prototypes. This indicated that participants rated themselves as more similar to heavy and moderate drinker prototypes and less similar to abstainer prototypes when they interacted with unpopular peers than with popular peers. Conclusions Exposure to anti-alcohol norms of peers leads adolescents to form more negative prototypes of the heavy drinker. This could be an important finding for prevention and intervention programs aimed to reduce alcohol consumption among adolescents. PMID:24104050
PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, D.; Martino, C.; Poirier, M.
2012-04-26
Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL wasmore » to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.« less
Recognizing human actions by learning and matching shape-motion prototype trees.
Jiang, Zhuolin; Lin, Zhe; Davis, Larry S
2012-03-01
A shape-motion prototype-based approach is introduced for action recognition. The approach represents an action as a sequence of prototypes for efficient and flexible action matching in long video sequences. During training, an action prototype tree is learned in a joint shape and motion space via hierarchical K-means clustering and each training sequence is represented as a labeled prototype sequence; then a look-up table of prototype-to-prototype distances is generated. During testing, based on a joint probability model of the actor location and action prototype, the actor is tracked while a frame-to-prototype correspondence is established by maximizing the joint probability, which is efficiently performed by searching the learned prototype tree; then actions are recognized using dynamic prototype sequence matching. Distance measures used for sequence matching are rapidly obtained by look-up table indexing, which is an order of magnitude faster than brute-force computation of frame-to-frame distances. Our approach enables robust action matching in challenging situations (such as moving cameras, dynamic backgrounds) and allows automatic alignment of action sequences. Experimental results demonstrate that our approach achieves recognition rates of 92.86 percent on a large gesture data set (with dynamic backgrounds), 100 percent on the Weizmann action data set, 95.77 percent on the KTH action data set, 88 percent on the UCF sports data set, and 87.27 percent on the CMU action data set.
Investigating the role of implicit prototypes in the prototype willingness model.
Howell, Jennifer L; Ratliff, Kate A
2017-06-01
One useful theory to predict health behavior is the prototype-willingness model (PWM), which posits that people are more willing to engage in behavior to the extent that they have a positive view of the prototypical person who performs that behavior. The goal of the present research is to test whether adding an implicit measure of prototype favorability might improve explanatory power in the PWM. Two studies examined whether implicit prototype favorability uniquely predicted White women's intentions to engage in healthy sun behavior over the next 3-6 months, and their willingness to engage in risky sun behavior, should the opportunity arise. The results suggested that implicit prototype favorability, particularly implicit prototypes of those who engage in risky UV-related behaviors, uniquely predicted intentions to engage in healthy sun behavior and willingness to engage in risky sun behavior in the PWM.
Frings, Christian; Göbel, Ariane; Mast, Frank; Sutter, Julia; Bermeitinger, Christina; Wentura, Dirk
2011-08-01
Marginally perceptible prototypes as primes lead to slowed reactions to related category exemplars as compared to unrelated ones. This at first glance counterintuitive finding has been interpreted as evidence for a particular mechanism of lateral inhibition, namely the centre surround inhibition mechanism. We investigated the semantic surround of category labels by experimentally manipulating the prototypicality of stimuli. Participants first learned two new categories of fantasy creatures in a 5-day-long learning phase before they worked through a semantic priming task with the category prototypes as primes and category exemplars as targets. For high-prototypical targets we observed benefit effects from related primes, whereas for low-prototypical targets we observed cost effects. The results define when the centre surround inhibition mechanism is applied, and furthermore might explain why previous studies with word stimuli (i.e., material that prevents experimental manipulation of prototypicality) observed mixed results concerning the prototypicality of targets.
An approach for assessing software prototypes
NASA Technical Reports Server (NTRS)
Church, V. E.; Card, D. N.; Agresti, W. W.; Jordan, Q. L.
1986-01-01
A procedure for evaluating a software prototype is presented. The need to assess the prototype itself arises from the use of prototyping to demonstrate the feasibility of a design or development stategy. The assessment procedure can also be of use in deciding whether to evolve a prototype into a complete system. The procedure consists of identifying evaluations criteria, defining alterative design approaches, and ranking the alternatives according to the criteria.
[A new method of fabricating photoelastic model by rapid prototyping].
Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei
2011-10-01
To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.
Prototype Abstraction by Monkeys ("Macaca Mulatta")
ERIC Educational Resources Information Center
Smith, J. David; Redford, Joshua S.; Haas, Sarah M.
2008-01-01
The authors analyze the shape categorization of rhesus monkeys ("Macaca mulatta") and the role of prototype- and exemplar-based comparison processes in monkeys' category learning. Prototype and exemplar theories make contrasting predictions regarding performance on the Posner-Homa dot-distortion categorization task. Prototype theory--which…
ERIC Educational Resources Information Center
Lowry, Christina; Little, Robert
1985-01-01
The benefits of prototyping as a basis for system design include better specifications, earlier discovery of omissions and extensions, and the likelihood of salvaging much of the effort expended on the prototype. Risks and methods of prototyping during rapid systems development are also noted. (Author/MLW)
Effect of various filler types on the properties of porous asphalt mixture
NASA Astrophysics Data System (ADS)
Shukry, Nurul Athma Mohd; Hassan, Norhidayah Abdul; Ezree Abdullah, Mohd; Rosli Hainin, Mohd; Yusoff, Nur Izzi Md; Putra Jaya, Ramadhansyah; Mohamed, Azman
2018-04-01
The open structure of porous asphalt exposes a large surface area to the effects of air and water, which accelerates the oxidation rate and affects the coating properties of the binder. These factors may influence the adhesive strength of the binder-aggregate and lead to cohesive failure within the binder film, contributing to aggregate stripping and moisture damage. The addition of fillers in asphalt mixtures has been identified to stiffen the asphalt binder and improve mixture strength. This study investigates the effect of various filler types (hydrated lime, cement, and diatomite) on the properties of porous asphalt. Compacted samples of porous asphalt were prepared using Superpave gyratory compactor at the target air void content of 21%. Each sample was incorporated with 2% of filler and polymer-modified binder of PG76. The morphology and chemical composition of fillers were investigated with a field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) analysis. The properties of porous asphalt were evaluated in terms of permeability, abrasion loss, resilient modulus, and indirect tensile strength. All mixtures were found to show high permeability rates. Mixtures with hydrated lime exhibited lower abrasion loss compared to mixtures with cement and diatomite. The use of diatomite increases the resistance of the mixtures to rutting and moisture damage compared to other fillers as shown by the enhanced resilient modulus and indirect tensile strength.
Heiman, Johanna; Tajarobi, Farhad; Gururajan, Bindhumadhavan; Juppo, Anne; Abrahmsén-Alami, Susanna
2015-04-01
The present study shows that roller compaction (RC) can successfully be used as a granulation method to prepare hydroxypropyl methylcellulose (HPMC)-based extended release matrix tablets containing a high drug load, both for materials deforming mainly by fragmentation (paracetamol) as for those having mainly plastic deformation (ibuprofen). The combined effect of RC process variables and composition on the manufacturability of HPMC tablets was investigated. Standard wet granulation grade HPMC was compared with a larger particle size direct compressible HPMC grade. Higher roll pressure was found to result in larger paracetamol granules and narrower granule particle size distributions, especially for formulations containing smaller size HPMC. However, for ibuprofen, no clear effect of roll pressure was observed. High roll pressure also resulted in denser ribbon and less bypass fines during RC. Loss of compactibility was observed for granules compared to powder blends, which was found to be related to differences in granule porosity and morphology. Using the large-sized HPMC grade did in some cases result in lower tensile strength tablets but had the advantage to improve the powder flow into the roller compactor. This work also indicates that when the HPMC level lies near the percolation threshold, significant changes can occur in the drug release rate due to changes in other factors (raw material characteristics and processing).
Integration of lessons from recent research for “Earth to Mars” life support systems
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An "Earth to Mars" project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
Li, Song-Tao; Liu, Yong; Zhou, Qiang; Lue, Ren-Fa; Song, Lei; Dong, Shi-Wu; Guo, Ping; Kopjar, Branko
2014-03-01
This study introduced a prototype of an axial-stress bioreactor system that supports long-term growth and development of engineered tissues. The main features of this bioreactor are an integrated substance exchanger and feedback control of pH and PO₂. A 21-day study was conducted to validate the system's ability to maintain a stable environment, while remaining sterile. Our results showed that the pH, PO₂, and nutrient (glucose) remained balanced at appropriate levels, while metabolic waste (lactic acid) was removed. No bacteria or fungi were detected in the system or tissue; thus, demonstrating that it was sterile. These data indicate the bioreactor's strong potential for long-term tissue culture. To explore this idea, the effect of dynamic culture, including cyclic compression and automatic substance exchange, on mouse bone-marrow mesenchymal stem cells (BMSCs) seeded in decalcified bone matrix was studied using the bioreactor prototype. Histological sections of the engineered tissues showed higher cell densities in scaffolds in dynamic culture compared to those in static culture, while cell cycle analysis showed that dynamic culture promoted BMSC proliferation (proliferation index, PI=34.02±1.77) more effectively than static culture (PI=26.66±1.81). The results from a methyl thiazolyl tetrazolium assay were consistent with the loading experimental data. Furthermore, elevated alkaline phosphatase activity and calcium content were observed in dynamic condition compared to static culture. In conclusion, this bioreactor system supplies a method of modulating the pH and PO₂ in defined ranges with only small fluctuations; it can be used as a physiological or pathological analog. Automatic control of the environment is a practical solution for long-term, steady-state culture for future commercialization.
