Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
Code of Federal Regulations, 2010 CFR
2010-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disposal of wastes generated as a..., AND USE PROHIBITIONS Storage and Disposal § 761.64 Disposal of wastes generated as a result of... section provides disposal requirements for wastes generated during and as a result of research and...
Hanford solid-waste handling facility strategy
NASA Astrophysics Data System (ADS)
Albaugh, J. F.
1982-05-01
Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.
DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Radulesscu; J.S. Tang
The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less
Solid Waste Management with Emphasis on Environmental Aspect
NASA Astrophysics Data System (ADS)
Sinha, Navin Kr.; Choudhary, Binod Kumar; Shree, Shalini
2011-12-01
In this paper focus on Solid waste management. Its comprises of purposeful and systematic control of generation, storage, collection, transport, separations, processing, recycling, recovery and disposal of solid waste. Awareness of Four R's management & EMS support also for management Solid waste. Basel convention on the Control of transboundary movements of hazardous wastes and their Disposal usually known simply as the Basel Convention, is an international treaty that was designed to reduce the movements of hazardous waste between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). it came into force 5 May 1992. According to this "Substances or objects which are disposed of or are intended to be disposed of or are required to be disposed of by the provisions of national law"(UNEP).
Advances in Geologic Disposal System Modeling and Shale Reference Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolan, L. M.
2006-07-01
This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generationmore » to disposal. (authors)« less
Regulatory basis for the Waste Isolation Pilot Plant performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.
2000-05-22
The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Safety aspects of nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Compton, P. R.
1981-01-01
Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y
2016-09-01
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on Recycling and Utilization of Solid Waste in Civil Airport
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei
2018-05-01
The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.
Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gomberg, Steve
2015-11-01
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less
Developments in management and technology of waste reduction and disposal.
Rushbrook, Philip
2006-09-01
Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less
Zagozewski, Rebecca; Judd-Henrey, Ian; Nilson, Suzie; Bharadwaj, Lalita
2011-01-01
The impact of current and historical waste disposal practices on the environment and human health of Indigenous people in First Nations communities has yet to be adequately addressed. Solid waste disposal has been identified as a major environmental threat to First Nations Communities. A community-based participatory research project (CBPR) was initiated by the Saskatoon Tribal Council Health and Family Services Incorporated to investigate concerns related to waste disposal in three Saskatchewan First Nations Communities. Utilizing a qualitative approach, we aimed to gain an understanding of past and present waste disposal practices and to identify any human and environmental health concerns related to these practices. One to one interviews and sharing circles were conducted with Elders. Elders were asked to share their perspectives on past and present waste disposal practices and to comment on the possible impacts these practices may have on the environment and community health. Historically waste disposal practices were similar among communities. The homeowner generated small volumes of waste, was exclusively responsible for disposal and utilized a backyard pit. Overtime waste disposal evolved to weekly pick-up of un-segregated garbage with waste disposal and open trash burning in a community dump site. Dump site locations and open trash burning were identified as significant health issues related to waste disposal practices in these communities. This research raises issues of inequity in the management of waste in First Nations Communities. It highlights the need for long-term sustainable funding to support community-based waste disposal and management strategies and the development of First Nations centered and delivered educational programs to encourage the adoption and implementation of waste reduction, reutilization and recycling activities in these communities. PMID:21573032
Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde
2013-10-01
Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Rob
2012-06-26
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
Hazardous Wastes--New Developments.
ERIC Educational Resources Information Center
Rogers, Harvey W.
1979-01-01
The need for effective disposal of hazardous medical and pathological wastes is discussed and the results of a test of five different models of incinerators in disposing of such wastes is presented. (MJB)
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
Preliminary risk benefit assessment for nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.
1982-01-01
This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.22 - Recommendations for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... prohibit new open dumps and close or upgrade all existing open dumps. (a) Solid waste disposal standards... solid waste disposal facility. These procedures should include identification of future land use or the...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
40 CFR 256.21 - Requirements for State regulatory powers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste... be adequate to enforce solid waste disposal standards which are equivalent to or more stringent than the criteria for classification of solid waste disposal facilities (40 CFR part 257). Such authority...
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
Existing data on the 216-Z liquid waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, K.W.
1981-05-01
During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Robert
2012-04-17
The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were developed for Revision 4 of the performance assessment and composite analysis. The approach used to characterize the FY 2008 through 2011 waste is generally the same as that used to characterize the inventory for the Revision 4 analyses (Shuman, 2008). This methodology is described in Section 2. The results of the disposal receipt review are presented in Section 3 and discussed in terms of their significance to the Area G analyses.« less
An international perspective on hazardous waste practices.
Orloff, Kenneth; Falk, Henry
2003-08-01
In developing countries, public health attention is focused on urgent health problems such as infectious diseases, malnutrition, and infant mortality. As a country develops and gains economic resources, more attention is directed to health concerns related to hazardous chemical wastes. Even if a country has little industry of its own that generates hazardous wastes, the importation of hazardous wastes for recycling or disposal can present health hazards. It is difficult to compare the quantities of hazardous wastes produced in different countries because of differences in how hazardous wastes are defined. In most countries, landfilling is the most common means of hazardous waste disposal, although substantial quantities of hazardous wastes are incinerated in some countries. Hazardous wastes that escape into the environment most often impact the public through air and water contamination. An effective strategy for managing hazardous wastes should encourage waste minimization, recycling, and reuse over disposal. Developing countries are especially in need of low-cost technologies for managing hazardous wastes.
ERIC Educational Resources Information Center
Erceg, Linda Ebner
1993-01-01
As a result of new federal regulations, camps are revising procedures for waste disposal from their health centers. Discusses the importance of properly handling infectious material and developing written policies; determining how infectious waste can be incorporated safely into the general waste stream; and arranging for disposal. (LP)
77 FR 72997 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...
Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purnomo, A.S.
2007-07-01
Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less
Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finucane, K.G.; Thompson, L.E.; Abuku, T.
The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)« less
Groundwork for Universal Canister System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.
2015-09-01
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less
Contaminated waste incinerator modification study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, F.
1995-08-01
An explosive waste incinerator (EWI) can be installed in the existing Badger AAP Contaminated Waste Processor (CWP). An engineering evaluation of installing a rotary kiln furnace to dispose of waste energetic material has shown the installation to be possible. An extensive literature search was completed to develop the known proven methods of energetic waste disposal. Current incineration practice including thermal treatment alternatives was investigated. Existing and new equipment was reviewed for adequacy. Current CWP operations and hazardous waste to be disposed of were determined. Comparisons were made with other AAP`s EWI.
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
40 CFR 256.23 - Requirements for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid... classification of existing solid waste disposal facilities according to the criteria. This classification shall... solid waste disposal facility; (2) The availability of State regulatory and enforcement powers; and (3...
Advances in Geologic Disposal System Modeling and Application to Crystalline Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less
Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana
2011-03-01
Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.
Groundwater monitoring for the impacts of geothermal energy development, conversion and waste disposal is similar to groundwater monitoring for other purposes except that additional information is needed concerning the geothermal reservoir. The research described here developed a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, P.J.; Vance, J.N.
1990-08-01
Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less
The role of organic complexants and microparticulates in the facilitated transport of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Abel, K.H.
1996-12-01
This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birdsell, Kay Hanson; Stauffer, Philip H.; French, Sean B.
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 atmore » Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
..., drainage, and other soil and water conservation and use facilities. (6) Loans to acquire and develop... improve: (i) Community water, sanitary sewage, solid waste disposal, and storm waste water disposal... Conservation Service (SCS), U.S. Department of Agriculture (USDA), to conserve and develop natural resources...
RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHRADER, T.A.; KNERR, R.
2005-01-31
In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less
PEER REVIEW SUPPORTING THE STANDARDS FOR THE MANAGEMENT OF COAL COMBUSTION WASTES PART 1 AND 2
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and b...
Development and application of a safety assessment methodology for waste disposals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, R.H.; Torres, C.; Schaller, K.H.
1996-12-31
As part of a European Commission funded research programme, QuantiSci (formerly the Environmental Division of Intera Information Technologies) and Instituto de Medio Ambiente of the Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (IMA/CIEMAT) have developed and applied a comprehensive, yet practicable, assessment methodology for post-disposal safety assessment of land-based disposal facilities. This Safety Assessment Comparison (SACO) Methodology employs a systematic approach to the collection, evaluation and use of waste and disposal system data. It can be used to assess engineered barrier performance, the attenuating properties of host geological formations, and the long term impacts of a facility on the environmentmore » and human health, as well as allowing the comparison of different disposal options for radioactive, mixed and non-radioactive wastes. This paper describes the development of the methodology and illustrates its use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
Toxic-Waste Disposal by Drain-in-Furnace Technique
NASA Technical Reports Server (NTRS)
Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.
1986-01-01
Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls
Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.
ERIC Educational Resources Information Center
Hoffman, Darleane C.; Choppin, Gregory R.
1986-01-01
Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)
Xu, Jianling L; Tang, Zhanhui H; Shang, Jincheng C; Zhao, Yuanhui H
2010-06-01
The environmental issues caused by the municipal solid waste disposal are becoming a worldwide concern. We studied the situations both domestically and abroad by the strategic environmental assessment (SEA) approach and also conducted comprehensive evaluations of garbage disposal in Changchun City. On the basis of this study, we found that SEA is of great importance in the municipal solid waste disposal. Moreover, with the rapid socioeconomic development of Changchun City, municipal solid waste production increases on an annual basis, and thus, good waste management planning is of great significance. Considering the situation of the economic development of Changchun City, garbage disposal was handled mainly in the major sanitary landfills with appropriate use of incineration technology. This plan is environmentally friendly at a relatively high degree and has met the requirements of minimum investment. It also takes into account the requirements of the development of incineration technology. Regarding environmental pollution in terms of groundwater pollution and atmospheric pollution, this plan is a feasible one by meeting various requirements with low environmental impact among the three plans discussed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
The On-line Waste Library (OWL): Usage and Inventory Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassani, David; Jang, Je-Hun; Mariner, Paul
The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin).more » A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo
2010-05-01
This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less
FFTF disposable solid waste cask
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, J. D.; Goetsch, S. D.
