Marín, Maria; Artola, Adriana; Sánchez, Antoni
2018-04-01
Production of enzymes through solid-state fermentation (SSF) of agro-industrial wastes reports high productivity with low investment. The extraction of the final product from the solid waste and solid disposal represent the main cost of the process. In this work, the complete downstream processes of SSF of two industrial residues for the production of proteases, soy fibre (SF) and a mixture of hair and sludge (HS), were studied in terms of activity recovery, using different extraction parameters (extracting solvent, ratio solid: solvent and extraction mode). Activity after lyophilisation was tested. Solid waste valorisation after extraction was studied using respiration techniques and biogas production tests, as part of a zero waste strategy. Results showed a maximum extraction yield of 91% for SF and 121% for HS, both in agitated mode and distilled water as extraction agent. An average activity recovery of 95 ± 6 and 94 ± 6% for SF and HS, respectively, was obtained after lyophilisation and redissolution. To reduce the cost of extraction, a ratio 1:3 w : v solid-solvent in static mode is advised for SF, and 1:2 w : v extraction ratio in agitated mode for HS, both with distilled water as extracting agent. Both composting and anaerobic digestion are suitable techniques for valorisation of the waste material.
NASA Astrophysics Data System (ADS)
Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.
2009-04-01
Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.
Al-Abed, S. R.; Hageman, P.L.; Jegadeesan, G.; Madhavan, N.; Allen, D.
2006-01-01
Evaluation of metal leaching using a single leach test such as the Toxicity Characteristic Leaching Procedure (TCLP) is often questionable. The pH, redox potential (Eh), particle size and contact time are critical variables in controlling metal stability, not accounted for in the TCLP. This paper compares the leaching behavior of metals in mineral processing waste via short-term extraction tests such as TCLP, Field Leach Test (FLT) used by USGS and deionized water extraction tests. Variation in the extracted amounts was attributed to the use of different particle sizes, extraction fluid and contact time. In the controlled pH experiments, maximum metal extraction was obtained at acidic pH for cationic heavy metals such as Cu, Pb and Zn, while desorption of Se from the waste resulted in high extract concentrations in the alkaline region. Precipitation of iron, caused by a pH increase, probably resulted in co-precipitation and immobilization of Cu, Pb and Zn in the alkaline pH region. A sequential extraction procedure was performed on the original waste and the solid residue from the Eh-pH experiments to determine the chemical speciation and distribution of the heavy metals. In the as-received waste, Cu existed predominantly in water soluble or sulfidic phases, with no binding to carbonates or iron oxides. Similar characteristics were observed for Pb and Zn, while Se existed mostly associated with iron oxides or sulfides. Adsorption/co-precipitation of Cu, Se and Pb on precipitated iron hydroxides was observed in the experimental solid residues, resulting in metal immobilization above pH 7.
Testing of Lithium-Sulfur Dioxide Cells for Waste Disposal Hazards.
1980-10-01
r AD-AO90 785 WAPORA INC CHEVY CHASE NO F/G 10/3 TESTING OF LITHIUM-SULFUR DIOXIDE CELLS FOR WASTE DISPOSAL HAZA-ETC(U) OCT 80 D B BOIES OAAK20-79-C... TESTING ION T HUM -SUFU DIXD-EL ORWSEDSOA Daved B. pBli else 69stributonsi nlmied.e OCTOBELE198 Fia PRepr for Peio OCT 23198008 STRYUIO AELETOISRSA...34 cell Toxic waste Sulfur dioxide vapor pressure Structural Integrity Test Ignitable waste Extraction procedure results Corrosive waste ftactive waste
Polyhydroxybutyrate (PHB) Synthesis by Spirulina sp. LEB 18 Using Biopolymer Extraction Waste.
da Silva, Cleber Klasener; Costa, Jorge Alberto Vieira; de Morais, Michele Greque
2018-01-20
The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L -1 ) (p < 0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.; Peters, T.; Crowder, M.
2011-09-27
Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactivemore » waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the analytical method. In the 2-cm contactor tests, the first four strip stages of the Tank 49H waste test and all five strip stages in the simulant waste test had higher values than the ESS tests. Only the fifth strip stage D(Cs) value of the Tank 49H waste test matched that of the ESS tests. It is speculated that the less-than-optimal performance of the strip section is caused by inefficiencies in the scrub section. Because strip is sensitive to pH, the elevated pH value in the second scrub stage may be the cause of strip performance. In spite of the D(Cs) values obtained in the scrub and strip sections, testing showed that the solvent system is robust. Average DFs for the process far exceeded targets even though the scrub and strip stages did not function optimally. Correction of the issue in the scrub and strip stages is expected to yield even higher waste DFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
Alkaline-side extraction of technetium from tank waste using crown ethers and other extractants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnesen, P.V.; Moyer, B.A.; Presley, D.J.
The chemical development of a new crown-ether-based solvent-extraction process for the separation of (Tc) from alkaline tank-waste supernate is ready for counter-current testing. The process addresses a priority need in the proposed cleanup of Hanford and other tank wastes. This need has arisen from concerns due to the volatility of Tc during vitrification, as well as {sup 99}Tc`s long half-life and environmental mobility. The new process offers several key advantages that direct treatability--no adjustment of the waste composition is needed; economical stripping with water; high efficiency--few stages needed; non-RCRA chemicals--no generation of hazardous or mixed wastes; co-extraction of {sup 90}Sr;more » and optional concentration on a resin. A key concept advanced in this work entails the use of tandem techniques: solvent extraction offers high selectivity, while a subsequent column sorption process on the aqueous stripping solution serves to greatly concentrate the Tc. Optionally, the stripping solution can be evaporated to a small volume. Batch tests of the solvent-extraction and stripping components of the process have been conducted on actual melton Valley Storage Tank (MVST) waste as well as simulants of MVST and Hanford waste. The tandem process was demonstrated on MVST waste simulants using the three solvents that were selected the final candidates for the process. The solvents are 0.04 M bis-4,4{prime}(5{prime})[(tert-butyl)cyclohexano]-18-crown-6 (abbreviated di-t-BuCH18C6) in a 1:1 vol/vol blend of tributyl phosphate and Isopar{reg_sign} M (an isoparaffinic kerosene); 0.02 M di-t-BuCH18C6 in 2:1 vol/vol TBP/Isopar M and pure TBP. The process is now ready for counter-current testing on actual Hanford tank supernates.« less
Leaching characteristics of copper flotation waste before and after vitrification.
Coruh, Semra; Ergun, Osman Nuri
2006-12-01
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.
Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
The study of heavy metals leaching from waste foundry sands using a one-step extraction
NASA Astrophysics Data System (ADS)
Bożym, Marta
2017-10-01
There are a number of leaching test which are used to evaluate the effect of foundry waste disposal on the environment (TCLP, SPLP, ASTM at al.). Because the spent foundry sand are usually deposited at the ground level and they have a similar structure to the soil, survey mobility of metals using the same methods seems appropriate. One-step extraction allows for the evaluation of the mobility and bioavailability of metals in soil and waste. Waste foundry sands have been successfully used as a component in manufactured soils in U.S., but concern over metal contamination must be eliminated before considering this direction of use. The study evaluated the leaching of heavy metals (Cd, Pb, Cu, Zn, Cr, Ni) from deposited waste foundry sands. The overall, as well as heavy metals were extracted by different type of extractants: H2O, CH3COOH, HCl, EDTA, MgCl2 and NaCOOH. These extractants are most commonly used to study the mobility and bioavailability of metals in soil and waste. In the present study applicable standards and methodology described in the literature in analysis were used. The results allowed to evaluate the bioavailability of metals leached from those wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less
Extraction of coffee silverskin to convert waste into a source of antioxidant
NASA Astrophysics Data System (ADS)
Tangguh, Patrick; Kusumocahyo, Samuel P.
2017-01-01
Coffee silverskin (CS) is a thin layer of coffee bean, and is regarded as a waste during coffee roasting process. In this work, coffee silverskin was extracted by three types of method: conventional extraction (CE) with agitation, conventional extraction (CE) without agitation and ultrasound-assisted extraction (UAE). The total phenolic content, the total flavonoid content and the antioxidant activity of the extract were analyzed. It was found that the type of extraction method, the extraction time and the extraction temperature strongly influenced the total phenolic content, the total flavonoid content and the antioxidant activity of the extract. Comparison between conventional extraction (CE) and ultrasound-assisted extraction (UAE) were statistically analyzed using 3-way ANOVA test. The optimum extraction time and temperature for each method were analyzed using 2-way ANOVA test. It was found that the optimum condition to obtain a high antioxidant activity of 68.9% was by using CE with agitation with the extraction time and temperature of 60 minutes and 60˚C, respectively.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt... Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt... Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt... Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt... Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt... Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by reference in § 260.11 of...
Extraction of soluble substances from organic solid municipal waste to increase methane production.
Campuzano, Rosalinda; González-Martínez, Simón
2015-02-01
This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.
2010-08-15
Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less
Hira, Meenakshi; Yadav, Sudesh; Morthekai, P; Linda, Anurag; Kumar, Sushil; Sharma, Anupam
2018-01-15
The prolonged use of old fashioned gadgets, especially mobile phones, is declining readily with the advancement in technology which ultimately lead to generation of e-waste. The present study investigates the concentrations of nine metals (Ba, Cd, Cr, Cu, Fe, Ni, Pb, Sn, and Zn) in various components of the mobile phones using Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET) and Synthetic Precipitation Leaching Procedure (SPLP). The results were compared with the threshold limits for hazardous waste defined by the California Department of Toxic Substances Control (CDTSC) and United States Environmental Protection Agency (USEPA). The average concentrations of metals were found high in PWBs. WET was found relatively aggressive as compared to TCLP and SPLP. Redundancy analysis (RDA) suggests that part of mobile, extraction test, manufacturer, mobile model and year of manufacturing explain 34.66% of the variance. According to the present study, waste mobile phones must be considered as hazardous due to the potential adverse impact of toxic metals on human health and environment. However, mobile phones can be an asset as systematic extraction and recycling could reduce the demand of primary metals mining and conserve the natural resources. Copyright © 2017 Elsevier B.V. All rights reserved.
Speciation of mercury in sludge solids: washed sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Lourie, A. P.
2017-10-24
The objective of this applied research task was to study the type and concentration of mercury compounds found within the contaminated Savannah River Site Liquid Waste System (SRS LWS). A method of selective sequential extraction (SSE), developed by Eurofins Frontier Global Sciences1,2 and adapted by SRNL, utilizes an extraction procedure divided into seven separate tests for different species of mercury. In the SRNL’s modified procedure four of these tests were applied to a washed sample of high level radioactive waste sludge.
NASA Astrophysics Data System (ADS)
Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina
2017-03-01
Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.
Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.
de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson
2015-04-01
The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.
He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny
2005-01-01
Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413
Natural food colourants derived from onion wastes: application in a yoghurt product.
Mourtzinos, Ioannis; Prodromidis, Prodromos; Grigorakis, Spyros; Makris, Dimitris P; Biliaderis, Costas G; Moschakis, Thomas
2018-06-10
The valorization of onion (Allium cepa) solid wastes, a 450,000 tonnes/year waste in Europe, by a green extraction method is presented. Polyphenols of onion solid wastes were extracted using eco-friendly solvents, such as water and glycerol. The 2-hydroxypropyl-β-cyclodextrin was also used as a co-solvent for the augmentation of the extraction yield. The process has been optimized by implementing a central composite face centered design of experiments, with two replicates in the central point, taking into consideration the following independent variables: glycerol concentration, cyclodextrin concentration and temperature. The assessment of the extraction model was based on two responses: the total pigment yield and the antiradical capacity. LC-MS analysis was also employed in order to identify polyphenols and colourants of the obtained extracts. The main polyphenols found were quercetin and quercetin derivatives and the main colourant was cyanidin 3-O-glucoside. The extract was also tested as a food colourant in a yoghurt matrix. The onion leaf extract was found to be a stable natural colourant and could be utilized as an alternative ingredient to synthetic coloring agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.
This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. Itmore » was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.« less
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
Comprehensive process for the recovery of value and critical materials from electronic waste
Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; ...
2016-04-08
The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements (RE). Here, we present the development of a process that enables efficient recycling of metals from scrap mobile electronics. An electro recycling (ER) process, based on the regeneration of Fe 3+ as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separatemore » extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Furthermore, recovery and extraction efficiencies ca. 90 % were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (H 2SO 4, and HCl). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. We developed a comprehensive flow sheet to process electronic waste to value products.« less
Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel
2012-08-30
As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. Copyright © 2012 Elsevier B.V. All rights reserved.
Environmentally friendly and cost-efficient analysis of aflatoxins in corn
USDA-ARS?s Scientific Manuscript database
The extraction procedure adds a significant cost to the overall expense of aflatoxin analysis in agricultural commodities. An inexpensive and low-waste extraction method using a household espresso coffee maker was tested. This appliance was used for the high-temperature /high-pressure extraction of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, K.; Landsberger, S.; Srinivasan, B.
1994-12-31
For many years liquid scintillation cocktail (LSC) wastes have been generated and stored at Argonne National Laboratory (ANL). These wastes are stored in thousands of 10--20 m scintillation vials, many of which contain elements with Z > 88. Because storage space is limited, disposal of this waste is pressing. These wastes could be commercially incinerated if the radionuclides with Z>88 are reduced to sufficiently low levels. However, there is currently no deminimus level for these radionuclides, and separation techniques are still being tested. The University of Illinois is conducting experiments to separate radionuclides with Z > 88 from simulated LSCmore » wastes by using liquid-liquid extraction (LLX) and demulsification techniques. The actinide elements are removed from the LSC by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated and the organic phase, now free from radionuclides with Z > 88, can be sent to a commercial incineration facility. The aqueous phase may be treated and disposed of using existing techniques. The LLX separation techniques used solutions of sodium oxalate, aluminum nitrate, and tetrasodium EDTA at varying concentrations. These extractants were mixed with the simulated waste in a 1:1 volume ratio. Using 1.0M Na{sub 4} EDTA salt solutions, decontamination ratios as high as 230 were achieved.« less
Experiment on the treatment of waste extraction solvent from the molybdenum-99 process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien
2013-07-01
In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less
Kabir, Faisal; Tow, Wei Wei; Hamauzu, Yasunori; Katayama, Shigeru; Tanaka, Sachi; Nakamura, Soichiro
2015-01-15
In this study, fruit and vegetable wastes and by-products were tested for polyphenol content and their antioxidant activity. The highest content of polyphenols as assessed by the Folin-Ciocalteu assay was the hot-water extract of grape seed, followed by the ethanol extract of buckwheat hull. The highest antioxidant activity measured by 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays was also detected in the hot-water extract of grape seed, followed by the ethanol extract of immature prune. Most of samples showed protective effects against oxidative stress induced by 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH) peroxyl radical generator in African monkey kidney (MA 104) cells. Samples containing high amounts of phenolics (more than 30 mg ChAE/g) generally showed high antioxidant activity and a protective effect against AAPH-induced oxidative stress. This study demonstrates that fruit and vegetable wastes and by-products are good sources of high amounts of phenolics with antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste
NASA Astrophysics Data System (ADS)
Ait Boulahsen, M.; Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M.
2018-05-01
Fish and seafood processing industries generate large quantities of waste which are at the origin of several environmental, economic and social problems. However fish waste could contain high value-added substances such as biopolymers. This work focuses on optimizing the gelatin and chitosan extraction from tilapia fish skins and shrimp shells respectively. The gelatin extraction process was optimized using alkali acid treatment prior to thermal hydrolysis. Three different acids were tested at different concentrations. Chitosan was obtained after acid demineralization followed by simultaneous hydrothermal deproteinization and deacetylation by an alkali treatment with different concentrations of HCl and NaOH. The extracted gelatin and chitosan with the highest yield were characterized by determining their main physicochemical properties (Degree of deacetylation, viscosity, pH, moisture and ash content). Results show a significant influence of the acid type and concentration on the extraction yield of gelatin and chitosan, with an average yield of 12.24% and 3.85% respectively. Furthermore, the obtained physicochemical properties of both extracted gelatin and chitosan were within the recommended standard values of the commercial ones used in the industry.
TESTING AND ANALYSES OF CHAT AND ASPHALT-CONTAINING CHAT
Granular mine waste are generated from the extraction and beneficiation of lead/zinc minerals. The fine gravel waste, commonly known as chat, in the Tristate Mining District contains elevated levels of lead, zinc and cadmium which can result in potentially serious human health a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Wookeun; Shin, Eung Bai; Lee, Kil Chul
The potential hazard of landfill wastes was previously evaluated by examining the extraction procedures for individual waste, although various wastes were co-disposed of in actual landfills. This paper investigates the reduction of extraction-procedure toxicity by co-disposing various combinations of two wastes. When two wastes are mixed homogeneously, the extraction of heavy metals from the waste mixture is critically affected by the extract pH. Thus, co-disposal wastes will have a resultant pH between the pH values of its constituent. The lower the resultant pH, the lower the concentrations of heavy metals in the extract. When these wastes are extracted sequentially, themore » latter extracted waste has a stronger influence on the final concentration of heavy metals in the extract. Small-scale lysimeter experiments confirm that when heavy-metal-bearing leachates Generated from hazardous-waste lysimeters are passed through a nonhazardous-waste lysimeter filled with compost, briquette ash, or refuse-incineration ashes, the heavy-metal concentration in the final leachates decreases significantly. Thus, the heavy-metal leaching could be attenuated if a less extraction-procedure-toxic waste were placed at the bottom of a landfill. 3 refs., 4 figs., 5 tabs.« less
Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.
Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E
2016-05-01
Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.
Supercritical-Fluid Extraction of Oil From Tar Sands
NASA Technical Reports Server (NTRS)
Compton, L. E.
1982-01-01
New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.
TESTING AND ANALYSES OF CHAT AND ASPHALT-CONTAINING CHAT (PRESENTATION)
Granular mine waste are generated from the extraction and beneficiation of lead/zinc minerals. The fine gravel waste, commonly known as chat, in the Tristate Mining District contains elevated levels of lead, zinc and cadmium which can result in potentially serious human health a...
Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste.
Weeratunge, W K O V; Perera, B G K
2016-01-01
Astaxanthin is a xanthophyll carotenoid, which exhibits many important biological activities including a high degree of antioxidant capacity (AOC) and antibacterial activity, hence has a significant applicability in food, pharmaceutical and cosmetic industries. An attempt was made towards optimization of astaxanthin extraction conditions using three different extraction conditions and a solvent series, from uncooked, cooked and acid-treated shrimp waste, which is a readily available and cheap source of the pigment. The astaxanthin extracts were analyzed by comparing their UV-visible absorbance spectra and thin layer chromatograms with a standard astaxanthin sample. The percentage of astaxanthin in each crude sample was determined using the Beer-Lambert law. The Folin-Ciocalteu assay and the disk diffusion assay were used to investigate the antioxidant capacities and antibacterial activities of extracted astaxanthin samples respectively. The extracted astaxanthin was incorporated into fish feeds to test its ability to enhance the skin color of goldfish. The best astaxanthin percentage of 68 % was observed with the acetone:ethyl acetate (1:1) solvent system facilitated by maceration of cooked and acid treated shrimp, whereas the best crude yield of 33 % was found to be in the acetone extract of the acid-treated shrimp sample. The highest AOC of 65 µg pyrogallol equivalents/mg was observed for the EtOAc extract obtained by maceration of acid-treated shrimp waste. The highest AOC by sonication and soxhlet extraction methods were also obtained with the EtOAc solvent. The extracts exhibited antibacterial activity against four selected bacterial strains. The newly formulated astaxanthin enriched fish feed was economical and indicated a significant improvement of the skin color and healthiness of goldfish compared to the control feeds. Biologically active astaxanthin can be successfully extracted from shrimp waste in higher percentages. The extraction technique and the solvent used to extract astaxanthin from shrimp waste should be decided depending on the desired outcome and application of astaxanthin. Moreover, the novel astaxanthin enriched fish feed formulated during this study was found to effectively enhance the skin color of goldfish within 10 days, a much shorter feeding period compared to previously reported feeding periods in similar studies.Graphical abstractFormulation of a skin color enhancing fish feed for ornamental fish using crude astaxanthin extracted from shrimp waste.
Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar
2018-02-08
Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.
Assessment of hazardous wastes for genotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMarini, D.M.; Houk, V.S.
1987-09-01
The authors have evaluated a group of short-term bioassays to identify those that may be suitable for screening large numbers of diverse hazardous industrial wastes for genotoxicity. Fifteen wastes (and dichloromethane extracts of these wastes) from a variety of manufacturing processes were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 with and without Aroclor 1254-induced rat-liver S9. Ten of these wastes were fed by gavage to F-344 male rats, and the raw urines were assayed for mutagenicity in the presence of beta-glucuronidase in strain TA98 with S9. Six of these urines were extracted by C18/methanol elution, incubated withmore » beta-glucuronidase, and evaluated in strain TA98 with S9 and beta-glucuronidase. Fourteen of the wastes were examined for their ability to induce prophage lambda in Escherichia coli in a microsuspension assay. A second set of wastes, consisting of four industrial wastes, were evaluated in Salmonella and in a series of mammalian cell assays to measure mutagenicity, cytogenetic effects, and transformation.« less
Jang, Yong-Chul; Townsend, Timothy G
2003-10-15
The proper management of discarded electronic devices (E-waste) is an important issue for solid waste professionals because of the magnitude of the waste stream and because these devices often contain a variety of toxic metals (e.g., lead). While recycling of E-waste is developing, much of this waste stream is disposed in landfills. Leaching tests are frequently used to characterize the potential of a solid waste to leach when disposed in a landfill. In the United States, the Toxicity Characteristic Leaching Procedure (TCLP) is used to determine whether a solid waste is a hazardous waste by the toxicity characteristic. The TCLP is designed to simulate worse-case leaching in a landfill environment where the waste is co-disposed with municipal solid waste (MSW). While the TCLP is a required analysis from a regulatory perspective, the leachate concentrations measured may not accurately reflect the concentrations observed under typical landfill conditions. Another method that can be performed to assess the degree a pollutant might leach from a waste in a landfill is to use actual landfill leachate as the leaching solution. In this study, two lead-containing components found in electronic devices (printed wire boards from computers and cathode ray tubes from computers and televisions) were leached using the TCLP and leachates from 11 Florida landfills. California's Waste Extraction Test (WET) and the Synthetic Precipitation Leaching Procedure were also performed. The results indicated that the extractions using MSW landfill leachates resulted in lower lead concentrations than those by the TCLP. The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead are factors that regulate the amount of lead leached.
Innovative approach to facilitate reuse of nonhazardous industrial solid waste as building material
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Laurent, S.G.; Boutin, A.
1997-12-31
The steel industry generates large volumes of inorganic nonhazardous solid waste. During the last five years, Quebec`s steel industry has developed new technologies to recover metal from slags and tailings. Since these processes recover 10 to 30 percent of the metal, large volumes of nonhazardous residues still need to be recycled or disposed of. In order to encourage recycling initiatives, le Ministere de l`Environnement et de la Faune du Quebec (MEF) (Quebec`s Ministry of Environment and Wildlife) established guidelines for the management of nonhazardous industrial solid waste. The aim of these guidelines is to propose a test procedure to evaluatemore » the quality of the material and to define material classes based on their potential for reuse. The evaluation procedure is based on standard tests, generally used for the evaluation of stabilized and solidified hazardous waste. The protocol includes an analysis of the total content of metals in the residue, the determination of the acid neutralization capacity and the prediction of the acid generation potential when the residue contains significant levels of sulfides. The protocol includes three different leachate tests in order to evaluate the mobility of contaminants present in the residue. The leaching procedures are: (1) an equilibrium extraction with water, (2) a modified TCLP extraction, and (3) an acid rain simulation effect extraction. A method is actually under development to collect leachate from a material pile subject to 18 months of rainfall. Materials are categorized into different classes according to their test results. Various potential reuse options are associated with material classes. Evaluation criteria were defined by using water quality standards and results obtained by testing reference construction material supplied by the Quebec`s Ministere des Transports (Ministry of Transportation).« less
Recovery of biomolecules from food wastes--a review.
Baiano, Antonietta
2014-09-17
Food wastes are produced by a variety of sources, ranging from agricultural operations to household consumption. About 38% occurs during food processing. At present, the European Union legislation encourages the exploitation of co-products. This valorisation can be achieved through the extraction of high-value components such as proteins, polysaccharides, fibres, flavour compounds, and phytochemicals, which can be re-used as nutritionally and pharmacologically functional ingredients. Extraction can proceed according to solid-liquid extraction, Soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pulsed electric field extraction, and enzyme-assisted extraction. Nevertheless, these techniques cannot be used indiscriminately and their choice depends on the type of biomolecules and matrix, the scale processing (laboratory or industrial), the ratio between production costs and economic values of the compounds to be extracted. The vegetable wastes include trimmings, peelings, stems, seeds, shells, bran, residues remaining after extraction of oil, starch, sugar, and juice. The animal-derived wastes include wastes from bred animals, wastes from seafood, wastes from dairy processing. The recovered biomolecules and by-products can be used to produce functional foods or as adjuvants in food processing or in medicinal and pharmaceutical preparations. This work is an overview of the type and amounts of food wastes; food waste legislation; conventional and novel techniques suitable for extracting biomolecules; food, medicinal and pharmaceutical uses of the recovered biomolecules and by-products, and future trends in these areas.
Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte
2016-01-01
This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After these three pre-treatments, the percolate is brought to a refinery to extract the non-polar fatty acids using bio-diesel, which was generated from used kitchen oil at the refinery. The extraction tests in the lab have proved that the efficiency of the liquid-liquid-extraction is directly linked with the chain length and polarity of the fatty acids. By using a non-polar bio-diesel mainly the non-polar fatty acids, like pentanoic to octanoic acid, are extracted. After extraction, the bio-diesel enriched with the fatty acids is esterified. As a result bio-diesel with a lower viscosity than usual is produced. The fatty acids remaining in the percolate after the extraction can be used in another fermentation process to generate biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Brewer, K.N.; Herbst, R.S.
1996-09-01
TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was notmore » working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.« less
Preliminary Tests For Development Of A Non-Pertechnetate Analysis Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diprete, D.; McCabe, D.
2016-09-28
The objective of this task was to develop a non-pertechnetate analysis method that 222-S lab could easily implement. The initial scope involved working with 222-S laboratory personnel to adapt the existing Tc analytical method to fractionate the non-pertechnetate and pertechnetate. SRNL then developed and tested a method using commercial sorbents containing Aliquat ® 336 to extract the pertechnetate (thereby separating it from non-pertechnetate), followed by oxidation, extraction, and stripping steps, and finally analysis by beta counting and Mass Spectroscopy. Several additional items were partially investigated, including impacts of a 137Cs removal step. The method was initially tested on SRS tankmore » waste samples to determine its viability. Although SRS tank waste does not contain non-pertechnetate, testing with it was useful to investigate the compatibility, separation efficiency, interference removal efficacy, and method sensitivity.« less
Kandasamy, Saravanan; Ramu, Sasikala; Aradhya, Somaradhya Mallikarjuna
2016-03-15
Pseudostem and rhizome are the significant bio-waste generated (43.48%) from the banana plant post fruit harvest, which are usually left in the plantation or incinerated and wasted. Amounts used in production for consumption are negligible. However, the material has an important part to play in indigenous systems of medicine. Based on the huge volume of bio-waste generated and its traditional medicinal use, it is worth exploiting it as a source of natural bioactive compounds. In the current study, sequential extracts from banana pseudostem (BPS) and rhizome (BR), and isolated compounds including chlorogenic acid, 4-epicyclomusalenone and cycloeucalenol acetate, were tested for their antimicrobial activity, antiplatelet aggregation and cytotoxicity. Isolated compounds and crude extracts exhibited strong antimicrobial activity against a wide range of bacterial and fungal strains, platelet aggregation induced by collagen and cytotoxicity towards human liver cancer (HepG2) cells. Banana plant bio-waste, pseudostem and rhizome may serve as a potential source of multifunctional bioactive compounds and functional ingredient in food and other allied industries. © 2015 Society of Chemical Industry.
The U.S. Army surveyed innovative treatment techniques for restoration of hazardous waste lagoons and selected solvent extraction as cost-effective restoration for further study. This treatability study focuses on treatment of organic (explosive) contaminated lagoon sediments w...
Pineapple Waste Extract for Preventing Oxidation in Model Food Systems.
Segovia Gómez, Francisco; Almajano Pablos, María Pilar
2016-07-01
Pineapple (Ananas comosus) is consumed in the form of chunks (canned), cubes, fruit salad, and also in juices, concentrates, and jams. In the processes to produce these products, the waste generated represents a high percentage of the total fruit. Some studies have shown that residues of certain fruits, such as pineapple, have the same antioxidant activity as the fruit pulp. So although these residues are discarded, they could be used as an alternative source of polyphenols, as natural antioxidants. This study is focused on the antioxidant activity of wastes obtained in the production of pineapple products and their application. The polyphenols' scavenging activity was determined by the oxygen radical antioxidant capacity assay. The antioxidant potential was determined in emulsions (o/w) and in muffins, where the primary oxidation products (by peroxide value, PV) and the secondary oxidation products (by thiobarbituric acid reactive substances) were analyzed. In addition the muffins were analyzed by means of a triangular sensory test. The PV method showed that pineapple waste extracts caused a reduction in oxidation products of 59% in emulsions and 91% in the muffins. The reduction in TBARs values for emulsions were 27% and for muffins were 51%. The triangular sensory test showed that the samples containing the extract were not distinguished from the control (α = 0.05). © 2016 Institute of Food Technologists®
Birloaga, Ionela; De Michelis, Ida; Ferella, Francesco; Buzatu, Mihai; Vegliò, Francesco
2013-04-01
The present lab-scale experimental study presents the process of leaching waste printed circuit boards (WPCBs) in order to recover gold by thioureation. Preliminary tests have shown that copper adversely affects gold extraction; therefore an oxidative leaching pre-treatment was performed in order to remove base metals. The effects of sulfuric acid concentration, hydrogen peroxide volume and temperature on the metal extraction yield were studied by analysis of variance (ANOVA). The highest copper extraction yields were 76.12% for sample A and 18.29% for sample D, after leaching with 2M H2SO4, 20 ml of 30% H2O2 at 30°C for 3h. In order to improve Cu removal, a second leaching was performed only on sample A, resulting in a Cu extraction yield of 90%. Other experiments have shown the negative effect of the stirring rate on copper dissolution. The conditions used for the process of gold extraction by thiourea were: 20 g/L thiourea, 6g/L ferric ion, 10 g/L sulfuric acid, 600 rpm stirring rate. To study the influence of temperature and particle size, this process was tested on pins manually removed from computer central processing units (CPUs) and on waste CPU for 3½ h. A gold extraction yield of 69% was obtained after 75% of Cu was removed by a double oxidative leaching treatment of WPCBs with particle sizes smaller than 2 mm. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.