Innovative power conversion system for the French SFR prototype, ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cachon, L.; Biscarrat, C.; Morin, F.
2012-07-01
In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energeticmore » chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)« less
Total hydrocarbon analysis by ion mobility spectrometry
NASA Technical Reports Server (NTRS)
Cross, John H.; Limero, Thomas F.; James, John T.
1994-01-01
Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.
Prototype Engineered Barrier System Field Test (PEBSFT); Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A.L.; Buscheck, T.; Carlson, R.
1991-08-01
This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less
Khanal, G; Huynh, R A; Torabian, K; Xia, H; Vörös, E; Shevkoplyas, S S
2018-01-01
Infusion of by-products of red blood cell (RBC) storage-induced degradation as well as of the residual plasma proteins and the anticoagulant-preservative solution contained in units of stored blood serve no therapeutic purpose and may be harmful to some patients. Here, we describe a prototype of a gravity-driven system for bedside washing of stored RBCs. Stored RBCs were diluted to 10% haematocrit (Hct) with normal saline, matching the conventional washing procedure. The dilute RBC suspensions were passed through a column of coiled tubing to allow RBC sedimentation in normal gravity, thus separating them from the washing solution. Washed RBCs were collected using bifurcations located along the tubing. Washing efficiency was quantified by measuring Hct, morphology, deformability, free haemoglobin and total-free protein. The gravity-driven washing system operating at 0·5 ml/min produced washed RBCs with final Hct of 36·7 ± 3·4% (32·3-41·2%, n = 10) and waste Hct of 3·4 ± 0·7% (2·4-4·3%, n = 10), while removing 80% of free haemoglobin and 90% of total-free protein. Washing improved the ability of stored RBCs to perfuse an artificial microvascular network by 20%. The efficiency of washing performed using the gravity-driven system was not significantly different than that of conventional centrifugation. This proof-of-concept study demonstrates the feasibility of washing stored RBCs using a simple, disposable system with efficiency comparable to that of conventional centrifugation, and thus represents a significant first step towards enabling low-cost washing of stored blood at bedside. © 2017 International Society of Blood Transfusion.
Interband Cascade Photovoltaic Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.
2014-09-24
In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamentalmore » aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.« less
Modelling airborne dispersion for disaster management
NASA Astrophysics Data System (ADS)
Musliman, I. A.; Yohnny, L.
2017-05-01
Industrial disasters, like any other disasters, can happen anytime, anywhere and in any form. Airborne industrial disaster is a kind of catastrophic event involving the release of particles such as chemicals and industrial wastes into environment in gaseous form, for instance gas leakages. Unlike solid and liquid materials, gases are often colourless and odourless, the particles are too tiny to be visible to the naked eyes; hence it is difficult to identify the presence of the gases and to tell the dispersion and location of the substance. This study is to develop an application prototype to perform simulation modelling on the gas particles to determine the dispersion of the gas particles and to identify the coverage of the affected area. The prototype adopted Lagrangian Particle Dispersion (LPD) model to calculate the position of the gas particles under the influence of wind and turbulent velocity components, which are the induced wind due to the rotation of the Earth, and Convex Hull algorithm to identify the convex points of the gas cloud to form the polygon of the coverage area. The application performs intersection and overlay analysis over a set of landuse data at Pasir Gudang, Johor industrial and residential area. Results from the analysis would be useful to tell the percentage and extent of the affected area, and are useful for the disaster management to evacuate people from the affected area. The developed application can significantly increase efficiency of emergency handling during a crisis. For example, by using a simulation model, the emergency handling can predict what is going to happen next, so people can be well informed and preparations works can be done earlier and better. Subsequently, this application helps a lot in the decision making process.
Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria
2016-06-29
We present here-designed, manufactured, and tested by our research team-the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the osteoinduction/osteointegration potential by the Ca-P surface modification of the Ti-alloy MSC-Scaffold prototype. Planned further research on the prototype of this biomimetic MSC-Scaffold for a new generation of RA endoprostheses is also given.
Uklejewski, Ryszard; Rogala, Piotr; Winiecki, Mariusz; Tokłowicz, Renata; Ruszkowski, Piotr; Wołuń-Cholewa, Maria
2016-01-01
We present here—designed, manufactured, and tested by our research team—the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the osteoinduction/osteointegration potential by the Ca-P surface modification of the Ti-alloy MSC-Scaffold prototype. Planned further research on the prototype of this biomimetic MSC-Scaffold for a new generation of RA endoprostheses is also given. PMID:28773652
Hyde, Melissa K; White, Katherine M
2014-01-01
Understanding people's organ donation decisions may narrow the gap between organ supply and demand. In two studies, participants who had not recorded their posthumous organ donation decision (Study 1, N = 210; Study 2, N = 307) completed items assessing prototype/willingness model (PWM; attitude, subjective norm, donor prototype favorability and similarity, willingness) constructs. Attitude, subjective norm, and prototype similarity predicted willingness to donate. Prototype favorability and a Prototype Favorability × Similarity interaction predicted willingness (Study 2). These findings provide support for the PWM in altruistic health contexts, highlighting the importance of people's perceptions about organ donors in their donation decisions.
Hyde, Melissa K; White, Katherine M
2014-06-09
Understanding people's organ donation decisions may narrow the gap between organ supply and demand. In two studies, participants who had not recorded their posthumous organ donation decision (Study 1 N = 210; Study 2 N = 307) completed items assessing Prototype/Willingness Model (PWM) (attitude, subjective norm, donor prototype favorability and similarity, willingness) constructs. Attitude, subjective norm, and prototype similarity predicted willingness to donate. Prototype favorability and a prototype favorability x similarity interaction predicted willingness (Study 2). These findings provide support for the PWM in altruistic health contexts, highlighting the importance of people's perceptions about organ donors in their donation decisions.
Miller, Joshua D; Bagby, R Michael; Pilkonis, Paul A
2005-12-01
Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using interview and self-report data, and PD symptoms in an outpatient sample (N = 115). Both sets of PD prototype scores demonstrated significant convergent validity with PD symptom counts, suggesting that the FFM PD prototype scores are appropriate for use with both sources of data.
High confidence in falsely recognizing prototypical faces.
Sampaio, Cristina; Reinke, Victoria; Mathews, Jeffrey; Swart, Alexandra; Wallinger, Stephen
2018-06-01
We applied a metacognitive approach to investigate confidence in recognition of prototypical faces. Participants were presented with sets of faces constructed digitally as deviations from prototype/base faces. Participants were then tested with a simple recognition task (Experiment 1) or a multiple-choice task (Experiment 2) for old and new items plus new prototypes, and they showed a high rate of confident false alarms to the prototypes. Confidence and accuracy relationship in this face recognition paradigm was found to be positive for standard items but negative for the prototypes; thus, it was contingent on the nature of the items used. The data have implications for lineups that employ match-to-suspect strategies.
Eriksson, J; Ek, A; Johansson, G
2000-03-01
A software prototype to support the planning process for adapting home and work environments for people with physical disabilities was designed and later evaluated. The prototype exploits low-cost three-dimensional (3-D) graphics products in the home computer market. The essential features of the prototype are: interactive rendering with optional hardware acceleration, interactive walk-throughs, direct manipulation tools for moving objects and measuring distances, and import of 3-D-objects from a library. A usability study was conducted, consisting of two test sessions (three weeks apart) and a final interview. The prototype was then tested and evaluated by representatives of future users: five occupational therapist students, and four persons with physical disability, with no previous experience of the prototype. Emphasis in the usability study was placed on the prototype's efficiency and learnability. We found that it is possible to realise a planning tool for environmental adaptations, both regarding usability and technical efficiency. The usability evaluation confirms our findings from previous case studies, regarding the relevance and positive attitude towards this kind of planning tool. Although the prototype was found to be satisfactorily efficient for the basic tasks, the paper presents several suggestions for improvement of future prototype versions.
A novel stochastic modeling method to simulate cooling loads in residential districts
An, Jingjing; Yan, Da; Hong, Tianzhen; ...
2017-09-04
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
NASA Astrophysics Data System (ADS)
Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.
2014-05-01
Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.
NASA Astrophysics Data System (ADS)
Zhang, Z. Fred
2016-06-01
A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.