1983-01-01
Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less
Santhanam, C J; Lunt, R R; Johnson, S L; Cooper, C B; Thayer, P S; Jones, J W
1979-01-01
This paper focuses on the incremental impacts of coal ash and flue gas desulfurization (FGD) wastes associated with increased coal usage by utilities and industry under the National Energy Plan (NEP). In the paper, 1985 and 2000 are the assessment points using the baseline data taken from the Annual Environmental Analysis Report (AEAR, September 1977). In each EPA region, the potential mix of disposal options has been broadly estimated and impacts assessed therefrom. In addition, future use of advanced combustion techniques has been taken into account. The quantities of coal ash and FGD wastes depend on ash and sulfur content of the coal, emission regulations, the types of ash collection and FGD systems, and operating conditions of the systems and boiler. The disposal of these wastes is (or will be) subject to Federal and State regulations. The one key legal framework concerning environmental impact on land is the Resource Conservation and Recovery Act (RCRA). RCRA and related Federal and State laws provide a sufficient statutory basis for preventing significant adverse health and environmental impacts from coal ash and FGD waste disposal. However, much of the development and implementation of specific regulations lie ahead. FGD wastes and coal ash and FGD wastes are currently disposed of exclusively on land. The most common land disposal methods are inpoundments (ponds) and landfills, although some mine disposal is also practiced. The potential environmental impacts of this disposal are dependent on the characteristics of the disposal site, characteristics of the coal ash and FGD wastes, control method and the degree of control employed. In general, the major potential impacts are ground and surface water contamination and the "degradation" of large quantities of land. However, assuming land is available for disposal of these wastes, control technology exists for environmentally sound disposal. Because of existing increases in coal use, the possibility of significant environmental impacts, both regionally and nationally, exists regardless of whether the NEP scenario develops or not. Existing baseline data indicate that with sound control technology and successful development and implementation of existing regulatory framework, regional scale impacts are likely to be small; however, site-specific impacts could be significant and need to be evaluated on a case-by-case basis. Both Federal and privately-funded programs are developing additional data and information on disposal of FGD sludges and coal ash. Continuation of these programs will provide additional vital information in the future. However, further information in several areas if desirable: further data on levels of radionuclides and trace metals in these wastes: studies on biological impacts of trace metals; and completion of current and planned studies on disposal problems associated with advanced combustion techniques like fluid bed combustion. PMID:540614
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, D.W.; Ridge, A.C.; Thaggard, M.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of themore » public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)« less
ERIC Educational Resources Information Center
Moberly, Heather K., Comp.
Solid waste disposal has become a major concern in rural areas, threatening public health, ruining the environment, and hindering economic development due to an overall poor impression of areas. This bibliography serves as a starting point for small communities to examine the issues and begin planning for feasible programs for disposing or…
Sustainable construction in rural Guatemala.
Temple, Ericka K; Rose, Elizabeth
2011-11-01
Waste management is a significant problem in Guatemala, as elsewhere in the developing world. The inappropriate disposal of solid waste produces pollution and places the environment and human health at risk. Environmental risk factors, including inadequate disposal of solid waste, are implicated in 25-30% of disease worldwide with children bearing a disproportionate burden of those diseases. Therefore, economic development which reduces inappropriate disposal of waste and affords economic opportunities may help reduce the global burden of disease on children. In the indigenous highlands of central Guatemala, a community supported non-profit organisation called Long Way Home (http://www.longwayhomeinc.org) is employing alternative construction techniques to build a vocational school complex. The construction of the school from waste materials demonstrates the use and principles of re-purposing materials, helps clean the environment and affords further educational and vocational opportunities. This article will outline the health problems inherent in an indigenous area of a developing country and will offer an alternative solution to reverse environmental risk factors associated with solid waste pollution and also actively improve child health.
NASA Technical Reports Server (NTRS)
1982-01-01
The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-02-01
This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes: sample preparation, sample extraction, extract cleanup, extract concentration, addition of PCB... concentration of PCBs are unregulated for PCB disposal under this part. (b) All other wastes generated during...
Biomedical waste management in India: Critical appraisal.
Datta, Priya; Mohi, Gursimran Kaur; Chander, Jagdish
2018-01-01
The safe and sustainable management of biomedical waste (BMW) is social and legal responsibility of all people supporting and financing health-care activities. Effective BMW management (BMWM) is mandatory for healthy humans and cleaner environment. This article reviews the recent 2016 BMWM rules, practical problems for its effective implementation, the major drawback of conventional techniques, and the latest eco-friendly methods for BMW disposal. The new rules are meant to improve the segregation, transportation, and disposal methods, to decrease environmental pollution so as to change the dynamic of BMW disposal and treatment in India. For effective disposal of BMWM, there should be a collective teamwork with committed government support in terms of finance and infrastructure development, dedicated health-care workers and health-care facilities, continuous monitoring of BMW practices, tough legislature, and strong regulatory bodies. The basic principle of BMWM is segregation at source and waste reduction. Besides, a lot of research and development need to be in the field of developing environmental friendly medical devices and BMW disposal systems for a greener and cleaner environment.
Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier
2016-06-05
Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. Copyright © 2016 Elsevier B.V. All rights reserved.
A quantitative analysis of municipal solid waste disposal charges in China.
Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue
2015-03-01
Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
36 CFR 13.1604 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1604... Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located within one...
36 CFR 13.1912 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1912....1912 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be located...
36 CFR 13.1008 - Solid waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal. 13.1008... § 13.1008 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may be...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal. 13.1118... Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park Service solid waste generated within the boundaries of the park area. (b) A solid waste disposal site may...
Electronic waste management approaches: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com
2013-05-15
Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-08-01
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less
Household Hazardous Waste Disposal Project. Summary Report. Metro Toxicant Program Report No. 1A.
ERIC Educational Resources Information Center
Ridgley, Susan M.; Galvin, David V.
The Household Hazardous Waste Disposal Project was established as an interagency effort to reduce the level of toxicants entering the environment by developing a control plan for the safe disposal of small quantities of household chemicals. This summary report provides an overview of the aspects of this problem that were examined, and the steps…
Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vliet, James A.
2012-07-01
During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facilitymore » consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)« less
40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...
40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...
40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.34 Waste... wastes are prohibited from land disposal: the wastes specified in 40 CFR Part 261 as EPA Hazardous Waste... 261. (b) Effective November 26, 1998, the following waste is prohibited from land disposal: Slag from...
NASA Astrophysics Data System (ADS)
van Loon, A. J.
2000-06-01
Man does not only extract material from the Earth but increasingly uses the underground for storage and disposal purposes. One of the materials that might be disposed of this way is high-level nuclear waste. The development of safe disposal procedures, the choice of suitable host rocks, and the design of underground facilities have taken much time and money, but commissions in several countries have presented reports showing that — and how — safe geological disposal will be possible in such a way that definite isolation from the biosphere is achieved. Political views have changed in the past few years, however, and there is a strong tendency now to require that the high-level waste disposed of will be retrievable. Considering the underlying arguments for isolation from the biosphere, and also considering waste policy in general, this provides an irrational context. The development of new procedures and the design of new disposal facilities that allow retrieval will take much time again. A consequence may be that the high-active, heat-generating nuclear waste will be stored temporarily for a much longer time than objectively desirable. The delay in disposal and the counterproductive requirement of retrievability are partly due to the fact that earth-science organisations have failed to communicate in the way they should, possibly fearing public (and financial) reactions if taking a position that is (was?) considered as politically incorrect. Such an attitude should not be maintained in modern society, which has the right to be informed reliably by the scientific community.
Use of petrophysical data for siting of deep geological repository of radioactive waste
NASA Astrophysics Data System (ADS)
Petrenko, Liliana; Shestopalov, Vyacheslav
2017-11-01
The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Christi D.; Hansen, Francis D.
This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principlesmore » of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.« less
Issues that Drive Waste Management Technology Development for Space Missions
NASA Technical Reports Server (NTRS)
Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai
2005-01-01
Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.
Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny Anderson
2014-07-01
As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less
Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India
NASA Astrophysics Data System (ADS)
Alam, Tabish; Kulkarni, Kishore
2016-03-01
Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.
Waste-to-Energy Thermal Destruction Identification for Forward Operating Bases
2016-07-01
waste disposal strategy is to simplify the technology development goals. Specifically, we recommend a goal of reducing total net energy consumption ...to net zero. The minimum objective should be the lowest possible fuel consumption per unit of waste disposed. By shifting the focus from W2E to waste...over long distances increases the risks to military personnel and contractors. Because fuel is a limited resource at FOBs, diesel fuel consumption
40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...
40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...
40 CFR 268.30 - Waste specific prohibitions-wood preserving wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.30 Waste... prohibited from land disposal: the wastes specified in 40 CFR part 261 as EPA Hazardous Waste numbers F032, F034, and F035. (b) Effective May 12, 1999, the following wastes are prohibited from land disposal...
Getahun, T; Mengistie, E; Haddis, A; Wasie, F; Alemayehu, E; Dadi, D; Van Gerven, T; Van der Bruggen, B
2012-10-01
As one of cities in the developing countries, a rapid population growth and industrial activities pose many environmental challenges for Jimma city, Ethiopia. One aspect of urban growth posing a threat on sustainable development is poor solid waste management, which results in environmental pollution. The purpose of this study is to evaluate the quantity, composition, sources of waste generated, their current disposal practices, and to recommend appropriate management technologies. The total waste generated daily in Jimma city was ca. 88,000 kg, and the average per capita generation rate was 0.55 ± 0.17 kg/capita/day. Eighty-seven percent of the waste was produced by households and 13% by institutions, and a negligible fraction (0.1%) was generated by street sweepings. During the rainy season, 40% more waste was generated than in the dry season because of the increased availability of agricultural food product. Further analysis showed that biodegradable organic waste constitutes 54% by weight with an average moisture content of 60% that falls within the required limits for composting. The nonbiodegradable components constitute 46% of which 30% of it was nonrecyclable material. Only 25% of the community uses municipal containers for disposal at the selected landfill site. Fifty-one percent of the households disposed their waste in individually chosen spots, whereas 22% burned their waste. Finally 2% of households use private waste collectors. The socioeconomic analysis showed that higher family income and educational status is associated more with private or municipal waste collection and less with the application of backyard or open dumping. These insights into generated waste and management practice in Jimma city allow making suggestions for improved collection, treatment, and disposal methods. A primary conclusion is that the biodegradable waste is a major fraction having suitable properties for recycling. As such an economic benefit can be obtained from this waste while avoiding the need for disposal.
Alagöz, B Aylin Zeren; Kocasoy, Günay
2007-02-01
Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.
Sanitary engineering aspects of nuclear energy developments*
Kenny, A. W.
1962-01-01
So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214
Development of integrated radioactive waste packaging and conditioning solutions in the UK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibley, Peter; Butter, Kevin; Zimmerman, Ian
2013-07-01
In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.
2013-05-31
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
Peoria Disposal Co.`s PDC Laboratories: Analyzing and cleaning up -- Literally
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, C.L.