Guo, Xuejun; Wang, Kunpeng; He, Mengchang; Liu, Ziwei; Yang, Hailin; Li, Sisi
2014-07-01
A large amount of solid waste has been produced by the antimony smelting process in the "World Capital of Antimony", Xikuangshan area in China. This study comprehensively investigated the physical and chemical characteristics of the various solid wastes, as well as the leaching behavior of the solid wastes, which included water-quenched slag, arsenic-alkali residue, desulfurized slag and blast furnace dust. These four types of waste were enriched in a variety of heavy metals and metalloids and more specifically with As and Sb levels up to 8.6 × 10⁴ and 3.16×10⁵ mg/kg, respectively, in arsenic-alkali residue. For desulfurized slag and water-quenched slag, the leaching concentration of Sb significantly exceeded the acceptable limits during the leaching tests using the toxicity characteristic leaching procedure and the synthetic precipitation leaching procedure. In addition, As leaching in arsenic-alkali residue was extraordinarily hazardous, being three orders of magnitude higher than the regulatory level of As. According to the results of the extraction tests, all the tested wastes were classified as hazardous waste. Copyright © 2014. Published by Elsevier B.V.
Leaching of CCA-treated wood: implications for waste disposal.
Townsend, Timothy; Tolaymat, Thabet; Solo-Gabriele, Helena; Dubey, Brajesh; Stook, Kristin; Wadanambi, Lakmini
2004-10-18
Leaching of arsenic, chromium, and copper from chromated copper arsenate (CCA)-treated wood poses possible environmental risk when disposed. Samples of un-weathered CCA-treated wood were tested using a variety of the US regulatory leaching procedures, including the toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), extraction procedure toxicity method (EPTOX), waste extraction test (WET), multiple extraction procedure (MEP), and modifications of these procedures which utilized actual MSW landfill leachates, a construction and demolition (C and D) debris leachate, and a concrete enhanced leachate. Additional experiments were conducted to assess factors affecting leaching, such as particle size, pH, and leaching contact time. Results from the regulatory leaching tests provided similar results with the exception of the WET, which extracted greater quantities of metals. Experiments conducted using actual MSW leachate, C and D debris leachate, and concrete enhanced leachate provided results that were within the same order of magnitude as results obtained from TCLP, SPLP, and EPTOX. Eleven of 13 samples of CCA-treated dimensional lumber exceeded the US EPA's toxicity characteristic (TC) threshold for arsenic (5 mg/L). If un-weathered arsenic-treated wood were not otherwise excluded from the definition of hazardous waste, it frequently would require management as such. When extracted with simulated rainwater (SPLP), 9 of the 13 samples leached arsenic at concentrations above 5 mg/L. Metal leachability tended to increase with decreasing particle size and at pH extremes. All three metals leached above the drinking water standards thus possibly posing a potential risk to groundwater. Arsenic is a major concern from a disposal point of view with respect to ground water quality.
Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo
2016-04-01
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.
Simonetti, Giovanna; D'Auria, Felicia Diodata; Mulinacci, Nadia; Milella, Rosa Anna; Antonacci, Donato; Innocenti, Marzia; Pasqua, Gabriella
2017-12-07
The antifungal activity of unripe grape extracts from agro-industrial wastes has been evaluated against several strains of Candida spp. and dermatophytes. All the extracts tested showed antifungal activity. The geometric mean MIC ranged from 53.58 to 214.31 μg/mL for Candida spp. and from 43.54 to 133.02 μg/mL for dermatophytes. The chemical analyses have been carried out using Liquid Chromatograph equipped with a DAD and MS detectors. Flavan-3-ols were the main metabolites within all samples ranged from 3.3 to 6.8 mg/g fresh weight. For Candida spp. highest negative significant correlation has been found between MICs and polymeric flavan-3-ols (r = -0.842; p < 0.001) and for dermatophytes between MICs and caffeoyl derivatives (r = -0.962; p < 0.01). The results indicate that total extracts obtained from unripe grapes, a large source of waste material derived from the wine industry, could be used as a cheap source of value-added products.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Vegliò, Francesco
2009-01-01
The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary iron removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO3, NaOH, and Na2CO3. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
High metal reactivity and environmental risks at a site contaminated by glass waste.
Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B
2016-07-01
This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment. Copyright © 2016. Published by Elsevier Ltd.
Extractive waste management: A risk analysis approach.
Mehta, Neha; Dino, Giovanna Antonella; Ajmone-Marsan, Franco; Lasagna, Manuela; Romè, Chiara; De Luca, Domenico Antonio
2018-05-01
Abandoned mine sites continue to present serious environmental hazards because the heavy metals associated with extractive waste are continuously released into the environment, where they threaten human life and the environment. Remediating and securing extractive waste are complex, lengthy and costly processes. Thus, in most European countries, a site is considered for intervention when it poses a risk to human health and the surrounding environment. As a consequence, risk analysis presents a viable decisional approach towards the management of extractive waste. To evaluate the effects posed by extractive waste to human health and groundwater, a risk analysis approach was used for an abandoned nickel extraction site in Campello Monti in North Italy. This site is located in the Southern Italian Alps. The area consists of large and voluminous mafic rocks intruded by mantle peridotite. The mining activities in this area have generated extractive waste. A risk analysis of the site was performed using Risk Based Corrective Action (RBCA) guidelines, considering the properties of extractive waste and water for the properties of environmental matrices. The results showed the presence of carcinogenic risk due to arsenic and risks to groundwater due to nickel. The results of the risk analysis form a basic understanding of the current situation at the site, which is affected by extractive waste. Copyright © 2017 Elsevier B.V. All rights reserved.
Use of bioassays for testing soils and/or sediments contaminated by mining activities
NASA Astrophysics Data System (ADS)
Pérez-Sirvent, C.; Martínez-Sánchez, M. J.; García-Lorenzo, M. L.; Molina, J.
2009-04-01
Ecotoxicity tests measure the bioavailability of the contaminants and the effects of the chemically not measured toxic compounds on the members of the soil community. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. They are solid phase tests based on terrestrial methods and tests performed on water extracts using aquatic test protocols. The extent and degree of heavy metal contamination around mines may vary depending on geochemical characteristics, the mineralization of tailings, physico-chemical conditions and the processes used to extract metals. Portman Bay was subject to mining from the time of the Roman Empire to 1991 when the activity ceased. Since 1957, the wastes from mining operations were discharged directly into the sea. These wastes mainly consisted of clay, quartz, siderite, magnetite, remains of sphalerite, pyrite and galena and residues of the chemical reagents used in floatation. In our study two methods of environmental toxicological tests were compared and applied to sediments of the Portman Bay (SE, Spain): the standardized toxicological test based on inhibition of luminescence employing Microtox
40 CFR 268.41 - Treatment standards expressed as concentrations in waste extract.
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentrations in waste extract. 268.41 Section 268.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Treatment Standards § 268.41 Treatment standards expressed as concentrations in waste extract. For the requirements previously found in this...
Kulkarni, S O; Kanekar, P P; Jog, J P; Sarnaik, S S; Nilegaonkar, S S
2015-01-01
For cost effective production of PHA, agro-wastes like fruit peels, bagasse and deoiled cakes were screened as a sole source of carbon. Halomonas campisalis MCM B-1027, which was isolated from one of the extreme environment, i.e. Lonar Lake, India, was explored for the production of PHA using fruit peels and bagasse having fermentable sugars. Among the agro-wastes tested, 1% (v/v) aqueous extract of bagasse was found to be the optimum carbon source with 47% PHA production on dry cell weight basis. Significant amount of total sugars are utilized and converted into cell mass and PHA, e.g. 62% sugar utilized from bagasse extract, 84% from orange peel extract and 71% from banana peel extract as compared to 51% in case of maltose. Hence the cost of production would be positively reduced. The detailed characterization of PHA formed by H. campisalis using bagasse extract as sole carbon source revealed that the organism produces a copolymer of PHB-co-PHV (94.4:5.6) having molecular weight M(w) 1.394 × 10(6) and melting temperature 168.9 °C. Production of PHA by H. campisalis using aqueous extract of fruit peels and a copolymer PHB-co-PHV using aqueous extract of bagasse is presumably the first report. Copyright © 2014 Elsevier B.V. All rights reserved.
Esparza-Martínez, Francisco J; Miranda-López, Rita; Mata-Sánchez, Sara M; Guzmán-Maldonado, Salvador H
2016-09-01
The mandarin industry is generating more waste due to the increasing demand for juice. In this study, extractable and non-extractable phenolics as well as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing ability of plasma (FRAP), and oxygen radical absorbance capacity (ORAC) antioxidant activities in Satsuma mandarin waste dried at different temperatures were determined. The amounts of non-extractable total phenols, total flavonoids, and condensed tannins measured in mandarin waste dried at 120 °C were 39.4, 44.3, and 45.6 %, respectively, which were higher than those of fresh-mandarin waste. Dried mandarin waste is rich in extractable and non-extractable hesperidin (259.86 and 182.52 mg/g, respectively) and eriocitrin (85.12 and 197.24 mg/g, respectively), as well as non-extractable gallic acid (36.08 μg/g). The antioxidant capacities of extractable and non-extractable phenolics, from the highest to the lowest, were ABTS > ORAC > DPPH > FRAP and ORAC > ABTS > DPPH > FRAP, respectively. The information reported here may encourage mandarin industry operators to re-evaluate their by-products, extending the application of mandarin fruits and reducing waste.
Extraction of cesium and strontium from nuclear waste
Davis, Jr., Milton W.; Bowers, Jr., Charles B.
1988-01-01
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.
Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods.
Keith, Ashley; Keesling, Kara; Fitzwater, Kendra K; Pichtel, John; Houy, Denise
2008-12-01
Heavy metals present in electronic components may leach upon disposal and therefore pose significant environmental hazards. The potential leaching of Pb, Cd, Cr and Ag from PC cathode ray tubes, printed circuit boards (PCBs), PC mice, TV remote controls, and mobile phones was assessed. After controlled crushing, each component was extracted using the Toxicity Characteristic Leaching Procedure (TCLP), EPA Method 1312 (SPLP), NEN 7371 (Dutch Environmental Agency), and DIN S4 (Germany). The TCLP consistently leached the greatest amounts of Pb from all components. The SPLP, NEN 7371 and DIN S4 extracted relatively small amounts of metals compared with the TCLP and were not considered effective as leaching tests for e-waste. The smallest size fraction (< 2 mm) of CRT glass and PCBs leached significantly (p < 0.05) highest Pb via the TCLP. A modified TCLP removed 50.9% more extractable Pb compared with the conventional procedure.
Extraction of cesium and strontium from nuclear waste
Davis, M.W. Jr.; Bowers, C.B. Jr.
1988-06-07
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.
Fargasová, Agáta; Molnárová, Marianna
2010-01-01
The aim of this work was to determine phytotoxicity of washing waste-waters from a cutlery production line with high content of Cr and Ni. These waters were previously classified, without verification, as dangerous and it is now necessary to question the justice of the present classification under the new legislation for waste management (Waste Law No. 223/2001) in the Slovak Republic. Young seedling of the dicotyledon terrestrial plant mustard Sinapis alba L. were used for determination of the dry and fresh root and shoot biomass and photosynthetic pigment production. Observed parameters were evaluated in laboratory experiments with three types of washing waste-waters from a cutlery production line. All contamination of tested washing waste-waters came from heavy metals (Ni, Cr), non-polar extractable compounds (NEC; residues of oils and waxes from polishing of stainless steel cutlery) and detergents (used for cutlery degreasing). Photosynthetic pigments (chlorophyll a, b, and total carotenoids) were extracted in 96% ethanol and measured spectrophotometrically at 665, 649, and 470 nm. All phytotoxicity tests were carried out in triplicate, and they included a control in tap water. All tested washing waters reduced root dry mass, whereas the shoot dry mass was either unaffected or it increased. The tested washing waters' effect was stronger on fresh mass production than on dry mass production. This indicated problems in water reception and translocation. The adverse effect on photosynthetic pigments production increased only slowly with remaining washing waste-water concentration. Almost all Chl a/b ratios were the same as for the control and this indicated no significant differences in the reduction of either a or b chlorophylls. As opposed to chlorophylls, carotenoids content increased in the presence of tested washing waste-waters and equaled or exceeded their content in the control. As the ratio of Chl(a + b)/Car was lower than that for the control for almost all tested samples, a stronger reduction in chlorophylls than in carotenoids was confirmed. The phytotoxicity of waste-waters from cutlery production line washing reservoirs was evaluated and the effects on dry and fresh mass production and photosynthetic pigments amount was discussed as Cr and Ni toxicity. It is concluded from the present study that washing waste-waters from cutlery production line are quite toxic to plants, thus reducing biomass and photosynthetic pigment production and influencing water translocation through the plant. These determined adverse effects of washing waste-waters from this cutlery production line classified them as too dangerous to be spread on open-land soil. On the basis of this study, high toxicity of the presented waste-waters from metal surface-finishing as well as justness of their liquidation as hazardous wastes by legally assigned persons were recommended.
Morales-Contreras, Blanca E; Rosas-Flores, Walfred; Contreras-Esquivel, Juan C; Wicker, Louise; Morales-Castro, Juliana
2018-01-01
A rheological study was carried out to evaluate formulations of test dispersions and gels of high methoxyl pectins (HTHMP) obtained at different conditions from husk tomato waste (Physalis ixocarpa Brot.). The effect of extraction agent (hydrochloric acid or citric acid), blanching time (10 or 15min) and extraction time (15, 20 or 25min) on the rheology of the tested samples was evaluated. Flow behavior and activation energy were evaluated on the test dispersions, while (E a ) frequency sweeps, temperature sweep, creep-recovery test and penetration test were performed on the gels. HTHMP dispersions showed shear thinning flow behavior, while showing a good fit to Cross model. Extraction agent, blanching time and extraction time did not have effect on Cross parameters (η z , η∞, C, and m). E a decreased as blanching time and extraction time increased. Frequency sweeps revealed high dependence on frequency for both G' and G", while temperature sweeps (25- 95°C) showed thermostable husk tomato pectin gels. Hydrocloric acid (HCl) extracted pectin gels showed stronger structure than citric acid (CA) gels. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca
2009-01-15
The process of reducing acid leaching of manganiferous ore is aimed at the extraction of manganese from low grade manganese ores. This work is focused on the iron removal operation. The following items have been considered in order to investigate the effect of the main operating conditions on solid waste disposal and on the process costs: (i) type and quantity of the base agent used for iron precipitation, (ii) effective need of leaching waste separation prior to the iron removal operation, (iii) presence of a second leaching stage with the roasted ore, which might also act as a preliminary ironmore » removal step, and (iv) effect of tailings washing on the solid waste classification. Different base compounds have been tested, including CaO, CaCO{sub 3}, NaOH, and Na{sub 2}CO{sub 3}. The latter gave the best results concerning both the precipitation process kinetics and the reagent consumption. The filtration of the liquor leach prior to iron removal was not necessary, implying significant savings in capital costs. A reduction of chemical consumption and an increase of manganese concentration in the solution were obtained by introducing secondary leaching tests with the previously roasted ore; this additional step was introduced without a significant decrease of global manganese extraction yield. Finally, toxicity characteristic leaching procedure (TCLP) tests carried out on the leaching solid waste showed: (i) a reduction of arsenic mobility in the presence of iron precipitates, and (ii) the need for a washing step in order to produce a waste that is classifiable as not dangerous, taking into consideration the existing Environmental National Laws.« less
Maietta, Mariarosa; Colombo, Raffaella; Lavecchia, Roberto; Sorrenti, Milena; Zuorro, Antonio; Papetti, Adele
2017-10-01
The role of polyphenolic compounds extractable from artichoke solid wastes in the formation of advanced glycation end products (AGEs) was studied. Outer bracts and stems were extracted using different water-ethanol mixtures and HPLC-DAD analyses indicated aqueous and hydro-alcoholic 20:80 stem extracts as the richest in polyphenols. The samples were characterized in their phenolic composition (using mass spectrometry) and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-sugars (glucose, fructose, and ribose) and BSA-methylglyoxal (MGO) tests, formation of Amadori products assay, direct glyoxal (GO) and MGO trapping capacity. Results indicated both extracts as effective inhibitors of fructosamine formation and antiglycative agents. In particular, aqueous extract showed the best activity in the systems containing glucose and fructose, differently from ethanolic extract, that was demonstrated able to better inhibit AGEs formation when ribose or MGO act as precursors. Ethanolic extract was also shown to be able to trap MGO and GO, with efficiency increasing after 24hours of incubation time. These activities are partially correlated with the antioxidant effect of the extract, as demonstrated by the scavenger capacity against ABTS cation and DPPH stable radicals; this relationship is evident when the model system, containing protein incubated with ribose or MGO, is considered. The different activities of the tested extracts could probably be ascribed to the different composition in chlorogenic acids (CQAs), being aqueous extract richer in 1-CQA, 3-CQA, and 1,3-di-CQA, and ethanolic extract in 5-CQA, caffeic acid, 1,5-di-CQA. These findings support further investigations to study the stability of the different CQAs in simil-physiological conditions and the feasibility of artichoke waste as antiglycative agents in food or pharmacological preparations. 5-caffeoylquinic acid (PubChem CID 5280633); 3-caffeoylquinic acid (PubChem CID 1794427); 1-caffeoylquinic acid (PubChem CID 10155076); 1,3-di-caffeoylquinic acid (PubChem CID 24720973); 1,5 - di-caffeoylquinic acid (PubChem CID 122685); caffeic acid (PubChem CID 689043); apigenin-7-glucuronide (PubChem CID 5319484); methylglyoxal PubChem CID (880); aminoguanidine hydrochloride (PubChem CID 2734687). Copyright © 2017 Elsevier Ltd. All rights reserved.
Copper leaching from electronic waste for the improvement of gold recycling.
Torres, Robinson; Lapidus, Gretchen T
2016-11-01
Gold recovery from electronic waste material with high copper content was investigated at ambient conditions. A chemical preliminary treatment was found necessary to remove the large quantities of copper before the precious metal can be extracted. For this purpose inorganic acids (HCl, HNO 3 and H 2 SO 4 ) and two organic substances EDTA and citrate, were tested. The effect of auxiliary oxidants such as air, ozone and peroxide hydroxide was studied. In pretreatments with peroxide and HCl or citrate, copper extractions greater than 90% were achieved. In the second leaching stage for gold recovery, the solid residue of the copper extraction was contacted with thiourea solutions, resulting in greater than 90% gold removal after only one hour of reaction. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur
2017-05-01
Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.
Kleeberg, K K; Liu, Y; Jans, M; Schlegelmilch, M; Streese, J; Stegmann, R
2005-01-01
A solid-phase microextraction (SPME) method has been developed for the extraction of odorous compounds from waste gas. The enriched compounds were characterized by gas chromatography-mass spectrometry (GC-MS) and gas chromatography followed by simultaneous flame ionization detection and olfactometry (GC-FID/O). Five different SPME fiber coatings were tested, and the carboxen/polydimethylsiloxane (CAR/PDMS) fiber showed the highest ability to extract odorous compounds from the waste gas. Furthermore, parameters such as exposure time, desorption temperature, and desorption time have been optimized. The SPME method was successfully used to characterize an odorous waste gas from a fat refinery prior to and after waste gas treatment in order to describe the treatment efficiency of the used laboratory scale plant which consisted of a bioscrubber/biofilter combination and an activated carbon adsorber. The developed method is a valuable approach to provide detailed information of waste gas composition and complements existing methods for the determination of odors. However, caution should be exercised if CAR/PDMS fibers are used for the quantification of odorous compounds in multi-component matrices like waste gas emissions since the relative affinity of each analyte was shown to differ according to the total amount of analytes present in the sample.
Bhatnagar, Amit; Kaczala, Fabio; Burlakovs, Juris; Kriipsalu, Mait; Hogland, Marika; Hogland, William
2017-06-01
Landfill mining is an alternative technology that merges the ideas of material recycling and sustainable waste management. This paper reports a case study to estimate the value of landfilled materials and their respective market opportunities, based on a full-scale landfill mining project in Estonia. During the project, a dump site (Kudjape, Estonia) was excavated with the main objectives of extracting soil-like final cover material with the function of methane degradation. In total, about 57,777 m 3 of waste was processed, particularly the uppermost 10-year layer of waste. Manual sorting was performed in four test pits to determine the detailed composition of wastes. 11,610 kg of waste was screened on site, resulting in fine (<40 mm) and coarse (>40 mm) fractions with the share of 54% and 46%, respectively. Some portion of the fine fraction was sieved further to obtain a very fine grained fraction of <10 mm and analyzed for its potential for metals recovery. The average chemical composition of the <10 mm soil-like fraction suggests that it offers opportunities for metal (Cr, Cu, Ni, Pb, and Zn) extraction and recovery. The findings from this study highlight the importance of implementing best available site-specific technologies for on-site separation up to 10 mm grain size, and the importance of developing and implementing innovative extraction methods for materials recovery from soil-like fractions.
Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.
Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun
2011-01-01
Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.
CHARACTERIZATION AND RECYCLING OF WASTE WATER FROM GUAYULE LATEX EXTRACTION
USDA-ARS?s Scientific Manuscript database
Guayule commercialization for latex production to be used in medical products and other applications is now a reality. Currently, waste water following latex extraction is discharged into evaporation ponds. As commercialization reaches full scale, the liquid waste stream from latex extraction will b...
Phinney, David M; Frelka, John C; Cooperstone, Jessica L; Schwartz, Steven J; Heldman, Dennis R
2017-01-15
Lycopene is a high value nutraceutical and its isolation from waste streams is often desirable to maximize profits. This research investigated solvent addition order and composition on lycopene extraction efficiency from a commercial tomato waste stream (pH 12.5, solids ∼5%) that was neutralized using membrane filtration. Constant volume dilution (CVD) was used to desalinate the caustic salt to neutralize the waste. Acetone, ethanol and hexane were used as direct or blended additions. Extraction efficiency was defined as the amount of lycopene extracted divided by the total lycopene in the sample. The CVD operation reduced the active alkali of the waste from 0.66 to <0.01M and the moisture content of the pulp increased from 93% to 97% (wet basis), showing the removal of caustic salts from the waste. Extraction efficiency varied from 32.5% to 94.5%. This study demonstrates a lab scale feasibility to extract lycopene efficiently from tomato processing byproducts. Published by Elsevier Ltd.
SW-846 Test Method 3511: Organic Compounds in Water by Microextraction
a procedure for extracting selected volatile and semivolatileorganic compounds from water. The microscale approach minimizes sample size and solventusage, thereby reducing the supply costs, health and safety risks, and waste generated.
Immobilization of copper flotation waste using red mud and clinoptilolite.
Coruh, Semra
2008-10-01
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, K.; Landsberger, S.; Srinivasan, B.
1994-12-31
A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.
Toxicity assessment of carbon black waste: A by-product from oil refineries.
Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa
2017-01-05
In Singapore, approximately 30t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with increasing waste concentration. Results from reactive oxygen species (ROS) assay indicated that carbon black waste extract induced oxidative stress by increasing intracellular ROS generation in these three human cell lines. Moreover, induction of oxidative damage in these cells was also observed through the alteration of glutathione (GSH) and superoxide dismutase (SOD) activities. Last but not least, by treating the cells with V-spiked solution of concentration equivalent to that found in the carbon black waste extract, V was identified as the main culprit for the high toxicity of carbon black waste extract. These findings could potentially provide insight into the hazards of carbon black waste extract and its toxicity mechanism on human cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.
Houk, V S; Claxton, L D
1986-03-01
10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mower, T.E.; Higgins, J.D.; Yang, In C.
1994-07-01
The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone watermore » on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.« less
Ruiz, Begoña; de Benito, Amparo; Rivera, José Daniel; Flotats, Xavier
2016-12-01
The objective of this study was to assess the limonene removal efficiency of three pre-treatment methods when applied to citrus waste and to evaluate their effects on the biochemical methane potential and the methane production rate using batch anaerobic tests. The methods tested were based on removal (biological pretreatment by fungi) or recovery (steam distillation and ethanol extraction) of limonene. All the treatments decreased the concentration of limonene in orange peel, with average efficiencies of 22%, 44% and 100% for the biological treatment, steam distillation and ethanol extraction, respectively. By-products from limonene biodegradation by fungi exhibited an inhibitory effect also, not making interesting the biological pretreatment. The methane potential and production rate of the treated orange peel increased significantly after applying the recovery strategies, which separated and recovered simultaneously other inhibitory components of the citrus essential oil. Apart from the high recovery efficiency of the ethanol extraction process, it presented a favourable energy balance. © The Author(s) 2016.
Landfill aeration for emission control before and during landfill mining.
Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco
2015-12-01
The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
Horwitz, E. Philip; Delphin, Walter H.
1979-07-24
A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.
Production of astaxanthin rich feed supplement for animals from Phaffia rhodozyma yeast at low cost
NASA Astrophysics Data System (ADS)
Irtiza, Ayesha; Shatunova, Svetlana; Glukhareva, Tatiana; Kovaleva, Elena
2017-09-01
Dietary nutrients such as amino acids, vitamins, minerals and antioxidants can play a significant role in determining meat quality and also the growth rate of poultry or animal. Phaffia rhodozyma was grown on waste from brewery industry to produce astaxanthin rich feed supplements at a very low cost. Phaffia rhodozyma is yeast specie that has ability to produce carotenoids and approximately 80% of its total carotenoid content is astaxanthin, which is highly valuable carotenoid for food, feed and aquaculture industry. This study was carried out to test yeast extract of spent yeast from brewing industry waste (residual yeast) as potential nitrogen source for growth of Phaffia rhodozyma. Cultivation was carried out in liquid media prepared by yeast extracts and other components (glucose and peptone). Carotenoids from the biomass were released into biomass by suspending cells in DMSO for destruction of cells followed by extraction with petroleum ether. The extracted carotenoids were studied by spectrophotometry to identify and quantify astaxanthin and other carotenoids produced.
Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna
2013-08-01
This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dieng, Hamady; Tan Yusop, Nur Syafiqah Bt; Kamal, Nurafidah Natasyah Bt; Ahmad, Abu Hassan; Ghani, Idris Abd; Abang, Fatimah; Satho, Tomomitsu; Ahmad, Hamdan; Zuharah, Wan Fatma; Majid, Abdul Hafiz Ab; Morales, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Noweg, Gabriel Tonga
2016-05-11
Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
Viegas, Carla; Faria, Tiago; de Oliveira, Ana Cebola; Caetano, Liliana Aranha; Carolino, Elisabete; Quintal-Gomes, Anita; Twarużek, Magdalena; Kosicki, Robert; Soszczyńska, Ewelina; Viegas, Susana
2017-11-01
The waste management industry is an important employer, and exposure of waste-handling workers to microorganisms is considered an occupational health problem. Besides fungal contamination, it is important to consider the co-occurrence of mycotoxins in this setting. Forklifts with closed cabinet and air conditioner are commonly used in waste industry to transport waste and other products within the facilities, possibly increasing the risk of exposure under certain conditions. The aim of this study was to assess the fungal contamination and mycotoxin levels in filters from the air conditioning system of forklift cabinets, as an indicator to assess occupational exposure of the drivers working in a waste sorting facility. Cytotoxicity was also assessed to understand and characterize the toxicity of the complex mixtures as present in the forklift filters. Aqueous extracts of filters from 11 vehicles were streaked onto 2% malt extract agar (MEA) with chloramphenicol (0.05 g/L) media, and in dichloran glycerol (DG18) agar-based media for morphological identification of the mycobiota. Real-time quantitative PCR amplification of genes from Aspergillus sections Fumigati, Flavi, Circumdati, and Versicolores was also performed. Mycotoxins were analyzed using LC-MS/MS system. Cytotoxicity of filter extracts was analyzed by using a MTT cell culture test. Aspergillus species were found most frequently, namely Aspergillus sections Circumdati (MEA 48%; DG18 41%) and Nigri (MEA 32%; DG18 17.3%). By qPCR, only Aspergillus section Fumigati species were found, but positive results were obtained for all assessed filters. No mycotoxins were detected in aqueous filter extracts, but most extracts were highly cytotoxic (n = 6) or medium cytotoxic (n = 4). Although filter service life and cytotoxicity were not clearly correlated, the results suggest that observing air conditioner filter replacement frequency may be a critical aspect to avoid worker's exposure. Further research is required to check if the environmental conditions as present in the filters could allow the production of mycotoxins and their dissemination in the cabinet during the normal use of the vehicles.
Allelopathic potential of Citrus junos fruit waste from food processing industry.
Kato-Noguchi, Hisashi; Tanaka, Yukitoshi
2004-09-01
The allelopathic potential of Citrus junos fruit waste after juice extraction was investigated. Aqueous methanol extracts of peel, inside and seeds separated from the fruit waste inhibited the growth of the roots and shoots of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), crabgrass (Digitaria sanguinalis L.), lettuce (Lactuca sativa L.), timothy (Pheleum pratense L.), and ryegrass (Lolium multiflorum Lam.). The inhibitory activity of the peel extract was greatest and followed by that of the inside and seed extracts in all bioassays. Significant reductions in the root and shoot growth were observed as the extract concentration was increased. The concentrations of abscisic acid-beta-d-glucopyranosyl ester (ABA-GE) in peel, inside and seeds separated from the C. junos fruit waste were determined, since ABA-GE was found to be one of the main growth inhibitors in C. junos fruit. The concentration was greatest in the peel, followed by the inside and seeds; there was a good correspondence between these concentrations and the inhibitory activities of the extracts. This suggests that ABA-GE may also be involved in the growth inhibitory effect of C. junos waste. These results suggested that C. junos waste may possess allelopathic potential, and the waste may be potentially useful for weed management. Copyright 2004 Elsevier Ltd.
Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio
2017-03-01
The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.
Validated Test Method 5030C: Purge-and-Trap for Aqueous Samples
This method describes a purge-and-trap procedure for the analysis of volatile organic compoundsin aqueous samples & water miscible liquid samples. It also describes the analysis of high concentration soil and waste sample extracts prepared in Method 5035.
Chromium behavior during thermal treatment of MSW fly ash.
Kirk, Donald W; Chan, Chris C Y; Marsh, Hilary
2002-02-14
Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled. Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.
NASA Astrophysics Data System (ADS)
Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.
2018-03-01
Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.
Hazardous waste status of discarded electronic cigarettes.
Krause, Max J; Townsend, Timothy G
2015-05-01
The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Evvyernie, D.; Tjakradidjaja, A. S.; Permana, I. G.; Toharmat, T.; Insani, A.
2018-02-01
The aim of the study was to evaluate the potency of noni juice extract waste (Morinda citrifolia L.) and pineapple industrial wastes (Ananas comosus L. Merr) as an energy supplement in dairy goat ration through in vitro study. This study used a complete randomized design with 5 treatments and 3 rumen fluid groups. The treatments were R0 as control (60% Napier grass (NG) + 40% concentrate), R1 (45% NG + 15% noni juice extract waste + 40% concentrate) + R2 (45% NG + 15% noni juice extract waste ammoniated + 40% concentrate), R3 (45% NG + 15% pineapple peel + 40% concentrate), and R4 (45% NG + 15% pineapple crown + 40% concentrate). The variables were totalbacterial population, protozoal population, fermentation characteristic (total VFA and NH3 concentration), and digestibility (dry matter and organic matter).Data were analyzed with analysis of variance (ANOVA) and differences among treatments were determined by orthogonal contrast.The results showed that total VFA concentration was significant increased (P<0.05) by replacing 25% napier grass with noni juice extract waste (R1)or very significant increased(P<0.01) by replacing the grass with pineapple peel (R3). The average increasing of total VFA concentration was 74% compared to control. As conclusions, 15% pineapple peel or 15% noni juice extract waste can use as an energy supplement by replacing 25% of napier grass in lactating dairy goat ration.
Determination of estrogenic potential in waste water without sample extraction.
Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester
2013-09-15
This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, G.E.; Garnas, R.L.