A novel stochastic modeling method to simulate cooling loads in residential districts
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Jingjing; Yan, Da; Hong, Tianzhen
District cooling systems are widely used in urban residential communities in China. Most of such systems are oversized, which leads to wasted investment, low operational efficiency and, thus, waste of energy. The accurate prediction of district cooling loads that can support the rightsizing of cooling plant equipment remains a challenge. This study develops a novel stochastic modeling method that consists of (1) six prototype house models representing most apartments in a district, (2) occupant behavior models of residential buildings reflecting their spatial and temporal diversity as well as their complexity based on a large-scale residential survey in China, and (3)more » a stochastic sampling process to represent all apartments and occupants in the district. The stochastic method was applied to a case study using the Designer's Simulation Toolkit (DeST) to simulate the cooling loads of a residential district in Wuhan, China. The simulation results agreed well with the measured data based on five performance metrics representing the aggregated cooling consumption, the peak cooling loads, the spatial load distribution, the temporal load distribution and the load profiles. Two prevalent simulation methods were also employed to simulate the district cooling loads. Here, the results showed that oversimplified assumptions about occupant behavior could lead to significant overestimation of the peak cooling load and the total cooling loads in the district. Future work will aim to simplify the workflow and data requirements of the stochastic method for its application, and to explore its use in predicting district heating loads and in commercial or mixed-use districts.« less
16 CFR 1632.7 - Tape edge substitution procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... material shall be deemed a difference in materials for purposes of prototype definition unless it is shown... ignition resistance” of the mattress prototype or the mattress pad prototype. (b) The Commission will... following circumstances: (1) The mattress or mattress pad prototype has been qualified previously under the...
van Lettow, Britt; de Vries, Hein; Burdorf, Alex; van Empelen, Pepijn
2016-01-01
Prototypes (i.e., social images representing perceptions of typical persons engaging in or refraining from certain behaviour) have been shown to explain health-related behaviours. The present meta-analysis quantified the strength of the associations of prototype perceptions with health motivation and behaviour. Specifically, the analysis addressed (i) the relationship of prototype favourability (i.e., degree of likability) and similarity (i.e., perceived resemblance to the self) with behaviour, willingness and intentions; (ii) the effect of the interaction between favourability and similarity; and (iii) the extent to which health-risk and health-protective prototypes differed in their association with these outcomes. A total of 80 independent studies were identified based on 69 articles. The results indicated that prototype favourability and similarity were related to behaviour, intentions and willingness with small-to-medium effect sizes (r+ = 0.12-0.43). Direct measures of prototype perceptions generally produced larger effects than indirect measures. The interaction between favourability and similarity produced small-to-large effect sizes (r+ = .22-.54). The results suggest that both health-risk and health-protective prototypes might be useful targets for interventions (r+ = .22-.54). In order to increase health-protective behaviours, intentions and behaviour could be targeted by increasing similarity to health-protective prototypes. Health-risk behaviour might be decreased by targeting willingness by modifying health-risk prototype favourability and similarity.
Chapter 4 - The LANDFIRE Prototype Project reference database
John F. Caratti
2006-01-01
This chapter describes the data compilation process for the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project) reference database (LFRDB) and explains the reference data applications for LANDFIRE Prototype maps and models. The reference database formed the foundation for all LANDFIRE tasks. All products generated by the...
Spreadsheet Applications: Prototyping an Innovative Blended Course
ERIC Educational Resources Information Center
Baker, J. Howard
2004-01-01
After teaching the advanced spreadsheet course at a major university in Louisiana as a traditional classroom course for a number of years, it was decided to create a prototype-blended course, with a considerable portion offered via distance education. This research, which uses a prototyping methodology, is exploratory in nature. Prototyping can…
Rapid Prototyping: An Alternative Instructional Design Strategy.
ERIC Educational Resources Information Center
Tripp, Steven D.; Bichelmeyer, Barbara
1990-01-01
Discusses the nature of instructional design and describes rapid prototyping as a feasible model for instructional system design (ISD). The use of prototyping in software engineering is described, similarities between software design and instructional design are discussed, and an example is given which uses rapid prototyping in designing a…
Designing Instructor-Led Schools with Rapid Prototyping.
ERIC Educational Resources Information Center
Lange, Steven R.; And Others
1996-01-01
Rapid prototyping involves abandoning many of the linear steps of traditional prototyping; it is instead a series of design iterations representing each major stage. This article describes the development of an instructor-led course for midlevel auditors using the principles and procedures of rapid prototyping, focusing on the savings in time and…
Effective Prototype Costing Policies in Research Universities: Are They Possible?
ERIC Educational Resources Information Center
McClure, Maureen W.; Abu-Duhou, Ibtisam
Policy problems of prototype costing at research universities are discussed, based on a case study of a clinical treatment prototype program at a research university hospital. Prototypes programs generate reproducible knowledge with useful applications and are primarily developed in professional schools. The potential of using costing prototypes…
46 CFR 160.151-13 - Fabrication of prototype inflatable liferafts for approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Fabrication of prototype inflatable liferafts for... Liferafts (SOLAS) § 160.151-13 Fabrication of prototype inflatable liferafts for approval. If the... Commandant, fabrication of a prototype inflatable liferaft must proceed in the following sequence: (a) The...
16 CFR 1632.2 - Purpose, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... prototype designs of mattresses and mattress pads before the sale in commerce or the introduction in... of a mattress prototype or a mattress pad prototype. (b) Scope. (1) All mattresses, as defined in... each mattress prototype before or after the effective date of this amendment using the test procedure...
48 CFR 234.005-1 - Competition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... development or prototype of technology developed under the contract or the delivery of initial or additional prototype items if the item or a prototype thereof is created as the result of work performed under the... shall be limited to the minimal amount of initial or additional prototype items that will allow for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-19
... specimens of each of their mattress prototypes before mattresses based on that prototype may be introduced into commerce. The Mattress Open-Flame standard requires detailed documentation of prototype identification and testing records, model and prototype specifications, inputs used, name and location of...
16 CFR 1633.4 - Prototype testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Prototype testing requirements. 1633.4... STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS The Standard § 1633.4 Prototype testing... three specimens of each prototype to be tested according to § 1633.7 and obtain passing test results...
Water movement through an experimental soil liner
Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.
1991-01-01
A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 ?? 10-9, 4.0 ?? 10-8, and 5.0 ?? 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.
The application of prototype point processes for the summary and description of California wildfires
Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.
2011-01-01
A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.
Prototyping with AIDA for a hospital pharmacy system.
Molenaar, G C; Boon, W M
1987-01-01
The CENTRASYS system for the Hospital Pharmacy, developed as part of a research project of the Department of Medical Informatics is described. The role of AIDA, a fourth-generation software package, as a prototyping tool is discussed. It is concluded that AIDA facilitates prototyping and is also very suitable as a vehicle for systems in operation. It is further concluded that prototyping is of great help in the developmental phase of a project, but that great care has to be taken during evaluation of the prototypes: minimize the number of test sites and try to avoid that users become dependent on the system, because every prototype needs further tuning before it really becomes an operational system.
Prototype design based on NX subdivision modeling application
NASA Astrophysics Data System (ADS)
Zhan, Xianghui; Li, Xiaoda
2018-04-01
Prototype design is an important part of the product design, through a quick and easy way to draw a three-dimensional product prototype. Combined with the actual production, the prototype could be modified several times, resulting in a highly efficient and reasonable design before the formal design. Subdivision modeling is a common method of modeling product prototypes. Through Subdivision modeling, people can in a short time with a simple operation to get the product prototype of the three-dimensional model. This paper discusses the operation method of Subdivision modeling for geometry. Take a vacuum cleaner as an example, the NX Subdivision modeling functions are applied. Finally, the development of Subdivision modeling is forecasted.
A PC based fault diagnosis expert system
NASA Technical Reports Server (NTRS)
Marsh, Christopher A.
1990-01-01
The Integrated Status Assessment (ISA) prototype expert system performs system level fault diagnosis using rules and models created by the user. The ISA evolved from concepts to a stand-alone demonstration prototype using OPS5 on a LISP Machine. The LISP based prototype was rewritten in C and the C Language Integrated Production System (CLIPS) to run on a Personal Computer (PC) and a graphics workstation. The ISA prototype has been used to demonstrate fault diagnosis functions of Space Station Freedom's Operation Management System (OMS). This paper describes the development of the ISA prototype from early concepts to the current PC/workstation version used today and describes future areas of development for the prototype.
Sauer, Juergen; Sonderegger, Andreas
2009-07-01
An empirical study examined the impact of prototype fidelity on user behaviour, subjective user evaluation and emotion. The independent factors of prototype fidelity (paper prototype, computer prototype, fully operational appliance) and aesthetics of design (high vs. moderate) were varied in a between-subjects design. The 60 participants of the experiment were asked to complete two typical tasks of mobile phone usage: sending a text message and suppressing a phone number. Both performance data and a number of subjective measures were recorded. The results suggested that task completion time may be overestimated when a computer prototype is being used. Furthermore, users appeared to compensate for deficiencies in aesthetic design by overrating the aesthetic qualities of reduced fidelity prototypes. Finally, user emotions were more positively affected by the operation of the more attractive mobile phone than by the less appealing one.