1995-10-01
In the early 1980s, says Royal Coulter, president and CEO of Peoria Disposal Co. (PDC, Peoria, IL), many PDC customers were unfamiliar with the methods required for the proper characterization of then newly regulated hazardous wastes. So in early 1981, to expedite permitting and, ultimately, acceptance of waste by PDC, a lab was set up so the company could step in and provide the needed services. By focusing on the delivery of quality services in the analysis of groundwater, wastewater, and solid waste for PDC, Coulter says, the laboratory soon developed into a successful and independent commercial operation. In Julymore » of 1981, PDC Laboratories was incorporated as an independent environmental analytical laboratory. PDC Labs is a subsidiary of PDC Technical Services, Inc., which provides environmental consulting and site remediation services, and is itself a wholly-owned subsidiary of Coulter Companies, Inc. Peoria Disposal offers solid waste disposal, industrial waste water treatment, waste stabilization, transportation services, and brokerage services.« less
Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O.; Ssempebwa, John C.
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. Methods. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Results. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Conclusion. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices. PMID:27066081
Mukama, Trasias; Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O; Ssempebwa, John C
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices.
Protocol for the E-Area Low Level Waste Facility Disposal Limits Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swingle, R
2006-01-31
A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclidemore » disposal limits.« less
7 CFR 1822.265 - Loan purposes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... development. If public water and waste disposal facilities are not available and cannot reasonably be provided... 103-354 Water and Waste Disposal Association loans, funds may be included for this purpose. (b) For..., planting, seeding, or sodding, or other necessary facilities related to buildings such as walks, parking...
Clinical solid waste management practices and its impact on human health and environment - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.
2011-04-15
Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less
Biomedical waste management in India: Critical appraisal
Datta, Priya; Mohi, Gursimran Kaur; Chander, Jagdish
2018-01-01
The safe and sustainable management of biomedical waste (BMW) is social and legal responsibility of all people supporting and financing health-care activities. Effective BMW management (BMWM) is mandatory for healthy humans and cleaner environment. This article reviews the recent 2016 BMWM rules, practical problems for its effective implementation, the major drawback of conventional techniques, and the latest eco-friendly methods for BMW disposal. The new rules are meant to improve the segregation, transportation, and disposal methods, to decrease environmental pollution so as to change the dynamic of BMW disposal and treatment in India. For effective disposal of BMWM, there should be a collective teamwork with committed government support in terms of finance and infrastructure development, dedicated health-care workers and health-care facilities, continuous monitoring of BMW practices, tough legislature, and strong regulatory bodies. The basic principle of BMWM is segregation at source and waste reduction. Besides, a lot of research and development need to be in the field of developing environmental friendly medical devices and BMW disposal systems for a greener and cleaner environment. PMID:29403196
7 CFR 1951.232 - Water and waste disposal systems which have become part of an urban area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 14 2010-01-01 2009-01-01 true Water and waste disposal systems which have become... Water and waste disposal systems which have become part of an urban area. A water and/or waste disposal.... The following will be forwarded to the Administrator, Attention: Water and Waste Disposal Division...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites in..., DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.5 Solid waste disposal sites in operation on September 1, 1984. (a) The operator of a solid waste disposal site in...
40 CFR 761.202 - EPA identification numbers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.202 EPA identification numbers. (a) General. Any... identification number from EPA. (4) A disposer of PCB waste shall not accept any PCB waste for disposal without... disposal facility or mobile treatment unit shall not accept waste unless the disposer has received an EPA...
10 CFR 20.2005 - Disposal of specific wastes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...
10 CFR 20.2005 - Disposal of specific wastes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
Solid rocket propellant waste disposal/ingredient recovery study
NASA Technical Reports Server (NTRS)
Mcintosh, M. J.
1976-01-01
A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.
10 CFR 850.32 - Waste disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
40 CFR 266.206 - Standards applicable to the treatment and disposal of waste military munitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and disposal of waste military munitions. 266.206 Section 266.206 Protection of Environment... HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Military Munitions § 266.206 Standards applicable to the treatment and disposal of waste military munitions. The treatment and disposal...
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
Municipal solid waste management in India: From waste disposal to recovery of resources?
Narayana, Tapan
2009-03-01
Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayberry, J.; Stelle, S.; O`Brien, M.
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.
Hao, Jane L; Hills, Martin J; Tam, Vivian W Y
2008-12-01
The Hong Kong Government introduced the Construction Waste Disposal Charging Scheme in December 2005 to ensure that disposal of construction and demolition (C&D) waste is properly priced to reduce such waste. The charging scheme is not only intended to provide an economic incentive for contractors and developers to reduce waste but also to encourage reuse and recycling of waste material thereby slowing down the depletion of limited landfill and public filling capacities. This paper examines the effectiveness of the charging scheme 1 year after implementation. A survey was conducted at Tseung Kwan O Area 137 and Tuen Mun Area 38, and daily C&D waste records were collected from landfills and public filling facilities between January 2006 and December 2006. The results of the survey show that waste has been reduced by approximately 60% in landfills, by approximately 23% in public fills, and by approximately 65% in total waste between 2005 and 2006. Suggestions for improving the scheme are provided.
Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas
2008-05-30
Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.
Space disposal of nuclear wastes
NASA Technical Reports Server (NTRS)
Priest, C. C.; Nixon, R. F.; Rice, E. E.
1980-01-01
The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.
Integrated management of hazardous waste generated from community sources in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yodnane, P.; Spaeder, D.J.
A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less
Safety assessment guidance in the International Atomic Energy Agency RADWASS Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vovk, I.F.; Seitz, R.R.
1995-12-31
The IAEA RADWASS programme is aimed at establishing a coherent and comprehensive set of principles and standards for the safe management of waste and formulating the guidelines necessary for their application. A large portion of this programme has been devoted to safety assessments for various waste management activities. Five Safety Guides are planned to be developed to provide general guidance to enable operators and regulators to develop necessary framework for safety assessment process in accordance with international recommendations. They cover predisposal, near surface disposal, geological disposal, uranium/thorium mining and milling waste, and decommissioning and environmental restoration. The Guide on safetymore » assessment for near surface disposal is at the most advanced stage of preparation. This draft Safety Guide contains guidance on description of the disposal system, development of a conceptual model, identification and description of relevant scenarios and pathways, consequence analysis, presentation of results and confidence building. The set of RADWASS publications is currently undergoing in-depth review to ensure a harmonized approach throughout the Safety Series.« less
DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...
Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 61.154 - Standard for active waste disposal sites.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standard for active waste disposal... for Asbestos § 61.154 Standard for active waste disposal sites. Each owner or operator of an active... visible emissions to the outside air from any active waste disposal site where asbestos-containing waste...
40 CFR 257.13 - Deadline for making demonstrations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Hazardous Waste Disposal Units Location Restrictions § 257.13 Deadline for making demonstrations. Existing..., 1998, must not accept CESQG hazardous waste for disposal. Ground-Water Monitoring and Corrective Action ... WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards...
Discusses how a person can perform waste analyses and develop waste analysis plans (WAPs) in accordance with the federal hazardous waste regulations of the Resource Conservation and Recovery Act (RCRA)
Letter Report: LAW Simulant Development for Cast Stone Screening Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Swanberg, David J.
2013-03-27
More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second facility will be needed for the expected volume of additional LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with waste acceptance criteria for the IDF disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long term performance of the waste form in the IDF disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the IDF. A testing program was developed in fiscal year (FY) 2012 describing in some detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW (Westsik et al. 2012). Included within Westsik et al. (2012) is a section on the near-term needs to address Tri-Party Agreement Milestone M-062-40ZZ. The objectives of the testing program to be conducted in FY 2013 and FY 2014 are to: • Determine an acceptable formulation for the LAW Cast Stone waste form. • Evaluate sources of dry materials for preparing the LAW Cast Stone. • Demonstrate the robustness of the Cast Stone waste form for a range of LAW compositions. • Demonstrate the robustness of the formulation for variability in the Cast Stone process. • Provide Cast Stone contaminant release data for PA and risk assessment evaluations. The first step in determining an acceptable formulation for the LAW Cast Stone waste form is to conduct screening tests to examine expected ranges in pretreated LAW composition, waste stream concentrations, dry-materials sources, and mix ratios of waste feed to dry blend. A statistically designed test matrix will be used to evaluate the effects of these key parameters on the properties of the Cast Stone as it is initially prepared and after curing. The second phase of testing will focus on selection of a baseline Cast Stone formulation for LAW and demonstrating that Cast Stone can meet expected waste form requirements for disposal in the IDF. It is expected that this testing will use the results of the screening tests to define a smaller suite of tests to refine the composition of the baseline Cast Stone formulation (e.g. waste concentration, water to dry mix ratio, waste loading).« less
The Louisiana State University waste-to-energy incinerator
NASA Astrophysics Data System (ADS)
1994-10-01
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes are produced on campus. Until recently, these wastes were disposed of in the Devil's Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University's non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter
2007-01-01
Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-formmore » leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.« less
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
Space augmentation of military high-level waste disposal
NASA Technical Reports Server (NTRS)
English, T.; Lees, L.; Divita, E.
1979-01-01
Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
Modeling of transport phenomena in concrete porous media.
Plecas, Ilija
2014-02-01
Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
76 FR 10583 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... No. 20110048, Draft EIS, DOE, 00, Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste, Proposed Development, Operation, and Long-Term Management of a Disposal Facility... Period Ends: 03/28/2011, Contact: Cody Wheeler 816-389-3739. EIS No. 20110051, Draft EIS, USN, CA, Marine...
78 FR 68812 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
...) 720-7853. Title: 7 CFR part 1777, Section 306C Water and Waste Disposal (WWD) Loans and Grants. OMB.... Abstract: Section 306C of the Consolidated Farm and Rural Development Act (7 U.S.C. 926c) authorizes the... water supply systems or waste disposal facilities. The loans and grants will be available to provide...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...
Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Michael Marquand; Little, Bonnie Colleen
The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swazo, S.
The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less
The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...
Transboundary movements of hazardous wastes: the case of toxic waste dumping in Africa.
Anyinam, C A
1991-01-01
Developed and developing countries are in the throes of environmental crisis. The planet earth is increasingly being literally choked by the waste by-products of development. Of major concern, especially to industrialized countries, is the problem of what to do with the millions of tons of waste materials produced each year. Owing to mounting pressure from environmental groups, the "not-in-mu-backyard" movement, the close monitoring of the activities of waste management agents, an increasing paucity of repositories for waste, and the high cost of waste treatment, the search for dumping sites for waste disposal has, in recent years, extended beyond regional and national boundaries. The 1980s have seen several attempts to export hazardous wastes to third world countries. Africa, for example, is gradually becoming the prime hunting ground for waste disposal companies. This article seeks to examine, in the context of the African continent, the sources and destinations of this form of relocation-diffusion of pollution, factors that have contributed to international trade in hazardous wastes between developed and developing countries, the potential problems such exports would bring to African countries, and measures being taken to abolish this form of international trade.