1983-03-01
Complex wastes from industrial and municipal outfalls were fractionated chemically and tested for toxicity with freshwater and saltwater algae and crustaceans. The organic fraction of each waste was subfractionated into acid-, base-, and neutral-extractable portions, and the inorganic fraction was subfractionated into its anion and cation components. All wastes affected growth of the algae Skeletonema costatum (saltwater) and Monoraphidium capricornutum (freshwater) or survival of Mysidopsis bahia (saltwater) and Daphnia magna (freshwater). Usually, bioactivity was limited to one or two subfractions. In some cases, algal growth was stimulated by a fraction or subfraction, whereas stimulation was not detected in whole waste.more » It is suggested that fractionation must be done in order to estimate the full potential impact of complex wastes on aquatic systems. The method can also be used to identify toxic factors before application of cost-effective control technology.« less
Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, A. L. II; Peters, T. B.
This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less
Solid and Liquid Waste Drying Bag
NASA Technical Reports Server (NTRS)
Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)
2009-01-01
Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.
Calculating the pre-consumer waste footprint: A screening study of 10 selected products.
Laurenti, Rafael; Moberg, Åsa; Stenmarck, Åsa
2017-01-01
Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.
Chemical and biological extraction of metals present in E waste: A hybrid technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pant, Deepak, E-mail: deepakpant1@rediffmail.com; Joshi, Deepika; Upreti, Manoj K.
2012-05-15
Highlights: Black-Right-Pointing-Pointer Hybrid methodology for E waste management. Black-Right-Pointing-Pointer Efficient extraction of metals. Black-Right-Pointing-Pointer Trace metal extraction is possible. - Abstract: Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and themore » complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste.« less
Luo, Jian Hong; Li, Jun; Guo, Lei; Zhu, Xin Hua; Dai, Shuang; Li, Xing
2017-11-01
A new circular microchannel device has been proposed for the removal of chromium(III) from aqueous waste solution by using kerosene as a diluent and (2-ethylhexyl) 2-ethylhexyl phosphonate as an extractant. The proposed device has several advantages such as a flexible and easily adaptable design, easy maintenance, and cheap setup without the requirement of microfabrication. To study the extraction efficiency and advantages of the circular microchannel device in the removal of chromium(III), the effects of various operating conditions such as the inner diameter of the channel, the total flow velocity, the phase ratio, the initial pH of aqueous waste solution, the reaction temperature and the initial concentration of extractant on the extraction efficiency are investigated and the optimal process conditions are obtained. The results show that chromium(III) in aqueous waste solution can be effectively removed with (2-ethylhexyl) 2-ethylhexyl phosphonate in the circular microchannel. Under optimized conditions, an extraction efficiency of chromium(III) of more than 99% can be attained and the aqueous waste solution can be discharged directly, which can meet the Chinese national emission standards.
Electrochemical extraction of gold from wastes as nanoparticles stabilized by phospholipids.
Moriwaki, Hiroshi; Yamada, Kotaro; Usami, Hisanao
2017-02-01
A simple one-step method for the extraction of gold from wastes as nanoparticles stabilized by phospholipids is demonstrated. This is achieved by applying an AC voltage for 5s to the gold-containing wastes, which act as the electrodes in a buffer solution containing a dispersed phospholipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC). This is an environmentally friendly and rapid method for recovering gold from wastes. The extracted gold nanoparticles have significant potential as a catalyst or biomedical material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.
This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less
Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A.; Birdwell, Joseph F.; Bonnesen, Peter V.
This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less
Method for efficient recovery of high-purity polycarbonates from electronic waste.
Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda
2015-02-17
More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.
Enhanced antioxidant activity of polyolefin films integrated with grape tannins.
Olejar, Kenneth J; Ray, Sudip; Kilmartin, Paul A
2016-06-01
A natural antioxidant derived from an agro-waste of the wine industry, grape tannin, was incorporated by melt blending into three different polyolefins (high-density polyethylene, linear low-density polyethylene and polypropylene) to introduce antioxidant functionality. Significant antioxidant activity was observed at 1% tannin inclusion in all polymer blends. The antioxidant activity was observed to increase steadily with a greater concentration of grape tannins, the highest increases being seen with polypropylene. The mechanical and thermal properties of the polymer films following antioxidant incorporation were minimally altered with up to 3% grape tannins. All of the polyolefin-grape tannin films successfully passed the leachability test following USP661 standard protocol. Superior antioxidant activity was established in polyolefin thin films by utilization of a bulk grape extract obtained from winery waste. Significant increases in antioxidant activity were seen with 1% extract inclusion. This not only demonstrates the potential for food packaging applications of the polyolefin blends, but also valorizes the agro-waste. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Sethurajan, Manivannan; van Hullebusch, Eric D; Nancharaiah, Yarlagadda V
2018-04-01
Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, M.C.; Venkatesh, K.V.; Choi, H.
The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... includes: sample preparation, sample extraction, extract cleanup, extract concentration, addition of PCB... concentration of PCBs are unregulated for PCB disposal under this part. (b) All other wastes generated during...
NASA Astrophysics Data System (ADS)
Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd
2018-04-01
This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.
Production of Fungal Glucoamylase for Glucose Production from Food Waste
Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki
2013-01-01
The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186
Microwave-assisted extraction of lipid from fish waste
NASA Astrophysics Data System (ADS)
Rahimi, M. A.; Omar, R.; Ethaib, S.; Siti Mazlina, M. K.; Awang Biak, D. R.; Nor Aisyah, R.
2017-06-01
Processing fish waste for extraction of value added products such as protein, lipid, gelatin, amino acids, collagen and oil has become one of the most intriguing researches due to its valuable properties. In this study the extraction of lipid from sardine fish waste was carried out using microwave-assisted extraction (MAE) and compared with Soxhlets and Hara and Radin methods. A mixture of two organic solvents isopropanol/hexane and distilled water were used for MAE and Hara and Radin methods. Meanwhile, Soxhlet method utilized only hexane as solvent. The results show that the higher yield of lipid 80.5 mg/g was achieved using distilled water in MAE method at 10 min extraction time. Soxhlet extraction method only produced 46.6 mg/g of lipid after 4 hours of extraction time. Lowest yield of lipid was found at 15.8 mg/g using Hara and Radin method. Based on aforementioned results, it can be concluded MAE method is superior compared to the Soxhlet and Hara and Radin methods which make it an attractive route to extract lipid from fish waste.
Calcium phosphate stabilization of fly ash with chloride extraction.
Nzihou, Ange; Sharrock, Patrick
2002-01-01
Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.
Phenol oxidation by mushroom waste extracts: a kinetic and thermodynamic study.
Pigatto, Gisele; Lodi, Alessandra; Aliakbarian, Bahar; Converti, Attilio; da Silva, Regildo Marcio Gonçalves; Palma, Mauri Sérgio Alves
2013-09-01
Tyrosinase activity of mushroom extracts was checked for their ability to degrade phenol. Phenol oxidation kinetics was investigated varying temperature from 10 to 60 °C and the initial values of pH, enzyme activity and phenol concentration in the ranges 4.5-8.5, 1.43-9.54 U/mL and 50-600 mg/L, respectively. Thermodynamic parameters of phenol oxidation and tyrosinase reversible inactivation were estimated. Tyrosinase thermostability was also investigated through residual activity tests after extracts exposition at 20-50 °C, whose results allowed exploring the thermodynamics of enzyme irreversible thermoinactivation. This study is the first attempt to separate the effects of reversible unfolding and irreversible denaturation of tyrosinase on its activity. Extracts were finally tested on a real oil mill wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.
Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.
Copper tolerance in clones of Agrostis gigantea from a mine waste site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, G.D.; Courtin, G.M.; Rauser, W.E.
1977-04-15
A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less
Barik, S P; Park, K H; Nam, C W
2014-12-15
A process for recovering V(V) and Ni(II) from an industrial solid waste using sulfuric acid leaching, solvent extraction, precipitation and crystallization has been developed. The leaching parameters investigated were time, temperature and H2SO4 concentration. To quantify the linear and interaction coefficients a 2(3) full factorial experimental design was used. Regression equations for the extraction of V(V) and Ni(II) were determined and the adequacy of these equations was tested by Student's t-Test. More than 98% of both V(V) and Ni(II) were extracted in 90 min using 1.35 M H2SO4 at 40 °C. In addition, solvent extraction of V(V) with LIX 84-I in kerosene from the acidic leach liquor bearing 10.922 g/L V(V) and 18.871 g/L of Ni(II) was investigated. V(V) was extracted selectively using 40% LIX 84-I followed by stripping with NH4OH solution. McCabe-Thiele plots at O:A = 2:3 with 40% LIX 84-I and O:A = 3:1 with 15% (v/v) NH4OH showed two and three theoretical stages are needed for quantitative extraction and stripping of V(V), respectively. Ni(II) was selectively recovered from the V(V) free raffinate by adding ammonium oxalate at 60 °C. The purity of different products such as ammonium vanadate, nickel oxalate and nickel oxide obtained during the processes were analyzed and confirmed from the XRD studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Jiao-Jiao; Li, Ya; Lin, Sheng-Jun; Li, Hua-Bin
2018-05-02
The waste of Sterculia nobilis fruit was massively produced during food processing, which contains lots of natural antioxidants. In this study, antioxidants in the Sterculia nobilis fruit waste were extracted using the green microwave-assisted extraction (MAE) technique. The effects of five independent variables (ethanol concentration, solvent/material ratio, extraction time, temperature, and microwave power) on extraction efficiency were explored, and three major factors (ethanol concentration, extraction time, and temperature) showing great influences were chosen to study their interactions by response surface methodology. The optimal conditions were as follows: 40.96% ethanol concentration, 30 mL/g solvent/material ratio, 37.37 min extraction time at 66.76 °C, and 700 W microwave power. The Trolox equivalent antioxidant capacity value obtained in optimal conditions was in agreement with the predicted value. Besides, MAE improved the extraction efficiency compared with maceration and Soxhlet extraction methods. Additionally, the phenolic profile in the extract was analyzed by UPLC-MS/MS, and eight kinds of phenolic compounds were identified and quantified, including epicatechin, protocatechuic acid, ferulic acid, gallic acid, p -coumaric acid, caffeic acid, quercetin, and p -hydroxycinnamic acid. This study could contribute to the value-added utilization of the waste from Sterculia nobilis fruit, and the extract could be developed as food additive or functional food.
NASA Astrophysics Data System (ADS)
Yang, Fangxing; Jin, Shiwei; Xu, Ying; Lu, Yuanan
2011-04-01
To identify the different effects of organic-soluble and water-soluble pollutants adsorbed on PM2.5 (PM: particulate matter) released from e-waste (electrical/electronic waste) on inflammatory response, oxidative stress and DNA damage, interleukin-8 (IL-8), reactive oxygen species (ROS) and p53 protein levels were determined and compared in human lung epithelial A549 cells exposed to extracts of PM2.5 collected from two sampling sites in an e-waste recycling area in China. It is found that both extracts induced increases of IL-8 release, ROS production and p53 protein expression. The differences between the organic-soluble and water-soluble extracts were determined as of significance for ROS production (p < 0.05) and p53 protein expression (p < 0.01). The ROS production and p53 protein expression induced by the organic-soluble extracts were found to be greater than those induced by the water-soluble extracts, for both sampling sites. The results indicated that PM2.5 collected from the e-waste recycling areas could lead to inflammatory response, oxidative stress and DNA damage, and the organic-soluble extracts had higher potential to induce such adverse effects on human health.
NASA Astrophysics Data System (ADS)
Qadariyah, Lailatul; Gala, Selfina; Widoretno, Dhaniar Rulandri; Kunhermanti, Delita; Bhuana, Donny S.; Sumarno, Mahfud, Mahfud
2017-05-01
The development of technology causes most of textile industries in Indonesia prefer to use synthetic dyes in the fabric dyeing process. In fact, synthetic dyes is able to have negative effect since it is is toxic to the health of workers and environment. To resolve this issues, one way to do is to use natural dyes. One of untapped potential in Indonesia is wood waste of jackfruit from furniture industry. Jackfruit wood itself containing dyestuffs which gives yellow color pigment so that it can be used as an alternative source of natural dyes. The purpose of this research is to study the effect of extraction time, mass to solvent volume ratio, and microwave power to yield of dyes. The extract of dye analyzed by UV-Visible Spectrophotometer and GC-MS, along the coloring and endurance tests of natural dyes on fabric and compare it with synthetic dyes. In this research, material is going to be extracted is the wood of jackfruit (Artocarpus heterophyllus lamk) with material size between 35 mesh - 60 mesh. The extraction process is done by using ethanol 96%. Extraction using MAE is carried out at the ratio of materials to solvent of 0,02-0,1 g/mL, the microwave power of 100-800 Watt, and the extraction time of 10-90 minutes. The conclusion is at microwave power of 400 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,39% while at microwave power of 600 Watt, material to solvent ratio of the 0,02 g/mL, the yield is 3,67% with extraction time of 30 minutes. The highest recovery from ethanol 96% solvent is 60,41%. The result of UV-Vis Spectrophotometry and GC-MS test show that there is a chromophore compound in the extract of natural dye. The test results show the natural dyes of jackfruit wood can be used to coloring on the textile because it can gives staining result permanently.
NASA Astrophysics Data System (ADS)
Chagvardieff, Pierre; Barré, Yves; Blin, Virginie; Faure, Sylvain; Fornier, Anne; Grange, Didier; Grandjean, Agnès; Guiderdoni, Emmanuel; Henner, Pascale; Siroux, Brice; Leybros, Antoine; Messalier, Marc; Paillard, Hervé; Prévost, Thierry; Rennesson, Malvina; Sarrobert, Catherine; Vavasseur, Alain; Véry, Anne-Aliénor
2017-09-01
As part of the « post-accidental » management, the DEMETERRES project (RSNR PIA) proposes to develop innovative and environmentally friendly methods for removal of cesium and strontium from soils and liquid matrices in order to rehabilitate them for an agricultural use while minimizing the volume of generated wastes in accordance with the nuclear waste existing processes. Complementary approaches are used: they are based on physico-chemical technologies (such as foams flotation, supercritical CO2 extraction, extractants in fluidized bed reactor …) and biological ones (bioextractants, phytoextraction) which concepts are described. These researches aim to design innovative and performing extractants in term of selectivity and to achieve the pilot reactor phase for each of them. These pilots will group in a network to provide a technological platform lasting the project, to which will be attached an available network of experts. The respective advances of these researches are presented, completed of tests initiated in Japan on contaminated soils through partnerships.
DISPOSAL OF LIQUID WASTE IN THE DURANGO-TYPE URANIUM MILLING FLOWSHEET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tame, K.E.; Valdez, E.G.; Rosenbaum, J.B.
1961-01-01
Possible modifications were studied in conventional uraniuum ore- processing steps to confine and permit controlled disposal of radioactive wastes. Surveys of Ra/sup 226/ contamination of liquid wastes from uranium mills indicated that the Vanadium Corporation of America plant at Durango, Colo., had one of the more urgent problems. A possible procedure for minimizing the waste disposal problem was to reuse the waste solution in the mill-in effect, erasing the need for disposal of liquid waste. In examining this possibility, interlocked bench-scale leaching and solvent extraction tests simulating the Durango fiowsheet were made. The simulated reuse of barren raffinate for leachingmore » and washing was carried through three separate campaigns of 9, 12, and 35 cycles each. An attempt to expedite the test work by using agitation leaching during the first campaign resulted in pregnant solutions of varying turbidity, giving a discordant pattern of radioactivity analyses. Percolation leaching and washing patterned more nearly after the Durango flowsheet was used in the second and third campaigns and consistently gave solutions of satisfactory clarity. The radioactivity was somewhat variable but did not build up with prolonged recycling of the raffinate. The buildup of other impurities in the pregnant solution had little noticeabIe effect on the operation of the percolation leach column. Operational difficulties from slow phase disengagement and entrainment in the solvent extraction stripping and scrubbing units occurred during the first two campaigns. In the third campaign slow phase disengagement and aqueous entrainment in the strippers were practically eliminated by heating the last stage to about 40 deg C and operating with the aqueous phase continuous. Increased mixing time in the scrubbing section was successful in reducing entrainment of aqueous in the organic from the settlers. Also, the concentrations of active reagents in the solvent extraction system were increased during the third campaign to correspond to an increase made at the Durango plant. The recovery of uranium and vanadium from the acid leach solution was excellent, averaging 99.7 and 95.6%, respectively. During the test work the Durango plant made several changes in tailing disposal procedures to minimize the waste problem. The most important comprised impounding all barren raffinate in two large lagoons. This was a successful temporary solution to the problem. However, as evaporation is relied upon to eliminate the water, it is estimated that 40 acres of area will be needed. The use of barren raffinate for washing in the Durango process would greatly diminish the quantity of solution to be disposed of by solar evaporation and the conjunctive need for a large disposal area. (auth)« less
Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.
Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho
2010-08-15
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.
Di Maria, Francesco; Micale, Caterina; Sordi, Alessio; Cirulli, Giuseppe; Marionni, Moreno
2013-12-01
The mechanically sorted dry fraction (MSDF) and Fines (<20mm) arising from the mechanical biological treatment of residual municipal solid waste (RMSW) contains respectively about 11% w/w each of recyclable and recoverable materials. Processing a large sample of MSDF in an existing full-scale mechanical sorting facility equipped with near infrared and 2-3 dimensional selectors led to the extraction of about 6% w/w of recyclables with respect to the RMSW weight. Maximum selection efficiency was achieved for metals, about 98% w/w, whereas it was lower for Waste Electrical and Electronic Equipment (WEEE), about 2% w/w. After a simulated lab scale soil washing treatment it was possible to extract about 2% w/w of inert exploitable substances recoverable as construction materials, with respect to the amount of RMSW. The passing curve showed that inert materials were mainly sand with a particle size ranging from 0.063 to 2mm. Leaching tests showed quite low heavy metal concentrations with the exception of the particles retained by the 0.5mm sieve. A minimum pollutant concentration was in the leachate from the 10 and 20mm particle size fractions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of fly ash loading; ash-borne, extractable organics; sulfur dioxide (SO2) and hydrogen chloride concentration; and combustion quality on the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) were evaluated in pilot scale tests simu...
Gonzales, Gerard Bryan; Smagghe, Guy; Raes, Katleen; Van Camp, John
2014-04-16
Cauliflower waste contains high amounts phenolic compounds, but conventional solvent extraction misses high amounts of nonextractable phenolics (NEP), which may contribute more to the valorization of these waste streams. In this study, the NEP content and composition of cauliflower waste were investigated. The ability of alkaline hydrolysis, sonication, and their combination to release NEP was assessed. Alkaline hydrolysis with sonication was found to extract the highest NEP content (7.3 ± 0.17 mg gallic acid equivalents (GAE)/g dry waste), which was higher than the extractable fraction. The highest yield was obtained after treatment of 2 M NaOH at 60 °C for 30 min of sonication. Quantification and identification were done using U(H)PLC-DAD and U(H)PLC-ESI-MS(E). Kaempferol and quercetin glucosides along with several phenolic acids were found. The results of the study show that there are higher amounts of valuable health-promoting compounds from cauliflower waste than what is currently described in the literature.
1987-09-01
Evaluation Commnand &_. ADMASS Coly, 1W~., and ZIP Code ) 7b. ADDRESS (C01y, State, wid ZIP Code ) Dugwiay, Utahi 84022-5000 Aberdeen Proving Ground...Aency_________________________ 9L AoOMS(CRY, 0to, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Hazardous Waste Environmental RLsearch Lab PROGRAM PROJECT TASK...CLASSIFICATION 0 UNO.ASSIFIEDAIJNLIMITED 0l SAME AS RPT. 03 OTIC USERS UNCLA.SSIFIED 22a. RAWE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code ) I
Hazardous waste status of discarded electronic cigarettes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu
Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Testmore » (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.« less
Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption
USDA-ARS?s Scientific Manuscript database
Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...
Malek, Ammar; Hachemi, Messaoud; Didier, Villemin
2009-10-15
Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.
Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A
1999-11-01
A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.
Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada
Scofield, K.M.
2006-01-01
Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.
Use of a germination bioassay to test compost maturity in Tekelan Village
NASA Astrophysics Data System (ADS)
Oktiawan, Wiharyanto; Zaman, Badrus; Purwono
2018-02-01
Livestock waste from cattle farms in Tekelan village, Getasan Subdistrict, Semarang Regency can be grouped into three types, namely solid waste, slurry and waste water. Solid waste (cow dung) was processed into compost, while slurry and waste water were used to make liquid fertilizer. This compost was used as a component of planting media in horticultural crops and potted plants production. We evaluated the toxicity (phytochemical and ecotoxicological) test of compost by using germination index (GI). Vigna radiata seeds are sown on filter paper dampened with compost extract for different times. GI was calculated by relative germination (G) and relative radical length (L). The germination index (GI) = G / G0 x L / L0 x 100, where G0 and L0 are values obtained by distilled water as a control. The results showed that germination bioassay and radical length using aquades and groundwater in Tekelan village did not affect the radical length of Vigna radiata . Technically, groundwater in Tekelan village can be used as a germination bioassay control. The cow dung compost substrate appears to have a major influence on compost toxicity. Mature compost was produced on day 14 with a GI of 104.03.
Method for extracting metals from aqueous waste streams for long term storage
Chaiko, D.J.
1995-03-07
A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.
Method for extracting metals from aqueous waste streams for long term storage
Chaiko, D.J.
1993-01-01
A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.
Method for extracting metals from aqueous waste streams for long term storage
Chaiko, David J.
1995-01-01
A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.
Process for removing sulfate anions from waste water
Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.
1997-01-01
A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.
Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining.
Zeng, Xianlai; Mathews, John A; Li, Jinhui
2018-04-17
Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they promise to have positive impact on waste disposal and mining activities globally, as the circular economy comes to displace linear economic pathways.
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.
2001-01-01
A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Depletion on extraction of ores or minerals from... Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or residue of prior... section 613(c)(3) (relating to extraction of ores or minerals from the ground). Thus, an acquiring...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Depletion on extraction of ores or minerals from...) Insolvency Reorganizations § 1.381(c)(18)-1 Depletion on extraction of ores or minerals from the waste or... the applicability of section 613(c)(3) (relating to extraction of ores or minerals from the ground...
Fürhacker, M; Pressl, A; Allabashi, R
2003-09-01
Mixtures of different amines including tertiary amines (methyldiethanolamine, MDEA) are commonly used for the removal of CO2 from gas mixtures or in gas sweetening processes for the extraction of CO2 and H2S. The absorber solutions used can be released into the industrial waste water due to continuous substitution of degraded MDEA, periodically cleaning processes or an accidental spill. In this study, the aerobic biodegradability of MDEA was investigated in a standardised batch test and a continuous flow experiment (40 l/d). The results of the batch test indicated that the MDEA-solution was non-biodegradable during the test period of 28 days, whereas the continuous flow experiments showed biodegradation of more than 96% based on TOC-measurements. This was probably due to the adaptation of the microorganisms to this particular waste water contamination during continuous flow experiment.
Dieng, Hamady; Satho, Tomomitsu; Abang, Fatimah; Meli, Nur Khairatun Khadijah Binti; Ghani, Idris A; Nolasco-Hipolito, Cirilo; Hakim, Hafijah; Miake, Fumio; Ahmad, Abu Hassan; Noor, Sabina; Zuharah, Wan Fatma; Ahmad, Hamdan; Majid, Abdul Hafiz A; Morales Vargas, Ronald E; Morales, Noppawan P; Attrapadung, Siriluck; Noweg, Gabriel Tonga
2017-05-01
In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent. Copyright © 2017 Elsevier B.V. All rights reserved.
Chemical and biological extraction of metals present in E waste: A hybrid technology.
Pant, Deepak; Joshi, Deepika; Upreti, Manoj K; Kotnala, Ravindra K
2012-05-01
Management of metal pollution associated with E-waste is widespread across the globe. Currently used techniques for the extraction of metals from E-waste by using either chemical or biological leaching have their own limitations. Chemical leaching is much rapid and efficient but has its own environmental consequences, even the future prospects of associated nanoremediation are also uncertain. Biological leaching on the other hand is comparatively a cost effective technique but at the same moment it is time consuming and the complete recovery of the metal, alone by biological leaching is not possible in most of the cases. The current review addresses the individual issues related to chemical and biological extraction techniques and proposes a hybrid-methodology which incorporates both, along with safer chemicals and compatible microbes for better and efficient extraction of metals from the E-waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao
2014-08-15
High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.
Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri
2013-07-01
A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less
Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar
2016-12-01
In the UK, the Norway lobster ( Nephrops norvegicus ) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba , represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in the Common Fisheries Policy.
Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar
2016-01-01
In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in the Common Fisheries Policy. PMID:27916863
Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.
Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy
2009-08-15
The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.
Izmirlioglu, Gulten; Demirci, Ali
2015-10-15
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO₄·7H₂O showed significantly positive effects, whereas KH₂PO₄ and CaCl₂·2H₂O had a significantly negative effect (p-value<0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO₄·7H₂O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production.
Catalina, Mercedes; Cot, Jaume; Borras, Miquel; de Lapuente, Joaquín; González, Javier; Balu, Alina M.; Luque, Rafael
2013-01-01
The biomedical properties of a porous bio-collagenic polymer extracted from leather industrial waste residues have been investigated in wound healing and tissue regeneration in induced wounds in rats. Application of the pure undiluted bio-collagen to induced wounds in rats dramatically improved its healing after 7 days in terms of collagen production and wound filling as well as in the migration and differentiation of keratinocytes. The formulation tested was found to be three times more effective than the commercial reference product Catrix® (Heal Progress (HP): 8 ± 1.55 vs. 2.33 ± 0.52, p < 0.001; Formation of Collagen (FC): 7.5 ± 1.05 vs. 2.17 ± 0.75, p < 0.001; Regeneration of Epidermis (RE): 13.33 ± 5.11 vs. 5 ± 5.48, p < 0.05). PMID:28809231
Unuofin, F O; Mnkeni, P N S
2014-11-01
Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung-paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg(-1) dry weight of cow dung-waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg(-1) resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg(-1) feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered. Copyright © 2014. Published by Elsevier Ltd.
Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei
2012-09-21
In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.
Burtscher, Carola; Fall, Papa A.; Wilderer, Peter A.; Wuertz, Stefan
1999-01-01
A nucleic acid-based method for the detection of the bacterial pathogens Salmonella spp. and Listeria monocytogenes in biological waste was developed. The detection limits were less than 10 cells per ml of biological waste. The method does not include a phenol extraction step and can be easily performed in 1 to 2 days. PMID:10224026
Development of new composite biosorbents from olive pomace wastes
NASA Astrophysics Data System (ADS)
Pagnanelli, Francesca; Viggi, Carolina Cruz; Toro, Luigi
2010-06-01
In this study olive pomace was used as a source of binding substances for the development of composite biosorbents to be used in heavy metal removal from aqueous solutions. The aim was to obtain biosorbent material with an increased concentration of binding sites. The effects of two different extraction procedures (one using only methanol and the other one hexane followed by methanol) on the binding properties of olive pomace were tested by potentiometric titrations and batch biosorption tests for copper and cadmium removal. Titration modelling evidenced that both kinds of extractions generated a solid with a reduced amount of protonatable sites. Biosorption tests were organized according to full factorial designs. Analysis of variance denoted that both kinds of extractions determined a statistically significant negative effect on metal biosorption. In the case of cadmium extractions also determined a significant decrease of selectivity with respect to olive pomace. When the acid-base and binding properties of the substances extracted were determined, they were adsorbed onto a synthetic resin (octadecylsilane) and calcium alginate beads. In this way two kinds of composite biosorbents have been obtained both having an increased concentration of binding substances with respect to native olive pomace, also working more efficiently in metal removal.
Hayes, Maria; Carney, Brian; Slater, John; Brück, Wolfram
2008-07-01
Legal restrictions, high costs and environmental problems regarding the disposal of marine processing wastes have led to amplified interest in biotechnology research concerning the identification and extraction of additional high grade, low-volume by-products produced from shellfish waste treatments. Shellfish waste consisting of crustacean exoskeletons is currently the main source of biomass for chitin production. Chitin is a polysaccharide composed of N-acetyl-D-glucosamine units and the multidimensional utilization of chitin derivatives including chitosan, a deacetylated derivative of chitin, is due to a number of characteristics including: their polyelectrolyte and cationic nature, the presence of reactive groups, high adsorption capacities, bacteriostatic and fungistatic influences, making them very versatile biomolecules. Part A of this review aims to consolidate useful information concerning the methods used to extract and characterize chitin, chitosan and glucosamine obtained through industrial, microbial and enzymatic hydrolysis of shellfish waste.
Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro
2013-06-15
The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.
Rodgers, Kiri J.; Hursthouse, Andrew; Cuthbert, Simon
2015-01-01
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes. PMID:26393631
Rodgers, Kiri J; Hursthouse, Andrew; Cuthbert, Simon
2015-09-18
As waste management regulations become more stringent, yet demand for resources continues to increase, there is a pressing need for innovative management techniques and more sophisticated supporting analysis techniques. Sequential extraction (SE) analysis, a technique previously applied to soils and sediments, offers the potential to gain a better understanding of the composition of solid wastes. SE attempts to classify potentially toxic elements (PTEs) by their associations with phases or fractions in waste, with the aim of improving resource use and reducing negative environmental impacts. In this review we explain how SE can be applied to steel wastes. These present challenges due to differences in sample characteristics compared with materials to which SE has been traditionally applied, specifically chemical composition, particle size and pH buffering capacity, which are critical when identifying a suitable SE method. We highlight the importance of delineating iron-rich phases, and find that the commonly applied BCR (The community Bureau of reference) extraction method is problematic due to difficulties with zinc speciation (a critical steel waste constituent), hence a substantially modified SEP is necessary to deal with particular characteristics of steel wastes. Successful development of SE for steel wastes could have wider implications, e.g., for the sustainable management of fly ash and mining wastes.
ENGINEERING BULLETIN: IN SITU STEAM EXTRACTION TREATMENT
In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. Waste constituents are removed in situ by the technology and are not actually treated. The use of steam enhances the stripping of...
Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2002-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2001-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Genotoxicity reduction in bagasse waste of sugar industry by earthworm technology.
Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal
2016-01-01
The aim of the present study was to assess the genotoxicity reduction in post vermicompost feed mixtures of bagasse (B) waste using earthworm Eisenia fetida. The genotoxicity of bagasse waste was determined by using Allium cepa root chromosomal aberration assay. Bagasse was amended with cattle dung in different proportions [0:100 (B0) 25:75 (B25), 50:50 (B50), 75:25 (B75) and 100:0 (B100)] on dry weight basis. Genotoxic effects of initial and post vermicompost bagasse extracts were analysed on the root tips cells of Allium cepa. Root length and mitotic index (MI) was found to be increased in post vermicompost extracts when compared to initial bagasse waste. The maximum percent increase of root length was observed in the B50 bagasse extract (96.60 %) and the maximum MI was observed in B100 mixture (14.20 ± 0.60) 6 h treatment which was similar to the control. Genotoxicity analysis of post vermicompost extracts of bagasse revealed a 21-44 % decline in the aberration frequencies and the maximum reduction was found in B75 extract (44.50 %). The increase in root length and mitotic index, as well as decrease in chromosomal aberrations indicates that E. fetida has the ability to reduce the genotoxicity of the bagasse waste.
NASA Astrophysics Data System (ADS)
Hans, Kerstin M.-C.; Gianella, Michele; Sigrist, Markus W.