Use of prototyping in preoperative planning for patients with head and neck tumors.
de Farias, Terence Pires; Dias, Fernando Luiz; Galvão, Mário Sérgio; Boasquevisque, Edson; Pastl, Ana Carolina; Albuquerque Sousa, Bruno
2014-12-01
Prototyping technologies for reconstructions consist of obtaining a 3-dimensional model of the object of interest. Solid models are constructed by the deposition of materials in successive layers. The purpose of this study was to perform a double-blind, randomized, prospective study to evaluate the efficacy of prototype use in head and neck surgeries. Thirty-seven cases were randomized into prototype and nonprototype groups. The following factors were recorded: the time of plate and locking screw apposition, flap size, time for reconstruction, and an aesthetic evaluation. The prototype group exhibited a reduced surgical time (43.7 minutes vs 127.7 minutes, respectively; p = .001), a tendency to reduce the size of the bone flap taken for reconstruction, and better aesthetic results than the group that was not prototyped. The use of prototyping demonstrated a trend toward a reduced surgical time, smaller bone flaps, and better aesthetic results. © 2014 Wiley Periodicals, Inc.
RF Metamaterials for Foliage Penetration (FOPEN) Application
2013-02-01
from LM TRACER program to develop those prototypes. Fig. 29 is an OSU prototype (#1, 7x7 array) fabricated and tested inside the ESL compact range...Fig. 29 shows the Prototype #1 under testing inside the ESL compact range. Figure 29 -Prototype #1 (7x7 Single-pol. Array) 3.2.3.1.2
Performance of the PHENIX NCC Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, E.; Kistenev, E.; Li, Z.
2006-10-27
The first prototype of NCC Si-W electromagnetic calorimeter have been built and tested at U-70 accelerator (IHEP, Protvino). Tests have been performed for 10 GeV electrons and 70 GeV protons.This paper describes design and construction of the prototype and tests results. Final prototype energy resolution is about 11% at 90% CL.
46 CFR 161.013-11 - Prototype test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Prototype test. 161.013-11 Section 161.013-11 Shipping...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-11 Prototype test. (a) Each manufacturer must test a prototype light identical to the lights to be certified prior to...
16 CFR Appendix L to Part 305 - Sample Labels
Code of Federal Regulations, 2010 CFR
2010-01-01
... Part 305—Sample Labels ER29AU07.122 PROTOTYPE LABEL 1 ER29AU07.123 PROTOTYPE LABEL 2 ER29AU07.124 PROTOTYPE LABEL 3 ER29AU07.125 PROTOTYPE LABEL 4 ER29AU07.126 SAMPLE LABEL 1 ER29AU07.127 SAMPLE LABEL 2...
46 CFR 161.013-11 - Prototype test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Prototype test. 161.013-11 Section 161.013-11 Shipping...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-11 Prototype test. (a) Each manufacturer must test a prototype light identical to the lights to be certified prior to...
Review on CNC-Rapid Prototyping
NASA Astrophysics Data System (ADS)
Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina
2012-09-01
This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.
Maguire, Erin; Hong, Paul; Ritchie, Krista; Meier, Jeremy; Archibald, Karen; Chorney, Jill
2016-11-04
To describe the process involved in developing a decision aid prototype for parents considering adenotonsillectomy for their children with sleep disordered breathing. A paper-based decision aid prototype was developed using the framework proposed by the International Patient Decision Aids Standards Collaborative. The decision aid focused on two main treatment options: watchful waiting and adenotonsillectomy. Usability was assessed with parents of pediatric patients and providers with qualitative content analysis of semi-structured interviews, which included open-ended user feedback. A steering committee composed of key stakeholders was assembled. A needs assessment was then performed, which confirmed the need for a decision support tool. A decision aid prototype was developed and modified based on semi-structured qualitative interviews and a scoping literature review. The prototype provided information on the condition, risk and benefits of treatments, and values clarification. The prototype underwent three cycles of accessibility, feasibility, and comprehensibility testing, incorporating feedback from all stakeholders to develop the final decision aid prototype. A standardized, iterative methodology was used to develop a decision aid prototype for parents considering adenotonsillectomy for their children with sleep disordered breathing. The decision aid prototype appeared feasible, acceptable and comprehensible, and may serve as an effective means of improving shared decision-making.
The effect of encoding conditions on learning in the prototype distortion task.
Lee, Jessica C; Livesey, Evan J
2017-06-01
The prototype distortion task demonstrates that it is possible to learn about a category of physically similar stimuli through mere observation. However, there have been few attempts to test whether different encoding conditions affect learning in this task. This study compared prototypicality gradients produced under incidental learning conditions in which participants performed a visual search task, with those produced under intentional learning conditions in which participants were required to memorize the stimuli. Experiment 1 showed that similar prototypicality gradients could be obtained for category endorsement and familiarity ratings, but also found (weaker) prototypicality gradients in the absence of exposure. In Experiments 2 and 3, memorization was found to strengthen prototypicality gradients in familiarity ratings in comparison to visual search, but there were no group differences in participants' ability to discriminate between novel and presented exemplars. Although the Search groups in Experiments 2 and 3 produced prototypicality gradients, they were no different in magnitude to those produced in the absence of stimulus exposure in Experiment 1, suggesting that incidental learning during visual search was not conducive to producing prototypicality gradients. This study suggests that learning in the prototype distortion task is not implicit in the sense of resulting automatically from exposure, is affected by the nature of encoding, and should be considered in light of potential learning-at-test effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Charles Joseph
The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design,more » development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all failure prone capacitors from the power stage. Q-Sync’s simpler electronics also result in higher efficiency because it eliminates the power required by the PCB to perform the obviated power conversions and PWM processes after line synchronous operating speed is reached in the first 5 seconds of operation, after which the PWM circuits drop out and a much less energy intensive “pass through” circuit takes over, allowing the grid-supplied AC power to sustain the motor’s ongoing operation.« less
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
Validity of prototype diagnosis for mood and anxiety disorders.
DeFife, Jared A; Peart, Joanne; Bradley, Bekh; Ressler, Kerry; Drill, Rebecca; Westen, Drew
2013-02-01
CONTEXT With growing recognition that most forms of psychopathology are best represented as dimensions or spectra, a central question becomes how to implement dimensional diagnosis in a way that is empirically sound and clinically useful. Prototype matching, which involves comparing a patient's clinical presentation with a prototypical description of the disorder, is an approach to diagnosis that has gained increasing attention with forthcoming revisions to both the DSM and the International Classification of Diseases. OBJECTIVE To examine prototype diagnosis for mood and anxiety disorders. DESIGN, SETTING, AND PATIENTS In the first study, we examined clinicians' DSM-IV and prototype diagnoses with their ratings of the patients' adaptive functioning and patients' self-reported symptoms. In the second study, independent interviewers made prototype diagnoses following either a systematic clinical interview or a structured diagnostic interview. A third interviewer provided independent ratings of global adaptive functioning. Patients were recruited as outpatients (study 1; N = 84) and from primary care clinics (study 2; N = 143). MAIN OUTCOME MEASURES Patients' self-reported mood, anxiety, and externalizing symptoms along with independent clinical ratings of adaptive functioning. RESULTS Clinicians' prototype diagnoses showed small to moderate correlations with patient-reported psychopathology and performed as well as or better than DSM-IV diagnoses. Prototype diagnoses from independent interviewers correlated on average r = .50 and showed substantial incremental validity over DSM-IV diagnoses in predicting adaptive functioning. CONCLUSIONS Prototype matching is a viable alternative for psychiatric diagnosis. As in research on personality disorders, mood and anxiety disorder prototypes outperformed DSM-IV decision rules in predicting psychopathology and global functioning. Prototype matching has multiple advantages, including ease of use in clinical practice, reduced artifactual comorbidity, compatibility with naturally occurring cognitive processes in diagnosticians, and ready translation into both categorical and dimensional diagnosis.
Do health professionals have a prototype concept of disease? The answer is no.