Liao, Ching-Jong; Ho, Chao Chung
2014-07-01
Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
10 CFR 61.12 - Specific technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE... of the land disposal facility and the disposal units. For near-surface disposal, the description must...; structural stability of backfill, wastes, and covers; contact of wastes with standing water; disposal site...
U.S. program assessing nuclear waste disposal in space - A 1981 status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.
1982-01-01
Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.
Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI
Up from the beach: medical waste disposal rules!
Francisco, C J
1989-07-01
The recent incidents of floating debris, garbage, wood, and medical waste on our nation's beaches have focused public attention on waste management problems. The handling and disposal of solid waste remains a major unresolved national dilemma. Increased use of disposables by all consumers, including the medical profession, and the increasing costs of solid waste disposal options have aggravated the solid waste situation. Medical waste found on beaches in the summer of 1988 could have been generated by a number of sources, including illegal dumping; sewer overflow; storm water runoff; illegal drug users; and inadequate handling of solid waste at landfills and coastal transfer facilities, which receive waste from doctors' offices, laboratories, and even legitimate home users of syringes. As officials from New Jersey have determined, the beach garbage is no mystery. It's coming from you and me. In response to the perceived medical waste disposal problem, various state and federal agencies have adopted rules to regulate and control the disposal of medical waste. This article outlines the more significant rules that apply to medical waste.
Pathways for Disposal of Commercially-Generated Tritiated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Nancy V.
From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.219 - One-year exception reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.219 One-year exception reporting. (a) A disposer of... affecting the facility's disposal capacity, the disposer of PCB waste could not dispose of the affected PCBs... PCB Items within 1 year from the date of removal from service for disposal. (d) PCB/radioactive waste...
40 CFR 761.219 - One-year exception reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.219 One-year exception reporting. (a) A disposer of... affecting the facility's disposal capacity, the disposer of PCB waste could not dispose of the affected PCBs... PCB Items within 1 year from the date of removal from service for disposal. (d) PCB/radioactive waste...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
Energy and solid/hazardous waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-12-01
This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)
40 CFR 256.01 - Purpose and scope of the guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose... guidelines is to assist in the development and implementation of State solid waste management plans, in accordance with section 4002(b) of the Solid Waste Disposal Act, as amended by the Resource Conservation and...
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Waste-handling practices at red meat abattoirs in South Africa.
Roberts, Hester; de Jager, Linda; Blight, Geoffrey
2009-02-01
Abattoir waste disposal must be carefully managed because the wastes can be a source of food-borne diseases (Nemerow & Dasgupta Industrial and Hazardous Waste Treatment, p. 284, Van Nostrand Reinhold, New York, 1991; Bradshaw et al. The Treatment and Handling of Wastes, p. 183, The Royal Society, Chapman & Hall, London, 1992). Disposal of food that has been condemned because it is known to be diseased is of particular concern, and this paper looks at current disposal methods for such waste in the light of new scientific developments and waste-management strategies. Questionnaires were presented to management and workers at low- and high-throughput red meat abattoirs in the Free State Province, South Africa to determine current waste-handling procedures for condemned products. The waste-handling practices, almost without exception, did not fully comply with the requirements of the South African Red Meat Regulations of 2004, framed under the Meat Safety Act (Act 40 of 2000). The survey highlighted the need to improve current waste-handling strategies to prevent condemned products from re-entering the food chain and contributing to environmental pollution.
A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsell, D.A.
2008-07-01
Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that,more » when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, Helen; Rossiter, David
The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficientmore » to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)« less
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
Municipal solid waste in Brazil: A review.
Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli
2017-12-01
The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.
40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...
40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...
40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...
40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...
40 CFR 268.6 - Petitions to allow land disposal of a waste prohibited under subpart C of part 268.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.6 Petitions to allow land disposal of a waste prohibited under subpart C of part 268. (a) Any person seeking... operator of a land disposal unit receiving restricted waste(s) will comply with other applicable Federal...
Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehmel, J.C.; Loomis, D.; Mauro, J.
1994-01-01
Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less
Remote-Handled Low-Level Waste Disposal Project Code of Record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, S. L.; Guillen, L. E.; McKnight, C. W.
2015-04-01
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
43 CFR 3596.2 - Disposal of waste.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...
76 FR 34200 - Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... 2050-AG65 Land Disposal Restrictions: Revision of the Treatment Standards for Carbamate Wastes AGENCY... concentration limits before the wastes can be land disposed. The lack of readily available analytical standards.... List of Subjects 40 CFR Part 268 Environmental protection, Hazardous waste, Land disposal restrictions...
43 CFR 3596.2 - Disposal of waste.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of waste. 3596.2 Section 3596.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... OPERATIONS Waste From Mining or Milling § 3596.2 Disposal of waste. The operator/lessee shall dispose of all...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...
Developing Tribal Integrated Waste Management Plans
An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.
Management of low-level radioactive waste in Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabtai, B.; Brenner, S.; Ne`eman, E.
1995-12-31
Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less
Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal
2012-10-15
Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.
Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark
2017-01-01
In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
Nuclear waste disposal: Gambling on Yucca Mountain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsburg, S.
1995-05-01
This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Chao Chung, E-mail: ho919@pchome.com.tw
Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This ismore » because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms.« less
Ho, Chao Chung
2011-07-01
Ever since Taiwan's National Health Insurance implemented the diagnosis-related groups payment system in January 2010, hospital income has declined. Therefore, to meet their medical waste disposal needs, hospitals seek suppliers that provide high-quality services at a low cost. The enactment of the Waste Disposal Act in 1974 had facilitated some improvement in the management of waste disposal. However, since the implementation of the National Health Insurance program, the amount of medical waste from disposable medical products has been increasing. Further, of all the hazardous waste types, the amount of infectious medical waste has increased at the fastest rate. This is because of the increase in the number of items considered as infectious waste by the Environmental Protection Administration. The present study used two important findings from previous studies to determine the critical evaluation criteria for selecting infectious medical waste disposal firms. It employed the fuzzy analytic hierarchy process to set the objective weights of the evaluation criteria and select the optimal infectious medical waste disposal firm through calculation and sorting. The aim was to propose a method of evaluation with which medical and health care institutions could objectively and systematically choose appropriate infectious medical waste disposal firms. Copyright © 2011 Elsevier Ltd. All rights reserved.
PEER REVIEW SUPPORTING THE STANDARDS FOR THE ...
EPA has been working on developing risk assessments to assist regulators, industry, and the public in evaluating the environmental risks associated with Fossil Fuel Combustion Waste(s) (FFCW) management/disposal in landfills, surface impoundments, other disposal procedures and beneficial uses. The U.S. Environmental Protection Agency (EPA) is evaluating management options for solid wastes from coal combustion (e.g., fly ash, bottom ash, slag). As part of this effort, EPA has prepared the Draft Human and Ecological Risk Assessment of Coal Combustion Wastes. The purpose of this draft risk assessment is to identify and quantify human health and ecological risks that may be associated with current disposal practices for high-volume coal combustion waste (CCW), including fly ash, bottom ash, boiler slag, flue gas desulfurization (FGD) sludge, coal refuse waste, and wastes from fluidized-bed combustion (FBC) units. These risk estimates will help inform EPA’s decisions about how to treat CCW under Subtitle D of the Resource Conservation and Recovery Act.
Concept for Underground Disposal of Nuclear Waste
NASA Technical Reports Server (NTRS)
Bowyer, J. M.
1987-01-01
Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.
77 FR 14307 - Water and Waste Disposal Loans and Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... CFR 1777 RIN 0572-AC26 Water and Waste Disposal Loans and Grants AGENCY: Rural Utilities Service, USDA... pertaining to the Section 306C Water and Waste Disposal (WWD) Loans and Grants program, which provides water... to assist areas designated as colonias that lack access to water or waste disposal systems and/or...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB... to manage municipal or industrial solid waste, or in a facility with an approval to dispose of PCB...
76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
75 FR 39041 - Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Solid Waste Disposal... the Solid Waste Disposal Act (as amended by the Resource Conservation and Recovery Act), 42 U.S.C... to wildlife, at its commercial oilfield waste disposal facility, located in Campbell County, Wyoming...
29 CFR 1926.252 - Disposal of waste materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fire regulations. (e) All solvent waste, oily rags, and flammable liquids shall be kept in fire... 29 Labor 8 2014-07-01 2014-07-01 false Disposal of waste materials. 1926.252 Section 1926.252..., Use, and Disposal § 1926.252 Disposal of waste materials. (a) Whenever materials are dropped more than...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
10 CFR 61.24 - Conditions of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61... waste may be disposed of until the Commission has inspected the land disposal facility and has found it... quantity of special nuclear material that has been disposed of. (j) The authority to dispose of wastes...
Secondary Waste Simulant Development for Cast Stone Formulation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Westsik, Joseph H.; Rinehart, Donald E.
Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integratedmore » Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.« less
The Louisiana State University waste-to-energy incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-26
This proposed action is for cost-shared construction of an incinerator/steam-generation facility at Louisiana State University under the State Energy Conservation Program (SECP). The SECP, created by the Energy Policy and Conservation Act, calls upon DOE to encourage energy conservation, renewable energy, and energy efficiency by providing Federal technical and financial assistance in developing and implementing comprehensive state energy conservation plans and projects. Currently, LSU runs a campus-wide recycling program in order to reduce the quantity of solid waste requiring disposal. This program has removed recyclable paper from the waste stream; however, a considerable quantity of other non-recyclable combustible wastes aremore » produced on campus. Until recently, these wastes were disposed of in the Devil`s Swamp landfill (also known as the East Baton Rouge Parish landfill). When this facility reached its capacity, a new landfill was opened a short distance away, and this new site is now used for disposal of the University`s non-recyclable wastes. While this new landfill has enough capacity to last for at least 20 years (from 1994), the University has identified the need for a more efficient and effective manner of waste disposal than landfilling. The University also has non-renderable biological and potentially infectious waste materials from the School of Veterinary Medicine and the Student Health Center, primarily the former, whose wastes include animal carcasses and bedding materials. Renderable animal wastes from the School of Veterinary Medicine are sent to a rendering plant. Non-renderable, non-infectious animal wastes currently are disposed of in an existing on-campus incinerator near the School of Veterinary Medicine building.« less
Incinerator technology overview
NASA Astrophysics Data System (ADS)
Santoleri, Joseph J.