2012-03-01
On-site drug tests have gained importance, e.g., for protecting the society from impaired drivers. Since today's drug tests are majorly only positive/negative, there is a great need for a reliable, portable and preferentially quantitative drug test. In the project IrSens we aim to bridge this gap with the development of an optical sensor platform based on infrared spectroscopy and focus on cocaine detection in saliva. We combine a one-step extraction method, a sample drying technique and infrared attenuated total reflection (ATR) spectroscopy. As a first step we have developed an extraction technique that allows us to extract cocaine from saliva to an almost infrared-transparent solvent and to record ATR spectra with a commercially available Fourier Transform-infrared spectrometer. To the best of our knowledge this is the first time that such a simple and easy-to-use one-step extraction method is used to transfer cocaine from saliva into an organic solvent and detect it quantitatively. With this new method we are able to reach a current limit of detection around 10 μg/ml. This new extraction method could also be applied to waste water monitoring and controlling caffeine content in beverages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenkova, Eva; Matisova, Eva; Slobodnik, Jaroslav
2006-07-01
Organic solvent and water extracts of fly ash from a Milan (Italy) municipal solid waste incinerator (MSWI) were analyzed by large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) with programmable temperature vaporizer (PTV). Using injection volumes of 10-100 {mu}l, typically over a hundred compounds were detected in organic solvent extracts and ca. 35% of them could be tentatively identified from their electron impact ionization mass spectra. A protocol for the determination of the maximum amount of a potential environmental pollutant available for leaching (availability test) was developed for four selected target compounds: pentachlorobenzene (PeCB), hexachlorobenzene (HxCB), o-terphenyl (o-TPH) and m-terphenyl (m-TPH). Keymore » parameters, extraction time and liquid-to-solid ratio (L/S), were studied in more detail. Recoveries of PeCB, HxCB and o-TPH spiked into the fly ash samples at two concentration levels ranged from 38% to 53% for freshly spiked and from 14% to 40% for 40-day aged fly ash. Recoveries of m-TPH were 8% to 11% from freshly spiked and less than 3% from aged spiked fly ash. The native amounts in Milan MSWI fly ash, determined in an interlaboratory exercise using the developed protocol, were 31 ng/g PeCB, 34 ng/g HxCB, 72 ng/g o-TPH and 4.4 ng/g m-TPH. A separate methodology was developed for the determination of compounds extracted from fly ash by water (leaching test). Following 8-h sonication at L/S 20, the leached amounts of PeCB, HxCB and o-TPH were 1.1, 3.1 and 6.0 ng/g fly ash, respectively.« less
Daud, Mohd Nazrul Hisham; Fatanah, Dian Nashiela; Abdullah, Noriham; Ahmad, Rohaya
2017-10-01
Artocarpus heterophyllus J33 (AhJ33) fruit is a popular and valuable jackfruit variety in Malaysia. For export, the pulp has to be separated from the skin which is usually discarded. Hence, the conversion of the fruit waste to food products with economic value needs to be explored utilizing the waste to wealth concept. This paper reports the evaluation of antioxidant potential of AhJ33 fruit waste (rind and rachis) extracts from three different extraction methods (maceration, percolation and Soxhlet). The antioxidant potential was assessed by DPPH radical scavenging, FRAP and β-carotene bleaching assays. The total phenolic and total flavonoid contents were estimated by TPC and the TFC assays. For both rind and rachis, the maceration technique yielded extracts with the strongest antioxidant activities which correlated with the highest TPC and TFC values. TOF LCMS analyses identified two phenolic acids as the major constituents responsible for the antioxidant activity of the active extracts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of selected municipal solid waste components to estimate their biodegradability.
Bayard, R; Benbelkacem, H; Gourdon, R; Buffière, P
2018-06-15
Biological treatments of Residual Municipal Solid Waste (RMSW) allow to divert biodegradable materials from landfilling and recover valuable alternative resources. The biodegradability of the waste components needs however to be assessed in order to design the bioprocesses properly. The present study investigated complementary approaches to aerobic and anaerobic biotests for a more rapid evaluation. A representative sample of residual MSW was collected from a Mechanical Biological Treatment (MBT) plant and sorted out into 13 fractions according to the French standard procedure MODECOM™. The different fractions were analyzed for organic matter content, leaching behavior, contents in biochemical constituents (determined by Van Soest's acid detergent fiber method), Biochemical Oxygen Demand (BOD) and Bio-Methane Potential (BMP). Experimental data were statistically treated by Principal Components Analysis (PCA). Cumulative oxygen consumption from BOD tests and cumulative methane production from BMP tests were found to be positively correlated in all waste fractions. No correlation was observed between the results from BOD or BMP bioassays and the contents in cellulose-like, hemicelluloses-like or labile organic compounds. No correlation was observed either with the results from leaching tests (Soluble COD). The contents in lignin-like compounds, evaluated as the non-extracted RES fraction in Van Soest's method, was found however to impact negatively the biodegradability assessed by BOD or BMP tests. Since cellulose, hemicelluloses and lignin are the polymers responsible for the structuration of lignocellulosic complexes, it was concluded that the structural organization of the organic matter in the different waste fractions was more determinant on biodegradability than the respective contents in individual biopolymers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...
2016-02-06
Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene
Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less
Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E
2012-09-01
An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
NASA Astrophysics Data System (ADS)
1980-11-01
The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.
Laboratory-scale integrated ARP filter test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-03-01
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less
NASA Astrophysics Data System (ADS)
Alamsjah, Mochammad Amin; Abdillah, Annur Ahadi; Mustikawati, Hutami; Atari, Suci Dwi Purnawa
2017-09-01
Biodiesel has several advantages over solar. Compared to solar, biodiesel has more eco-friendly characteristic and produces lower greenhouse gas emissions. Biodiesel that is made from animal fats can be produced from fish oil, while other alternative sources from vegetable oils are seaweed Kappaphycus alvarezii and Gracilaria sp. Waste tuna oil (Thunnus sp.) in Indonesia is commonly a side product of tuna canning industries known as tuna precook oil; on the other hand, seaweed Gracilaria sp. and Kappaphycus alvarezii are commonly found in Indonesia's seas. Seaweed waste that was used in the present study was 100 kg and in wet condition, and the waste oil was 10 liter. The seaweed was extracted with soxhletation method that used n-hexane as the solvent. To produce biodiesel, trans esterification was performed on the seaweed oil that was obtained from the soxhletation process and waste tuna oil. Biodiesel manufactured from seaweed K. alvarezii obtained the best score in flash point, freezing point, and viscosity test. However, according to level of manufacturing efficiency, biodiesel from waste tuna oil is more efficient and relatively easier compared to biodiesel from waste K. alvarezii and Gracilaria sp.
Zhang, Zhong; Ren, Fei; Zhang, Pan
2012-11-01
A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.
Baba, Alper; Kaya, Abidin
2004-11-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions, but also with the disposal of ash residues. In particular, use of low quality coals with high ash content results in huge quantities of both fly and bottom ashes to be disposed of. A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly and bottom ashes are in contact with water. In this study, fly and bottom ash samples obtained from thermal power plants, namely Yenikoy, Kemerkoy and Yatagan, located at the southwestern coast of Turkey, were subjected to toxicity tests such as the extraction (EP) and toxicity characteristic leaching (TCLP) procedures of the US Environmental Protection Agency (USEPA) and the so-called 'Method A' extraction procedure of the American Society of Testing and Material (ASTM). The geochemical composition of ash samples showed variations depending on the coal burned in the plants. Furthermore, the EP, TCLP and ASTM toxicity tests showed variations such that the ash samples were classified as 'toxic waste' based on EP and TCLP results whereas they were classified as 'non-toxic' based on ASTM results, indicating test results are pH dependent. When the extraction results were compared with the chemical composition of water samples obtained in the vicinity of the thermal power plants, it was found that the results obtained using the ASTM procedure cannot be used to predict subsurface contamination whereas the EP and TCLP procedures can be used.
Gonzales, Gerard Bryan; Raes, Katleen; Coelus, Sofie; Struijs, Karin; Smagghe, Guy; Van Camp, John
2014-01-03
In this paper, a strategy for the detection and structural elucidation of flavonoid glycosides from a complex matrix in a single chromatographic run using U(H)PLC-ESI-IMS-HDMS/MS(E) is presented. This system operates using alternative low and high energy voltages that is able to perform the task of conventional MS/MS in a data-independent way without re-injection of the sample, which saves analytical time. Also, ion mobility separation (IMS) was employed as an additional separation technique for compounds that are co-eluting after U(H)PLC separation. First, the fragmentation of flavonoid standards were analyzed and criteria was set for structural elucidation of flavonoids in a plant extract. Based on retention times, UV spectra, exact mass, and MS fragment characteristics, such as abundances of daughter ions and the presence of radical ions ([Y0-H](-)), a total 19 flavonoid glycosides, of which 8 non-acylated and 11 acylated, were detected and structurally characterized in a cauliflower waste extract. Kaempferol and quercetin were the main aglycones detected while sinapic and ferulic acid were the main phenolic acids. C-glycosides were also found although their structure could not be elucidated. The proposed method can be used as a rapid screening test for flavonoid identification and for routine analysis of plant extracts, such as these derived from cauliflower waste. The study also confirms that agroindustrial wastes, such as cauliflower leaves, could be seen as a valuable source of different bioactive phenolic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization
Izmirlioglu, Gulten; Demirci, Ali
2015-01-01
Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO4·7H2O showed significantly positive effects, whereas KH2PO4 and CaCl2·2H2O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO4·7H2O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production. PMID:26501261
Chiang, Kung-Yuh; Tsai, Chen-Chiu; Wang, Kuen-Sheng
2009-01-01
This study investigates four extraction methods (water extraction, toxicity characteristics leaching procedure (TCLP), modified TCLP with pH control, and sequential chemical extraction (SCE)), each representing different liquid-to-solid (L/S) ratios, pH controls, and types of leachant, and their effects on the leaching concentration of heavy metals in municipal solid waste (MSW) incinerator air pollution control (APC) residue. The results indicated that for extraction with distilled water, the heavy metal leaching concentration (mg/l) decreased with L/S ratio, but the amount of heavy metal released (AHMR), defined as the leached amount of heavy metals to the weight of the tested sample (mg/kg), increased with an increase in L/S ratio, in the range of 2-100. The results also showed that both the leaching concentration and the amount of released metals were strongly pH-dependent in the TCLP and modified TCLP tests. In the case of pHs lower than 6.5, the leaching concentrations of Cd, Pb, Cu, Zn, and Cr decreased with an increase in pH. As pH increased higher than 6.5, Cr and Zn were almost insoluble. Meanwhile, Cd and Cu also showed a similar trend but at pHs of 8.5 and 7.5, respectively. Due to the nature of amphoteric elements, in the case of pHs higher than 7, the Pb leaching concentration increased with increasing pH. In modified TCLP tests with the pH value controlled at the same level as in the SCE test, the heavy metal speciation approached the extractable carbonate bound fraction by the SCE. Both amounts of targeted metals leached from the SCE and modified TCLP tests were much higher than those for the regular TCLP and water extraction tests.
Process for recovering actinide values
Horwitz, E. Philip; Mason, George W.
1980-01-01
A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.
Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J
2009-03-15
Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.
Measurement of actinides and strontium-90 in high activity waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.L. III; Nelson, M.R.
1994-08-01
The reliable measurement of trace radionuclides in high activity waste is important to support waste processing activities at SRS (F and H Area Waste Tanks, Extended Sludge Processing (ESP) and In-Tank precipitation (ITP) processing). Separation techniques are needed to remove high levels of gamma activity and alpha/beta interferences prior to analytical measurement. Using new extraction chromatographic resins from EiChrom Industries, Inc., the SRS Central Laboratory has developed new high speed separation methods that enable measurement of neptunium, thorium, uranium, plutonium, americium and strontium-90 in high activity waste solutions. Small particle size resin and applied vacuum are used to reduce analysismore » times and enhance column performance. Extraction chromatographic resins are easy to use and eliminate the generation of contaminated liquid organic waste.« less
Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.
Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik
2013-03-01
Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.
Federal Register Notice for the Mining Waste Exclusion Final Rule, September 1, 1989
Final rule responding to a federal Appeals Court directive to narrow the exclusion of solid waste from the extraction, beneficiation, and processing of ores and minerals from regulation as hazardous waste as it applies to mineral processing wastes.
Development of demand forecasting tool for natural resources recouping from municipal solid waste.
Zaman, Atiq Uz; Lehmann, Steffen
2013-10-01
Sustainable waste management requires an integrated planning and design strategy for reliable forecasting of waste generation, collection, recycling, treatment and disposal for the successful development of future residential precincts. The success of the future development and management of waste relies to a high extent on the accuracy of the prediction and on a comprehensive understanding of the overall waste management systems. This study defies the traditional concepts of waste, in which waste was considered as the last phase of production and services, by putting forward the new concept of waste as an intermediate phase of production and services. The study aims to develop a demand forecasting tool called 'zero waste index' (ZWI) for measuring the natural resources recouped from municipal solid waste. The ZWI (ZWI demand forecasting tool) quantifies the amount of virgin materials recovered from solid waste and subsequently reduces extraction of natural resources. In addition, the tool estimates the potential amount of energy, water and emissions avoided or saved by the improved waste management system. The ZWI is tested in a case study of waste management systems in two developed cities: Adelaide (Australia) and Stockholm (Sweden). The ZWI of waste management systems in Adelaide and Stockholm is 0.33 and 0.17 respectively. The study also enumerates per capita energy savings of 2.9 GJ and 2.83 GJ, greenhouse gas emissions reductions of 0.39 tonnes (CO2e) and 0.33 tonnes (CO2e), as well as water savings of 2.8 kL and 0.92 kL in Adelaide and Stockholm respectively.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Mining wastes. 6.7 Section 6... DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.7 Mining wastes. (a) Solid waste from mining includes but is not limited to mining overburden, mining byproducts, solid waste from the extraction...
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants
NASA Astrophysics Data System (ADS)
Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.
2017-01-01
The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.
Characterization of essential oil recovered from fennel horticultural wastes.
Cautela, Domenico; Vella, Filomena Monica; Castaldo, Domenico; Laratta, Bruna
2018-05-30
Fennel crop has been traditionally used as spice in cooking and fragrances, and in folk medicine for its spectrum of useful properties. Mediterranean is the elective natural cultivation area for this plant with Italy being a leader producer. A limit of this production is due to the high amount of wastes derived still rich of phytochemicals, which are usually underused. Hence, the extraction and characterization of essential oil from residues of fennel horticultural market was investigated to understand the potential profit of their recycling. Forty-eight compounds resulted for fennel oil waste, analysed by GC-FID-MS, with the most abundant among components was anethole. Other constituents contributing to fennel flavour were the monoterpenes limonene and nerol. The exploitation of this oil as a good source of bioactive compounds was assessed by means of its antioxidant power measured with DPPH test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Takashi, E-mail: tyama@nies.go.jp; Kida, Akiko; Noma, Yukio
Highlights: • A high sensitive and selective testing method for asbestos in treated materials of asbestos containing wastes was developed. • Asbestos can be determined at a limits are a few million fibers per gram and a few μg g{sup −1}. • High temperature melting treatment samples were determined by this method. Asbestos fiber concentration were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup 6} g{sup −1}. - Abstract: Appropriate treatment of asbestos-containing wastes is a significant problem. In Japan, the inertization of asbestos-containing wastes based on new treatment processes approvedmore » by the Minister of the Environment is promoted. A highly sensitive method for testing asbestos fibers in inertized materials is required so that these processes can be approved. We developed a method in which fibers from milled treated materials are extracted in water by shaking, and are counted and identified by transmission electron microscopy. Evaluation of this method by using asbestos standards and simulated slag samples confirmed that the quantitation limits are a few million fibers per gram and a few μg/g in a sample of 50 mg per filter. We used this method to assay asbestos fibers in slag samples produced by high-temperature melting of asbestos-containing wastes. Fiber concentrations were below the quantitation limit in all samples, and total fiber concentrations were determined as 47–170 × 10{sup −6} f/g. Because the evaluation of treated materials by TEM is difficult owing to the limited amount of sample observable, this testing method should be used in conjunction with bulk analytical methods for sure evaluation of treated materials.« less
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; ...
2014-12-01
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
Challenges and opportunities associated with waste management in India
Kumar, Sunil; Smith, Stephen R.; Fowler, Geoff; Velis, Costas; Kumar, S. Jyoti; Arya, Shashi; Rena; Kumar, Rakesh
2017-01-01
India faces major environmental challenges associated with waste generation and inadequate waste collection, transport, treatment and disposal. Current systems in India cannot cope with the volumes of waste generated by an increasing urban population, and this impacts on the environment and public health. The challenges and barriers are significant, but so are the opportunities. This paper reports on an international seminar on ‘Sustainable solid waste management for cities: opportunities in South Asian Association for Regional Cooperation (SAARC) countries’ organized by the Council of Scientific and Industrial Research-National Environmental Engineering Research Institute and the Royal Society. A priority is to move from reliance on waste dumps that offer no environmental protection, to waste management systems that retain useful resources within the economy. Waste segregation at source and use of specialized waste processing facilities to separate recyclable materials has a key role. Disposal of residual waste after extraction of material resources needs engineered landfill sites and/or investment in waste-to-energy facilities. The potential for energy generation from landfill via methane extraction or thermal treatment is a major opportunity, but a key barrier is the shortage of qualified engineers and environmental professionals with the experience to deliver improved waste management systems in India. PMID:28405362
Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Hartmann, T.
2006-07-01
To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less
Anawar, Hossain Md
2015-08-01
The oxidative dissolution of sulfidic minerals releases the extremely acidic leachate, sulfate and potentially toxic elements e.g., As, Ag, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Th, U, Zn, etc. from different mine tailings and waste dumps. For the sustainable rehabilitation and disposal of mining waste, the sources and mechanisms of contaminant generation, fate and transport of contaminants should be clearly understood. Therefore, this study has provided a critical review on (1) recent insights in mechanisms of oxidation of sulfidic minerals, (2) environmental contamination by mining waste, and (3) remediation and rehabilitation techniques, and (4) then developed the GEMTEC conceptual model/guide [(bio)-geochemistry-mine type-mineralogy- geological texture-ore extraction process-climatic knowledge)] to provide the new scientific approach and knowledge for remediation of mining wastes and acid mine drainage. This study has suggested the pre-mining geological, geochemical, mineralogical and microtextural characterization of different mineral deposits, and post-mining studies of ore extraction processes, physical, geochemical, mineralogical and microbial reactions, natural attenuation and effect of climate change for sustainable rehabilitation of mining waste. All components of this model should be considered for effective and integrated management of mining waste and acid mine drainage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nutrient digestibility of vegetables waste flour on male quail (Coturnix coturnix japonica)
NASA Astrophysics Data System (ADS)
Pramono, A.; Primadhani, M. S.; Swastike, W.; Sutrisno, J.
2018-03-01
The aim of this research is to determine the nutrient digestibility of vegetables waste flour on of male quail. Four hundred male quails were divided into four groups with five replications. The experiment is Completely Randomized Design and the data were analyzed by analyses of variants. The experimental diets were P0 = basal diet, P1 = 97% basal diet + 3% vegetables waste flour, P2 = 94% basal diet + 6% vegetables waste flour, and P3 = 91% basal diet + 9% vegetables waste flour. The observed variables were the digestibility of dry matter, crude protein and extract ether. Result showed that of the addition of vegetable waste flour in the diet had no effect on crude protein digestibility (P>0.05), however shown significant effect on dry matter (P <0.01) and extract ether (P <0.01) digestibility.
Bio-processing of solid wastes and secondary resources for metal extraction - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007
2012-01-15
Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less
Extraction of heavy metals from MSW incinerator fly ash using saponins.
Hong, K J; Tokunaga, S; Ishigami, Y; Kajiuchi, T
2000-08-01
An extraction process with saponins was evaluated for removing heavy metals from MSW (municipal solid waste) incinerator fly ashes. Two different fly ashes, A and B, were treated on a laboratory scale with three triterpene-glycoside type of saponins, M, Q, and T, in the pH range 4-9. The results were compared with those of the HCI and EDTA treatment. The treatment with saponins extracted 20-45% of Cr from the fly ashes. Saponins were also effective in extracting Cu from fly ash A attaining 50-60% extraction. Saponin T extracted 100% of Pb from fly ash A at pH around 4. The extraction of Zn with the saponin treatment was similar to that of the HCl treatment. Further, Cr, Cu, Pb, and Zn were fractionated by sequential extraction to investigate the effect of saponins on each fraction. Extraction behavior of other elements during the saponin treatment was also studied. The leaching test on the residues received after the saponin treatment showed that the fly ashes were successfully detoxified to meet the landfilling guideline.
A study was initiated to determine the accuracy with which the Extraction Procedures (EP), employed in the regulations promulgated under Section 3001 of the Resource Conservation and Recovery Act (40 CFR 26.124), simulates the leaching an industrial waste would undergo when codis...
Moschona, Alexandra; Liakopoulou-Kyriakides, Maria
2018-04-23
Grapes (Vitis vinifera) are produced in large amounts worldwide and mostly are used for winemaking. Their untreated wastes are rich in valuable secondary metabolites, such as phenolics. Thus, in this study, white and red wine wastes (Malagouzia and Syrah variety) were investigated for their added value phenolics, which were analysed by high performance liquid chromatography (HPLC) and electrospray ionisation-mass spectrometry (ESI/MS) and subsequently encapsulated in several polymers. Extracts from all wastes gave high amounts of total phenolics (13 ± 2.72-22 ± 2.69 mg g -1 ) and possessed high antioxidant activity (67-97%). In addition to their significant antibacterial activity against gram-negative and gram-positive bacteria, interesting results were also obtained from their anti-inflammatory and antiplatelet activity, in vitro. Encapsulation of the extracts was selective, leaving out most of sugars and other organic compounds when alginate-chitosan was used. Encapsulation efficiency recorded for all extracts ranged from 55% to 79%. Release studies were also performed in several solutions aiming in their commercial use in food and pharmaceutical industries.
Recent trends in biological extraction of chitin from marine shell wastes: a review.
Kaur, Surinder; Dhillon, Gurpreet Singh
2015-03-01
The natural biopolymer chitin and its deacetylated product chitosan are widely used in innumerable applications ranging from biomedicine, pharmaceuticals, food, agriculture and personal care products to environmental sector. The abundant and renewable marine processing wastes are commercially exploited for the extraction of chitin. However, the traditional chitin extraction processes employ harsh chemicals at elevated temperatures for a prolonged time which can harm its physico-chemical properties and are also held responsible for the deterioration of environmental health. In view of this, green extraction methods are increasingly gaining popularity due to their environmentally friendly nature. The bioextraction of chitin from crustacean shell wastes has been increasingly researched at the laboratory scale. However, the bioextraction of chitin is not currently exploited to its maximum potential on the commercial level. Bioextraction of chitin is emerging as a green, cleaner, eco-friendly and economical process. Specifically in the chitin extraction, microorganisms-mediated fermentation processes are highly desirable due to easy handling, simplicity, rapidity, controllability through optimization of process parameters, ambient temperature and negligible solvent consumption, thus reducing environmental impact and costs. Although, chitin production from crustacean shell waste through biological means is still at its early stage of development, it is undergoing rapid progress in recent years and showing a promising prospect. Driven by reduced energy, wastewater or solvent, advances in biological extraction of chitin along with valuable by-products will have high economic and environmental impact.
Campuzano, Rosalinda; González-Martínez, Simón
2017-04-01
Microorganisms involved in anaerobic digestion require dissolved substrates to transport them through the cell wall to different processing units and finally to be disposed as waste, such as methane and carbon dioxide. In order to increase methane production, this work proposes to separate the soluble substances from OFMSW and analyse methane production from extracts and OFMSW. Using water as solvent, four extraction parameters were proposed: (1) Number of consecutive extractions, (2) Duration of mixing for every consecutive extraction, (3) OFMSW to water mass ratios 1:1, 1:2, and 1:3 and, (4) The influence of temperature on the extraction process. Results indicated that is possible to separate 40% of VS from OFMSW with only three consecutive extraction with mixing of 30min in every extraction using ambient temperature water. For every OFMSW to water combination, the first three consecutive extracts were analysed for biochemical methane potential test during 21days at 35°C; OFMSW was also tested as reference. Methane production from all substrates is highest during the first day and then it slowly decreases to increase again during a second stage. This was identified as diauxic behaviour. Specific methane production at day 21 increased with increasing water content of the extracts where OFMSW methane production was the lowest of all with 535NL/kgVS. These results indicate that it is feasible to rapidly produce methane from extracted substances. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.
Poojary, Mahesha M; Passamonti, Paolo
2015-12-01
The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Collins, Mary Kayla; Anctil, Annick
2017-07-01
The appropriateness of regulatory methods to characterise the toxicity of photovoltaic (PV) modules was investigated to quantify potential environmental impacts for modules disposed of in landfills. Because solar energy is perceived as a green technology, it is important to ensure that end-of-life issues will not be detrimental to solar energy's success. United States Environmental Protection Agency Method 1311, California waste extraction test, and modified versions of both were performed on a multi-crystalline silicon module and cells and a copper indium gallium diselenide (CIGS) module. Variations in metal leachate concentrations were found with changes in testing parameters. Lead concentrations from the multi-crystalline module ranged from 16.2 to 50.2 mg/L. Cadmium concentrations from the CIGS module ranged from 0.1 to 3.52 mg/L. This raises doubt that regulatory methods can adequately characterise PV modules. The results are useful for developing end-of-life procedures, which is a positive step towards avoiding an e-waste problem and continuing trends of increasing installation and cost reduction in the PV market.
Rosseto, Hélen Cássia; Toledo, Lucas de Alcântara Sica de; Francisco, Lizziane Maria Belloto de; Esposito, Elisabetta; Lim, Yunsook; Valacchi, Giuseppe; Cortesi, Rita; Bruschi, Marcos Luciano
2017-10-01
Propolis, a natural compound that can accelerate the wound healing process, is mainly used as ethanolic extract. The extractive solution may also be obtained from the propolis by-product (BP), transforming this waste material into a pharmaceutical active ingredient. Even if propolis does not show toxicity, when used as an extract over harmed skin or mucosa, the present ethanol content may be harmful to the tissue recovering, besides hindering the drug release. This study describes the development of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) as topical propolis delivery systems and the investigation of their in vitro and in vivo activities. The extracts were evaluated to guarantee their quality, and the lipid dispersions were characterized with respect to morphology (cryo-TEM), size and diffractometry (X-ray) properties. The occlusive capacity of formulations was also evaluated by an in vitro technique, which determines the occlusion factor. The drug entrapment efficiency (EE), as well as the in vitro drug release profile from the nanoparticulate systems was investigated as well. The size analysis performed through 90days was favorable to a topical administration and the polydispersity index, though not ideal in all cases due to the high content of resins and gums from the extracts, were relatively stable for the SLN. The propolis extract contributes to the occlusive potential of the formulations. The human immortalized keratinocytes presented good cell viability when tested with both extracts (propolis and BP) freely or entrapped in the systems. SLN modified with propolis material provided an acceleration of the in vivo wound healing process. Copyright © 2017 Elsevier B.V. All rights reserved.
Sobhi, Hamid Reza; Ghambarian, Mahnaz; Behbahani, Mohammad; Esrafili, Ali
2017-03-03
Herein, a simple and sensitive method was successfully developed for the extraction and quantification of acrylamide in water samples. Initially, acrylamide was derivatized through a bromination process. Subsequently, a modified hollow-fiber liquid-phase microextraction was applied for the extraction of the brominated acrylamide from a 10-ml portion of an aqueous sample. Briefly, in this method, the derivatized acrylamide (2,3-dibromopropionamide) was extracted from the aqueous sample into a thin layer of an organic solvent sustained in pores of a porous hollow fiber. Then, it was back-extracted using a small volume of organic acceptor solution (acetonitril, 25μl) located inside the lumen of the hollow fiber followed by gas chromatography-electron capture detection (GC-ECD). The optimal conditions were examined for the extraction of the analyte such as: the organic solvent: dihexyl ether+10% tri-n-octyl phosphine oxide; stirring rate: 750rpm; no salt addition and 30min extraction time. These optimal extraction conditions allowed excellent enrichment factor values for the method. Enrichment factor, detection limit (S/N=3) and dynamic linear range of 60, 2ngL -1 and 50-1000ngL -1 to be determined for the analyte. The relative standard deviations (RSD%) representing precision of the method were in the range of 2.2-5.8 based on the average of three measurements. Accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 93 to 108%. Finally, the method proved to be simple, rapid, and cost-effective for routine screen of acrylamide-contaminated highly-complicated untreated waste water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Molnar, Maja; Mendešević, Nikolina; Šubarić, Drago; Banjari, Ines; Jokić, Stela
2017-08-05
Chamomile, a well-known medicinal plant, is a rich source of bioactive compounds, among which two coumarin derivatives, umbelliferone and herniarin, are often found in its extracts. Chamomile extracts have found a different uses in cosmetic industry, as well as umbelliferone itself, which is, due to its strong absorption of UV light, usually added to sunscreens, while herniarin (7-methoxycoumarin) is also known for its biological activity. Therefore, chamomile extracts with certain herniarin and umbelliferone content could be of interest for application in pharmaceutical and cosmetic products. The aim of this study was to compare the extracts of different chamomile fractions (unprocessed chamomile flowers first class, processed chamomile flowers first class, pulvis and processing waste) and to identify the best material and method of extraction to obtain herniarin and umbelliferone. Various extraction techniques such as soxhlet, hydrodistillation, maceration and supercritical CO 2 extraction were used in this study. Umbelliferone and herniarin content was determined by high performance liquid chromatography (HPLC). The highest yield of umbelliferone (11.80 mg/100 g) and herniarin (82.79 mg/100 g) were obtained from chamomile processing waste using maceration technique with 50% aqueous ethanol solution and this extract has also proven to possess antioxidant activity (61.5% DPPH scavenging activity). This study shows a possibility of potential utilization of waste from chamomile processing applying different extraction techniques.
Biodiesel Production from Spent Coffee Grounds
NASA Astrophysics Data System (ADS)
Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš
2017-06-01
The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Micale, Caterina; Morettini, Emanuela
2015-10-15
Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh watermore » eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.« less
Mercury contamination extraction
Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY
2009-09-15
Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.
Solid-shape energy fuels from recyclable municipal solid waste and plastics
NASA Astrophysics Data System (ADS)
Gug, Jeongin
Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.