Hofmann, Bjørn
2017-09-11
Health and disease are core concepts in health care and have attracted substantial interest and controversy. In recent and interesting contributions to the debate it has been argued that the challenges with the concept of disease can be resolved by a prototype concept of disease. As a robin is a more prototypical of a bird than a penguin, some diseases are more prototypical than others. If disease is a prototype concept, it would change nosology, but also health care and the study of health and disease. However, the statement that "disease is a prototype concept" forms an empirically testable hypothesis. Therefore, this study aims to test the hypothesis that health professionals have a prototype concept of disease. Two hundred twenty-three health care professionals in Norway were invited to participate in a survey where they were asked to rank a wide range of diseases according to how typical they considered them to be as diseases. Results were analysed with descriptive statistics. The response rate was 90%. Lung cancer, leukemia, colon cancer, myocardial infarction, and AIDS are the diseases ranged to be most typical, while homosexuality, pregnancy, drapetomania, dissidence, and nostalgia are considered to be the least typical diseases. The results also show that the answers to how typical various diseases are vary greatly, even amongst a relatively homogenous group of health professionals. This study falsifies the hypothesis that disease is a prototype concept for health professionals. This has implications for the debate on core concepts for health care. If health professionals do not have a prototype concept of disease, it is unlikely that there is a prototype concept of disease in general. Consequently, nosologies should not be based on prototypes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
Sandia National Laboratories (Sandia) is in Phase 3 Sustainment of development of a prototype tool, currently referred to as the Contingency Contractor Optimization Tool - Prototype (CCOTP), under the direction of OSD Program Support. CCOT-P is intended to help provide senior Department of Defense (DoD) leaders with comprehensive insight into the global availability, readiness and capabilities of the Total Force Mix. The CCOT-P will allow senior decision makers to quickly and accurately assess the impacts, risks and mitigating strategies for proposed changes to force/capabilities assignments, apportionments and allocations options, focusing specifically on contingency contractor planning. During Phase 2 of themore » program, conducted during fiscal year 2012, Sandia developed an electronic storyboard prototype of the Contingency Contractor Optimization Tool that can be used for communication with senior decision makers and other Operational Contract Support (OCS) stakeholders. Phase 3 used feedback from demonstrations of the electronic storyboard prototype to develop an engineering prototype for planners to evaluate. Sandia worked with the DoD and Joint Chiefs of Staff strategic planning community to get feedback and input to ensure that the engineering prototype was developed to closely align with future planning needs. The intended deployment environment was also a key consideration as this prototype was developed. Initial release of the engineering prototype was done on servers at Sandia in the middle of Phase 3. In 2013, the tool was installed on a production pilot server managed by the OUSD(AT&L) eBusiness Center. The purpose of this document is to specify the CCOT-P engineering prototype platform requirements as of May 2016. Sandia developed the CCOT-P engineering prototype using common technologies to minimize the likelihood of deployment issues. CCOT-P engineering prototype was architected and designed to be as independent as possible of the major deployment components such as the server hardware, the server operating system, the database, and the web server. This document describes the platform requirements, the architecture, and the implementation details of the CCOT-P engineering prototype.« less
Chen, Qi; Thomas, Joseph T; Giménez-Lirola, Luis G; Hardham, John M; Gao, Qinshan; Gerber, Priscilla F; Opriessnig, Tanja; Zheng, Ying; Li, Ganwu; Gauger, Phillip C; Madson, Darin M; Magstadt, Drew R; Zhang, Jianqiang
2016-04-05
At least two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the United States (U.S. PEDV prototype and S-INDEL-variant strains). The current serological assays offered at veterinary diagnostic laboratories for detection of PEDV-specific antibody are based on the U.S. PEDV prototype strain. The objectives of this study were: 1) isolate the U.S. PEDV S-INDEL-variant strain in cell culture; 2) generate antisera against the U.S. PEDV prototype and S-INDEL-variant strains by experimentally infecting weaned pigs; 3) determine if the various PEDV serological assays could detect antibodies against the U.S. PEDV S-INDEL-variant strain and vice versa. A U.S. PEDV S-INDEL-variant strain was isolated in cell culture in this study. Three groups of PEDV-negative, 3-week-old pigs (five pigs per group) were inoculated orally with a U.S. PEDV prototype isolate (previously isolated in our lab), an S-INDEL-variant isolate or virus-negative culture medium. Serum samples collected at 0, 7, 14, 21 and 28 days post inoculation were evaluated by the following PEDV serological assays: 1) indirect fluorescent antibody (IFA) assays using the prototype and S-INDEL-variant strains as indicator viruses; 2) virus neutralization (VN) tests against the prototype and S-INDEL-variant viruses; 3) PEDV prototype strain whole virus based ELISA; 4) PEDV prototype strain S1-based ELISA; and 5) PEDV S-INDEL-variant strain S1-based ELISA. The positive antisera against the prototype strain reacted to and neutralized both prototype and S-INDEL-variant viruses, and the positive antisera against the S-INDEL-variant strain also reacted to and neutralized both prototype and S-INDEL-variant viruses, as examined by IFA antibody assays and VN tests. Antibodies against the two PEDV strains could be detected by all three ELISAs although detection rates varied to some degree. These data indicate that the antibodies against U.S. PEDV prototype and S-INDEL-variant strains cross-reacted and cross-neutralized both strains in vitro. The current serological assays based on U.S. PEDV prototype strain can detect antibodies against both U.S. PEDV strains.
Text-Based On-Line Conferencing: A Conceptual and Empirical Analysis Using a Minimal Prototype.
ERIC Educational Resources Information Center
McCarthy, John C.; And Others
1993-01-01
Analyzes requirements for text-based online conferencing through the use of a minimal prototype. Topics discussed include prototyping with a minimal system; text-based communication; the system as a message passer versus the system as a shared data structure; and three exercises that showed how users worked with the prototype. (Contains 61…
ERIC Educational Resources Information Center
Paulien, Daniel K.; Thibodeau, Yvonne
This document is a description of a prototype Library/Student Center designed to serve approximately 10,000 students at a comprehensive campus. Prepared by the firm Paulien & Associates, Inc., of Denver, Colorado, this prototype will serve a design basis for facilities at all Pima Community College (PCC) campuses. The prototype will not be…
Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |
Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics
Chapter 13 - Perspectives on LANDFIRE Prototype Project Accuracy Assessment
James Vogelmann; Zhiliang Zhu; Jay Kost; Brian Tolk; Donald Ohlen
2006-01-01
The purpose of this chapter is to provide a general overview of the many aspects of accuracy assessment pertinent to the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project). The LANDFIRE Prototype formed a large and complex research and development project with many broad-scale data sets and products developed throughout...
ERIC Educational Resources Information Center
Jones, Steven R.
2018-01-01
Many mathematical concepts may have prototypical images associated with them. While prototypes can be beneficial for efficient thinking or reasoning, they may also have self-attributes that may impact reasoning about the concept. It is essential that mathematics educators understand these prototype images in order to fully recognize their benefits…
46 CFR 154.560 - Cargo hose: Prototype test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Prototype test. 154.560 Section 154.560... Hose § 154.560 Cargo hose: Prototype test. (a) Each cargo hose must be of a type that passes a prototype test at a pressure of at least five times its maximum working pressure at or below the minimum...
Examining Marijuana User and Non-User Prototypes in Formative Research for Prevention Campaigns
ERIC Educational Resources Information Center
Comello, Maria Leonora G.; Slater, Michael D.
2010-01-01
We report on research--both quantitative and qualitative--conducted to explore perceptions of prototypes of marijuana users, as well as the extent to which self-prototype congruence predicted marijuana use intention. Results of a survey of undergraduates (N = 139) showed that prototypes of users and non-users differed in terms of key attributes,…
Using Rapid Prototyping to Design a Smoking Cessation Website with End-Users.
Ronquillo, Charlene; Currie, Leanne; Rowsell, Derek; Phillips, J Craig
2016-01-01
Rapid prototyping is an iterative approach to design involving cycles of prototype building, review by end-users and refinement, and can be a valuable tool in user-centered website design. Informed by various user-centered approaches, we used rapid prototyping as a tool to collaborate with users in building a peer-support focused smoking-cessation website for gay men living with HIV. Rapid prototyping was effective in eliciting feedback on the needs of this group of potential end-users from a smoking cessation website.
PEP Support Laboratory Leaching and Permeate Stability Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.
2009-09-25
Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-VSL-T02A, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic.« less
NEAMS update quarterly report for January - March 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, K.S.; Hayes, S.; Pointer, D.
Quarterly highlights are: (1) The integration of Denovo and AMP was demonstrated in an AMP simulation of the thermo-mechanics of a complete fuel assembly; (2) Bison was enhanced with a mechanistic fuel cracking model; (3) Mechanistic algorithms were incorporated into various lower-length-scale models to represent fission gases and dislocations in UO2 fuels; (4) Marmot was improved to allow faster testing of mesoscale models using larger problem domains; (5) Component models of reactor piping were developed for use in Relap-7; (6) The mesh generator of Proteus was updated to accept a mesh specification from Moose and equations were formulated for themore » intermediate-fidelity Proteus-2D1D module; (7) A new pressure solver was implemented in Nek5000 and demonstrated to work 2.5 times faster than the previous solver; (8) Work continued on volume-holdup models for two fuel reprocessing operations: voloxidation and dissolution; (9) Progress was made on a pyroprocessing model and the characterization of pyroprocessing emission signatures; (10) A new 1D groundwater waste transport code was delivered to the used fuel disposition (UFD) campaign; (11) Efforts on waste form modeling included empirical simulation of sodium-borosilicate glass compositions; (12) The Waste team developed three prototypes for modeling hydride reorientation in fuel cladding during very long-term fuel storage; (13) A benchmark demonstration problem (fission gas bubble growth) was modeled to evaluate the capabilities of different meso-scale numerical methods; (14) Work continued on a hierarchical up-scaling framework to model structural materials by directly coupling dislocation dynamics and crystal plasticity; (15) New 'importance sampling' methods were developed and demonstrated to reduce the computational cost of rare-event inference; (16) The survey and evaluation of existing data and knowledge bases was updated for NE-KAMS; (17) The NEAMS Early User Program was launched; (18) The Nuclear Regulatory Commission (NRC) Office of Regulatory Research was introduced to the NEAMS program; (19) The NEAMS overall software quality assurance plan (SQAP) was revised to version 1.5; and (20) Work continued on NiCE and its plug-ins and other utilities, such as Cubit and VisIt.« less
NASA Astrophysics Data System (ADS)
Hamamoto, K.; Kaneko, Y.; Sobue, S.; Oyoshi, K.