1991-04-01
In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.
E-waste hazard: The impending challenge.
Pinto, Violet N
2008-08-01
Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action.
Hazardous healthcare waste management in the Kingdom of Bahrain.
Mohamed, L F; Ebrahim, S A; Al-Thukair, A A
2009-08-01
Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.
Hazardous healthcare waste management in the Kingdom of Bahrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.
2009-08-15
Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less
Enhanced LAW Glass Correlation - Phase 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less
Radioactive waste management in France and international cooperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1991-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la gestion des Dechets Radioactifs. (ANDRA), which is a public body responsible mainly for siting, design, construction, and operation of the disposal facilities for every kind of radioactive waste produced in the country. Furthermore, ANDRA has to define and control the required quality of waste packages delivered for disposal. As far as disposal is concerned, it is customary in France to classify waste in two main categories. The first category includes all the so-called short-lived low-level waste (LLW) containing mainly radioactive substances have
30 CFR 816.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 816.89 Section... ACTIVITIES § 816.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
30 CFR 817.89 - Disposal of noncoal mine wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground water. Wastes shall be routinely compacted and covered to prevent combustion and wind-borne waste... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of noncoal mine wastes. 817.89 Section... ACTIVITIES § 817.89 Disposal of noncoal mine wastes. (a) Noncoal mine wastes including, but not limited to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey
A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
Electronic waste - an emerging threat to the environment of urban India.
Needhidasan, Santhanam; Samuel, Melvin; Chidambaram, Ramalingam
2014-01-20
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013-2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment.
Electronic waste – an emerging threat to the environment of urban India
2014-01-01
Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013–2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India’s current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment. PMID:24444377
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...
NASA Astrophysics Data System (ADS)
Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.
1982-02-01
The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.
NASA Technical Reports Server (NTRS)
Winters, Brian A.
1990-01-01
The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.
Use of recycled plastic in concrete: a review.
Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet
2008-01-01
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.
10 CFR 61.11 - General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
Quantification of Food Waste Disposal in the United States: A Meta-Analysis.
Thyberg, Krista L; Tonjes, David J; Gurevitch, Jessica
2015-12-15
Food waste has major consequences for social, nutritional, economic, and environmental issues, and yet the amount of food waste disposed in the U.S. has not been accurately quantified. We introduce the transparent and repeatable methods of meta-analysis and systematic reviewing to determine how much food is discarded in the U.S., and to determine if specific factors drive increased disposal. The aggregate proportion of food waste in U.S. municipal solid waste from 1995 to 2013 was found to be 0.147 (95% CI 0.137-0.157) of total disposed waste, which is lower than that estimated by U.S. Environmental Protection Agency for the same period (0.176). The proportion of food waste increased significantly with time, with the western U.S. region having consistently and significantly higher proportions of food waste than other regions. There were no significant differences in food waste between rural and urban samples, or between commercial/institutional and residential samples. The aggregate disposal rate for food waste was 0.615 pounds (0.279 kg) (95% CI 0.565-0.664) of food waste disposed per person per day, which equates to over 35.5 million tons (32.2 million tonnes) of food waste disposed annually in the U.S.
Electronic waste management approaches: an overview.
Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H
2013-05-01
Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including life cycle assessment (LCA), material flow analysis (MFA), multi criteria analysis (MCA) and extended producer responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...
Guo, Huaqing; Hobbs, Benjamin F; Lasater, Molly E; Parker, Cindy L; Winch, Peter J
2016-10-01
Inappropriate waste disposal is a serious issue in many urban neighborhoods, exacerbating environmental, rodent, and public health problems. Governments all over the world have been developing interventions to reduce inappropriate waste disposal. A system dynamics model is proposed to quantify the impacts of interventions on residential waste related behavior. In contrast to other models of municipal solid waste management, the structure of our model is based on sociological and economic studies on how incentives and social norms interactively affect waste disposal behavior, and its parameterization is informed by field work. A case study of low-income urban neighborhoods in Baltimore, MD, USA is presented. The simulation results show the effects of individual interventions, and also identify positive interactions among some potential interventions, especially information and incentive-based policies, as well as their limitations. The model can help policy analysts identify the most promising intervention packages, and then field test those few, rather than having to pilot test all combinations. Sensitivity analyses demonstrate large uncertainties about behavioral responses to some interventions, showing where information from survey research and social experiments would improve policy making. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects from past solid waste disposal practices.
Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R
1978-01-01
This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-09-01
The goal of the Fifth Worldwide Review is to document evolution in the state-of-the-art of approaches for nuclear waste disposal in geological formations since the Fourth Worldwide Review that was released in 2006. The last ten years since the previous Worldwide Review has seen major developments in a number of nations throughout the world pursuing geological disposal programs, both in preparing and reviewing safety cases for the operational and long-term safety of proposed and operating repositories. The countries that are approaching implementation of geological disposal will increasingly focus on the feasibility of safely constructing and operating their repositories in short-more » and long terms on the basis existing regulations. The WWR-5 will also address a number of specific technical issues in safety case development along with the interplay among stakeholder concerns, technical feasibility, engineering design issues, and operational and post-closure safety. Preparation and publication of the Fifth Worldwide Review on nuclear waste disposal facilitates assessing the lessons learned and developing future cooperation between the countries. The Report provides scientific and technical experiences on preparing for and developing scientific and technical bases for nuclear waste disposal in deep geologic repositories in terms of requirements, societal expectations and the adequacy of cases for long-term repository safety. The Chapters include potential issues that may arise as repository programs mature, and identify techniques that demonstrate the safety cases and aid in promoting and gaining societal confidence. The report will also be used to exchange experience with other fields of industry and technology, in which concepts similar to the design and safety cases are applied, as well to facilitate the public perception and understanding of the safety of the disposal approaches relative to risks that may increase over long times frames in the absence of a successful implementation of final dispositioning.« less
Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less
Slimak, K M
1978-12-01
The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated.A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark
On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectationsmore » for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.« less
Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City
NASA Astrophysics Data System (ADS)
Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.
2017-07-01
Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.
Domestic waste disposal practice and perceptions of private sector waste management in urban Accra
2014-01-01
Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728
Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.
Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba
2014-07-08
Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.
Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio
2018-01-01
Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2 h -1 kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...
Code of Federal Regulations, 2011 CFR
2011-07-01
... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...
36 CFR 6.6 - Solid waste disposal sites within new additions to the National Park System.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.6 Solid waste disposal sites within new additions to the National Park System. (a) An operator...
Code of Federal Regulations, 2011 CFR
2011-07-01
... administrative proceedings under the Solid Waste Disposal Act. 22.37 Section 22.37 Protection of Environment... Supplemental rules governing administrative proceedings under the Solid Waste Disposal Act. (a) Scope. This... sections 3005(d) and (e), 3008, 9003 and 9006 of the Solid Waste Disposal Act (42 U.S.C. 6925(d) and (e...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
40 CFR 257.27 - Selection of remedy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 257.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...
40 CFR 257.27 - Selection of remedy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 257.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally Exempt Small Quantity Generator (CESQG) Wastes at Non-Municipal Non-Hazardous Waste Disposal Units...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...
40 CFR 256.63 - Requirements for public participation in the permitting of facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE... solid waste disposal facility the State shall hold a public hearing to solicit public reaction and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Lawrence R.
2012-07-01
In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regionalmore » and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)« less
Yasui, Shojiro
2014-01-01
The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities.
Liquid secondary waste. Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less
Developing models for the prediction of hospital healthcare waste generation rate.
Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe
2016-01-01
An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
E-waste hazard: The impending challenge
Pinto, Violet N.
2008-01-01
Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981
Exploitation of Food Industry Waste for High-Value Products.
Ravindran, Rajeev; Jaiswal, Amit K
2016-01-01
A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, K.S.
1991-01-01
The Oklahoma Geological Survey has developed several maps and reports for preliminary screening of the state of Oklahoma to identify areas that are generally acceptable or unacceptable for disposal of a wide variety of waste materials. These maps and reports focus on the geologic and hydrogeologic parameters that must be evaluated in the screening process. One map (and report) shows the outcrop distribution of 35 thick shale or clay units that are generally suitable for use as host rocks for surface disposal of wastes. A second map shows the distribution of unconsolidated alluvial and terrace-deposit aquifers, and a third map shows the distribution and hydrologic character of bedrock aquifers and their recharge areas. These latter two maps show the areas in the state where special attention must be exercised in permitting storage or disposal of waste materials that could degrade the quality of groundwater. State regulatory agencies and industry are using these maps and reports in preliminary screening of the state to identify potential disposal sites. These maps in no way replace the need for site-specific investigations to prove (or disprove) the adequacy of a site to safely contain waste materials. ?? 1991 Springer-Verlag New York Inc.
The effect of food waste disposers on municipal waste and wastewater management.
Marashlian, Natasha; El-Fadel, Mutasem
2005-02-01
This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 761.211 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Unmanifested waste report. (a) After April 4, 1990, if a PCB commercial storage or disposal facility receives any shipment of PCB waste from an off...), and any part of the shipment consists of any PCB waste regulated for disposal, then the owner or...
40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...
40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...
Municipal solid waste generation and disposal in Robe town, Ethiopia.
Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel
2018-04-20
The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.
Space disposal of nuclear wastes. Volume 1: Socio-political aspects
NASA Technical Reports Server (NTRS)
Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.
1976-01-01
The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.
Editor's Page: Management of Hazardous Wastes.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1980
1980-01-01
Discussed is the problem of management of hazardous waste disposal. Included are various federal laws and congressional kills pertinent to the problem of hazardous waste disposal. Suggested is cooperation between government and the chemical industry to work for a comprehensive solution to waste disposal. (DS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw
Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk
Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less
Meallem, Ilana; Garb, Yaakov; Cwikel, Julie
2010-01-01
The Bedouin of the Negev region of Israel are a formerly nomadic, indigenous, ethnic minority, of which 40% currently live in unrecognized villages without organized, solid waste disposal. This study, using both quantitative and qualitative methods, explored the transition from traditional rubbish production and disposal to current uses, the current composition of rubbish, methods of waste disposal, and the extent of exposure to waste-related environmental hazards in the village of Um Batim. The modern, consumer lifestyle produced both residential and construction waste that was dumped very close to households. Waste was tended to by women who predominantly used backyard burning for disposal, exposing villagers to corrosive, poisonous, and dangerously flammable items at these burn sites. Village residents expressed a high level of concern over environmental hazards, yet no organized waste disposal or environmental hazards reduction was implemented.
Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-07-31
Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) andmore » the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.« less
40 CFR 268.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...
40 CFR 268.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...
40 CFR 268.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...
40 CFR 268.1 - Purpose, scope, and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... identifies hazardous wastes that are restricted from land disposal and defines those limited circumstances under which an otherwise prohibited waste may continue to be land disposed. (b) Except as specifically..., storage, and disposal facilities. (c) Restricted wastes may continue to be land disposed as follows: (1...
Kawai, Kosuke; Huong, Luong Thi Mai
2017-03-01
Proper management of food waste, a major component of municipal solid waste (MSW), is needed, especially in developing Asian countries where most MSW is disposed of in landfill sites without any pretreatment. Source separation can contribute to solving problems derived from the disposal of food waste. An organic waste source separation and collection programme has been operated in model areas in Hanoi, Vietnam, since 2007. This study proposed three key parameters (participation rate, proper separation rate and proper discharge rate) for behaviour related to source separation of household organic waste, and monitored the progress of the programme based on the physical composition of household waste sampled from 558 households in model programme areas of Hanoi. The results showed that 13.8% of 558 households separated organic waste, and 33.0% discharged mixed (unseparated) waste improperly. About 41.5% (by weight) of the waste collected as organic waste was contaminated by inorganic waste, and one-third of the waste disposed of as organic waste by separators was inorganic waste. We proposed six hypothetical future household behaviour scenarios to help local officials identify a final or midterm goal for the programme. We also suggested that the city government take further actions to increase the number of people participating in separating organic waste, improve the accuracy of separation and prevent non-separators from discharging mixed waste improperly.
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)
The status of LILW disposal facility construction in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan
2013-07-01
In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less
Ramadan, Adham R; Kock, Per; Nadim, Amani
2005-04-01
A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.
76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...) Land Disposal Restrictions Phase IV--Treatment Standards for Wood Preserving Wastes, Paperwork... the Carbamate Land Disposal Restrictions; (5) Clarification of Standards for Hazardous Waste LDR...) Emergency Revision of the Land Disposal Restrictions (LDR) Treatment Standards for Listed Hazardous Wastes...
Hazardous Wastes: A Risk Benefit Framework Applied to Cadmium and Asbestos (1977)
This study develops a decision framework for evaluating hazardous waste standards in terms of social risks and product benefits. The analysis focuses of cadmium and asbestos as examples of land waste disposal problems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.27 Recommendation for schedules leading...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.26 Requirement for schedules leading to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.26 Requirement for schedules leading to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.27 Recommendation for schedules leading...
Mobilization and transport of pollutants in an abandoned dump in tropical conditions
NASA Astrophysics Data System (ADS)
Pelinson, Natalia; Shinzato, Marjolly; Wendland, Edson
2017-04-01
The valuation and treatment techniques of municipal solid waste (MSW) in developing countries are not sufficiently developed, and therefore, the volume of waste destined for disposal still presents significant amounts. In Brazil, the more common practice of final destination is the deposition on the soil, due to its simple operation and low cost compared to other techniques. One of the most serious negative environmental impacts in the irregular disposal of solid waste is the contamination of soil and groundwater by waste leachates. The final disposal in dumps is forbidden by Brazilian law since 2010, nevertheless, the public administration is not prepared to monitor waste disposal areas and the risk of contamination of water. In this sense, a research has been developed in an abandoned dump installed over an outcrop of the Botucatu Formation, which is part of the Guarani Aquifer System (SAG) and therefore, is an area of high water vulnerability. In this dump, an old gully was used as a final waste disposal area for urban, construction and demolition, medical and industrial waste from 1980 to 1996. Since the end of the deposition, the waste body is kept with inefficient hydraulic control. The water infiltration due to rainfall promotes the mobility of contaminant in the deposit. The present water quality in the dump has been monitored through physical and chemical analysis of samples collected in the unsaturated zone (inside the waste mass using vacuum lysimeters) and in the saturated zone (monitoring wells). The rainfall variation observed in the years 2014 (dry year) and 2015 (wet year) contributed significantly to evaluate the mobilization of pollutants within the dump. The reduction of the water volume that infiltrates the waste mass affected the quality of the leachate collected in the lysimeters. The groundwater collected in monitoring wells outside the dump area presents low turbidity values (<1.50 NTU) in relation to wells located downstream of the dump showed values greater than 10, a similar behavior was observed for the conductivity (>1000 µS.cma-1 in leachate) and chlorides values (>800 mg.L-1). Contaminated water flows through the bottom of the dump. In addition, this research also indicates amendments of surface water downstream of the dump area.
Message development for surface markers at the Hanford Radwaste Disposal sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, M.F.
1984-12-31
At the Hanford Reservation in Washington, there are sites which received liquid and solid transuranic wastes from the late 1940`s until 1970. Rockwell Hanford Operations (Rockwell) is investigating the feasibility of several options for the permanent disposal of these wastes. One option is to stabilize the wastes in their present locations and to add barriers to minimize water infiltration and root penetration into the wastes. This report forms part of the project to develop a marking system for transuranic wastes on the Hanford Reservation. The focus of this report is the development of the message system to appear on themore » surface markers. A logical framework is developed to deduce what is required by the message system. Alternatives for each message component are evaluated and justification is provided for the choice of each component. The components are then laid out on the surface marker to provide a legible, comprehensible message system. The surface markers are tall, standing monoliths which ring the perimeter of each disposal area. Based on the logical framework, it is recommended that three domains of representation -- symbols, pictures, and language -- be used in the message system. The warning symbol chosen for the message system is the radiation trefoil. Two other options were considered, including the warning symbol developed by the Human Interference Task Force for a high-level waste repository. The trefoil was preferred because of the widespread usage and international acceptance which is already enjoys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehmat, A.; Khinkis, M.
The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated withmore » ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.« less
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
10 CFR 20.2108 - Records of waste disposal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...
Safety in the Chemical Laboratory: Contracts to Dispose of Laboratory Waste.
ERIC Educational Resources Information Center
Fischer, Kenneth E.
1985-01-01
Presents a sample contract for disposing of hazardous wastes in an environmentally sound, timely manner in accordance with all federal, state, and local requirements. Addresses situations where hazardous waste must be disposed of outside the laboratory and where alternate disposal methods are not feasible. (JN)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... petition for renewal of an existing exemption from the land disposal restrictions of hazardous waste on... Waste Disposal Injection Restrictions to Cabot Corporation Tuscola, Tuscola, IL AGENCY: Environmental... United States Environmental Protection Agency (EPA) that an exemption to the land disposal restrictions...
41 CFR 50-204.29 - Waste disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Waste disposal. 50-204.29 Section 50-204.29 Public Contracts and Property Management Other Provisions Relating to Public Contracts... Radiation Standards § 50-204.29 Waste disposal. No employer shall dispose of radioactive material except by...
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David; Stein, Emily; Gross, Michael B
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Cooperative Extension Service.
Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…
21 CFR 1250.75 - Disposal of human wastes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...
21 CFR 1250.75 - Disposal of human wastes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...
21 CFR 1250.75 - Disposal of human wastes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...
21 CFR 1250.75 - Disposal of human wastes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Disposal of human wastes. 1250.75 Section 1250.75... SANITATION Servicing Areas for Land and Air Conveyances § 1250.75 Disposal of human wastes. (a) At servicing... so conducted as to avoid contamination of such areas and stations by human wastes. (b) Toilet wastes...
Urban Environmental Education Project, Curriculum Module VI: Solid Waste - Trash or Treasure?
ERIC Educational Resources Information Center
Biglan, Barbara
Included in this module are four activities dealing with issues of solid waste disposal relative to urban concerns. Included activities are: (1) sources and composition of solid waste; (2) a "garbage game"; (3) disposal options for solid waste; and (4) an example county plan for solid waste disposal. Also included are an overview, teacher…
Laboratory Reactor for Processing Carbon-Containing Sludge
NASA Astrophysics Data System (ADS)
Korovin, I. O.; Medvedev, A. V.
2016-10-01
The paper describes a reactor for high-temperature pyrolysis of carbon-containing sludge with the possibility of further development of environmentally safe technology of hydrocarbon waste disposal to produce secondary products. A solution of the urgent problem has been found: prevention of environmental pollution resulting from oil pollution of soils using the pyrolysis process as a method of disposal of hydrocarbon waste to produce secondary products.
E-waste management and sustainability: a case study in Brazil.
Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano
2017-11-01
The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.
Trends in sustainable landfilling in Malaysia, a developing country.
Fauziah, S H; Agamuthu, P
2012-07-01
In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Functional specifications for a radioactive waste decision support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.
1989-09-01
It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2000-09-26
This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahs, W.R.; Haisfield, M.F.
1991-12-31
Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collectedmore » information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory authorities, this original data base rulemaking was expanded to include development of a uniform low-level radioactive waste manifest.« less
Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar
NASA Astrophysics Data System (ADS)
Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon
2016-04-01
The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was supported by Korea National Research Foundation (NRF) grants NRF-2012M2A8A5007440 and NRF-2013R1A1A1076071 funded by the Ministry of Science, ICT & Future Planning, Korea.
A comparison of electronic waste recycling in Switzerland and in India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha-Khetriwal, Deepali; Kraeuchi, Philipp; Schwaninger, Markus
2005-07-15
Electronic waste, commonly known as e-waste, is comprised of discarded computers, television sets, microwave ovens and other such appliances that are past their useful lives. As managing e-waste becomes a priority, countries are being forced to develop new models for the collection and environmentally sound disposal of this waste. Switzerland is one of the very few countries with over a decade of experience in managing e-waste. India, on the other hand, is only now experiencing the problems that e-waste poses. The paper aims to give the reader insight into the disposal of end-of-life appliances in both countries, including appliance collectionmore » and the financing of recycling systems as well as the social and environmental aspects of the current practices.« less
Washing and caustic leaching of Hanford tank sludges: results of FY 1996 studies. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, G.J.; Rapko, B.M.; Wagner, M.J.
During the past few years, the primary mission at the US Department of Energy`s Hanford Site has changed from producing plutonium to restoring the environment. Large volumes of high-level radioactive wastes (HLW), generated during past Pu production and other operations, are stored in underground tanks on site. The current plan for remediating the Hanford tank farms consists of waste retrieval, pretreatment, treatment (immobilization), and disposal. The HLW will be immobilized in a borosilicate glass matrix and then disposed of in a geologic repository. Because of the expected high cost of HLW vitrification and geologic disposal, pretreatment processes will be implementedmore » to reduce the volume of borosilicate glass produced in disposing of the tank wastes. On this basis, a pretreatment plan is being developed. This report describes the sludge washing and caustic leaching test conducted to create a Hanford tank sludge pretreatment flowsheet.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-05-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-01-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Integrated Disposal Facility FY2011 Glass Testing Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.