Atabani, A E; Mercimek, S M; Arvindnarayan, Sundaram; Shobana, Sutha; Kumar, Gopalakrishnan; Cadir, Mehmet; Al-Muhatseb, Ala'a H
2018-03-01
In this study, recycling of spent coffee grounds (SCG) as a potential feedstock for alternative fuel production and compounds of added value in Turkey was assessed. The average oil content was found (≈ 13% w/w). All samples (before and after extraction) were tested for scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), calorific value, surface analysis and porosity, Fourier transform infrared (FT-IR), and elemental analysis to assess their potential towards fuel properties. Elemental analysis indicated that carbon represents the highest percentages (49.59% and 46.42%, respectively), followed by nitrogen (16.7% and 15.5%), hydrogen (6.74% and 6.04%), and sulfur (0.851% and 0.561%). These results indicate that SCG can be utilized as compost, as it is rich in nitrogen. Properties of the extracted oil were examined, followed by biodiesel production. The quality of biodiesel was compared with American Society for Testing and Materials (ASTM) D6751 standards, and all the properties complied with standard specifications. The fatty acid compositions were analyzed by gas chromatography. It was observed that coffee waste methyl ester (CWME) is mainly composed of palmitic (35.8%) and arachidic (44.6%) acids, which are saturated fatty acids. The low degree of unsaturation provides an excellent oxidation stability (10.4 hr). CWME has also excellent cetane number, higher heating value, and iodine value with poor cold flow properties. The studies also investigated blending of biodiesel with Euro diesel and butanol. Following this, a remarkable improvement in cloud and pour points of biodiesel was obtained. Spent coffee grounds after oil extraction is an ideal material for garden fertilizer, feedstock for ethanol, biogas production, and as fuel pellets. The outcome of such research work produces valuable insights on the recycling importance of SCG in Turkey. Coffee is a huge industry, and coffee has been widely used due to its refreshing properties. This industry generates large quantities of waste. Therefore, recycling of spent coffee grounds for producing alternative fuels and compounds of added value is crucial. Elemental analysis indicated that coffee waste can be utilized as compost, as it is rich in nitrogen. Coffee waste after oil extraction is an ideal feedstock for ethanol and biogas production, garden fertilizer, and as fuel pellets. The low degree of unsaturation provides excellent oxidation stability. Its biodiesel has also excellent cetane number, higher heating value, and lower iodine value.
Supported liquid inorganic membranes for nuclear waste separation
Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K
2015-04-07
A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
Unmar, G; Mohee, R
2008-10-01
An assessment of the effect of the composting potential of Mater-Bi biodegradable plastic with green wastes, noted by GBIO, and degradable plastic (PDQ-H additive) with green wastes, noted by GDEG, was carried out in a lagged two-compartment compost reactor. The composting time was determined until constant mass of the composting substrates was reached. The green wastes composting process was used as control (G). After one week of composting, the biodegradable plastics disappeared completely, while 2% of the original degradable plastic still remained after about 8 weeks of composting. A net reduction in volatile solids contents of 61.8%, 56.5% and 53.2% were obtained for G, GBIO and GDEG, respectively. Compost quality was assessed in terms of nitrogen, potassium and phosphorus contents, which were found to be highest for GBIO compost. From the phytotoxicity test, it has been observed that a diluted extract of GBIO compost has produced the longest length of radicle. From the respiration test, no significant difference in the amount of carbon dioxide released by the composting of GDEG and G was observed. This study showed that the quality of the compost is not affected by the presence of the biodegradable and degradable plastics in the raw materials.
NASA Astrophysics Data System (ADS)
Johnson, Carter David
Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal stability by thermogravimetric analysis in a subsequent experiment. Overlay plots, combining individual weight loss curves, demonstrate that the experimental factors, solvent system and extraction time, produce effects on the thermal stability of the treated biomass samples. These data also indicated that the individual lignocellulosic materials had unique responses to the type of solvent used for pretreatment. Increasing extraction time had either no correlation with or a positive effect on thermal stability of the biomass samples.
Bio-processing of solid wastes and secondary resources for metal extraction - A review.
Lee, Jae-Chun; Pandey, Banshi Dhar
2012-01-01
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
Deep liquid-chromatographic purification of uranium extract from technetium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, V.; Dvoeglazov, K; Podrezova, L.
The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silicamore » gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)« less
FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; DIENER G
2011-12-29
The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less
Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran
NASA Astrophysics Data System (ADS)
Moore, F.; Esmaeili, A.
2009-04-01
Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.
Utilization of the wastes of vital activity
NASA Technical Reports Server (NTRS)
Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.
1979-01-01
The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.
Leaching properties of stabilised/solidified cement-admixtures-sewage sludges systems.
Valls, S; Vàzquez, E
2002-01-01
One of the main objectives of this work is to present an effective alternative for the final destination of sludge from urban waste water treatment plants by its use as a component of mortar or concrete. A binding and stabilizing matrix of sludge-cement and sludge-cement-coal fly-ash was investigated and the effects of various percentages of waste and binder, on the behavior of sludge in the system are presented. Assessment of the environmental quality of the final product and the consequent guarantee of its use in the building industry demand that it meets a number of requisites, one of which is that the effluents extracted by water action should be contamination-free, or at least that the concentration of contaminants should be below certain pre-set limits. For this a number of leaching tests must be carried out, such as the Netherlands Leaching Test .
NASA Astrophysics Data System (ADS)
Zakaria, Nursyahda; Zulkifli, Razauden Mohamed; Akhir, Fazrena Nadia Md; Basar, Norazah
2014-03-01
Grape has become a fast growing agricultural sector in Malaysia producing between 0.62 kg to 2.03 kg waste per vinestock. This study aims to generate useful information on anti-oxidative properties as well as polyphenolic composition of grapevine waste. Stems and leaves of Vitis vinifera cultivated in Perlis, Malaysia were extracted using methanol, ethyl acetate and petroleum ether. Ethyl acetate stems extract exhibited highest total phenolic content. While in DPPH assay, methanolic stems extract show the highest antioxidant activities. This result indicates that total phenolic content in the extracts may not contribute directly to the antioxidant activities. Thin Layer Chromatograms of all crude extracts exhibited good separation under solvent system petroleum ether-ethyl acetate (2:3) resulted in detection of resveratrol in ethyl acetate stems crude extract.
Ferrentino, Giovanna; Asaduzzaman, Md; Scampicchio, Matteo Mario
2018-02-11
The recovery of high valuable compounds from food waste is becoming a tighten issue in food processing. The large amount of non-edible residues produced by food industries causes pollution, difficulties in the management, and economic loss. The waste produced during the transformation of fruits includes a huge amount of materials such as peels, seeds, and bagasse, whose disposal usually represents a problem. Research over the past 20 years revealed that many food wastes could serve as a source of potentially valuable bioactive compounds, such as antioxidants and vitamins with increasing scientific interest thanks to their beneficial effects on human health. The challenge for the recovery of these compounds is to find the most appropriate and environment friendly extraction technique able to achieve the maximum extraction yield without compromising the stability of the extracted products. Based on this scenario, the aim of the current review is twofold. The first is to give a brief overview of the most important bioactive compounds occurring in fruit wastes. The second is to describe the pro and cons of the most up-to-dated innovative and environment friendly extraction technologies that can be an alternative to the classical solvent extraction procedures for the recovery of valuable compounds from fruit processing. Furthermore, a final section will take into account published findings on the combination of some of these technologies to increase the extracts yields of bioactives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za
2014-11-15
Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung andmore » rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.« less
Method for the recovery of actinide elements from nuclear reactor waste
Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.
1979-01-01
A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.
Leaching assessments of toxic metals in waste plasma display panel glass.
Chen, Mengjun; Jiang, Pengfei; Chen, Haiyan; Ogunseitan, Oladele A; Li, Yungui
2015-06-01
The plasma display panel (PDP) is rapidly becoming obsolete, contributing in large amounts to the electronic waste stream. In order to assess the potential for environmental pollution due to hazardous metals leached from PDP glass, standardized leaching procedures, chemical speciation assessments, and bioavailability tests were conducted. According to the Toxicity Characteristic Leaching Procedure (TCLP), arsenic in back glass was present at 4.46 ± 0.22 mg/L, close to its regulation limit of 5 mg/L. Zn is not available in the TCLP, but its TCLP leaching concentration in back glass is 102.96 ± 5.34 mg/L. This is because more than 90% of Zn is in the soluble and exchangeable and carbonate fraction. We did not detect significant levels of Ag, Ba, or Cu in the TCLP leachate, and the main fraction of Ag and Ba is residual, more than 95%, while the fraction distribution of Cu changes SEP by SEP. Ethylenediamine tetraacetic acid (EDTA)- and diethylenetriamine pentaacetic acid (DTPA)-extractable Ag, As, Ba, Cu, Zn, and Ni indicate a lower biohazards potential. These results show that, according to the EPA regulations, PDP glass may not be classified as hazardous waste because none of the metals exceeded their thresholds in PDP leachate. However, the concentrations of As and Zn should be lowered in the manufacturing process and finished product to avoid potential pollution problems. The plasma display panel is rapidly becoming obsolete because of the liquid crystal display. In this study, the leachability of heavy metals contained in the waste plasma display panel glass was first examined by standardized leaching tests, typical chemical speciation assessments, and bioavailability tests, providing fundamental data for waste PDP glass recovery, recycling, and reuse.
Bedi, Ankita; Singh, Braj Raj; Deshmukh, Sunil K; Aggarwal, Nisha; Barrow, Colin J; Adholeya, Alok
2018-05-01
In this study, an ecofriendly and economically viable waste management approach have been attempted towards the biosynthesis of agriculturally important nanoparticles from jarosite waste. Aspergillus terreus strain J4 isolated from jarosite (waste from Debari Zinc Smelter, Udaipur, India), showed good leaching efficiency along with nanoparticles (NPs) formation under ambient conditions. Fourier-transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) confirmed the formation of NPs. Energy dispersive X-ray spectroscopy (EDX analysis) showed strong signals for zinc, iron, calcium and magnesium, with these materials being leached out. TEM analysis and high resolution transmission electron microscopy (HRTEM) showed semi-quasi spherical particles having average size of 10-50nm. Thus, a novel biomethodology was developed using fungal cell-free extract for bioleaching and subsequently nanoconversion of the waste materials into nanostructured form. These biosynthesized nanoparticles were tested for their efficacy on seed emergence activity of wheat (Triticum aestivum) seeds and showed enhanced growth at concentration of 20ppm. These nanomaterials are expected to enhance plant growth properties and being targeted as additives in soil fertility and crop productivity enhancement. Copyright © 2017. Published by Elsevier B.V.
Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui
2017-08-24
E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.
Maloney, Kelly O.; Yoxtheimer, David A.
2012-01-01
The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some issues with data were uncovered during the analytical process (e.g., correct geospatial location of disposal sites and the proper reporting of end use of waste) that obfuscated the analyses; correcting these issues will help future analyses.
Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.
Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia
2011-08-15
There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd
2014-07-15
Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my; Hannan, M.A., E-mail: hannan@eng.ukm.my; Basri, Hassan
Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensormore » intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.« less
Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk
2017-01-01
The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.
Electrochemical evaluation of manganese reducers - Recovery of Mn from Zn-Mn and Zn-C battery waste
NASA Astrophysics Data System (ADS)
Sobianowska-Turek, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2014-12-01
Extraction of manganese from ores or battery waste involves the use of reductive reagents for transformation of MnO2 to Mn2+ ions. There are many reducers, both organic and inorganic, described in the literature. A series of 18 reducers has been discussed in the paper and they were classified according to standard redox potential (pE = -log ae- where pE is used to express formal electron activity and ae- is formal electron activity). The experiments of manganese extraction from paramagnetic fraction of Zn-C and Zn-Mn battery waste in the laboratory scale have been described for 3 reducers of different origin. The best result was achieved with oxalic acid (75%, with the lowest redox potential) and urea (with typical redox potential) appeared inactive. Extraction supported by hydrogen peroxide resulted in moderate yield (50%). It shows that formal thermodynamic scale is only preliminary information useful for selection of possible reducers for manganese extraction resources.
Xia, H; Matharu, A S
2017-09-21
Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.
Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo
2018-06-01
Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai
2015-05-01
In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.
Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.
Nges, Ivo Achu; Mbatia, Betty; Björnsson, Lovisa
2012-11-15
Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan
2013-01-01
Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste.
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, Eric R.; La Robina, Michael; Li, Huijun
2007-07-01
A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.R.; Aguilar, R.; Mercer, J.W.
This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with boreholemore » locations and times-of-drilling charts are included.« less
Mizushina, Yoshiyuki; Ogawa, Yoshiaki; Onodera, Takefumi; Kuriyama, Isoko; Sakamoto, Yuka; Nishikori, Shu; Kamisuki, Shinji; Sugawara, Fumio
2014-08-06
The components adsorbed onto activated charcoal following the fermentation process of the Japanese rice wine "sake" have been studied with the aim of identifying suitable applications for this industrial food waste product. The absorbed materials were effectively extracted from the charcoal, and inhibited the activity of several mammalian DNA polymerases (pols). Subsequent purification of the extract afforded tyrosol [4-(2-hydroxyethyl)phenol] as the active component, which selectively inhibited the activity of 11 mammalian pols with IC50 values in the range of 34.3-46.1 μM. In contrast, this compound did not influence the activities of plant or prokaryotic pols or any of the other DNA metabolic enzymes tested. Tyrosol suppressed both anti-inflammatory and antiallergic effects in vivo, including 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, and immunoglobulin E-induced passive cutaneous anaphylactic reaction in mice. These results suggested that this byproduct formed during the sake-brewing process could be used as an anti-inflammatory and/or antiallergic agent.
Ok, Yong Sik; Lim, Jung Eun; Moon, Deok Hyun
2011-02-01
Large amounts of oyster shells are produced as a by-product of shellfish farming in coastal regions without beneficial use options. Accordingly, this study was conducted to evaluate the potential for the use of waste oyster shells (WOS) containing a high amount of CaCO₃ to improve soil quality and to stabilize heavy metals in soil. To accomplish this, an incubation experiment was conducted to evaluate the ability of the addition of 1-5 wt% WOS to stabilize the Pb (total 1,246 mg/kg) and Cd (total 17 mg/kg) in a contaminated soil. The effectiveness of the WOS treatments was evaluated using various single extraction techniques. Soil amended with WOS was cured for 30 days complied with the Korean Standard Test method (0.1 M·HCl extraction). The Pb and Cd concentrations were less than the Korean warning and countermeasure standards following treatment with 5 wt% WOS. Moreover, the concentrations of Cd were greatly reduced in response to WOS treatment following extraction using 0.01 M·CaCl₂, which is strongly associated with phytoavailability. Furthermore, the soil pH and exchangeable Ca increased significantly in response to WOS treatment. Taken together, the results of this study indicated that WOS amendments improved soil quality and stabilized Pb and Cd in contaminated soil. However, extraction with 0.43 M·CH₃ COOH revealed that remobilization of heavy metals can occur when the soil reaches an acidic condition.
NASA Astrophysics Data System (ADS)
Vasileva, Brankica; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo
2015-04-01
Recently, a novel concept of bio-effectors has emerged to describe a group of products that are able to improve plant performance more than fertilizers. In this study, three different agro-industrial residues, i.e. brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as potential bio-effectors. A greenhouse soilless pot experiment was conducted on strawberry plants (Fragaria x ananassa var. Festival) in order to study the effect of BSG, FPR and LPR water extracts, at different concentrations, on plant growth and fruit quality. Their effect was compared with humic-like substances as a positive/reference control (Ctrl+) and with Hoagland solution as a negative control (Ctrl-). Agronomic parameters and the nutrient uptake were measured on shoots, roots and fruits. Metabolomic profiling tests were carried out on leaves, roots and fruit juices through the NMR technique. Plants treated with the FPR extract showed better vegetative growth, while plants treated with the BSG extract gave higher yield and better fruit size. Metabolomic profiling showed that fruits and roots of plants treated with FPR and LPR extracts had higher concentrations of sucrose, malate and acetate, while BSG treated plants had higher concentrations of citrate and β-glucose. In conclusion, according to the results achieved, the bio-effectors used in this study promote plant growth and fruit quality regardless of their nutritional content. Keywords: bio-effectors, agro-industrial waste, nuclear magnetic resonance (NMR), strawberry, growth promotion, fruit quality.
Polymer-based alternative method to extract bromelain from pineapple peel waste.
Novaes, Letícia Celia de Lencastre; Ebinuma, Valéria de Carvalho Santos; Mazzola, Priscila Gava; Pessoa, Adalberto
2013-01-01
Bromelain is a mixture of proteolytic enzymes present in all tissues of the pineapple (Ananas comosus Merr.), and it is known for its clinical therapeutic applications, food processing, and as a dietary supplement. The use of pineapple waste for bromelain extraction is interesting from both an environmental and a commercial point of view, because the protease has relevant clinical potential. We aimed to study the optimization of bromelain extraction from pineapple waste, using the aqueous two-phase system formed by polyethylene glycol (PEG) and poly(acrylic acid). In this work, bromelain partitioned preferentially to the top/PEG-rich phase and, in the best condition, achieved a yield of 335.27% with a purification factor of 25.78. The statistical analysis showed that all variables analyzed were significant to the process. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund
2013-05-15
Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less
Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio
2016-08-15
This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6). Copyright © 2016 Elsevier B.V. All rights reserved.
Tepe, Ozlem; Dursun, Arzu Y
2014-01-01
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.
Scaglia, Barbara; Baglieri, Andrea; Tambone, Fulvia; Gennari, Mara; Adani, Fabrizio
2016-09-01
Chlorpyrifos-methyl (CLP-m) is a widely used organophosphate insecticide that can accumulate in soil and become toxic to humans. CLP-m can be removed from soil by its solubilisation using synthetic surfactants. However, synthetic surfactants can accumulate in soil causing contamination phenomena themselves. Bio-surfactants can be used as an alternative to synthetic ones, reducing costs and environmental issues. In this work, humic acid (HA) extracted from raw biomasses, i.e. lignocelluloses (HAL) and lignocelluloses plus kitchen food waste (HALF), corresponding composts (C) (HALC and HALFC) and leonardite (HAc), were tested in comparison with commercial surfactants, i.e. SDS, Tween 20 and DHAB, to solubilize CLP-m. Results obtained indicated that only biomass-derived HA, composted biomass-derived HA, and SDS solubilized CLP-m: SDS = 0.006; HAL = 0.007; HALC = 0.009 g; HALF = 0.025; HALFC = 0.024) (g CLP-m g(-1) surfactant). Lignocelluloses HAs (HAL, HALF) solubilized CLP-m just as well as SDS while lignocellulosic plus kitchen food waste HA (HALF, HALFC) showed a three times higher CLP-m solubilisation capability. This difference was attributed to the higher concentration of alkyl-Carbon that creates strong links with CLP-m in the hydrophobic micelle-core of the surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moncalvo, Alessandro; Marinoni, Laura; Dordoni, Roberta; Duserm Garrido, Guillermo; Lavelli, Vera; Spigno, Giorgia
2016-07-01
Skin powders and aqueous alcohol extracts were obtained from waste marcs from different grape varieties (Barbera, Nebbiolo, Pinot Noir, Chardonnay, Moscato and Müller-Thurgau). Both skins and extracts were analysed for the content of chemical contaminants: ochratoxin A (OTA), biogenic amines (BIAs), pesticides and metals. OTA was detected in low concentrations in Barbera, Moscato and Nebbiolo skins, but only in Barbera and Moscato extracts. Cadaverine, putrescine, ethanolamine and ethylamine were found in extracts at very low levels, while potential allergenic amines, tyramine and histamine, were never detected. Different pesticides were present in both skins and extracts. Pb and Cd were found in trace only in the powders, and K, Ca and Mg were the most abundant elements in both skin powders and extracts. Concentrations of the different contaminants were related to fibre content or total phenolics content of powders and extracts, respectively, in order to evaluate their use in the food sector.
A contribution to improve the calculation of the acid generating potential of mining wastes.
Chopard, Aurélie; Benzaazoua, Mostafa; Bouzahzah, Hassan; Plante, Benoît; Marion, Philippe
2017-05-01
Mine wastes from sulfide-bearing ore extraction and processing are often stored at the surface of mine sites and could generate mine drainage. Prediction tests are completed to predict the water quality associated with the deposition of mining wastes. Static tests can quickly assess the acid-generating potential (AP) and the neutralization potential (NP). Whereas some studies recommend to take into account a mineral reactivity factor for the NP determination, the reactivity rates of acidifying minerals are not considered in the AP calculation. The aim of this study is to bring contribution to the improvement of the static test determination by adding kinetic factors in the AP determination. Eight sulfides (pyrite, Ni-pyrite, pyrrhotite, Ni-pyrrhotite, chalcopyrite, galena, sphalerite, arsenopyrite) and a sulfosalt (gersdorffite) were separately submitted to kinetic tests in modified weathering cells. This test was selected for its rapidity of results and for the low amount of material used, as it is somewhat difficult to obtain pure minerals samples. Five synthetic tailings were composed by mixing pure sulfides in various proportions and submitted to the same kinetic tests. The oxidation rates of synthetic tailings were compared with the weighted combined oxidation rates of individual pure sulfides. The oxidation rates of the synthetic tailings calculated from those of pure sulfides are within the same order of magnitude than those obtained through the kinetic experiments. The AP of synthetic tailings were calculated according to standard equations of the literature and compared with the new method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic study on ferulic acid production from banana stem waste via mechanical extraction
NASA Astrophysics Data System (ADS)
Zainol, Norazwina; Masngut, Nasratun; Khairi Jusup, Muhamad
2018-04-01
Banana is the tropical plants associated with lots of medicinal properties. It has been reported to be a potential source of phenolic compounds such as ferulic acid (FA). FA has excellent antioxidant properties higher than vitamin C and E. FA also have a wide range of biological activities, such as antioxidant activities and anti-microbial activities. This paper presents an experimental and kinetic study on ferulic acid (FA) production from banana stem waste (BSW) via mechanical extraction. The objective of this research is to determine the kinetic parameters in the ferulic acid production. The banana stem waste was randomly collected from the local banana plantation in Felda Lepar Hilir, Pahang. The banana stem juice was mechanically extracted by using sugarcane press machine (KR3176) and further analyzed in high performance liquid chromatography. The differential and integral method was applied to determine the kinetic parameter of the extraction process and the data obtained were fitted into the 0th, 1st and 2nd order of extraction process. Based on the results, the kinetic parameter and R2 value from were 0.05 and 0.93, respectively. It was determined that the 0th kinetic order fitted the reaction processes to best represent the mechanical extraction.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-09-12
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.
NASA Astrophysics Data System (ADS)
Abou Chehade, Lara; Chami, Ziad Al; De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo
2015-04-01
In organic farming, where nutrient management is constrained and sustainability is claimed, bio-effectors pave their way. Considering selected bio-effectors, this study integrates metabolomics to agronomy in depicting induced relevant phenomena. Extracts of three agro-industrial wastes (Lemon processing residues, Fennel processing residues and Brewer's spent grain) are being investigated as sources of bio-effectors for the third trial consequently. Corresponding individual and mixture aqueous extracts are assessed for their synergistic and/or single agronomic and qualitative performances on soil-grown tomato, compared to both a control and humic acid treatments. A metabolomic profiling of tomato fruits via the Proton Nuclear Magnetic Resonance (NMR) spectroscopy, as holistic indicator of fruit quality and extract-induced responses, complements crop productivity and organoleptic/nutritional qualitative analyses. Results are expected to show mainly an enhancement of the fruit qualitative traits, and to confirm partly the previous results of better crop productivity and metabolism enhancement. Waste-derived bio-effectors could be, accordingly, demonstrated as potential candidates of plant-enhancing substances. Keywords: bio-effectors, organic farming, agro-industrial wastes, nuclear magnetic resonance (NMR), tomato.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199
Saha, J K; Panwar, N R; Coumar, M Vassanda
2013-11-01
The present study compares the distribution and nature of heavy metals in composts from 12 cities of India, prepared from different types of processed urban solid wastes, namely mixed wastes (MWC), partially segregated wastes (PSWC), and segregated bio-wastes (BWC). Compost samples were physically fractionated by wet sieving, followed by extraction of heavy metals by dilute HCl and NaOH. Bigger particles (>0.5 mm) constituted the major fraction in all three types of composts and had a relatively lower concentration of organic matter and heavy metals, the effect being more pronounced in MWC and PSWC in which a significant portion of the heavy metals was distributed in finer size fractions. Cd, Ni, Pb, and Zn were extracted to a greater extent by acid than by alkali, the difference being greater in MWC, which contained a higher amount of mineral matter. In contrast, Cu and Cr were extracted to a greater extent by dilute alkali, particularly from BWC containing a higher amount of organic matter. Water-soluble heavy metals were generally related to the water-soluble C or total C content as well as to pH, rather than to their total contents. This study concludes that wet sieving with dilute acid can effectively reduce heavy metal load in MWC and PSWC.
Biomining-biotechnologies for extracting and recovering metals from ores and waste materials.
Johnson, D Barrie
2014-12-01
The abilities of acidophilic chemolithotrophic bacteria and archaea to accelerate the oxidative dissolution of sulfide minerals have been harnessed in the development and application of a biotechnology for extracting metals from sulfidic ores and concentrates. Biomining is currently used primarily to leach copper sulfides and as an oxidative pretreatment for refractory gold ores, though it is also used to recover other base metals, such as cobalt, nickel and zinc. Recent developments have included using acidophiles to process electronic wastes, to extract metals from oxidized ores, and to selectively recover metals from process waters and waste streams. This review describes the microorganisms and mechanisms involved in commercial biomining operations, how the technology has developed over the past 50 years, and discusses the challenges and opportunities for mineral biotechnologies in the 21st century. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.
2001-01-01
Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.
Scandium recovery from slags after oxidized nickel ore processing
NASA Astrophysics Data System (ADS)
Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir
2017-09-01
One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.
In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum
Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz
2016-01-01
Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250–500 μg mL−1, IC50 = 361 (279–438) μg mL−1, IC90 = 467 (398–615) μg mL−1). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds. PMID:27627637
Separation techniques for the clean-up of radioactive mixed waste for ICP-AES/ICP-MS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swafford, A.M.; Keller, J.M.
1993-03-17
Two separation techniques were investigated for the clean-up of typical radioactive mixed waste samples requiring elemental analysis by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) or Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). These measurements frequently involve regulatory or compliance criteria which include the determination of elements on the EPA Target Analyte List (TAL). These samples usually consist of both an aqueous phase and a solid phase which is mostly an inorganic sludge. Frequently, samples taken from the waste tanks contain high levels of uranium and thorium which can cause spectral interferences in ICP-AES or ICP-MS analysis. The removal of these interferences ismore » necessary to determine the presence of the EPA TAL elements in the sample. Two clean-up methods were studied on simulated aqueous waste samples containing the EPA TAL elements. The first method studied was a classical procedure based upon liquid-liquid extraction using tri-n- octylphosphine oxide (TOPO) dissolved in cyclohexane. The second method investigated was based on more recently developed techniques using extraction chromatography; specifically the use of a commercially available Eichrom TRU[center dot]Spec[trademark] column. Literature on these two methods indicates the efficient removal of uranium and thorium from properly prepared samples and provides considerable qualitative information on the extraction behavior of many other elements. However, there is a lack of quantitative data on the extraction behavior of elements on the EPA Target Analyte List. Experimental studies on these two methods consisted of determining whether any of the analytes were extracted by these methods and the recoveries obtained. Both methods produced similar results; the EPA target analytes were only slightly or not extracted. Advantages and disadvantages of each method were evaluated and found to be comparable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Icenhower, Jonathan P.; Um, Wooyong
Geochemical tests provide evidence for the transit of a plume of caustic waste solution through the sediment column at the Hanford 241-B and -BX Tank Farms. Direct-push samples recovered from boreholes surrounding Tanks 241-B-110 and 241-BX-102 and related waste transfer lines and diversion boxes included sediments typical of those previously recovered from other localities on the Hanford Site. The Hanford formation sediments are dominantly quartzo-feldspathic sands strewn with lithic fragments, displaying a range of particle size distributions and sorting characteristics. Some moderately well-sorted, fine-grained lithologies are interpreted as lenticular bodies irregularly dispersed in coarser-grained, more poorly sorted sediments. Tier Imore » tests conducted on the vadose zone sediments revealed an inverse correlation between moisture content and sediment size fraction (i.e., there is greater moisture content in finer-grained sediments). The Tier I tests also showed that the pore water solutions were likely sodium-rich, moderately saline, and possessed higher pH values than background (untainted) sediments. These data are characteristic of sediments that have encountered sodium-rich, saline, caustic waste solution, as documented in other reports at other suspect contamination sites around Hanford. Analyses of solutions from 1:1 water extracts reveal relatively balanced cation and anion concentrations, indicating that most of the geochemical species have been accounted for. The water extract data for affected sediments also indicate unusually high concentrations of aluminum, iron, and phosphorus. The relatively high concentrations of aluminum and iron may be the result of dissolution of secondary amorphous phases that precipitated after a reactive plume partially dissolved aluminum- and iron-bearing phases as it migrated through the sediment column. On the other hand, the presence of elevated concentrations of phosphorous may be the tell-tale signature of wastes derived from the bismuth phosphate separation process. Elements typically mobile in the geosphere, such as technetium-99, are present at either low concentrations or are below the analytical detection limit. However, we expect that the mobile elements would be present mainly along a narrow plume front, and if this front had passed deeper into the sediment profile than depths sampled, the retention of these elements would be minor. On the other hand for the direct push sediments from around BX Tank Farm, uranium-238 was detected in nearly all sediment specimens (by acid extract experiments) at concentrations above the natural crustal average (0.763 pCi/g), and we also detected the presence of several anthropogenic radioisotopes, such as cobalt-60, cesium-137, europium-154, and europium-155 (by gamma energy analysis). These data are direct confirmation of contamination of the sediments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broman, D.; Naef, C.; Rannug, U.
The load of various hydrophobic organic compounds (HOCs) on the Baltic Sea aquatic environment is considerable. This investigation samples the water area around Stockholm, of special concern since it is one of the most densely populated urban areas in the Baltic region. Stockholm also houses several power plants, municipal waste incinerators, waste water treatment plants, ports and oil terminals. The runoff from a large lake also passes through the estuarine-like archipelago of Stockholm. Due to the high particulate-water partition coefficients (K[sub p]) of most ecotoxicologically relevant HOCs, particulate matter (PM) becomes very important for occurrence and distribution in the aquaticmore » environment. This PM is the basic food source for important organisms in the benthic, pelagic and littoral parts of the aquatic ecosystem. The load of various HOCs such as petrogenic hydrocarbons (PHCs), various polynuclear aromatic compounds (PACs), and chlorinated hydrocarbons such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in association with PM in the aquatic environment of the Stockholm area is well documented. However, the ecotoxicological relevance of organic extracts of PM, including the above identified compounds and various unidentified HOCs, is not fully evaluated. To evaluate the genotoxic potential of extracts of PM, collected with sediment traps in the Stockholm water area and in the open northern Baltic, we used the Ames test on Salmonella typhimurium strain TA100, with and without a metabolizing system. After extraction and before the mutagenicity tests all PM samples were fractionated on an HPLC-system into three fractions containing aliphatic/monoaromatic-, diaromatic, (containing, e.g., PCDD/Fs and PCBs) and polyaromatic compounds (containing various PACs). The relative mutagenic potential of these fractions at the different sediment trap sampling stations are discussed and evaluated. 13 refs., 1 tab.« less
Removal of Heavy Metal Contamination from Peanut Skin Extracts by Waste Biomass Adsorbents
USDA-ARS?s Scientific Manuscript database
Each year, 3.6 million pounds of peanuts are harvested in the United States. Consequent processing, however, generates large amounts of waste biomass as only the seed portion of the fruit is consumed. The under-utilization of waste biomass is a lost economic opportunity to the industry. In particula...