2016-12-01
Climate change and human activities are directly or indirectly influence the acceleration of environmental problems and natural hazards such as forest fires, drought and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these hazards and related phenomenon. However, there are still gaps between science and application of space technology in practical usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of space technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of space technology. The main activity of SAFE is SAFE prototyping. SAFE prototyping is a demonstration for end users and decision makers to apply space technology applications for solving environmental issues in Asia-Pacific region. By utilizing space technology and getting technical support by experts, prototype executers can develop the application system, which could support decision making activities. SAFE holds a workshop once a year. In the workshop, new prototypes are approved and the progress of on-going prototypes are confirmed. Every prototype is limited for two years period and all activities are operated by volunteer manner. As of 2016, 20 prototypes are completed and 6 prototypes are on-going. Some of the completed prototypes, for example drought monitoring in Indonesia were applied to operational use by a local official organization.
Software engineering activities at SEI (Software Engineering Institute)
NASA Technical Reports Server (NTRS)
Chittister, Clyde
1990-01-01
Prototyping was shown to ease system specification and implementation, especially in the area of user interfaces. Other prototyping approaches do not allow for the evolution of the prototype into a production system or support maintenance after the system is fielded. A set of goals is presented for a modern user interface environment and Serpent, a prototype implementation that achieves these goals, is described.
ERIC Educational Resources Information Center
Knowlton, Dave S.
2006-01-01
Because rapid prototyping results in the quick development of curriculum, materials, and processes, it is a form of design that could be particularly useful to professors in higher education. Yet, literature documenting the use of rapid prototyping in higher education is scarce. This paper offers a case example of rapid prototyping being used as a…
ERIC Educational Resources Information Center
Miller, Joshua D.; Bagby, R. Michael; Pilkonis, Paul A.
2005-01-01
Recent studies have demonstrated that personality disorders (PDs) can be assessed via a prototype-matching technique, which enables researchers and clinicians to match an individual's five-factor model (FFM) personality profile to an expert-generated prototype. The current study examined the relations between these prototype scores, using…
IMMR Phase 1 Prototyping Plan Inputs
NASA Technical Reports Server (NTRS)
Vowell, C. W.; Johnson-Throop, Kathy; Smith, Bryon; Darcy, Jeannette
2006-01-01
This viewgraph presentation reviews the phase I plan of the prototype of the IMMR by the Multilateral Medical Operations Panel (MMOP) Medical Informatics & Technology (MIT) Working Group. It reviews the Purpose of IMMR Prototype Phase 1 (IPP1); the IPP1 Plan Overview, the IMMR Prototype Phase 1 Plan for PDDs and MIC and MIC-DDs, Plan for MICs, a nd the IPP1 objectives
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Reliability and Validity of Prototype Diagnosis for Adolescent Psychopathology.
Haggerty, Greg; Zodan, Jennifer; Mehra, Ashwin; Zubair, Ayyan; Ghosh, Krishnendu; Siefert, Caleb J; Sinclair, Samuel J; DeFife, Jared
2016-04-01
The current study investigated the interrater reliability and validity of prototype ratings of 5 common adolescent psychiatric disorders: attention-deficit/hyperactivity disorder, conduct disorder, major depressive disorder, generalized anxiety disorder, and posttraumatic stress disorder. One hundred fifty-seven adolescent inpatient participants consented to participate in this study. We compared ratings from 2 inpatient clinicians, blinded to each other's ratings and patient measures, after their separate initial diagnostic interview to assess interrater reliability. Prototype ratings completed by clinicians after their initial diagnostic interview with adolescent inpatients and outpatients were compared with patient-reported behavior problems and parents' report of their child's behavioral problems. Prototype ratings demonstrated good interrater reliability. Clinicians' prototype ratings showed predicted relationships with patient-reported behavior problems and parent-reported behavior problems. Prototype matching seems to be a possible alternative for psychiatric diagnosis. Prototype ratings showed good interrater reliability based on clinicians unique experiences with the patient (as opposed to video-/audio-recorded material) with no training.
Real-time contaminant sensing and control in civil infrastructure systems
NASA Astrophysics Data System (ADS)
Rimer, Sara; Katopodes, Nikolaos
2014-11-01
A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.
Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.
Aromaa, Susanna; Väänänen, Kaisa
2016-09-01
In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C
2016-08-01
Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Disentangling prototypicality and social desirability: the case of the KNOWI task.
Turan, Bulent
2011-01-01
The prototype of indicators of a relationship partner who can be trusted to be responsive at times of stress is one kind of social knowledge structure. The Knowledge of Indicators (KNOWI) Task assesses individual differences in knowledge about these prototypic indicators. In constructing the KNOWI, an iterative procedure was used in an attempt to identify those indicators for which ratings of prototypicality are not influenced by social desirability. Study 1 demonstrated that the correlation between ratings of prototypicality and social desirability is indeed eliminated for the final set of indicators retained in the KNOWI. Study 2 tested the prototype matching hypothesis: Comparing an actual partner to the prototype might shape global judgments about that partner's responsiveness. Because in Study 2 only those indicators that are uncorrelated with social desirability were used, this result cannot be explained by social desirability. These results support the construct validity of the indicators used in the KNOWI Task, which seems to be a precise assessment tool not influenced by social desirability.
Research into display sharing techniques for distributed computing environments
NASA Technical Reports Server (NTRS)
Hugg, Steven B.; Fitzgerald, Paul F., Jr.; Rosson, Nina Y.; Johns, Stephen R.
1990-01-01
The X-based Display Sharing solution for distributed computing environments is described. The Display Sharing prototype includes the base functionality for telecast and display copy requirements. Since the prototype implementation is modular and the system design provided flexibility for the Mission Control Center Upgrade (MCCU) operational consideration, the prototype implementation can be the baseline for a production Display Sharing implementation. To facilitate the process the following discussions are presented: Theory of operation; System of architecture; Using the prototype; Software description; Research tools; Prototype evaluation; and Outstanding issues. The prototype is based on the concept of a dedicated central host performing the majority of the Display Sharing processing, allowing minimal impact on each individual workstation. Each workstation participating in Display Sharing hosts programs to facilitate the user's access to Display Sharing as host machine.
Matthew G. Rollins; Christine K. Frame
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, began in April of 2002 and ended in April of 2005. The project was funded by the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior. The objectives of the LANDFIRE Prototype Project were to develop the methods, tools, and protocols...
Usability evaluation of cloud-based mapping tools for the display of very large datasets
NASA Astrophysics Data System (ADS)
Stotz, Nicole Marie
The elasticity and on-demand nature of cloud services have made it easier to create web maps. Users only need access to a web browser and the Internet to utilize cloud based web maps, eliminating the need for specialized software. To encourage a wide variety of users, a map must be well designed; usability is a very important concept in designing a web map. Fusion Tables, a new product from Google, is one example of newer cloud-based distributed GIS services. It allows for easy spatial data manipulation and visualization, within the Google Maps framework. ESRI has also introduced a cloud based version of their software, called ArcGIS Online, built on Amazon's EC2 cloud. Utilizing a user-centered design framework, two prototype maps were created with data from the San Diego East County Economic Development Council. One map was built on Fusion Tables, and another on ESRI's ArcGIS Online. A usability analysis was conducted and used to compare both map prototypes in term so of design and functionality. Load tests were also ran, and performance metrics gathered on both map prototypes. The usability analysis was taken by 25 geography students, and consisted of time based tasks and questions on map design and functionality. Survey participants completed the time based tasks for the Fusion Tables map prototype quicker than those of the ArcGIS Online map prototype. While response was generally positive towards the design and functionality of both prototypes, overall the Fusion Tables map prototype was preferred. For the load tests, the data set was broken into 22 groups for a total of 44 tests. While the Fusion Tables map prototype performed more efficiently than the ArcGIS Online prototype, differences are almost unnoticeable. A SWOT analysis was conducted for each prototype. The results from this research point to the Fusion Tables map prototype. A redesign of this prototype would incorporate design suggestions from the usability survey, while some functionality would need to be dropped. This is a free product and would therefore be the best option if cost is an issue, but this map may not be supported in the future.
Neural basis of scientific innovation induced by heuristic prototype.
Luo, Junlong; Li, Wenfu; Qiu, Jiang; Wei, Dongtao; Liu, Yijun; Zhang, Qinlin
2013-01-01
A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.
Prototype learning and dissociable categorization systems in Alzheimer's disease.
Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P
2013-08-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease
Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.
2015-01-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172
Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael
2018-06-01
To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.