2011-09-29
Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less
77 FR 43149 - Water and Waste Disposal Loans and Grants
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
..., purification, or distribution of water; and for the collection, treatment, or disposal of waste in rural areas... requirements, Rural areas, Waste treatment and disposal, Water supply, Watersheds. For the reasons discussed in...
ERIC Educational Resources Information Center
Fox, Charles H.
This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…
50 CFR 27.94 - Disposal of waste.
Code of Federal Regulations, 2010 CFR
2010-10-01
... chemical wastes in, or otherwise polluting any waters, water holes, streams or other areas within any... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disposal of waste. 27.94 Section 27.94... NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Other Disturbing Violations § 27.94 Disposal of waste. (a...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 761.75 - Chemical waste landfills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chemical waste landfills. 761.75... PROHIBITIONS Storage and Disposal § 761.75 Chemical waste landfills. This section applies to facilities used to dispose of PCBs in accordance with the part. (a) General. A chemical waste landfill used for the disposal...
40 CFR 761.61 - PCB remediation waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...
The Public and Nuclear Waste Management.
ERIC Educational Resources Information Center
Zinberg, Dorothy
1979-01-01
Discusses the public's negative attitude towards nuclear energy development. Explains the perceptions for the nuclear waste disposal problem, and the concern for the protection of the environment. (GA)
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey
2012-09-26
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less
The paper is an update on U.S. research to develop tools and information for evaluating integrated solid waste management strategies. In the past, waste management systems consisted primarily of waste collection and disposal at a local landfill. Today's municipal solid waste ma...
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
40 CFR 761.345 - Form of the waste to be sampled.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...
Land Disposal Restrictions for Hazardous Waste
The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.
Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.
Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain
2017-03-01
Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.
Franke-Whittle, Ingrid H; Insam, Heribert
2013-05-01
Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of.
2013-01-01
Slaughterhouse wastes are a potential reservoir of bacterial, viral, prion and parasitic pathogens, capable of infecting both animals and humans. A quick, cost effective and safe disposal method is thus essential in order to reduce the risk of disease following animal slaughter. Different methods for the disposal of such wastes exist, including composting, anaerobic digestion (AD), alkaline hydrolysis (AH), rendering, incineration and burning. Composting is a disposal method that allows a recycling of the slaughterhouse waste nutrients back into the earth. The high fat and protein content of slaughterhouse wastes mean however, that such wastes are an excellent substrate for AD processes, resulting in both the disposal of wastes, a recycling of nutrients (soil amendment with sludge), and in methane production. Concerns exist as to whether AD and composting processes can inactivate pathogens. In contrast, AH is capable of the inactivation of almost all known microorganisms. This review was conducted in order to compare three different methods of slaughterhouse waste disposal, as regards to their ability to inactivate various microbial pathogens. The intention was to investigate whether AD could be used for waste disposal (either alone, or in combination with another process) such that both energy can be obtained and potentially hazardous materials be disposed of. PMID:22694189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
Pati, Anupama; Chaudhary, Rubina; Subramani, Saravanabhavan
2014-10-01
Raw hide/skins come to the tanners as a by-product of meat industry which is converted into value-added leather as product for fashion market. Leather manufacturing is a chemical process of natural biological matrix. It employs a huge quantity of water and inorganic and organic chemicals for processing and thereby discharges solid and liquid wastes into the environment. One of the potential solid wastes generated from leather industry is chrome-tanned leather shavings (CTLSs), and its disposal is increasingly becoming a huge challenge on disposal to tanners due to presence of heavy metal chromium. Hence, finding a sustainable solution to the CTLS disposal problem is a prime challenge for global tanners and researchers. This paper aims to the deeper review of various disposal methods on CTLS such as protein, chromium, and energy recovery processes and its utilization methodologies. Sustainable technologies have been developed to overcome CTLS solid wastes emanating from leather processing operations. Further, this review paper brings a broader classification of developed methodologies for treatment of CTLSs.
A comparison of costs associated with utility management options for dry active waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornibrook, C.
1995-12-31
The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, allmore » utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.« less
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.
2016-01-01
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082
Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W
2016-09-09
Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.
The management of household hazardous waste in the United Kingdom.
Slack, R J; Gronow, J R; Voulvoulis, N
2009-01-01
Waste legislation in the United Kingdom (UK) implements European Union (EU) Directives and Regulations. However, the term used to refer to hazardous waste generated in household or municipal situations, household hazardous waste (HHW), does not occur in UK, or EU, legislation. The EU's Hazardous Waste Directive and European Waste Catalogue are the principal legislation influencing HHW, although the waste categories described are difficult to interpret. Other legislation also have impacts on HHW definition and disposal, some of which will alter current HHW disposal practices, leading to a variety of potential consequences. This paper discusses the issues affecting the management of HHW in the UK, including the apparent absence of a HHW-specific regulatory structure. Policy and regulatory measures that influence HHW management before disposal and after disposal are considered, with particular emphasis placed on disposal to landfill.
A conflict model for the international hazardous waste disposal dispute.
Hu, Kaixian; Hipel, Keith W; Fang, Liping
2009-12-15
A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.
ERIC Educational Resources Information Center
Lord, John
The management of waste materials has become more complex with the increase in human population and the development of new substances. This illustrated booklet traces the history of waste management and provides guidelines for individuals and communities in disposing of certain hazardous wastes safely. It addresses such topics as: (1) how people…
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
Hsu, Pi-Fang; Wu, Cheng-Ru; Li, Ya-Ting
2008-01-01
While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.
Optimisation of the Management of Higher Activity Waste in the UK - 13537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Ciara; Buckley, Matthew
2013-07-01
The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interimmore » storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)« less
Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberger, Kent H.
2013-07-01
The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah
2017-12-01
Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.
Johansson, N; Krook, J; Frändegård, P
2017-02-01
This paper examines the market potential of disposed shredder waste, a resource that is increasingly emphasized as a future mine. A framework with gate requirements of various outlets was developed and contrasted with a pilot project focusing on excavated waste from a shredder landfill, sorted in an advanced recycling facility. Only the smallest fraction by percentage had an outlet, the metals (8%), which were sold according to a lower quality class. The other fractions (92%) were not accepted for incineration, as construction materials or even for re-deposition. Previous studies have shown similar lack of marketability. This means that even if one fraction can be recovered, the outlet of the other material is often unpredictable, resulting in a waste disposal problem, which easily prevents a landfill mining project altogether. This calls for marketability and usability of deposited waste to become a central issue for landfill mining research. The paper concludes by discussing how concerned actors can enhance the marketability, for example by pre-treating the disposed waste to acclimatize it to existing sorting methods. However, for concerned actors to become interested in approaching unconventional resources such as deposited waste, greater regulatory flexibility is needed in which, for example, re-deposition could be allowed as long as the environmental benefits of the projects outweigh the disadvantages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Residents' behaviors, attitudes, and willingness to pay for recycling e-waste in Macau.
Song, Qingbin; Wang, Zhishi; Li, Jinhui
2012-09-15
Large quantities of e-waste are presently being generated in Macau, but since recycling facilities and laws on e-waste still need to be developed, most e-waste cannot currently be properly treated. Moreover, little is known about residents' behaviors, attitudes, and their willingness to pay (WTP) for recycling e-waste. These issues are discussed in this study, based on a questionnaire survey on household electronic product usage. In 2010, "Life span completed" was the primary reason respondents abandoned their electronic products, accounting for about 37.97% of responses; the main disposal methods of e-waste in Macau were "Retailers retrieve from consumer" and "Sale to a recycling corporation." While having little understanding of e-waste disposal issues, most residents were still willing to hand their e-waste into the government for centralized collection. In addition, the respondents gave "telephone reservation" as their preferred collection method. Finally, the residents' WTP in Macau was estimated by the logistic regression method. It was found that education level, age and household income were the significant factors affecting residents' WTP. The monthly mean WTP was 20.03MOP (2.50 US dollar) per household, and the annual WTP was approximately 40,185,067 MOP (5,023,133 US dollar) for all of Macau. The results of our study can help managers develop more effective environmental management policies for e-waste disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
40 CFR 761.63 - PCB household waste storage and disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false PCB household waste storage and..., AND USE PROHIBITIONS Storage and Disposal § 761.63 PCB household waste storage and disposal. PCB household waste, as defined at § 761.3, managed in a facility permitted, licensed, or registered by a State...
Waste Management and Disposal for Artists and Schools.
ERIC Educational Resources Information Center
Babin, Angela; McCann, Michael
Artists, art teachers, and students need to understand the problems associated with disposing of waste materials, some of which may be hazardous. The waste products of art projects, even if non-hazardous, also use up space in overloaded landfills. The Environmental Protection Agency (EPA) sets forth guidelines for disposing of hazardous wastes.…
User Guide for GoldSim Model to Calculate PA/CA Doses and Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.
2016-10-31
A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.
2006-11-01
The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.
The safety of non-incineration waste disposal devices in four hospitals of Tehran
Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid
2014-01-01
Background: The safe management of hospital waste is a challenge in many developing countries. Objectives: The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. Methods: VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. Results: There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. Conclusions: There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries. PMID:25000113
The safety of non-incineration waste disposal devices in four hospitals of Tehran.
Farshad, Aliasghar; Gholami, Hamid; Farzadkia, Mahdi; Mirkazemi, Roksana; Kermani, Majid
2014-01-01
The safe management of hospital waste is a challenge in many developing countries. The aim of this study was to compare volatile organic compounds (VOCs) emissions and the microbial disinfectant safety in non-incineration waste disposal devices. VOC emissions and microbial infections were measured in four non-incineration waste disposal devices including: autoclave with and without a shredder, dry heat system, and hydroclave. Using NIOSH and US EPA-TO14 guidelines, the concentration and potential risk of VOCs in emitted gases from four devices were assessed. ProSpore2 biological indicators were used to assess the microbial analysis of waste residue. There was a significant difference in the type and concentration of VOCs and microbial infection of residues in the four devices. Emissions from the autoclave with a shredder had the highest concentration of benzene, ethyl benzene, xylene, and BTEX, and emissions from the hydroclave had the highest concentration of toluene. The highest level of microbial infection was observed in the residues of the autoclave without a shredder. There is an increased need for proper regulation and control of non-incinerator devices and for monitoring and proper handling of these devices in developing countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, S.; Nell, R. M.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E; Nell, R. M.; Mehta, S.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
Plasma Heating: An Advanced Technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.
Nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.
1978-01-01
Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.
Radioactive waste disposal fees-Methodology for calculation
NASA Astrophysics Data System (ADS)
Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich
2014-11-01
This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.