Yu, Hui; Yang, Gangqiang; Sato, Minoru; Yamaguchi, Toshiyasu; Nakano, Toshiki; Xi, Yinci
2017-10-01
We investigated the potential for exploiting Stevia rebaudiana stem (SRS) waste as a source of edible plant-based antioxidants finding for the first time that the hot water extract of SRS had significantly higher antioxidant activity against fish oil oxidation than that of the leaf, despite SRS extract having lower total phenolic content, DPPH radical scavenging activity and ORAC values. To locate the major antioxidant ingredients, SRS extract was fractionated using liquid chromatography. Five phenolic compounds (primary antioxidant components in activity-containing fractions) were identified by NMR and HR-ESI-MS: vanillic acid 4-O-β-d-glucopyranoside (1), protocatechuic acid (2), caffeic acid (3), chlorogenic acid (4) and cryptochlorogenic acid (5). Further analysis showed that, among compounds 2-5, protocatechuic acid had the highest capacity to inhibit peroxides formation, but exhibited the lowest antioxidant activities in DPPH and ORAC assays. These results indicate that SRS waste can be used as strong natural antioxidant materials in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Feng; Wang, Wei
2017-08-01
The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.
Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.
Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M
2007-03-06
The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.
NASA Astrophysics Data System (ADS)
Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.
2018-02-01
Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.
40 CFR 761.272 - Chemical extraction and analysis of samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...
Onem, Ersin; Renner, Manfred; Prokein, Michael
2018-05-26
Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO 2 was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO 2 at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO 2 extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO 2 extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.
NASA Astrophysics Data System (ADS)
Yuliasmi, S.; Pardede, T. R.; Nerdy; Syahputra, H.
2017-03-01
Oil palm midrib is one of the waste generated by palm plants containing 34.89% cellulose. Cellulose has the potential to produce microcrystalline cellulose can be used as an excipient in tablet formulations by direct compression. Microcrystalline cellulose is the result of a controlled hydrolysis of alpha cellulose, so the alpha cellulose extraction process of oil palm midrib greatly affect the quality of the resulting microcrystalline cellulose. The purpose of this study was to compare the microcrystalline cellulose produced from alpha cellulose extracted from oil palm midrib by two different methods. Fisrt delignization method uses sodium hydroxide. Second method uses a mixture of nitric acid and sodium nitrite, and continued with sodium hydroxide and sodium sulfite. Microcrystalline cellulose obtained by both method was characterized separately, including organoleptic test, color reagents test, dissolution test, pH test and determination of functional groups by FTIR. The results was compared with microcrystalline cellulose which has been available on the market. The characterization results showed that microcrystalline cellulose obtained by first method has the most similar characteristics to the microcrystalline cellulose available in the market.
PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Nash, C.; Poirier, M.
2011-01-12
In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less
Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan
2013-01-01
Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689
Secondary Waste Cast Stone Waste Form Qualification Testing Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westsik, Joseph H.; Serne, R. Jeffrey
2012-09-26
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less
Dieng, Hamady; Satho, Tomomitsu; Meli, Nur Khairatun Khadijah Binti; Abang, Fatimah; Nolasco-Hipolito, Cirilo; Hakim, Hafijah; Miake, Fumio; Zuharah, Wan Fatma; Kassim, Nur Faeza A; Ab Majid, Abdul Hafiz; Morales Vargas, Ronald E; Morales, Noppawan P; Noweg, Gabriel Tonga
2018-05-01
Nectar is the staple diet of adult mosquitoes in the wild, but its availability is inconsistent and can be affected by rainfall. In urban centers, Aedes vectors commonly use man-made containers as their major habitat; however, they can colonize any items replenished by rainfall. Garbage output has increased significantly in recent years, at a time when collection frequency is reducing. Such garbage usually includes organic components, some of which are sweet and can be fed upon by other animals or become can containers for rainwater. Despite evidence that Aedes larvae can thrive in containers comprised of organic waste material, which can be produced by rodents gnawing on fruits or vegetables, and that adults can survive on sweet waste fluids, the capacity of organic waste materials to accumulate rainwater and act as egg deposition sites has not been examined. It is also unknown for how long sweet extracts can sustain the life of adult vectors. Here, we investigated the abundance of sweet leftovers at garbage sites and the rainwater retention capacity of some organic materials through a field survey and laboratory bioassays. We also examined whether sweet waste fluids impact egg hatching success and longevity of Aedes aegypti. The results of this study indicated that sweet products with leftovers are highly prevalent in garbage. When exposed to rain, food items (BAFrc, banana fruit resembling container; and BSPrc, boiled sweet potato resembling container) and the packaging of sweet foods (SMIc, sweetened condensed milk can) retained water. When provided an opportunity to oviposit in cups containing BAF extract (BAFex), BSP extract (BSPex), and SMI extract (SMIex), eggs were deposited in all media. Egg maturation in the BAFex environment resulted in similar larval eclosion success to that resulting from embryo development in a water milieu. Adults maintained on sweet waste extracts had long lifespans, although shorter than that of their sugar solution (SUS)-fed counterparts. Taken together, these results indicated that sweet waste materials are useful to dengue mosquitoes, acting both as oviposition sites and energy sources.
Pineapple peel wastes as a potential source of antioxidant compounds
NASA Astrophysics Data System (ADS)
Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani, D. G. S.; Mozef, T.
2017-03-01
Indonesia is a large pineapple (Ananas comosus) producing country. Food industries in Indonesia processed this fruit for new products and further resulted wastes of which cause an environmental problems. Approximately, one pineapple fruit total weight is 400 gr of which 60 g is of peel wastes. In order to reduce such pineapple peel wastes (PPW), processing to a valuable product using an environmentally friendly technique is indispensable. PPW contained phenolic compound, ferulic acid, and vitamin A and C as antioxidant. This study aimed to PPW using ethanol and water as well as to analyze its chemical properties. Both dried and fresh PPW were extracted using mixtures of ethanol and water with various concentrations ranging from 15 to 95% (v/v) at room temperature for 24 h. The chemical properties, such as antioxidant activity, total phenolic content (Gallic acid equivalent/GAE), and total sugar content were determined. The results showed that the range of Inhibition Concentration (IC)50 value as antioxidant activity of extracts from dried and fresh PPW were in the range of 0.8±0.05 to 1.3±0.09 mg.mL-1 and 0.25±0.01 to 0.59±0.01 mg.mL-1, respectively, with the highest antioxidant activity was in water extract. The highest of total phenolic content of 0.9 mg.g-1 GAE, was also found in water extract.
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.
2006-01-01
We report the preliminary results of sequential partial dissolutions used to characterize the geochemical distribution of selenium in stream sediments, mine wastes, and flotation-mill tailings. In general, extraction schemes are designed to extract metals associated with operationally defined solid phases. Total Se concentrations and the mineralogy of the samples are also presented. Samples were obtained from the Elizabeth, Ely, and Pike Hill mines in Vermont, the Callahan mine in Maine, and the Martha mine in New Zealand. These data are presented here with minimal interpretation or discussion. Further analysis of the data will be presented elsewhere.
Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J
2015-07-17
Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits.
Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah
2017-09-01
A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.
Development of a subsurface gas flow probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, R.P.; Ballard, S.; Barker, G.T.
1997-04-01
This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less
Optimization of squalene produced from crude palm oil waste
NASA Astrophysics Data System (ADS)
Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.
2017-01-01
Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.
Ethanolic extract of propolis for biodegradable films packaging enhanced with chitosan
NASA Astrophysics Data System (ADS)
Ismail, M. I.; Roslan, A.; Saari, N. S.; Hashim, K. H.; Kalamullah, M. R.
2017-09-01
The use of industrial organic waste which are chitosan and propolis as materials for the development of biodegradable and active packaging is economical and environmentally appealing. Processing of propolis-chitosan film can minimize waste, and produce low-cost added value biopolymer packaging films for targeted applications. This aims of this research is to develop and characterize a biodegradable films by incorporating chitosan with propolis extract to enhance the functional properties for potential use as active food packaging. The film's moisture content, solubility and antimicrobial activity increase due to increasing volume of propolis extract which are 0 ml, 1.2 ml and 2.4 ml of propolis extract. Propolis-chitosan film with 2.4 ml of propolis extract is more soluble in water compared to propolis-chitosan film with 0 ml of propolis extract and 1.2 ml of propolis extract. The higher the volume of the propolis extract used, the higher the solubility of film in the water. The moisture content also will increase when higher volume of propolis extract used. Characterization of moisture content, solubility and antimicrobial activities revealed the benefits of adding propolis extract into chitosan films and the potential of using the developed film as active food packaging.
Recovery technologies for building materials
NASA Astrophysics Data System (ADS)
Karu, Veiko; Nurme, Martin; Valgma, Ingo
2015-04-01
Mining industry provides building materials for construction. Civil engineers have settled the quality parameters for construction materials. When we produce high quality building materials from carbonate rock (limestone, dolostone), then the estimated waste share is 25% to 30%, depending on crushing principles and rock quality. The challenge is to find suitable technology for waste recovery. During international mining waste related cooperation project MIN-NOVATION (www.min-novation.eu), partners mapped possibilities for waste recovery in mining industry and pointed out good examples and case studies. One example from Estonia showed that when we produce limestone aggregate, then we produce up to 30% waste material (fines with size 0-4mm). This waste material we can see as secondary raw material for building materials. Recovery technology for this fine grained material has been achieved with CDE separation plant. During the process the plant washes out minus 63 micron material from the limestone fines. This technology allows us to use 92% of all limestone reserves. By-product from 63 microns to 4 mm we can use as filler in concrete or as fine limestone aggregate for building or building materials. MIN-NOVATION project partners also established four pilot stations to study other mineral waste recovery technologies and solutions. Main aims on this research are to find the technology for recovery of mineral wastes and usage for new by-products from mineral mining waste. Before industrial production, testing period or case studies are needed. This research is part of the study of Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
Rieuwerts, J S; Mighanetara, K; Braungardt, C B; Rollinson, G K; Pirrie, D; Azizi, F
2014-02-15
Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1-5 orders of magnitude, with a maximum concentration in mine wastes of 1.8×10(5)mgkg(-1) As and concentrations in stream sediments of up to 2.5×10(4)mgkg(-1) As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. Copyright © 2013 Elsevier B.V. All rights reserved.
Co-composting of Beef Cattle Feedlot Manure with Construction and Demolition Waste.
Hao, Xiying; Hill, Brett; Caffyn, Pam; Travis, Greg; Olson, Andrew F; Larney, Francis J; McAllister, Tim; Alexander, Trevor
2014-09-01
With increased availability of dried distillers' grains with solubles (DDGS) as cattle feed and the need to recycle organic wastes, this research investigated the feasibility of co-composting DDGS cattle feedlot manure with construction and demolition (C&D) waste. Manure was collected from cattle fed a typical western Canadian finishing diet (CK) of 860 g rolled barley ( L.) grain, 100 g barley silage, and 40 g vitamin and mineral supplement kg dry matter (DM) and from cattle fed the same diet but (DG manure) with 300 g kg DM barley grain being replaced by DDGS. The CK and DG manures were co-composted with and without C&D waste in 13 m bins. Compost materials were turned on Days 14, 37, and 64, and terminated on Day 99. Adding C&D waste led to higher compost temperatures (0.4 to 16.3°C, average 7.2°C) than manure alone. Final composts had similar total C, total N, C/N ratios, and water-extractable K, Mg, and NO content across all treatments. However, adding C&D waste increased δC, δN, water-extractable SO, and Ca contents and decreased pH, total P (TP), water-extractable C, N, and P and most volatile fatty acids (VFA). The higher C&D compost temperatures should reduce pathogens while reduced VFA content should reduce odors. When using the final compost product, the increased SO and reduced TP and available N and P content in C&D waste compost should be taken into consideration. Increased S content in C&D compost may be beneficial for some crops grown on S-deficient soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
USDA-ARS?s Scientific Manuscript database
Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...
Precipitation of nitrate-cancrinite in Hanford Tank Sludge.
Buck, E C; McNamara, B K
2004-08-15
The chemistry of underground storage tanks containing high-level waste at the Hanford Site in Washington State is an area of continued research interest. Thermodynamic models have predicted the formation of analcime and clinoptilolite in Hanford tanks, rather than cancrinite; however, these predictions were based on carbonate-cancrinite. We report the first observation of a nitrate-cancrinite [possibly Na8(K,Cs)(AlSiO4)6(NO3)2 x nH2O] extracted from a Hanford tank 241-AP-101 sample that was evaporated to 6, 8, and 10 M NaOH concentrations. The nitrate-cancrinite phase formed spherical aggregates (4 microm in diameter) that consisted of platy hexagonal crystals (approximately 0.2 microm thick). Cesium-137 was concentrated in these aluminosilicate structures. These phases possessed a morphology identical to that of nitrate-cancrinite synthesized using simulant tests of nonradioactive tank waste, supporting the contention that it is possible to develop nonradioactive artificial sludges. This investigation points to the continued importance of understanding the solubility of NO3-cancrinite and related phases. Knowledge of the detailed structure of actual phases in the tank waste helps with thermodynamic modeling of tank conditions and waste processing.
Shah, Monal B; Tipre, Devayani R; Dave, Shailesh R
2014-11-01
E-waste printed circuit boards (PCB) of computers, mobile-phones, televisions, LX (LongXiang) PCB in LED lights and bulbs, and tube-lights were crushed to ≥250 µm particle size and 16 different metals were analysed. A comparative study has been carried out to evaluate the extraction of Cu-Zn-Ni from computer printed circuit boards (c-PCB) and mobile-phone printed circuit boards (m-PCB) by chemical and biological methods. Chemical process showed the extraction of Cu-Zn-Ni by ferric sulphate was best among the studied chemical lixiviants. Bioleaching experiments were carried out with the iron oxidising consortium, which showed that when E-waste and inoculum were added simultaneously in the medium (one-step process); 60.33% and 87.50% Cu, 75.67% and 85.67% Zn and 71.09% and 81.87% Ni were extracted from 10 g L(-1) of c-PCB and m-PCB, respectively, within 10-15 days of reaction time. Whereas, E-waste added after the complete oxidation of Fe(2+) to Fe(3+) iron containing medium (two-step process) showed 85.26% and 99.99% Cu, 96.75% and 99.49% Zn and 93.23% and 84.21% Ni extraction from c-PCB and m-PCB, respectively, only in 6-8 days. Influence of varying biogenerated Fe(3+) and c-PCB concentrations showed that 16.5 g L(-1) of Fe(3+) iron was optimum up to 100 g L(-1) of c-PCB. Changes in pH, acid consumed and redox potential during the process were also studied. The present study shows the ability of an eco-friendly process for the recovery of multi-metals from E-waste even at 100 g L(-1) printed circuit boards concentration. © The Author(s) 2014.
Maneerat, Nitjaree; Tangsuphoom, Nattapol; Nitithamyong, Anadi
2017-02-01
Banana peels are wasted from banana processing industry. Pectin is a soluble dietary fibre usually prepared from fruit and vegetable processing wastes. Pectin extraction from banana peels thus should be an effective way of waste utilization. This study aimed to determine the effect of extraction condition on the properties of pectin from peels of Nam Wa banana ( Musa (ABB group) 'Kluai Nam Wa') and its role as fat replacer in salad cream. Banana peel pectin (BPP) was extracted with HCl (pH 1.5) and water (pH 6.0) for 30-120 min at 90 ± 5 °C. Acid extraction yielded 7-11% pectin on a dry basis with galacturonic acid content (GalA), degree of methylation (DM), and viscosity-average molecular weight (M v ) of 42-47, 57-61%, and 17-40 kDa, respectively; while water-extracted BPP contained lower DM but higher GalA and M v . Prolonged extraction raised the pectin yield but lowered the M v of BPP and the viscosity of their solutions. Incorporation of BPP obtained from 60 min acid- and water-extraction into salad cream at 30% oil substitution level resulted in the decreases in viscosity and lightness. All reduced-fat samples were stable to cream separation during 3-weeks storage although the formula containing water-extracted BPP had larger oil droplet size and greater extent of droplet flocculation. There was no difference in sensory scores rated by 50 panelists on thickness, smoothness, and overall acceptability of the full- and reduced-fat salad creams. Therefore, Nam Wa banana peels can be an alternative source of pectin with potential application as fat replacer in food products.
Shah, Monal B; Tipre, Devayani R; Purohit, Mamta S; Dave, Shailesh R
2015-08-01
Metal pollution due to the huge electronic waste (E-waste) accumulation is widespread across the globe. Extraction of copper, zinc and nickel from computer printed circuit boards (c-PCB) with a two-step bleaching process using ferric sulphate generated by Leptospirillum ferriphilum dominated consortium and the factors influencing the process were investigated in the present study. The studied factors with 10 g/L pulp density showed that pH 2.0 was optimum which resulted in 87.50-97.80% Cu-Zn-Ni extraction. Pre-treatment of PCB powder with acidified distilled water and NaCl solution showed 3.80-7.98% increase in metal extraction corresponding to 94.08% Cu, 99.80% Zn and 97.99% Ni extraction. Particle size of 75 μm for Cu and Zn while 1680 μm for Ni showed 2-folds increase in metal extraction, giving 97.35-99.80% Cu-Zn-Ni extraction in 2-6 days of reaction time. Whereas; 2.76-3.12 folds increase in Cu and Zn extraction was observed with the addition of 0.1% chelating agents. When the studies were carried out with high pulp density, ferric iron concentration of 16.57 g/L was found to be optimum for metal extraction from 75 g/L c-PCB and c-PCB addition in multiple installments resulted in 8.81-26.35% increase in metal extraction compared to single addition. The studied factors can be implemented for the scale-up aimed at faster recovery of multimetals from E-waste and thereby providing a secondary source of metal in an eco-friendly manner. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households.
Murto, Marika; Björnsson, Lovisa; Rosqvist, Håkan; Bohn, Irene
2013-05-01
At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a dry fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m3/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang
2017-11-01
The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zingaretti, Daniela; Lombardi, Francesco; Baciocchi, Renato
2018-04-01
The Fenton process is a well known treatment that proved to be effective for the remediation of sites contaminated by a wide range of organic pollutants. Its application to soil-water systems typically requires the addition of a stabilizer, in order to increase the H 2 O 2 lifetime and thus the radius of influence of the treatment, and a chelating agent, aimed to extract and maintain in solution the iron present in the soil. However, as the use of these compounds has been debated for their environmental impact, efforts have been placed to test new "greener" amendments. Namely, in line with the concept of circular economy introduced by the European Council, in this study we have tested the use of humic acids extracted from compost as amendment in a Fenton-like process. These substances are of potential interest as can form complexes with metal ions and act as sorbents for hydrophobic organic compounds. Fenton-like lab-scale tests with the extracted humic acids were performed on a soil-water system artificially contaminated by chlorophenol. The obtained results were compared with those achieved applying commercial humic acids or traditional amendments (i.e. KH 2 PO 4 or EDTA) used as reference. The humic acids extracted from compost allowed to achieve a H 2 O 2 lifetime close to the one obtained with traditional stabilizing agent; besides, humic acids proved also effective in removing chlorophenol, with performance close to the one achieved using a traditional chelating agent. These findings hence suggest that the use of the humic acids extracted from wastes in a Fenton-like process could allow to replace at the same time the H 2 O 2 stabilizer and the chelating agent. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Inayati, Puspita, Rifka Intan; Fajrin, Vika Latifiana
2018-02-01
One of fruit preservation method is by applying the edible coating. Rind of passion fruit (Passiflora edulis var. flavicarpa Degener), which is kind of waste, can be utilized as edible coating through pectin extraction process. The purposes of this work were to determine the suitable solvent for the pectin extraction and techniques for applying the produced edible coating on strawberry, to produce edible coating from the pectin, and the test the performance of the edible coating which was applied to strawberries. Pectin from passion fruit rind was collected through conventional extraction method using two types of solvent, i.e. acetic acid solution and hydrochloric acid solution with concentration of 0.01 N, 0.015 N, 0.02 N, 0.025 N, and 0.03 N. The results showed that chloric acid solution was more suitable for the pectin extraction from passion fruit. Maximum yield of 30.78% was obtained at hydrochloric acid concentration of 0.02 N. Obtained pectin from the extraction was then processed into the edible coating by adding plasticizers and calcium chloride dihydrate. Storability of the coated strawberry was observed to measure the performance of the edible coating
EVALUATION OF GROUNDWATER EXTRACTION REMEDIES - VOLUME III
This volume is the third of a three-volume report documenting the results of an evaluation of ground-water extraction remedies at hazardous waste sites. It consists of a collection of 112 data base reports presenting general information on sites where ground-water extraction sys...
Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.
Beddow, H; Black, S; Read, D
2006-01-01
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.
Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R
2016-04-15
The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance Test on Polymer Waste Form - 12137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Se Yup
Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing, biodegradation testing and water immersion testing, no degradation was observed in the waste forms. Also, by measuring the compressive strength after these tests, it was confirmed that the structural integrity was still retained. A leach test was performed by using non radioactive cobalt, cesium and strontium. The leaching of cobalt, cesium and strontium from the polymer waste forms was very low. Also, the polymer waste forms were found to possess adequate fire resistance. From the results of the performance tests, it is believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, Performance tests with full scale polymer waste forms are on-going in order to obtain qualification certificate by the regulatory institute in Korea. (authors)« less
Prevalence of pesticides in postconsumer agrochemical polymeric packaging.
Eras, J; Costa, J; Vilaró, F; Pelacho, A M; Canela-Garayoa, R; Martin-Closas, L
2017-02-15
Pesticide remains contained in agrochemical packaging waste are a source of uncontrolled risk for human health; they are also a quality feedstock for the plastic recycling industry. Many governments have recently started to establish laws and regulations to develop systems for recovering and recycling the polymeric packages used for pesticides. There is also a demand in having a procedure to control the suitability of the pesticide packages to be reused. We have developed a two-step operation process to assess the pesticide residues in agricultural containers made of a variety of polymeric matrices. The procedure is based on an extraction with a solvent mixture followed by UPLC-MS/MS determination. Solvents for neutral pesticides were selected considering the Hildebrand solubility (δ) of solvents and polymers together with those estimated for the pesticides. The proposed technique is effective in recovering imbibed pesticides in polymeric matrices. Also, a simplified extraction procedure has been tested to become a routine method for these wastes. We have found that in many cases a significant amount of pesticides remain into the polymeric matrix, even after a standardized cleaning; the impact of releasing these hazardous compounds into the environment is to be of further consideration. Copyright © 2016 Elsevier B.V. All rights reserved.
Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective
2017-01-01
Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150
Applying Separations Science to Waste Problems.
1998-01-01
inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the
Onion skin waste as a valorization resource for the by-products quercetin and biosugar.
Choi, In Seong; Cho, Eun Jin; Moon, Jae-Hak; Bae, Hyeun-Jong
2015-12-01
Onion skin waste (OSW), which is produced from processed onions, is a major industrial waste. We evaluated the use of OSW for biosugar and quercetin production. The carbohydrate content of OSW was analyzed, and the optimal conversion conditions were evaluated by varying enzyme mixtures and loading volumes for biosugar production and quercetin extraction. The enzymatic conversion rate of OSW to biosugar was 98.5% at 0.72 mg of cellulase, 0.16 mg of pectinase, and 1.0mg of xylanase per gram of dry OSW. Quercetin extraction also increased by 1.61-fold after complete enzymatic hydrolysis. In addition, the newly developed nano-matrix (terpyridine-immobilized silica-coated magnetic nanoparticles-zinc (TSMNP-Zn matrix) was utilized to separate quercetin from OSW extracts. The nano-matrix facilitated easy separation and purification of quercetin. Using the TSMNP-Zn matrix the quercetin was approximately 90% absorbed. In addition, the recovery yield of quercetin was approximately 75% after treatment with ethylenediaminetetraacetic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Eco-Friendly Extraction of Biopolymer Chitin and Carotenoids from Shrimp Waste
NASA Astrophysics Data System (ADS)
Prameela, K.; Venkatesh, K.; Divya vani, K.; Sudesh Kumar, E.; Mohan, CH Murali
2017-08-01
Astaxanthin a nutraceutical and chitin a natural biopolymer present in shrimp waste. In current chemical extraction methods HCl and NaOH are used for extraction and these chemicals are introduced into aquatic ecosystems are spoiling aquatic flora and fauna, pollute the environment and destroy astaxanthin. Lactobacillus species were isolated from gut of Solenocera melantho and characterized phenotypically and genotypically. Initial screening experiments have shown to be an effective and identified as Lactobacillus plantaram based on morphological, biochemical characteristics and molecular analysis. Efficiency of fermentation has shown with good yield of astaxanthin and recovery of chitin. Hence this alternative microbial process is having advantage than existing hazardous, non-economical chemical process.
Teli, M D; Sheikh, Javed
2012-06-01
Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes. Copyright © 2012 Elsevier B.V. All rights reserved.
Caputo, Leonardo; Quintieri, Laura; Cavalluzzi, Maria Maddalena; Lentini, Giovanni; Habtemariam, Solomon
2018-06-17
Citrus pomace is a huge agro-food industrial waste mostly composed of peels and traditionally used as compost or animal feed. Owing to its high content of compounds beneficial to humans (e.g., flavonoids, phenol-like acids, and terpenoids), citrus waste is increasingly used to produce valuable supplements, fragrance, or antimicrobials. However, such processes require sustainable and efficient extraction strategies by solvent-free techniques for environmentally-friendly good practices. In this work, we evaluated the antimicrobial and antibiofilm activity of water extracts of three citrus peels (orange, lemon, and citron) against ten different sanitary relevant bacteria. Both conventional extraction methods using hot water (HWE) and microwave-assisted extraction (MAE) were used. Even though no extract fully inhibited the growth of the target bacteria, these latter (mostly pseudomonads) showed a significant reduction in biofilm biomass. The most active extracts were obtained from orange and lemon peel by using MAE at 100 °C for 8 min. These results showed that citrus peel water infusions by MAE may reduce biofilm formation possibly enhancing the susceptibility of sanitary-related bacteria to disinfection procedures.
NASA Astrophysics Data System (ADS)
Abdaal, Ahmed; Jordan, Gyozo; Bartha, Andras; Fugedi, Ubul
2013-04-01
The Mine Waste Directive 2006/21/EC requires the risk-based inventory of all mine waste sites in Europe. The geochemical documentation concerning inert classification and ranking of the mine wastes requires detailed field study and laboratory testing and analyses of waste material to assess the Acid Mine Drainage potential and toxic element mobility. The procedure applied in this study used a multi-level decision support scheme including: 1) expert judgment, 2) data review, 3) representative field sampling and laboratory analysis of formations listed in the Inert Mining Waste List, and 4) requesting available laboratory analysis data from selected operating mines. Based on expert judgment, the listed formations were classified into three categories. A: inert B: probably inert, but has to be checked, C: probably not inert, has to be examined. This paper discusses the heavy metal contamination risk assessment (RA) in leached quarry-mine waste sites in Hungary. In total 34 mine waste sites (including tailing lagoons and heaps of both abandoned mines and active quarries) have been selected for scientific testing using the EU Pre-selection Protocol. Over 93 field samples have been collected from the mine sites including Ore (Andesite and Ryolite), Coal (Lignite, black and brown coals), Peat, Alginite, Bauxite, Clay and Limestone. Laboratory analyses of the total toxic element content (aqua regia extraction), the mobile toxic element content (deionized water leaching) and the analysis of different forms of sulfur (sulfuric acid potential) ) on the base of Hungarian GKM Decree No. 14/2008. (IV. 3) concerning mining waste management. A detailed geochemical study together with spatial analysis and GIS has been performed to derive a geochemically sound contamination RA of the mine waste sites. Key parameters such as heavy metal and sulphur content, in addition to the distance to the nearest surface and ground water bodies, or to sensitive receptors such as settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA methods. Results show that some of the waste rock materials assumed to be inert were found non/inert. Thus, regional RA needs more spatial and petrological examination with special care to rock and mineral deposit genetics.
Bio-extraction of precious metals from urban solid waste
NASA Astrophysics Data System (ADS)
Das, Subhabrata; Natarajan, Gayathri; Ting, Yen-Peng
2017-01-01
Reduced product lifecycle and increasing demand for electronic devices have resulted in the generation of huge volumes of electronic waste (e-waste). E-wastes contain high concentrations of toxic heavy metals, which have detrimental effects on health and the environment. However, e-wastes also contain significant concentrations of precious metals such as gold, silver and palladium, which can be a major driving force for recycling of urban waste. Cyanogenic bacteria such as Chromobacterium violaceum generate cyanide as a secondary metabolite which mobilizes gold into solution via a soluble gold-cyanide complex. However, compared to conventional technology for metal recovery, this approach is not effective, owing largely to the low concentration of lixiviants produced by the bacteria. To overcome the challenges of bioleaching of gold from e-waste, several strategies were adopted to enhance gold recovery rates. These included (i) pretreatment of e-waste to remove competing metal ions, (ii) mutation to adapt the bacteria to high pH environment, (iii) metabolic engineering to produce higher cyanide lixiviant, and (iv) spent medium leaching with adjusted initial pH. Compared to 7.1 % recovery by the wild type bacteria, these strategies achieved gold recoveries of 11.3%, 22.5%, 30% and 30% respectively at 0.5% w/v pulp density respectively. Bioleached gold was finally mineralized and precipitated as gold nanoparticles using the bacterium Delftia acidovorans. This study demonstrates the potential for enhancement of biocyanide production and gold recovery from electronic waste through different strategies, and extraction of solid gold from bioleached leachate.
Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad
2017-10-01
Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.
Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi
2015-06-01
As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.
Optimization of extraction parameters on the antioxidant properties of banana waste.
Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng
2016-01-01
Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By-products of banana (peel) can be considered as a potential source of antioxidants in food and pharmaceutical industry.
Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.
Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B
2017-01-01
Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.
Peroxidase extraction from jicama skin peels for phenol removal
NASA Astrophysics Data System (ADS)
Chiong, T.; Lau, S. Y.; Khor, E. H.; Danquah, M. K.
2016-06-01
Phenol and its derivatives exist in various types of industrial effluents, and are known to be harmful to aquatic lives even at low concentrations. Conventional treatment technologies for phenol removal are challenged with long retention time, high energy consumption and process cost. Enzymatic treatment has emerged as an alternative technology for phenol removal from wastewater. These enzymes interact with aromatic compounds including phenols in the presence of hydrogen peroxide, forming free radicals which polymerize spontaneously to produce insoluble phenolic polymers. This work aims to extract peroxidase from agricultural wastes materials and establish its application for phenol removal. Peroxidase was extracted from jicama skin peels under varying extraction conditions of pH, sample-to-buffer ratio (w/v %) and temperature. Experimental results showed that extraction process conducted at pH 10, 40% w/v and 25oC demonstrated a peroxidase activity of 0.79 U/mL. Elevated temperatures slightly enhanced the peroxidase activities. Jicama peroxidase extracted at optimum extraction conditions demonstrated a phenol removal efficiency of 87.5% at pH 7. Phenol removal efficiency was ∼ 97% in the range of 30 - 40oC, and H2O2 dosage has to be kept below 100 mM for maximum removal under phenol concentration tested.
Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses.
Díaz, Ana Isabel; Laca, Amanda; Laca, Adriana; Díaz, Mario
2017-09-01
Fruits and vegetables have the highest wastage rates at retail and consumer levels. These wastes have promising potential for being used as substrates in bioprocesses. However, an effective hydrolysis of carbohydrates that form these residues has to be developed before the biotransformation. In this work, vegetable wastes from supermarket (tomatoes, green peppers and potatoes) have been separately treated by acid, thermal and enzymatic hydrolysis processes in order to maximise the concentration of fermentable sugars in the final broth. For all substrates, thermal and enzymatic processes have shown to be the most effective. A new combined hydrolysis procedure including these both treatments was also assayed and the enzymatic step was successfully modelled. With this combined hydrolysis, the percentage of reducing sugars extracted was increased, in comparison with the amount extracted from non-hydrolysed samples, approximately by 30% in the case of tomato and green peeper wastes. For potato wastes this percentage increased from values lower than 1% to 77%. In addition, very low values of fermentation inhibitors were found in the final broth. Copyright © 2017. Published by Elsevier Ltd.
Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N
2016-03-01
Although many fruit by-products are good sources of nutrients, little is known about their prebiotic potential. This research was aimed at establishing the prebiotic effect of pineapple wastes on probiotics including Lactobacillus (L.) acidophilus (ATCC® 4356™), L. casei (ATCC® 393™) and L. paracasei spp. paracasei (ATCC® BAA52™) and the subsequent release of antioxidant and antimutagenic peptides in yogurt during their growth. Oven- and freeze- dried peel and pomace were milled separately into powders and tested for prebiotic activities. The net probiotic growth (1.28-2.14 log cfu/g) in customized MRS broth containing the pineapple powders as a direct carbohydrate source was comparable to MRS broth containing glucose. The powders were also separately added to milk during the manufacturing of yogurt with or without probiotics. An increase (by 0.3-1.4 log cycle) in probiotic populations was observed in the yogurts as a consequence of pineapple powder supplementation. Crude water-soluble peptide extracts, prepared by high-speed centrifugation of the yogurts, displayed remarkable antioxidant activities assessed through in vitro assays, namely scavenging activity of 1,1-diphenyl-2-picrylhydrazyl radicals (IC50 = 0.37-0.19 mg/ml) and hydroxyl radicals (58.52-73.55 %). The peptide extracts also exhibited antimutagenic activities (18.60-32.72 %) as sodium azide inhibitor in the Salmonella mutagenicity test. Together, these results suggest that pineapple by-products exhibited prebiotic properties and could possibly be commercially applied in new functional food formulations.
Hidden flows and waste processing--an analysis of illustrative futures.
Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T
2010-12-14
An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1989-03-21
A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
Removal of radioactive and other hazardous material from fluid waste
Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU
2006-10-03
Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1988-07-12
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
A Study of Waste-Heat-Boiler Size and Performance of a Conceptual Marine COGAS System.
1980-02-01
The addition of a waste-heat boiler which extracts heat from the gas turbine exhaust gas to operate a bottoming Rankine cycle is one way to improve the...do not change significantly. Higher saturation pressure actually results in a somewhat lower boiler heat transfer, but the Rankine - cycle performance...of heat transferred in the waste-heat boiler and (2) the conversion efficiency of the Rankine cycle . In sizing the waste-heat boiler, attention was
Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.
2016-06-17
The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.
Process to separate transuranic elements from nuclear waste
Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.
1989-01-01
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).
Process for the extraction of strontium from acidic solutions
Horwitz, E.P.; Dietz, M.L.
1994-09-06
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.
Process for the extraction of strontium from acidic solutions
Horwitz, E. Philip; Dietz, Mark L.
1994-01-01
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.
Process for the extraction of strontium from acidic solutions
Horwitz, E.P.; Dietz, M.L.
1993-01-01
The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.
Thermo-chemical extraction of fuel oil from waste lubricating grease.
Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul
2013-06-01
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Leaching characteristics of fly ash from thermal power plants of Soma and Tuncbilek, Turkey.
Baba, Alper; Kaya, Abidin
2004-02-01
Use of lignite in power generation has led to increasing environmental problems associated not only with gaseous emissions but also with the disposal of ash residues. In particular, use of low quality coal with high ash content results in huge quantities of fly ash to be disposed of. The main problem related to fly ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies indicate that toxic trace metals may leach when fly ash contacts water. In this study, fly ash samples obtained from thermal power plants, namely Soma and Tunçbilek, located at the west part of Turkey, were subjected to toxicity tests such as European Committee for standardization (CEN) and toxicity characteristic leaching (TCLP) procedures of the U.S. Environmental Protection Agency (U.S. EPA). The geochemical composition of the tested ash samples from the power plant show variations depending on the coal burned in the plants. Furthermore, the CEN and TCLP extraction results showed variations such that the ash samples were classified as 'toxic waste' based on TCLP result whereas they were classified as 'non-toxic' wastes based on CEN results, indicating test results are pH dependent.
Nusheng Chen; Junyong Zhu; Zhaohui Tong
2016-01-01
This article describes a facile route, which combines mild maceration of waste pulp sludge and a mechanical shearing process, to prepare microfibrillated cellulose (MFC) with a high storage modulus. In the maceration, the mixture of glacial acetic acid and hydrogen peroxide was used to extract cellulose from never-dried waste pulp sludge. Then, two different mechanical...
Suleria, Hafiz Ansar Rasul; Hines, Barney M; Addepalli, Rama; Chen, Wei; Masci, Paul; Gobe, Glenda; Osborne, Simone A
2016-12-31
Waste generated from the processing of marine organisms for food represents an underutilized resource that has the potential to provide bioactive molecules with pharmaceutical applications. Some of these molecules have known anti-thrombotic and anti-coagulant activities and are being investigated as alternatives to common anti-thrombotic drugs, like heparin and warfarin that have serious side effects. In the current study, extracts prepared from blacklip abalone ( Haliotis rubra ) processing waste, using food grade enzymes papain and bromelain, were found to contain sulphated polysaccharide with anti-thrombotic activity. Extracts were found to be enriched with sulphated polysaccharides and assessed for anti-thrombotic activity in vitro through heparin cofactor-II (HCII)-mediated inhibition of thrombin. More than 60% thrombin inhibition was observed in response to 100 μg/mL sulphated polysaccharides. Anti-thrombotic potential was further assessed as anti-coagulant activity in plasma and blood, using prothrombin time (PT), activated partial thromboplastin time (aPTT), and thromboelastography (TEG). All abalone extracts had significant activity compared with saline control. Anion exchange chromatography was used to separate extracts into fractions with enhanced anti-thrombotic activity, improving HCII-mediated thrombin inhibition, PT and aPTT almost 2-fold. Overall this study identifies an alternative source of anti-thrombotic molecules that can be easily processed offering alternatives to current anti-thrombotic agents like heparin.
Suleria, Hafiz Ansar Rasul; Hines, Barney M.; Addepalli, Rama; Chen, Wei; Masci, Paul; Gobe, Glenda; Osborne, Simone A.
2016-01-01
Waste generated from the processing of marine organisms for food represents an underutilized resource that has the potential to provide bioactive molecules with pharmaceutical applications. Some of these molecules have known anti-thrombotic and anti-coagulant activities and are being investigated as alternatives to common anti-thrombotic drugs, like heparin and warfarin that have serious side effects. In the current study, extracts prepared from blacklip abalone (Haliotis rubra) processing waste, using food grade enzymes papain and bromelain, were found to contain sulphated polysaccharide with anti-thrombotic activity. Extracts were found to be enriched with sulphated polysaccharides and assessed for anti-thrombotic activity in vitro through heparin cofactor-II (HCII)-mediated inhibition of thrombin. More than 60% thrombin inhibition was observed in response to 100 μg/mL sulphated polysaccharides. Anti-thrombotic potential was further assessed as anti-coagulant activity in plasma and blood, using prothrombin time (PT), activated partial thromboplastin time (aPTT), and thromboelastography (TEG). All abalone extracts had significant activity compared with saline control. Anion exchange chromatography was used to separate extracts into fractions with enhanced anti-thrombotic activity, improving HCII-mediated thrombin inhibition, PT and aPTT almost 2-fold. Overall this study identifies an alternative source of anti-thrombotic molecules that can be easily processed offering alternatives to current anti-thrombotic agents like heparin. PMID:28042854
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2006-01-01
In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.
Method for purifying bidentate organophosphorus compounds
Schulz, Wallace W.
1977-01-01
Bidentate organophosphorus compounds useful for extracting actinide elements from acidic nuclear waste solutions are purified of undesirable acidic impurities by contacting the compounds with ethylene glycol which preferentially extracts the impurities found in technical grade bidentate compounds.
Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montella, Salvatore; Balan, Venkatesh; da Costa Sousa, Leonardo
Here, the lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods— ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-larabinofuranosidase rPoAbf and its evolvedmore » variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used in this study.« less
Saccharification of newspaper waste after ammonia fiber expansion or extractive ammonia
Montella, Salvatore; Balan, Venkatesh; da Costa Sousa, Leonardo; ...
2016-03-02
Here, the lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods— ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-larabinofuranosidase rPoAbf and its evolvedmore » variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used in this study.« less
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
Urban-rural mining: waste utilization in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhao, D. D.; Huhetaoli; Yuan, H. R.; Tang, Z. H.
2018-05-01
Attitudes towards waste have changed gradually in view of the environmental pollution created and the potential of waste as a resource. This has led to the city and countryside of China being viewed as a complete "urban-rural mine" resources are extracted from what was once considered waste. Guangdong is a developed province and annual waste generation has recently exceeded 300 million tons. The waste distribution characteristics are as follows: most industrial solid waste is produced in the Pearl River Delta and Mountainous Region, waste associated with domestic activities is concentrated in the Pearl River Delta, and agricultural waste is found throughout the province. The ratios of material recycling and energy recovery are 58% and 11%, respectively, of collected waste. Recycled products include construction material, artificial boards, fuel, plastic, metal, chemicals, oil, and fibers. Energy is recovered by generating electricity from domestic waste, landfill gas, and forest and crop residue.
Hydrometallurgical methods of recovery of scandium from the wastes of various technologies
NASA Astrophysics Data System (ADS)
Molchanova, T. V.; Akimova, I. D.; Smirnov, K. M.; Krylova, O. K.; Zharova, E. V.
2017-03-01
The recovery of scandium from the wastes of the production of uranium, titanium, iron-vanadium, and alumina is studied. The applied acid schemes of scandium transfer to a solution followed by ion-exchange recovery and extraction concentration of scandium ensure the precipitation of crude scandium oxides containing up to 5% Sc2O3. Scandium oxides of 99.96-99.99% purity are formed after additional refining of these crude oxides according to an extraction technology using a mixture 15% multiradical phosphine oxide or Cyanex-925 + 15% tributyl phosphate in kerosene.
Immunomodulatory activity of plant residues on ovine neutrophils.
Farinacci, Maura; Colitti, Monica; Sgorlon, Sandy; Stefanon, Bruno
2008-11-15
Neutrophils play an essential role in host defense and inflammation. Plants have long been used to improve the immune function, but for most of them specific investigations on animal health are lacking. In the present study, water and hydroethanolic extracts from 11 plant wastes have been screened on immune responses of ovine neutrophils. Eight sheep clinically healthy, not lactating, non-pregnant were selected and used for the experiment. Freshly isolated neutrophils were incubated with the extracts of the residues at increasing doses, and then they were tested for adhesion and superoxide production induced with PMA. The residues of Larix decidua, Thymus vulgaris, Salix alba, Sinupret, Helianthus annuus, Mangifera indica modulated the neutrophil immune functions, moreover, Larix decidua, Thymus vulgaris and Salix alba presented the highest anti-inflammatory activity.
Miscellaneous chemical basin expedited site characterization report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riha, B.D.; Pemberton, B.E.; Rossabi, J.
1996-12-01
A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results frommore » previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce J. Mincher; Guiseppe Modolo; Strephen P. Mezyk
2009-01-01
Solvent extraction is the most commonly used process scale separation technique for nuclear applications and it benefits from more than 60 years of research and development and proven experience at the industrial scale. Advanced solvent extraction processes for the separation of actinides and fission products from dissolved nuclear fuel are now being investigated worldwide by numerous groups (US, Europe, Russia, Japan etc.) in order to decrease the radiotoxic inventories of nuclear waste. While none of the advanced processes have yet been implemented at the industrial scale their development studies have sometimes reached demonstration tests at the laboratory scale. Most ofmore » the partitioning strategies rely on the following four separations: 1. Partitioning of uranium and/or plutonium from spent fuel dissolution liquors. 2. Separation of the heat generating fission products such as strontium and cesium. 3. Coextraction of the trivalent actinides and lanthanides. 4. Separation of the trivalent actinides from the trivalent lanthanides. Tributylphosphate (TBP) in the first separation is the basis of the PUREX, UREX and COEX processes, developed in Europe and the US, whereas monoamides as alternatives for TBP are being developed in Japan and India. For the second separation, many processes were developed worldwide, including the use of crown-ether extractants, like the FPEX process developed in the USA, and the CCD-PEG process jointly developed in the USA and Russia for the partitioning of cesium and strontium. In the third separation, phosphine oxides (CMPOs), malonamides, and diglycolamides are used in the TRUEX, DIAMEX and the ARTIST processes, respectively developed in US, Europe and Japan. Trialkylphosphine oxide(TRPO) developed in China, or UNEX (a mixture of several extractants) jointly developed in Russia and the USA allow all actinides to be co-extracted from acidic radioactive liquid waste. For the final separation, soft donor atom-containing ligands such as the bistriazinylbipyridines (BTBPs) or dithiophosphinic acids have been developed in Europe and China to selectively extract the trivalent actinides. However, in the TALSPEAK process developed in the USA, the separation is based on the relatively high affinity of aminopolycarboxylic acid complexants such as DTPA for trivalent actinides over lanthanides. In the DIDPA, SETFICS and the GANEX processes, developed in Japan and France, the group separation is accomplished in a reverse TALSPEAK process. A typical scenario is shown in Figure 1 for the UREX1a (Uranium Extraction version 1a) process. The initial step is the TBP extraction for the separation of recyclable uranium. The second step partitions the short-lived, highly radioactive cesium and strontium to minimize heat loading in the high-level waste repository. The third step is a group separation of the trivalent actinides and lanthanides with the last step being partitioning of the trivalent lanthanides from the actinides.« less
Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.
2015-09-01
This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probemore » to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene
2011-01-01
This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less
Screening tests for hazard classification of complex waste materials - Selection of methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.
In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less
Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin
2014-10-01
An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.
2007-01-01
We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.
Recovery of fission product palladium from acidic high level waste solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizvi, G.H.; Mathur, J.N.; Murali, M.S.
1996-07-01
The recovery of palladium from a synthetic pressurized heavy water reactor high level waste (PHWR-HLW) solution has been carried out, and the best reagents to use for the actual HLW solutions are discussed. The extraction of palladium from nitric acid solutions has been carried out using Cyanex-471X (triisobutylphosphine sulfide, TIPS) as the extractant. The metal ion could be quantitatively extracted from solutions with nitric acid concentrations between 2.0 and 6.0 M. The species extracted into the organic phase was found to be Pd(NO{sub 3}){sub 2}{center_dot}TIPS. Nitric acid in the range of 2.0 to 5.0 M had no effect on TIPSmore » for at least 71 hours. A systematic study of gamma irradiation on loading and stripping of palladium from loaded organic phases using several potential extractants, TIPS, alpha benzoin oxime, dioctylsulfide, and dioctylsulfoxide has been made. A flow sheet for the recovery of palladium from actual HLW solutions using TIPS is proposed.« less
Process for removal of ammonia and acid gases from contaminated waters
King, C. Judson; MacKenzie, Patricia D.
1985-01-01
Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
Process for removal of ammonia and acid gases from contaminated waters
King, C.J.; Mackenzie, P.D.
1982-09-03
Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.
Method for treating liquid wastes
Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.
1995-12-26
The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.
Method for treating liquid wastes
Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.
1995-01-01
The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.
Jenkins, M. B.; Walker, M. J.; Bowman, D. D.; Anthony, L. C.; Ghiorse, W. C.
1999-01-01
A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50°C and decreases in soil water potential (−0.003 to −3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect of soil freeze-thaw cycles was evident in the large proportion of empty sentinel oocysts. The potentially infective sentinel oocysts were reduced to <1% while the proportions in controls did not decrease below 50% potentially infective during the first field experiment. Microscopic observations of empty oocyst fragments indicated that abrasive effects of soil particles were a factor in oocyst inactivation. A similar pattern was observed in a second field experiment at the same site. PMID:10223991
Jenkins, M B; Walker, M J; Bowman, D D; Anthony, L C; Ghiorse, W C
1999-05-01
A small-volume sentinel chamber was developed to assess the effects of environmental stresses on survival of sucrose-Percoll-purified Cryptosporidium parvum oocysts in soil and animal wastes. Chambers were tested for their ability to equilibrate with external chemical and moisture conditions. Sentinel oocysts were then exposed to stresses of the external environment that affected their viability (potential infectivity), as indicated by results of a dye permeability assay. Preliminary laboratory experiments indicated that temperatures between 35 and 50 degrees C and decreases in soil water potential (-0.003 to -3.20 MPa) increased oocyst inactivation rates. The effects of two common animal waste management practices on oocyst survival were investigated on three dairy farms in Delaware County, N.Y., within the New York City watershed: (i) piling wastes from dairy youngstock (including neonatal calves) and (ii) spreading wastes as a soil amendment on an agricultural field. Sentinel containers filled with air-dried and sieved (2-mm mesh) youngstock waste or field soil were wetted and inoculated with 2 million oocysts in an aqueous suspension and then placed in waste piles on two different farms and in soil within a cropped field on one farm. Controls consisted of purified oocysts in either phosphate-buffered saline or distilled water contained in sealed microcentrifuge tubes. Two microdata loggers recorded the ambient temperature at each field site. Sentinel experiments were conducted during the fall and winter (1996 to 1997) and winter (1998). Sentinel containers and controls were removed at 2- to 4-week intervals, and oocysts were extracted and tested by the dye permeability assay. The proportions of potentially infective oocysts exposed to the soil and waste pile material decreased more rapidly than their counterpart controls exposed to buffer or water, indicating that factors other than temperature affected oocyst inactivation in the waste piles and soil. The effect of soil freeze-thaw cycles was evident in the large proportion of empty sentinel oocysts. The potentially infective sentinel oocysts were reduced to <1% while the proportions in controls did not decrease below 50% potentially infective during the first field experiment. Microscopic observations of empty oocyst fragments indicated that abrasive effects of soil particles were a factor in oocyst inactivation. A similar pattern was observed in a second field experiment at the same site.
Domingos, Hélde Araujo; De Melo Faria, Alexandre Magno; Fuinhas, José Alberto; Marques, António Cardoso
2017-08-01
In the last two decades, there has been a rich debate about the environmental degradation that results from exposure to solid urban waste. Growing public concern with environmental issues has led to the implementation of various strategic plans for waste management in several developed countries, especially in the European Union. In this paper, the relationships were assessed between economic growth, renewable energy extraction and greenhouse gas (GHG) emissions in the waste sector. The Environmental Kuznets Curve hypothesis was analysed for the member states of the European Union, in the presence of electricity generation, landfill and GHG emissions for the period 1995 to 2012. The results revealed that there is no inverted-U-shaped relationship between income and GHG emissions in European Union countries. The renewable fuel extracted from waste contributes to a reduction in GHG, and although the electricity produced also increases emissions somewhat, they would be far greater if the waste-based generation of renewable energy did not take place. The waste sector needs to strengthen its political, economic, institutional and social communication instruments to meet its aims for mitigating the levels of pollutants generated by European economies. To achieve the objectives of the Horizon 2020 programme, currently in force in the countries of the European Union, it will be necessary to increase the share of renewable energy in the energy mix.
A BIM-based system for demolition and renovation waste estimation and planning.
Cheng, Jack C P; Ma, Lauren Y H
2013-06-01
Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. Copyright © 2013 Elsevier Ltd. All rights reserved.
Extraction of glutathione from EFB fermentation waste using methanol with sonication process
NASA Astrophysics Data System (ADS)
Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni
2017-11-01
Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.
Righi, Valeria; Parenti, Francesca; Tugnoli, Vitaliano; Schenetti, Luisa; Mucci, Adele
2015-09-30
Intact Crocus sativus petals were studied for the first time by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, revealing the presence of kinsenoside (2) and goodyeroside A (3), together with 3-hydroxy-γ-butyrolactone (4). These findings were confirmed by HR-NMR analysis of the ethanol extract of fresh petals and showed that, even though carried out rapidly, partial hydrolysis of glucopyranosyloxybutanolides occurs during extraction. On the other hand, kaempferol 3-O-sophoroside (1), which is "NMR-silent" in intact petals, is present in extracts. These results suggest to evaluate the utilization of saffron petals for phytopharmaceutical and nutraceutical purposes to exploit a waste product of massive production of commercial saffron and point to the application of HR-MAS NMR for monitoring bioactive compounds directly on intact petals, avoiding the extraction procedure and the consequent hydrolysis reaction.
Combined transuranic-strontium extraction process
Horwitz, E.P.; Dietz, M.L.
1992-12-08
The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.
Combined transuranic-strontium extraction process
Horwitz, E. Philip; Dietz, Mark L.
1992-01-01
The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing
NASA Technical Reports Server (NTRS)
Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)
1997-01-01
The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.
Enhanced materials from nature: nanocellulose from citrus waste.
Mariño, Mayra; Lopes da Silva, Lucimara; Durán, Nelson; Tasic, Ljubica
2015-04-03
Nanocellulose is a relatively inexpensive, highly versatile bio-based renewable material with advantageous properties, including biodegradability and nontoxicity. Numerous potential applications of nanocellulose, such as its use for the preparation of high-performance composites, have attracted much attention from industry. Owing to the low energy consumption and the addition of significant value, nanocellulose extraction from agricultural waste is one of the best alternatives for waste treatment. Different techniques for the isolation and purification of nanocellulose have been reported, and combining these techniques influences the morphology of the resultant fibers. Herein, some of the extraction routes for obtaining nanocellulose from citrus waste are addressed. The morphology of nanocellulose was determined by Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM), while cellulose crystallinity indexes (CI) from lyophilized samples were determined using solid-state Nuclear Magnetic Resonance (NMR) and X-Ray Diffraction (XRD) measurements. The resultant nanofibers had 55% crystallinity, an average diameter of 10 nm and a length of 458 nm.
Alesci, Alessio; Cicero, Nicola; Salvo, Andrea; Palombieri, Deborah; Zaccone, Daniele; Dugo, Giacomo; Bruno, Maurizio; Vadalà, Rossella; Lauriano, Eugenia Rita; Pergolizzi, Simona
2014-01-01
The present research aims to evaluate the beneficial effects of polyphenols derived from waste water from a olive mill, obtained by non-plastic molecular imprinting device, in a hypercholesterolemic diet on Carassius auratus, commonly known as goldfish that was selected as experimental model. The study was conducted with morphological and histochemical analyses and also the data were supported by immunohistochemical analysis. Results show the beneficial activity of polyphenols with a reduction of the damage in the steatotic group, confirming that they may be suggested in the treatment of diseases by lipid accumulation, and used as any addition in feed for farmed fish, in order to improve the organoleptic and nutritional quality. The beneficial effects of waste oil extract should be suggested in the contexts of research programmes focused on the products to the health system. Furthermore, the olive mill waste water polyphenols free can be used as natural fertilizers.
Test and evaluation of the heat recovery incinerator system at Naval Station, Mayport, Florida
NASA Astrophysics Data System (ADS)
1981-05-01
This report describes test and evaluation of the two-ton/hr heat recovery incinerator (HRI) facility located at Mayport Naval Station, Fla., carried out during November and December 1980. The tests included: (1) Solid Waste: characterization, heating value, and ultimate analysis, (2) Ash: moisture, combustibles, and heating values of both bottom and cyclone ashes; Extraction Procedure toxicity tests on leachates from both bottom and cyclone ashes; trace metals in cyclone particulates, (3) Stack Emissions: particulates (quantity and size distribution), chlorides, oxygen, carbon dioxide, carbon monoxide, and trace elements, and (4) Heat and Mass Balance: all measurements required to carry out complete heat and mass balance calculations over the test period. The overall thermal efficiency of the HRI facility while operating at approximately 1.0 ton/hr was found to be 49% when the primary Btu equivalent of the electrical energy consumed during the test program was included.
Persico, Paola; Ambrogi, Veronica; Baroni, Antonio; Santagata, Gabriella; Carfagna, Cosimo; Malinconico, Mario; Cerruti, Pierfrancesco
2012-12-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer, whose applicability is limited by its brittleness and narrow processing window. In this study a pomace extract (EP), from the bio-waste of winery industry, was used as thermal and processing stabilizer for PHB, aimed to engineer a totally bio-based system. The results showed that EP enhanced the thermal stability of PHB, which maintained high molecular weights after processing. This evidence was in agreement with the slower decrease in viscosity over time observed by rheological tests. EP also affected the melt crystallization kinetics and the overall crystallinity extent. Finally, dynamic mechanical and tensile tests showed that EP slightly improved the polymer ductility. The results are intriguing, in view of the development of sustainable alternatives to synthetic polymer additives, thus increasing the applicability of bio-based materials. Moreover, the reported results demonstrated the feasibility of the conversion of an agro-food by-product into a bio-resource in an environmentally friendly and cost-effective way. Copyright © 2012 Elsevier B.V. All rights reserved.
Progress and challenges to the global waste management system.
Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn
2014-09-01
Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.
Recycling of CdTe photovoltaic waste
Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.
1999-01-01
A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.
Barrios, Cesar Alejandro Zamora; Nandini, S; Sarma, S S S
2017-12-01
Unlike temperate regions, tropical ecosystems are characterized by high temperatures (>18 °C) all year, promoting blooms of cyanobacteria which often produce secondary metabolites toxic to zooplankton. Nabor Carillo and the Recreational Lake are part of the saline, Lake Texcoco, in Central Mexico which is filled nowadays with treated waste water. Both water bodies are dominated by Planktothrix, Anabaenopsis, Spirulina and Microcystis. In this study we present the concentration of microcystins in these waterbodies over an annual cycle. We also evaluated the chronic effects of cyanobacterial crude extracts from both lakes on two clones of the rotifer Brachionus calyciflorus, one from Nabor Carrillo Lake and the other from a canal in the shallow, Lake Xochimilco. The experiments on population growth were performed, beginning with 10 individuals per container for each of the following treatments: control (no crude extract), concentrated crude extract, and diluted crude extract (50:50) with moderately hard water and Chlorella vulgaris in a concentration of 0.5 × 10 6 cells ml -1 . The cyanotoxin levels were measured using an ELISA test and ranged between 0.20 and 2.4 μg L -1 in the lake water. The results showed that the Recreational Lake extracts were more toxic, killing the rotifers in less than five days. The r values ranged from -1.74 to 0.48 in the presence of the crude extracts and 0.16 and 0.24 in the controls. The results have been discussed with emphasis on the importance of conducting regular studies to test ecotoxicological impacts of cyanobacterial blooms in tropical waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAM JB; GUTHRIE MD; LUECK KJ
2007-07-18
This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.
NEOCHIM: An electrochemical method for environmental application
Leinz, R.W.; Hoover, D.B.; Meier, A.L.
1999-01-01
Ion migration and electroosmosis are the principal processes underlying electrokinetic remediation of hazardous wastes from soils. These processes are a response of charged species to an applied electrical current and they are accompanied by electrolysis of water at the electrodes through which the current is applied. Electrolysis results in the formation of OH- at the cathode and H+ at the anode. The current drives the OH- and H+ thus formed from the electrodes, through the soil and to the electrode of opposite charge. Introduction of OH- and H+ into the soil being treated modifies soil chemistry and can interfere with either the collection or immobilization of hazardous waste ions. The introduction of either OH- or H+ to the soil can be problematic to electrokinetic remediation but the problem caused by OH- has been the focus of most researchers. The problem has been addressed by flushing the OH- from the soil near the cathode or treating the soil with buffers. These treatments would apply as well to soils affected by H+. With the NEOCHIM technology, developed by the U.S. Geological Survey (USGS) for use as a sampling technique in exploration for buried ore deposits, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions, including anionic forms of toxic metals such as HAsO42-. One of the principal attributes of NEOCHIM is the large volume of soil from which ions can be extracted. It is mathematically demonstrable that NEOCHIM extraction volumes can be orders of magnitude greater than volumes typically sampled in more conventional geochemical exploration methods or for environmental sampling. The technology may also be used to introduce selected ions into the soil that affect the solubility of ceratin ions present in the soil. Although field tests for mineral exploration have shown NEOCHIM extraction efficiencies of about 25-35%, laboratory experiments suggest that significantly higher efficiencies are possible. The attributes of NEOCHIM combined with relatively low cost of electrical power, indicate that the technology may be useful for remediation and monitoring of hazardous waste sites. Of particular importance is that NEOCHIM extractions affect only dissolved and electrically charged species, hence those prone to move in groundwater.The U.S. Geological Survey (USGS) has developed a technology called NEOCHIM for use as a sampling technique in exploration for buried deposits. With this technology, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions. Laboratory experiments suggest extraction efficiencies higher than 25-35%.
Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu
2015-02-01
Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.
Bernal-Vicente, A; Ros, M; Tittarelli, F; Intrigliolo, F; Pascual, J A
2008-12-01
Two different types of citrus composts, and their water extracts, were tested with regard to their utilisations as partial substitutes for peat in growing media for melon seedlings in greenhouse nurseries. Both compost showed higher plant growth than peat. Compost composed by citrus waste and green residue (C2) showed greater plant growth than compost obtained from the same organic matrices mentioned above further the addition of sludge obtained from citrus industry (C1). Compost C2 showed a greater auxinic effect than C1 and it was the only one that showed cytokinic effect. Both composts also demonstrated a biocontrol effect against Fusarium oxysporum for melon plants: the effects were also higher in C2 than in C1. Higher number of isolated fungi was active against F. oxysporum in compost C2, than compost C1. No different bacterial biocontrol efficacy was observed between both composts. The water extracts of both composts gave lower plant yields than their solid matrices, their relative effects being similar to those of the solid composts (C2 extract gave higher plant yields than the extract from C1). The biocontrol effects of compost water extracts followed the same trend.
Selection and Evaluation of Chemical Indicators for Waste Stream Identification
NASA Astrophysics Data System (ADS)
DeVita, W. M.; Hall, J.
2015-12-01
Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.
Analysis of edible oil processing options for the BIO-Plex advanced life support system
NASA Technical Reports Server (NTRS)
Greenwalt, C. J.; Hunter, J.
2000-01-01
Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.
Does ochre have the potential to be a remedial treatment for As-contaminated soils?
Olimah, J A; Shaw, L J; Hodson, M E
2015-11-01
Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L(-1)) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Durana, Nieves; García, José Antonio; Gómez, María Carmen; Alonso, Lucio
2018-01-01
Thermal desorption (TD) coupled with gas chromatography/mass spectrometry (TD-GC/MS) is a simple alternative that overcomes the main drawbacks of the solvent extraction-based method: long extraction times, high sample manipulation, and large amounts of solvent waste. This work describes the optimization of TD-GC/MS for the measurement of airborne polycyclic aromatic hydrocarbons (PAHs) in particulate phase. The performance of the method was tested by Standard Reference Material (SRM) 1649b urban dust and compared with the conventional method (Soxhlet extraction-GC/MS), showing a better recovery (mean of 97%), precision (mean of 12%), and accuracy (±25%) for the determination of 14 EPA PAHs. Furthermore, other 15 nonpriority PAHs were identified and quantified using their relative response factors (RRFs). Finally, the proposed method was successfully applied for the quantification of PAHs in real 8 h-samples (PM10), demonstrating its capability for determination of these compounds in short-term monitoring. PMID:29854561
Extracting lignins from mill wastes
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1977-01-01
Addition of quaternary ammonium compound and activated charcoal to pulp and mill wastes precipitates lignins in sludge mixture. Methanol dissolves lignins for separation from resulting slurry. Mineral acid reprecipitates lignins in filtered solution. Quaternary ammonium compound, activated charcoal, as well as water may be recovered and recycled from this process.