Neural Basis of Scientific Innovation Induced by Heuristic Prototype
Qiu, Jiang; Wei, Dongtao; Liu, Yijun; Zhang, Qinlin
2013-01-01
A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation. PMID:23372641
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel
2011-01-01
An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.
The Effects of Sleep Deprivation on Dissociable Prototype Learning Systems
Maddox, W. Todd; Glass, Brian D.; Zeithamova, Dagmar; Savarie, Zachary R.; Bowen, Christopher; Matthews, Michael D.; Schnyer, David M.
2011-01-01
Background: The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. Study Objectives: To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Design: Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Participants: Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Measurements and Results: Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. Conclusions: The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance. Citation: Maddox WT; Glass BD; Zeithamova D; Savarie ZR; Bowen C; Matthews MD; Schnyer DM. The effects of sleep deprivation on dissociable prototype learning systems. SLEEP 2011;34(3):253-260. PMID:21358842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soldaini, Michel
The first heading of your manuscript must be 'Introduction'. Phenix is the only remaining French fast breeder reactor after the shutdown of Superphenix (1999) and Rapsodie (1983). Phenix is located inside the Marcoule nuclear site along the Rhone river near Bagnols-sur-Ceze in southeastern France. Phenix is one of the facilities belonging the French Atomic Energy Commission (CEA) on the Marcoule site. It is a fast breeder reactor (FBR) developed at the end of the 1960's. that has been in operation since 1973 and was connected to the power grid in 1974. It is a second generation prototype developed while themore » first generation FBR, Rapsodie, was still in operation. Phenix is a 250 electrical MW power plant. During the first 20 years of operation, its main aim was to demonstrate the viability of sodium-cooled FBRs. Since the 1991 radioactive waste management act, Phenix has become an irradiation tool for the actinide transmutation program. To extend its operating life for 6 additional cycles, it was necessary to refurbish the plant; this involved major work performed from 1999 to 2003 at a total cost of about 250 M??. Today, with a realistic expectation, the final shutdown is planned for the beginning of 2009. The main objective of the Phenix dismantling project is to eliminate all the process equipment and clean all the building to remove all the radioactive zones. To reach this objective, three main hazards must be eliminated: Fuel (criticality hazard), Sodium, Radioactive equipment. The complexity of decommissioning a facility such as Phenix is increased by: - the lack of storage facility for high radioactive material, - the decision to treat all the radioactive sodium and sodium waste inside the plant, - the very high irradiation of the core structures due to the presence of cobalt alloys. On the other hand, Phenix plant is still under operating with a qualified staff and the radioactivity coming from structural activation is well known. After the final shutdown, the first operations will be conducted by the same staff under the same safety report. Another interesting fact is that the decommissioning funds project exist and are available. The CEA decided to begin the dismantling phase without waiting because after a period of decay it is not really cheaper or easier to work. This approach needs interim storage facilities not long after the final shutdown. For the low- and intermediate-level radioactive waste there are national storage centers but for the high-level wastes, each operator must manage its waste until a suitable disposal site is available. At Marcoule a new storage facility is now being designed and scheduled to begin operating after 2013-2014. After removal of the fuel and core elements, the primary sodium will be drained and eliminated by a carbonation process. To ensure biological shielding, the reference scenario calls for filling the primary vessel with water. The most radioactive structures (dia-grid and core support) will be cut up with remote tools, after which the rest of the structure will be cut up manually. Phenix contains about 1450 metric tons of sodium. The CEA initially planned to build ATENA, a new facility for all radioactive sodium waste from R and D and FBR facilities. For various reasons, but mainly to save money, the CEA decided to treat all radioactive sodium and sodium waste in the framework of the Phenix dismantling project. There are no real difficulties in the dismantling schedule because of the advanced state of development of the processes selected for the ATENA project. Because of the knowledge already obtained, the issues concern project management, waste management and human resources reduction more than technical 0014challe.« less
Utilization survey of prototype structural test article
NASA Technical Reports Server (NTRS)
Baber, S.; Mcdaniel, H. M.; Berry, M. J.
1974-01-01
A survey was conducted of six aerospace companies and two NASA agencies to determine how prototype structural test articles are used in flight operations. The prototype structures are airframes and similar devices which are used for testing and generally are not flown. The survey indicated the following: (1) prototype test articles are not being discarded after development testing is complete, but are used for other purposes, (2) only two cases of prototypes being refurbished and flown were identified, (3) protective devices and inspection techniques are available to prevent or minimize test article damage, (4) substitute programs from design verification are availabel in lieu of using prototype structural articles, and (5) there is a trend away from dedicated test articles. Four options based on these study results were identified to reduce test and hardware costs without compromising reliability of the flight program.
Second Generation Prototype Design and Testing for a High Altitude Venus Balloon
NASA Technical Reports Server (NTRS)
Hall, J. L.; Kerzhanovich, V. V.; Yavrouian, A. H.; Plett, G. A.; Said, M.; Fairbrother, D.; Sandy, C.; Frederickson, T.; Sharpe, G.; Day, S.
2008-01-01
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 cubic meters and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.
The effects of sleep deprivation on dissociable prototype learning systems.
Maddox, W Todd; Glass, Brian D; Zeithamova, Dagmar; Savarie, Zachary R; Bowen, Christopher; Matthews, Michael D; Schnyer, David M
2011-03-01
The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance.
NASA Technical Reports Server (NTRS)
Cariapa, Vikram
1993-01-01
The trend in the modern global economy towards free market policies has motivated companies to use rapid prototyping technologies to not only reduce product development cycle time but also to maintain their competitive edge. A rapid prototyping technology is one which combines computer aided design with computer controlled tracking of focussed high energy source (eg. lasers, heat) on modern ceramic powders, metallic powders, plastics or photosensitive liquid resins in order to produce prototypes or models. At present, except for the process of shape melting, most rapid prototyping processes generate products that are only dimensionally similar to those of the desired end product. There is an urgent need, therefore, to enhance the understanding of the characteristics of these processes in order to realize their potential for production. Currently, the commercial market is dominated by four rapid prototyping processes, namely selective laser sintering, stereolithography, fused deposition modelling and laminated object manufacturing. This phase of the research has focussed on the selective laser sintering and stereolithography rapid prototyping processes. A theoretical model for these processes is under development. Different rapid prototyping sites supplied test specimens (based on ASTM 638-84, Type I) that have been measured and tested to provide a data base on surface finish, dimensional variation and ultimate tensile strength. Further plans call for developing and verifying the theoretical models by carefully designed experiments. This will be a joint effort between NASA and other prototyping centers to generate a larger database, thus encouraging more widespread usage by product designers.
Run-Time Support for Rapid Prototyping
1988-12-01
prototyping. One such system is the Computer-Aided Proto- typing System (CAPS). It combines rapid prototypng with automatic program generation. Some of the...a design database, and a design management system [Ref. 3:p. 66. By using both rapid prototyping and automatic program genera- tion. CAPS will be...Most proto- typing systems perform these functions. CAPS is different in that it combines rapid prototyping with a variant of automatic program
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
Teaching the practice of geophysics: A prototype world wide web environment for conceptual learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, T.M.; Romig, P.R.
1996-11-01
The history of the United States has been driven by a surplus of resources (energy, materials, air, water, open space). Today we are entering an era when there will no longer be more resources than people. This transition from a resource-rich to a resource-limited environment is responsible for many of the changes occurring within our society today, including the restructuring of industry and government. With regard to the earth sciences, one of the dominant issues of the 21st century will be how to use a finite earth to support a burgeoning global Population. We must continue to provide the rawmore » materials needed to feed, clothe, house, and provide a reasonable standard of living for all humans on earth. We must learn to extract and use resources and dispose of the waste products of that activity without poisoning the air we breathe and the water we drink. The quality of life of future generations depends on the earth sciences being equal to this challenge.« less
NASA Astrophysics Data System (ADS)
Borjas, Zulema; Esteve-Núñez, Abraham; Ortiz, Juan Manuel
2017-07-01
Microbial Desalination Cells constitute an innovative technology where microbial fuel cell and electrodialysis merge in the same device for obtaining fresh water from saline water with no energy-associated cost for the user. In this work, an anodic biofilm of the electroactive bacteria Geobacter sulfurreducens was able to efficiently convert the acetate present in synthetic waste water into electric current (j = 0.32 mA cm-2) able to desalinate water. .Moreover, we implemented an efficient start-up protocol where desalination up to 90% occurred in a desalination cycle (water production:0.308 L m-2 h-1, initial salinity: 9 mS cm-1, final salinity: <1 mS cm-1) using a filter press-based MDC prototype without any energy supply (excluding peristaltic pump energy). This start-up protocol is not only optimized for time but also simplifies operational procedures making it a more feasible strategy for future scaling-up of MDCs either as a single process or as a pre-treatment method combined with other well established desalination technologies such as reverse osmosis (RO) or reverse electrodialysis.
LBNF 1.2 MW Target: Conceptual Design & Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, C.; Ammigan, K.; Anderson, K.
2015-06-01
Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less
LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, Cory F.; Ammigan, K.; Anderson, K.