Nancarrow, D J; White, M M
2004-03-01
A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological capacity with respect to 226Ra plus 232Th. The government's decision-making programme for managing solid radioactive wastes in the UK may possibly achieve a general consensus that the use of landfill for LLW from the RCL regime has a fundamental role to play. However, this is unlikely to change the situation within the next few years. No new national facility arising from this programme is likely to be available during the first decade of the operation of a new RCL regime. Hence it appears that Drigg will need to play an important role for some years to come.
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
A primer for health care managers: data sanitization, equipment disposal, and electronic waste.
Andersen, Cathy M
2011-01-01
In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.7 Concepts. (a) The disposal facility. (1) Part 61 is intended to apply to land disposal of... specific technical requirements for near-surface disposal of radioactive waste, a subset of land disposal...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.A.
1991-12-31
In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMonia, Brian; Dunning, Don; Hampshire John
2013-07-01
Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less
Chemical Waste Management and Disposal.
ERIC Educational Resources Information Center
Armour, Margaret-Ann
1988-01-01
Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojanen, K.
1984-07-01
While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties.more » Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references.« less
Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.
2010-10-01
Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Alison; Barkley, Michelle; Poppiti, James
This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).
Hanford immobilized low-activity tank waste performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, F.M.
1998-03-26
The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the owner or operator of the disposal facility shall prepare a Certificate of Disposal for the PCBs and PCB...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Ralph L.; Seitz, Roger R.; Dixon, Kenneth L.
The Waste Treatment and Immobilization Plant (WTP) at Hanford is being constructed to treat 56 million gallons of radioactive waste currently stored in underground tanks at the Hanford site. Operation of the WTP will generate several solid secondary waste (SSW) streams including used process equipment, contaminated tools and instruments, decontamination wastes, high-efficiency particulate air filters (HEPA), carbon adsorption beds, silver mordenite iodine sorbent beds, and spent ion exchange resins (IXr) all of which are to be disposed in the Integrated Disposal Facility (IDF). An applied research and development program was developed using a phased approach to incrementally develop the informationmore » necessary to support the IDF PA with each phase of the testing building on results from the previous set of tests and considering new information from the IDF PA calculations. This report contains the results from the exploratory phase, Phase 1 and preliminary results from Phase 2. Phase 3 is expected to begin in the fourth quarter of FY17.« less
Global responses for recycling waste CRTs in e-waste.
Singh, Narendra; Li, Jinhui; Zeng, Xianlai
2016-11-01
The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.
A multi-echelon supply chain model for municipal solid waste management system.
Zhang, Yimei; Huang, Guo He; He, Li
2014-02-01
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy conservation in solid waste management in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, M.H.
1994-12-31
Recycling of solid wastes has a characteristic pattern in Bangladesh in the context of the general habits and socio-economic status of the population. Extensive resource recovery from solid wastes is being carried out at various stages of disposal. The characteristics of solid wastes at the final disposal site indicate that they contain more than 90% of organic wastes. Hence, anaerobic digestion of these wastes serves a dual purpose in the conservation of energy and of valuable crop nutrients for efficient recycling especially in an agriculture-based economy. This also improves overall environmental sanitation and reduces environmental degradation. In this paper, differentmore » recycling and reuse options for solid wastes are critically discussed from the energy recovery and energy conservation point of view. It has been shown that the resource recovery from solid wastes would minimize the energy problem and would lead to a net reduction of greenhouse gases, particularly in the developing world.« less
Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona
2015-08-20
Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.
A multi-echelon supply chain model for municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li
2014-02-15
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less
Role of NGOs and CBOs in Waste Management
Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, NN; Islam, R
2012-01-01
Background Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises. PMID:23113191
Role of NGOs and CBOs in Waste Management.
Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, Nn; Islam, R
2012-01-01
Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises.
Radioactive waste management in a hospital.
Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa
2010-01-01
Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...
Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.-F.; Wu, C.-R.; Li, Y.-T.
2008-07-01
While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derivedmore » to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.« less
Disposal of Kitchen Waste from High Rise Apartment
NASA Astrophysics Data System (ADS)
Ori, Kirki; Bharti, Ajay; Kumar, Sunil
2017-09-01
The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.
Serrona, Kevin Roy; Yu, Jeong-Soo
2009-01-01
One of the potential solutions in social and environmental sustainability in municipal solid waste management (MSW) in Metro Manila is to combine community-based recycling and sound landfill management strategies. The marriage of the two puts importance on recycling as a source of livelihood while proper landfill management aims to improve the aesthetic and environmental quality of disposal facilities in urban areas. To do this, a social mapping of wastepickers, junkshops and local recycling practices needs to be undertaken and at the same time assess strategies of the national and local governments vis-à-vis existing laws on municipal solid waste. The case of Payatas controlled disposal facility was taken as a pilot study because it represents the general condition of disposal sites in Metro Manila and the social landscape that it currently has. In addition, a waste-to-energy (WTE) project has been established in Payatas to produce electricity from methane gas. Preliminary interviews with wastepickers show that development interventions in disposal sites such as WTE pose no opposition from host communities for as long as alternative livelihood opportunities are provided. Regulating the flow of wastepickers into the landfill has advantages like improved income and security. Felt needs were also articulated like provision of financial support or capital for junkshop operation and skills training. Overall, a smooth relationship between the local government and community associations pays well in a transitioning landfill management scheme such as Payatas.
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.
2013-07-01
A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA)more » led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Pye, Steven; Hardin, Ernest
This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less
40 CFR Table Hh-2 to Subpart Hh of... - U.S. Per Capita Waste Disposal Rates
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. HH, Table HH-2 Table HH-2 to Subpart HH of Part 98—U.S. Per Capita Waste Disposal Rates... 40 Protection of Environment 21 2011-07-01 2011-07-01 false U.S. Per Capita Waste Disposal Rates...
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Kuchibanda, Kizito; Mayo, Aloyce W.
2015-01-01
The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO's recommended standards. PMID:26779565
Health care: a leader or a follower? Reducing disposable waste.
Whitaker, M W
1992-08-01
We clearly have the means to examine and reduce the amounts and types of disposable medical waste that health care institutions are creating. Although there may be special circumstances that prevent specific hospitals, or specific departments within a hospital, from converting to alternative products, much improvement can still be made. There are several strong examples of hospitals across the United States with programs that have drastically cut the amount of waste they are generating. They have eliminated disposable cups and eating utensils from the cafeterias, shifted to reusable underpads and surgical linens, and established recycling programs for paper and cardboard. These few cases are not enough. We cannot be lulled into believing that these exceptional efforts on the part of a few institutions are all that is needed. We should remember that if Mother Nature had intended for us to pat ourselves on the back, our hinges would be different. What is needed is a clear statement from the health care industry of its responsibility to society with regard to managing its waste. Leadership begins with action. If the health care industry does not take steps to regulate its disposable waste, the government undoubtedly will. We do not need to wait for our supervisors or administrators to fashion credos for us. All staff members know there are numerous ways that they can affect the amount of waste produced at their hospitals. They can also begin to affect the attitudes of those working around them. The consequences of inaction are simply too great. As fictional as half-empty grocery stores may have sounded at the beginning of this article, the problems that we face with waste disposal are certainly as grim. If we wait for our state and federal governments to solve the problems, it may be too late; and if it is too late, the solutions that they develop will certainly be extreme. We have the technology and the ability to cut dramatically the amount of disposable waste that health care generates. In practically every case, the lower-waste options also save the institution money. It is time that we honestly challenged our need for today's convenience at the expense of tomorrow's quality of life.
PL-3, PHASE I, TASK 3, RESEARCH AND DEVELOPMENT REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-03-12
Results of researeh and development tasks are presented along with recommendations for future development work Work (s reported ofn the areas of plant assembly and relocation, housings and footings, waste heat dissipation, instrumentation, refueling systems, waste disposal, shiceding, core nuclear thermal and hydraulic studies, gaseous waste processing, and critical experiments on a 5 x 5 array of Type 3 fuel elements. (auth)
Mixed waste management options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, C.B.; Kirner, N.P.
1991-12-31
Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatorymore » and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.« less
Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadgu, Teklu; Stein, Emily; Hardin, Ernest
2015-11-01
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predictmore » that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.« less
Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh
2012-04-01
This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Annual Summary of the Integrated Disposal Facility Performance Assessment 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, L. L.
2012-03-12
An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.
Some aspects of cadmium flow in the U.S.
Yost, K J
1979-01-01
A team of Purdue University engineers and scientists has been involved in studying sources, translocation mechanisms, and fate of cadmium in the environment. One of the principal results of this work has been the development of a cadmium flow model for the U. S. which involves simulating sources, use patterns, waste treatment and recovery techniques, waste disposal options, and environmental flow mechanisms. A series of model calculations performed specify cadmium environmental flow, fate, and human exposure for a variety of use pattern, waste treatment/recovery, and disposal scenarios over a ten-year-simulation period. PMID:488047
NASA Astrophysics Data System (ADS)
Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei
2017-12-01
Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.
High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)
10 CFR 62.11 - Filing and distribution of a determination request.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste disposal facilities, to the Compact Commissions with operating regional low-level radioactive waste disposal facilities, and to the Governors of the States in the Compact Commissions with... ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...
36 CFR 13.1118 - Solid waste disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 13.1118 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1118 Solid waste disposal. (a) A solid waste disposal site may accept non-National Park...
40 CFR 761.61 - PCB remediation waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...
40 CFR 761.61 - PCB remediation waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... surface waters. (6) Solvent disposal, recovery, and/or reuse is in accordance with relevant provisions of... waste shall dispose of or reuse them using one of the following methods: (A) Non-liquid cleaning...-site cleanup and disposal of PCB remediation waste, a uniform placement of concrete, asphalt, or...
Waste Management in Greater Dhaka City.
ERIC Educational Resources Information Center
Rahman, M. H.
1993-01-01
This study focuses on the environmental degradation of Greater Dhaka City (GDC) resulting from pollution created by the indiscriminate disposal of industrial wastes, open dumping of solid wastes, inadequate treatment and disposal of domestic sewage, and unplanned disposal of leachate from agricultural land. Measures to protect the GDC environment…
IAEA activities in the area of partitioning and transmutation
NASA Astrophysics Data System (ADS)
Stanculescu, Alexander
2006-06-01
Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, G.D.
This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Status report on the disposal of radioactive wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culler, F.L. Jr.; McLain, S.
1957-06-25
A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, M.J.; Sayer, D.L.
1993-11-01
EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), whichmore » identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.« less
Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Kevin A.; Jove-Colon, Carlos F.; Wang, Yifeng
The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safetymore » case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.« less