2015-06-29
Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less
A Printed Xi-Shaped Left-Handed Metamaterial on Low-Cost Flexible Photo Paper.
Ashraf, Farhad Bin; Alam, Touhidul; Islam, Mohammad Tariqul
2017-07-05
A Xi-shaped meta structure, has been introduced in this paper. A modified split-ring resonator (MSRR) and a capacitive loaded strip (CLS) were used to achieve the left-handed property of the metamaterial. The structure was printed using silver metallic nanoparticle ink, using a very low-cost photo paper as a substrate material. Resonators were inkjet-printed using silver nanoparticle metallic ink on paper to make this metamaterial flexible. It is also free from any kind of chemical waste, which makes it eco-friendly. A double negative region from 8.72 GHz to 10.91 GHz (bandwidth of 2.19 GHz) in the X-band microwave spectra was been found. Figure of merit was also obtained to measure any loss in the double negative region. The simulated result was verified by the performance of the fabricated prototype. The total dimensions of the proposed structure were 0.29 λ × 0.29 λ × 0.007 λ . It is a promising unit cell because of its simplicity, cost-effectiveness, and easy fabrication process.
NASA Astrophysics Data System (ADS)
Luong, Hung Truyen; Goo, Nam Seo
2011-03-01
We introduce a design for a magnetic force exciter that applies vibration to a piezo-composite generating element (PCGE) for a small-scale windmill to convert wind energy into electrical energy. The windmill can be used to harvest wind energy in urban regions. The magnetic force exciter consists of exciting magnets attached to the device's input rotor, and a secondary magnet that is fixed at the tip of the PCGE. Under an applied wind force, the input rotor rotates to create a magnetic force interaction to excite the PCGE. Deformation of the PCGE enables it to generate the electric power. Experiments were performed to test power generation and battery charging capabilities. In a battery charging test, the charging time for a 40 mAh battery is approximately 1.5 hours for a wind speed of 2.5 m/s. Our experimental results show that the prototype can harvest energy in urban areas with low wind speeds, and convert the wasted wind energy into electricity for city use.
Developing a Graphical User Interface for the ALSS Crop Planning Tool
NASA Technical Reports Server (NTRS)
Koehlert, Erik
1997-01-01
The goal of my project was to create a graphical user interface for a prototype crop scheduler. The crop scheduler was developed by Dr. Jorge Leon and Laura Whitaker for the ALSS (Advanced Life Support System) program. The addition of a system-independent graphical user interface to the crop planning tool will make the application more accessible to a wider range of users and enhance its value as an analysis, design, and planning tool. My presentation will demonstrate the form and functionality of this interface. This graphical user interface allows users to edit system parameters stored in the file system. Data on the interaction of the crew, crops, and waste processing system with the available system resources is organized and labeled. Program output, which is stored in the file system, is also presented to the user in performance-time plots and organized charts. The menu system is designed to guide the user through analysis and decision making tasks, providing some help if necessary. The Java programming language was used to develop this interface in hopes of providing portability and remote operation.
Spectrometric Analysis for Pulse Jet Mixer Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
ZEIGLER, KRISTINE
2004-07-12
The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could bemore » correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions.« less
EXTASE - An Experimental Thermal Probe for Applications in Snow Research and Earth Sciences
NASA Astrophysics Data System (ADS)
Schroeer, K.; Seiferlin, K.; Marczewski, W.; Gadomski, S.; Spohn, T.
2002-12-01
EXTASE is a spin-off project from the Rosetta Lander (MUPUS) thermal probe, funded by DLR. The application of this probe is to be tested in different fields, e.g. in snow research, agriculture, permafrost etc. The system consists of the probe itself with a portable field electronic and a computer for control of the system and storage of the data. The probe penetrates the surface ca. 32 cm deep and provides a temperature profile (16 sensors) and thermal conductivity profile of the penetrated layer. The main advantages of the probe in comparison to common temperature profile measurement methods are: - no need to excavate material - minimized influence of the probe on the temperature field - minimized modification of the microstructure of the studied medium. Presently we are concentrating on agriculture (soil humidity) and snow research. Further applications could be e.g.: monitoring waste deposits and the heat released by decomposition, volcanology and ground truth for remote sensing. We present the general concept of the probe and also data obtained during different field measurement campaigns with prototypes of the probe.
Prototype Willingness Model Drinking Cognitions Mediate Personalized Normative Feedback Efficacy.
Lewis, Melissa A; Litt, Dana M; Tomkins, Mary; Neighbors, Clayton
2017-05-01
Personalized normative feedback (PNF) interventions have been shown to be efficacious at reducing college student drinking. Because descriptive norms have been shown to mediate PNF efficacy, the current study focused on examining additional prototype willingness model social reaction cognitions, namely, prototypes and willingness, as mediators of intervention efficacy. We expected the PNF interventions to be associated with increased prototype favorability of students who do not drink, which would in turn be associated with decreased willingness to drink and subsequently, less drinking. The current study included 622 college students (53.2% women; 62% Caucasian) who reported one or more heavy drinking episodes in the past month and completed baseline and three-month follow-up assessments. As posited by the framework of the prototype willingness model, sequential mediation analyses were conducted to evaluate increases in abstainer prototype favorability on willingness on drinking, and subsequently willingness to drink on drinking behavior. Mediation results revealed significant indirect effects of PNF on three-month drinking through three-month prototypes and willingness, indicating that the social reaction pathway of the prototype willingness model was supported. Findings have important implications for PNF interventions aiming to reduce high-risk drinking among college students. Study findings suggest that we should consider looking at additional socially-based mediators of PNF efficacy in addition to perceived descriptive norms.
Prototype Willingness Model Drinking Cognitions Mediate Personalized Normative Feedback Efficacy
Litt, Dana M.; Tomkins, Mary; Neighbors, Clayton
2017-01-01
Personalized normative feedback (PNF) interventions have been shown to be efficacious at reducing college student drinking. Because descriptive norms have been shown to mediate PNF efficacy, the current study focused on examining additional prototype willingness model social reaction cognitions, namely, prototypes and willingness, as mediators of intervention efficacy. We expected the PNF interventions to be associated with increased prototype favorability of students who do not drink, which would in turn be associated with decreased willingness to drink and subsequently, less drinking. The current study included 622 college students (53.2% women; 62% Caucasian) who reported one or more heavy drinking episodes in the past month and completed baseline and three-month follow-up assessments. As posited by the framework of the prototype willingness model, sequential mediation analyses were conducted to evaluate increases in abstainer prototype favorability on willingness on drinking, and subsequently willingness to drink on drinking behavior. Mediation results revealed significant indirect effects of PNF on three-month drinking through three-month prototypes and willingness, indicating that the social reaction pathway of the prototype willingness model was supported. Findings have important implications for PNF interventions aiming to reduce high-risk drinking among college students. Study findings suggest that we should consider looking at additional socially-based mediators of PNF efficacy in addition to perceived descriptive norms. PMID:27995431
Lech, Robert K; Güntürkün, Onur; Suchan, Boris
2016-09-15
The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.
Woods, Andy; Stone, Christopher J.; Penton-Voak, Ian
2017-01-01
Smoking is associated with negative health of skin and increased signs of facial ageing. We aimed to address two questions about smoking and appearance: (1) does facial appearance alone provide an indication of smoking status, and (2) how does smoking affect the attractiveness of faces? We used faces of identical twins discordant for smoking, and prototypes made by averaging the faces of the twins. In Task 1, we presented exemplar twin sets and same sex prototypes side-by-side and participants (n = 590) indicated which face was the smoker. Participants were blind to smoking status. In Task 2 a separate sample (n = 580) indicated which face was more attractive. For the exemplar twin sets, there was inconclusive evidence participants selected the smoking twin as the smoker more often, or selected the non-smoking twin as the more attractive more often. For the prototypes, however, participants clearly selected the smoking prototypes as the smoker more often, and the non-smoking prototypes as the more attractive. Prototypical faces of smokers are judged more attractive and correctly identified as smokers more often than prototypical faces of matched non-smokers. We discuss the possible use of these findings in smoking behaviour change interventions. PMID:29308214
Mechatronics Education: From Paper Design to Product Prototype Using LEGO NXT Parts
NASA Astrophysics Data System (ADS)
Lofaro, Daniel M.; Le, Tony Truong Giang; Oh, Paul
The industrial design cycle starts with design then simulation, prototyping, and testing. When the tests do not match the design requirements the design process is started over again. It is important for students to experience this process before they leave their academic institution. The high cost of the prototype phase, due to CNC/Rapid Prototype machine costs, makes hands on study of this process expensive for students and the academic institutions. This document shows that the commercially available LEGO NXT Robot kit is a viable low cost surrogate to the expensive industrial CNC/Rapid Prototype portion of the industrial design cycle.
Smart roadside initiative : final report.
DOT National Transportation Integrated Search
2015-09-01
This is the Final Report for the Smart Roadside Initiative (SRI) prototype system deployment project. The SRI prototype was implemented at weigh stations in Grass Lake, Michigan and West Friendship, Maryland. The prototype was developed to integrate ...