40 CFR 761.272 - Chemical extraction and analysis of samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...
40 CFR 761.272 - Chemical extraction and analysis of samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...
40 CFR 761.272 - Chemical extraction and analysis of samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...
40 CFR 761.272 - Chemical extraction and analysis of samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... samples. 761.272 Section 761.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... COMMERCE, AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in... composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart...
Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S. H.; DiPrete, D. P.
2016-12-12
This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dosemore » associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.« less
NASA Astrophysics Data System (ADS)
Tikhomirov, A. A.; Kudenko, Yu. A.; Ushakova, S. A.; Tirranen, L. S.; Gribovskaya, I. A.; Gros, J.-B.; Lasseur, Ch.
2010-09-01
To close mass exchange loops in bioregenerative life support systems more efficiently, researchers of the Institute of Biophysics SB RAS (Krasnoyarsk, Russia) have developed a procedure of wet combustion of human wastes and inedible parts of plants using H 2O 2 in alternating electromagnetic field. Human wastes pretreated in this way can be used as nutrient solutions to grow plants in the phototrophic unit of the LSS. The purpose of this study was to explore the possibilities of using human wastes oxidized to different degrees to grow plants cultivated on the soil-like substrate (SLS). The treated human wastes were analyzed to test their sterility. Then we investigated the effects produced by human wastes oxidized to different degrees on growth and development of wheat plants and on the composition of microflora in the SLS. The irrigation solution contained water, substances extracted from the substrate, and certain amounts of the mineralized human wastes. The experiments showed that the human wastes oxidized using reduced amounts of 30% H 2O 2: 1 ml/g of feces and 0.25 ml/ml of urine were still sterile. The experiments with wheat plants grown on the SLS and irrigated by the solution containing treated human wastes in the amount simulating 1/6 of the daily diet of a human showed that the degree of oxidation of human wastes did not significantly affect plant productivity. On the other hand, the composition of the microbiota of irrigation solutions was affected by the oxidation level of the added metabolites. In the solutions supplemented with partially oxidized metabolites yeast-like microscopic fungi were 20 times more abundant than in the solutions containing fully oxidized metabolites. Moreover, in the solutions containing incompletely oxidized human wastes the amounts of phytopathogenic bacteria and denitrifying microorganisms were larger. Thus, insufficiently oxidized sterile human wastes added to the irrigation solutions significantly affect the composition of the microbiological component of these solutions, which can ultimately unbalance the system as a whole.
Ultrasound enhanced process for extracting metal species in supercritical fluids
Wai, Chien M.; Enokida, Youichi
2006-10-31
Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.
Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream
Barbosa-Pereira, Letricia; Pocheville, Ainara; Angulo, Inmaculada; Paseiro-Losada, Perfecto; Cruz, Jose M.
2013-01-01
The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE) and supercritical fluid extraction (SFE)—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v) of methanol displayed the highest antioxidant activity (0.20 g L−1), similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1) was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6%) as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries. PMID:23762844
Wen, Demin; Androjna, Caroline; Vasanji, Amit; Belovich, Joanne; Midura, Ronald J.
2010-01-01
In vivo the hydraulic permeability of cortical bone influences the transport of nutrients, waste products and signaling molecules, thus influencing the metabolic functions of osteocytes and osteoblasts. In the current study two hypotheses were tested: the presence of (1) lipids and (2) collagen matrix in the porous compartment of cortical bone restricts its permeability. Our approach was to measure the radial permeability of adult canine cortical bone before and after extracting lipids with acetone-methanol, and before and after digesting collagen with bacterial collagenase. Our results showed that the permeability of adult canine cortical bone was below 4.0 × 10−17 m2, a value consistent with prior knowledge. After extracting lipids, permeability increased to a median value of 8.6 × 10−16 m2. After further digesting with collagenase, permeability increased to a median value of 1.4 × 10−14 m2. We conclude that the presence of both lipids and collagen matrix within the porous compartment of cortical bone restricts its radial permeability. These novel findings suggest that the chemical composition of the tissue matrix within the porous compartment of cortical bone influences the transport and exchange of nutrients and waste products, and possibly influences the metabolic functions of osteocytes and osteoblasts. PMID:19967451
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
Moser, Heidrun; Roembke, Joerg; Donnevert, Gerhild; Becker, Roland
2011-02-01
The ecotoxicological characterization of waste is part of its assessment as hazardous or non-hazardous according to the European Waste List. For this classification 15 hazard criteria are derived from the Council Directive 91/689/EEC on hazardous waste. Some of the hazard criteria are based on the content of dangerous substances. The criterion H14 'ecotoxic' lacks of an assessment and testing strategy and no specific threshold values have been defined so far. Based on the recommendations of CEN guideline 14735 (2005), an international round robin test (ring test) was organized by the German Federal Environment Agency in order to define suitable test methods for the biological assessment of waste and waste eluates. A basic test battery, consisting of three aquatic and three terrestrial tests, was compiled. In addition, data were submitted for ten additional tests (five aquatic (including a genotoxicity test) and five terrestrial ones). The tests were performed with three representative waste types: an ash from an incineration plant, a soil containing high concentrations of organic contaminants (polycyclic aromatic hydrocarbons) and a preserved wood waste. The results of this ring test confirm that a combination of a battery of biological tests and chemical residual analysis is needed for an ecotoxicological characterization of wastes. With small modifications the basic test battery is considered to be well suitable for the hazard and risk assessment of wastes and waste eluates. All results and documents are accessible via a web-based data bank application.
NASA Astrophysics Data System (ADS)
Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin
2017-12-01
This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.
Biological production of acetic acid from waste gases with Clostridium ljungdahlii
Gaddy, James L.
1998-01-01
A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.
Clostridium stain which produces acetic acid from waste gases
Gaddy, James L.
1997-01-01
A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.
Clostridium strain which produces acetic acid from waste gases
Gaddy, J.L.
1997-01-14
A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.
Am(VI) Extraction Final Report: FY16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincher, Bruce Jay; Grimes, Travis Shane; Tillotson, Richard Dean
This report summarizes activities related to hexavalent Am extraction for FY16, in completion of FCR&D Milestone M3FT-16IN030103027. Activities concentrated on three areas of research: 1) centrifugal contactor hot testing, 2) Am(VI) stability studies, and 3) alternative oxidant studies. A brief summary of each task follows. Hot Testing: A new engineering-scale oxidation and solvent extraction test bed was built at Idaho National Laboratory to allow for solvent extraction testing of minor actinide separation concepts. The test bed consists of an oxidation vessel, filtration apparatus, four, 3D printed, 2-cm diameter centrifugal contactors, feed/product vessels, and sample ports. This system replaced the previousmore » 3 stage, 5-cm contactor test bed that was used for the initial testing in FY14. In the FY16 hot test, a feed simulant was spiked with 243Am and 139Ce and treated with 60 g/L sodium bismuthate for two hours to oxidize the Am(III) to Am(VI). This solution was then pumped through a filter and into the four-stage centrifugal contactor setup. The organic phase solvent formulation was 1 M diethylhexylbutyramide (DEHBA)/dodecane. The test showed that Am(VI) was produced by bismuthate oxidation and the residual oxidant was successfully filtered without back pressure buildup. Sixty-four percent of Am was extracted in the contactors using DEHBA. Both Am and Ce were quantitatively stripped by 0.1 M H2O2. Successful demonstration of the utility of small, printable contactors suggests that hot testing of separations concepts can now be conducted more often, since it is cheaper, generates less waste, and entails much less radcon risk than previous testing. Am(VI) stability: A rigorous examination of reagents was conducted to determine if contaminants could interfere with Am oxidation and extraction. An series of DAm measurements showed that bismuthate particle size, water source, acid quality, and DAAP batch or pre-treatment had little effect on extraction efficiency, with a mean distribution ratio of 3.74 ± 0.5, using 1 M DAAP extraction. Additionally, the purposeful addition of millimolar amounts of nitrite or H2O2 to bismuthate-treated Am solutions did not prevent oxidation, as long as residual solid bismuthate was present. Finally, a series of irradiation experiments using a Nordion Gammacell 220E 60Co source was performed, and kinetic data for the radiolytic reduction of Am(VI) were obtained. Unsurprisingly, it was found that radiolysis reduces Am(VI), but that the presence of Ce(IV) acts as a radioprotection agent, to scavenge radiolytically-produced reducing agents, thereby enhancing the stability of the higher Am oxidation state. Alternative oxidants: To date, sodium bismuthate is the only practical oxidant for Am with utility in solvent extraction. While successful oxidation has been demonstrated with sodium peroxydisulfate, it is impractical for solvent extraction because it is only useful in dilute acid and it introduces sulfate into the process. Oxidation has been demonstrated using silver and cobalt catalyzed ozone, however, reduction upon contact with an organic phase is instantaneous. Oxidation is successful using Cu(III) periodate, and marginally successful in initial testing using DAAP extraction. However, the distribution ratios for the oxidized Am are marginal, because Cu(III) is also rapidly reduced by the organic phase. The possibility may exist that this can be optimized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIssaac, L. D.; Baker, J. D.; Meikrantz, D. H.
1980-01-01
Wastes generated at ICPP and in the reprocessing of LWR fuel is discussed separately. DHDECMP is used as extractant. Studies on DHDECMP purification and toxicity, diluent effects, reaction kinetics, radioloysis, mixer-settler performance, etc. are reported. 10 tables, 3 figures. (DLC)
Quantification of tylosin and tylosin antibiotic resistance genes in cattle waste
USDA-ARS?s Scientific Manuscript database
Presented is the development of a solid phase extraction (SPE) procedure and a liquid chromatography-mass spectrometry (LC-MS/MS) method for quantifying tylosin in cattle waste samples. Tylosin is a macrolide antibiotic found naturally as a fermentation product of Streptomyces fradiae and is mainly ...
From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.
Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv
2017-03-01
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy
2016-04-02
Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less
Dias, Pablo; Javimczik, Selene; Benevit, Mariana; Veit, Hugo; Bernardes, Andréa Moura
2016-11-01
Photovoltaic modules (or panels) are important power generators with limited lifespans. The modules contain known pollutants and valuable materials such as silicon, silver, copper, aluminum and glass. Thus, recycling such waste is of great importance. To date, there have been few published studies on recycling silver from silicon photovoltaic panels, even though silicon technology represents the majority of the photovoltaic market. In this study, the extraction of silver from waste modules is justified and evaluated. It is shown that the silver content in crystalline silicon photovoltaic modules reaches 600g/t. Moreover, two methods to concentrate silver from waste modules were studied, and the use of pyrolysis was evaluated. In the first method, the modules were milled, sieved and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 94%. In the second method, photovoltaic modules were milled, sieved, subjected to pyrolysis at 500°C and leached in 64% nitric acid solution with 99% sodium chloride; the silver concentration yield was 92%. The first method is preferred as it consumes less energy and presents a higher yield of silver. This study shows that the use of pyrolysis does not assist in the extraction of silver, as the yield was similar for both methods with and without pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad
2016-10-01
In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yang; Zhang, Hua; Zhang, Zhiqi; Shao, Liming; He, Pinjing
2015-05-01
The rapid development of the fluorinated pesticide industry has produced a large amount of fluorine-containing hazardous waste, especially inorganic fluoride-containing waste (IFCW). A two-step process, including extraction and recovery, was developed to recover fluorine as synthetic cryolite from IFCW produced by the pesticide industry. The optimum conditions for extraction were found to be a temperature of 75°C, an initial pH (pHi) of 12, a 4-hr incubation time and a liquid-to-solid ratio of 40mL/g; these conditions resulted in a fluorine extraction ratio of 99.0%. The effects of pH and the F/Al molar ratio on fluorine recovery and the compositional, mineralogical and morphological characteristics of the cryolite products were investigated. Field-emission scanning electron microscopy of recovered precipitates showed changes in morphology with the F/Al molar ratio. Coupling Fourier transform and infrared spectroscopy, X-ray diffraction indicated that the formation of AlF6(3-) was restricted as increasing pH. Both the amount of fluorine recovered and the quality of the cryolite were optimized at initial pH=3 and a F/Al molar ratio 5.75. This study proposed a reliable and environmentally friendly method for the treatment of fluoride-containing wastes, which could be suitable for industrial applications. Copyright © 2015. Published by Elsevier B.V.
Extractive waste exploitation towards the natural resource preservation: two Italian case studies
NASA Astrophysics Data System (ADS)
Antonella Dino, Giovanna; Rossetti, Piergiorgio; Biglia, Giulio; Mehta, Neha; Rodeghiero, Franco
2017-04-01
In 2012 the extractive industry represented the second most important sector in terms of waste quantities produced in the EU-27 (29% or 734 million tons). Italy was and still is one of the most important countries as for quarry and mine exploitation, with a consequent huge production of extractive waste (EW; represented by rock waste, operating residues and tailings), which are present in mining dumps (EW facilities). The EU guidelines about waste management aim to the exploitation, based on environmental protection, of any kind of material which can be recovered and recycled, with a consequent natural resources preservation. The decision n. 1600/2002/CE, establishing the VI Environment Action Program, pushes to the revision of the legislation on waste and to the development of specific actions for waste prevention and management. The decisive factors to achieve these results are the minimization of waste production and the recovery of as much waste as possible from the different productive cycles and from landfills, including EW facilities. According to this approach, "WASTE" must be considered as a "RESOURCE", and "LANDFILLS" as "NEW ORE BODIES". In the recent years several projects investigate the recovery of Critical Raw Materials (CRM) and SRM from landfills (Smart Ground, Prosum, etc.). The main objective of the present research, which is one of the activities linked to Smart Ground project (Grant Agreement No 641988), is the estimation of the SRM and CRM present in two selected Italian EW facilities: - Campello Monti mining site (NE Piedmont Region), important for Ni exploitation. The area is characterized by the presence of EW facilities, mainly represented by rock waste and operating residues. - Gorno mining site (N Lombardy Region), famous for Zn exploitation. The area is characterized by the presence of several EW facility areas, mainly represented by rock waste dumps and tailing basins. To appreciate if an EW facility can be considered as an "ore body" to exploit, it is necessary to follow several operative steps, which include: - characterization of the area and of the EW; - evaluation of dumps volume; - SRM estimation, on the basis of EW characterisation and evaluation of dumps volume, and after dressing activities in lab and in pilot plants; - determination of impacts connected to EW management and potential recovery. The comparison of different scenarios (landfilling activity Vs EW exploitation), together with characterisation phases, is useful to evaluate if waste exploitation is profitable or not. At present (December 2016) the phases connected to characterisation of the areas and of the EW have been completed. The first results arising from the sampling activities in Campello Monti show that operating residues are strongly enriched in Ni, Cu, Co; waste rocks in some areas are enriched in the same metals. PGE and Au analysis on the most enriched samples are in progress; the very first results show scattered Pd and Pt enrichments. As for Gorno, the first results arising from rock waste samples show a high content in Zn, often associated to Cd.
Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil.
de la Fuente, C; Clemente, R; Bernal, M P
2008-06-01
Degradation of organic matter from olive mill waste and changes in the heavy metal fractionation of a metal-contaminated calcareous soil were studied in a laboratory experiment, in which the olive mill waste was mixed with the soil and then incubated under aerobic conditions. The soil was calcareous (15% CaCO(3)) with high Zn and Pb concentrations (2058 and 2947 mg kg(-1), respectively). The organic amendment was applied at a rate equivalent to 20 g kg(-1) soil, and unamended soil was run as a control. To discern if changes in metal solubility were due to the acidic character of the waste, elemental sulphur was applied to soil as a non-organic acidifying material. The S(0) rates used were 3.14, 4.71 and 6.28 g kg(-1). The mineralisation of total organic-C (TOC) from the waste reached 14.8% of the original TOC concentration after 56 days of incubation. The CO(2)-C produced from S(0)-treated soils showed the carbonate destruction by the H(2)SO(4) formed through S(0) oxidation. The organic waste increased EDTA-extractable Zn and Pb concentrations and CaCl(2)-extractable Mn levels in soil after two days of incubation. The changes in metal availability with time indicated that the oxidation of phenols from the waste reduced Mn (IV) oxides, releasing Zn and Pb associated with this mineral phase. Organic waste addition did not decrease soil pH; the acidifying effect of S(0) did not change metal fractionation in the soil.
Hauser, Frank M; Hulshof, Janneke W; Rößler, Thorsten; Zimmermann, Ralf; Pütz, Michael
2018-04-18
Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm 3 . A capillary electrophoresis method with contactless conductivity detection (CE-C 4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping. Copyright © 2018 John Wiley & Sons, Ltd.
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z.H.I.; Xiao, Y.; Sietsma, J.
2015-01-15
Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for themore » characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callow, R.A.; Weidner, J.R.; Loehr, C.A.
This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less
Processing of irradiated, enriched uranium fuels at the Savannah River Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, M L; Perkins, W C; Thompson, M C
Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction withmore » dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.« less
Shokraneh, Farhad; Adams, Clive E
2017-08-04
Data extraction is one of the most time-consuming tasks in performing a systematic review. Extraction is often onto some sort of form. Sharing completed forms can be used to check quality and accuracy of extraction or for re-cycling data to other researchers for updating. However, validating each piece of extracted data is time-consuming and linking to source problematic.In this methodology paper, we summarize three methods for reporting the location of data in original full-text reports, comparing their advantages and disadvantages.
Performance of asphalt mixture incorporating recycled waste
NASA Astrophysics Data System (ADS)
Hamid, Nor Baizura; Abdullah, Mohd Ezree; Sanik, Mohd Erwan; Mokhtar, Mardiha; Kaamin, Masiri; Raduan, Rasyidah; Ramli, Mohd Zakwan
2017-12-01
Nowadays, the amount of premix waste was increased every year, especially at the batching plants. Normally, the waste materials will be discarded without doing any innovative and effective research about those materials. This situation has become one of the global concerns due to the increasing number of premix waste produced every year. Therefore, the aim of this study is to evaluate the performance of hot mix asphalt (HMA) using premix waste on improving asphalt mixture fatigue behaviour. The method used in this study was Superpave mix design method. The sample conducted in this study were 0%, 10%, 20%, 30%, and 100% of premix waste respectively. For a binder test, the laboratory test conducted were penetration test, softening test and thin film oven test while for the performance test were resilient modulus test and indirect tensile fatigue test. From the laboratory test, the resilient modulus test was conducted with two different temperature which was 25°C and 40°C. The result from that test was 20% of premix waste had higher resilient modulus at that two different temperatures compared to another samples. From that test also shown that the sample at the lower temperature which was 25°C has higher resilient modulus compared to the temperature of 40°C. Indirect tensile fatigue test showed that the 30% of premix waste sample was suitable for the modified asphalt mixture with referring to the maximum deformation and strain for comparison control, 10%,20%, and 100% of premix waste samples. So, it can be concluded that premix waste inhibits great potential as road construction material and suitable for repeated traffic loading.
A FLUID SORBENT RECYCLING DEVICE FOR INDUSTRIAL FLUID USERS
A roller compression Extractor® that extracts fluids from reusable sorbent pads was evaluated as a method of waste reduction. The extraction device, evaluated for industrial fluid users in New Jersey, was found to be effective in recycling unpleated sorbent pads, especially ...
40 CFR 761.323 - Sample preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS Self-Implementing Alternative Extraction and Chemical Analysis Procedures for Non-liquid PCB Remediation Waste Samples § 761.323 Sample preparation. (a) The comparison study requires analysis of a... of use in this chemical extraction and chemical analysis comparison study, a person may adjust PCB...
Carrión-Paladines, Vinicio; Fries, Andreas; Gómez-Muñoz, Beatriz; García-Ruiz, Roberto
2016-12-01
Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differential lead retention in zircons: implications for nuclear waste containment.
Gentry, R V; Sworski, T J; McKown, H S; Smith, D H; Eby, R E; Christie, W H
1982-04-16
An innovative ultrasensitive technique was used for lead isotopic analysis of individual zircons extracted from granite core samples at depths of 960, 2170, 2900, 3930, and 4310 meters. The results show that lead, a relatively mobile element compared to the nuclear waste-related actinides uranium and thorium, has been highly retained at elevated temperatures (105 degrees to 313 degrees C) under conditions relevant to the burial of synthetic rock waste containers in deep granite holes.
Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste
NASA Astrophysics Data System (ADS)
Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.
2018-04-01
Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.
Zhou, Y-F; Haynes, R J; Naidu, R
2012-05-01
This study aims to examine whether addition of immobilising agents to a sandy, alkaline (pH = 8.1) soil, which had been contaminated with Pb and Zn by airborne particles from a Pb/Zn smelter, would substantially reduce metal bioavailability. The effectiveness of five waste materials (blast furnace (BF) slag, alum water treatment (WT) sludge, red mud, sugar mill mud and green waste compost) as metal immobilising agents was evaluated by incubating them with a contaminated soil for a period of 12 months at rates of 5% and 10% (w/w), after which, Rhodes grass was grown in the soils in a greenhouse study. Additions of WT sludge, BF slag and red mud reduced CaCl(2), CH(3)COOH, HCl and EDTA-extractable Zn but compost and mill mud had no appreciable immobilising effects. Additions of all amendments reduced levels of CaCl(2), CH(3)COOH and HCl-extractable Pb although concentrations of EDTA-extractable Pb remained unchanged. A sequential extraction procedure showed that additions of mill mud and compost increased the percentage of total Pb and Zn present in the oxidisable fraction whilst additions of the other materials increased the percentage present in the residual fraction. Rhodes grass yields were promoted greatly by additions of red mud, compost and particularly mill mud, and yields were negatively correlated with tissue Pb concentrations and extractable Pb. Red mud was the most effective material for lowering extractable Pb and Zn levels simultaneously while mill mud and compost were notably effective for Pb. A field evaluation in the study area is justified.
Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent
Horwitz, E.P.; Kalina, D.G.
1984-05-21
A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jack C.P., E-mail: cejcheng@ust.hk; Ma, Lauren Y.H., E-mail: yingzi@ust.hk
Highlights: ► We developed a waste estimation system leveraging the BIM technology. ► The system can calculate waste disposal charging fee and pick-up truck demand. ► We presented an example scenario demonstrating this system. ► Automatic, time-saving and wide applicability are the features of the system. - Abstract: Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C and D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D and R) works and the growing amount of D and R wastemore » disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D and R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D and R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control.« less
Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-02-29
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Ginocchio, Rosanna; De la Fuente, Luz María; Sánchez, Pablo; Bustamante, Elena; Silva, Yasna; Urrestarazu, Paola; Rodríguez, Patricio H
2009-10-01
Pollution of soil with mine wastes results in both Cu enrichment and soil acidification. This confounding effect may be very important in terms of phytotoxicity, because pH is a key parameter influencing Cu solubility in soil solution. Laboratory toxicity tests were used to assess the effect of acidification by acidic mine wastes on Cu solubility and on root elongation of barley (Hordeum vulgare L.). Three contrasting substrates (two soils and a commercial sand) and two acidic, Cu-rich mine wastes (oxidized tailings [OxT] and smelter dust [SmD]) were selected as experimental materials. Substrates were spiked with a fixed amount of either SmD or OxT, and the pH of experimental mixtures was then modified in the range of 4.0 to 6.0 and 7.0 using PIPES (piperazine-1,4-bis(2-ethanesulfonic acid)), MES (2-(N-morpholino)ethanesulfonic acid), and MOPS (3-(N-Morpholino)-propanesulfonic acid) buffers. Chemical (pore-water Cu and pH) and toxicological (root length of barley plants) parameters were determined for experimental mixtures. Addition of SmD and OxT to substrates resulted in acidification (0.11-1.16 pH units) and high levels of soluble Cu and Zn. Neutralization of experimental mixtures with MES (pH 6.0) and MOPS (pH 7.0) buffers resulted in a marked decrease in soluble Cu and Zn, but the intensity of the effect was substrate-dependent. Adjustment of soil pH above the range normally considered to be toxic to plants (pH in water extract, > 5.5) significantly reduced metal toxicity in barley, but phytotoxicity was not completely eliminated. The present results stress the importance of considering confounding effects on derivation of toxicity thresholds to plants when using laboratory phytotoxicity tests.
Low cost routes to high purity silicon and derivatives thereof
Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart
2013-07-02
The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).
Scaled-up remediation of CCA-treated wood
Carol A. Clausen; William R. Kenealy
2004-01-01
Bioremediation is a novel approach to recycling waste wood treated with chromated copper arsenate (CCA). Remediating CCA-treated waste wood diverts this fiber source from our landfills and provides tangible secondary products from the cleaned fiber. On a laboratory scale, this method, which utilizes oxalic acid extraction and bioleaching with a metal- tolerant...
Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?
NASA Astrophysics Data System (ADS)
Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.
2006-12-01
Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.
NASA Astrophysics Data System (ADS)
Kislukhina, Irina A.; Rybakova, Olga G.
2018-03-01
The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Wei, Liu; Wang, Shutao; Zuo, Qingqing; Liang, Shuxuan; Shen, Shigang; Zhao, Chunxia
2016-06-15
The crude recycling activities of e-waste have led to the severe and complex contamination of e-waste workshop topsoil (0-10 cm) by heavy metals. After nano-hydroxyapatite (NHAp) application in June 2013, plant and soil samples were obtained in November 2013, December 2013, March 2014 and June 2014. The results showed that NHAp effectively reduced the concentration of CaCl2-extractable Pb, Cu, Cd, and Zn in the topsoil and significantly reduced the metal content in ryegrass and also increased the plant biomass compared with that of the control. Moreover, the concentrations of CaCl2-extractable metals in the soil decreased with increasing NHAp. NHAp application also increased the activities of soil urease, phosphatase and dehydrogenase. Moreover, the soil bacterial diversity and community structure were also altered after NHAp application. Particularly, Stenotrophomonas sp. and Bacteroides percentages were increased. Our work proves that NHAp application can alleviate the detrimental effects of heavy metals on plants grown in e-waste-contaminated soil and soil enzyme activities, as well as soil microbial diversity.
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
NASA Astrophysics Data System (ADS)
Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing
2015-03-01
A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.
Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing
2015-01-01
A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing. PMID:25819285
Evaluation of various agro-wastes for traditional black soap production.
Taiwo, O E; Osinowo, F A
2001-08-01
The agricultural wastes, cocoa-pod husks, palm-bunch waste, sorghum chaff and groundnut shells, which are normally thrown away have been used in the production of black soap. Unlike other soaps which are made from oils and chemicals, black soap is made from oils and agro-wastes ashes. Chemical analysis indicated that the liquid extract from the ashes of the different agro-wastes used contained various amounts of potassium and sodium compounds. The most common ingredient in the agro-wastes was potassium carbonate. The amount of potassium carbonate was 56.73 +/- 0.16% in cocoa-pod ash, 43.15 +/- 0.13% in palm-bunch ash, 16.65 +/- 0.05% in groundnut shell ash and 12.40 +/- 0.08% in sorghum chaff ash. Soaps made from the agro-wastes ashes had excellent solubility, consistency, cleansing and lathering abilities.
Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study
NASA Astrophysics Data System (ADS)
Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo
2014-05-01
Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at low application doses; (vi) regarding plant metabolomics study, all treatments showed a different metabolites in respect to Ctrl- treatment. BSG, LPR and Ctrl+ treatments had similar metabolic profile. Finally, Metabolomic study provided an efficient tool and a key reporter about bio-effectors impact on plants. The visible effect and measured agronomical parameters was emphasized and demonstrated by metabolic profiling which offer insights into the affected plant metabolic pathways. As conclusion, our results supported the prediction that plant derived materials may interfere again in plant production regardless their nutritional content. Keywords: Bio-effectors; Metabolomics; Nuclear Magnetic Resonance (NMR); Barley; Fennel; Lemon; Tomato.
MICROWAVE-ASSISTED EXTRACTION OF ORGANIC COMPOUNDS FROM STANDARD REFERENCE SOILS AND SEDIMENTS
As part of an ongoing evaluation of new sample preparation techniques by the U.S. Environmental Protection Agency (EPA), especially those that minimize waste solvents, microwave-assisted extraction (MAE) of organic compounds from solid materials (or "matrices") was evaluated. Six...
NASA Astrophysics Data System (ADS)
Swain, Basudev; Jeong, Jinki; Lee, Jae-chun; Lee, Gae-Ho; Sohn, Jeong-Soo
The paper presents a new leaching-solvent extraction hydrometallurgical process for the recovery of a pure and marketable form of cobalt sulfate solution from waste cathodic active material generated during manufacturing of lithium ion batteries (LIBs). Leaching of the waste was carried out as a function of the leachant H 2SO 4 concentration, temperature, pulp density and reductant H 2O 2 concentration. The 93% of cobalt and 94% of lithium were leached at suitable optimum conditions of pulp density: 100 g L -1, 2 M H 2SO 4, 5 vol.% of H 2O 2, with a leaching time 30 min and a temperature 75 °C. In subsequent the solvent extraction study, 85.42% of the cobalt was recovered using 1.5 M Cyanex 272 as an extractant at an O/A ratio of 1.6 from the leach liquor at pH 5.00. The rest of the cobalt was totally recovered from the raffinate using 0.5 M of Cyanex 272 and an O/A ratio of 1, and a feed pH of 5.35. Then the co-extracted lithium was scrubbed from the cobalt-loaded organic using 0.1 M Na 2CO 3. Finally, the cobalt sulfate solution with a purity 99.99% was obtained from the cobalt-loaded organic by stripping with H 2SO 4.
Roane, J E; DeVol, T A
2002-11-01
An extractive scintillating resin was evaluated for the simultaneous separation and detection of actinides in acidic solutions. The transuranic extractive scintillating (TRU-ES) resin is composed of an inert macroporous polystyrene core impregnated with organic fluors (diphenyloxazole and 1,4-bis-(4-methyl-5-phenyl-2-oxazolyl)benzene) and an extractant (octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate). The TRU-ES resin was packed into FEP Teflon tubing to produce a flow cell (0.2-mL free column volume), which is placed into a scintillation detection system to obtain pulse height spectra and time series data during loading and elution of actinides onto/from the resin. The alpha-particle absolute detection efficiencies ranged from 77% to 96.5%, depending on the alpha energy and quench. In addition to the on-line analyses, off-line analyses of the effluent can be conducted using conventional detection methods. The TRU-ES resin was applied to the quantification of a mixed radionuclide solution and two actual waste samples. The on-line characterization of the mixed radionuclide solution was within 10% of the reported activities whereas the agreement with the waste samples was not as good due to sorption onto the sample container walls and the oxidation state of plutonium. Agreement between the on-line and off-line analyses was within 35% of one another for both waste samples.
Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes
2017-01-01
A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30 days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1 mg L-1), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005 mg L-1). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709
NASA Astrophysics Data System (ADS)
Laxmi Deepak Bhatlu, M.; Katiyar, Prashant; Singh, Satya Vir; Verma, Ashok Kumar
2016-09-01
About 10-20 % kinnow fruits are dropped in preharvest stage which are waste and are problem to farmer as these create nuisance by rotting and insect rearing ground. The peels of these dropped fruits as well as peels from kinnow processing may be good source of naringin and pectin. Naringin is used in pharmaseutics while pectin is used in food industry. For recovery of naringin and pectn, peels of preharvest dropped kinnow fruits were boiled in water. The extract was passed through macroporus polymeric adsorbent resin Indion PA 800, naringin was adsorbed on it. The adsorbed naringin was desorbed with ethanol. This solution was passed through membrane filter and filtrate was evaporated to obtain naringin. The extract remaining after adsorption of naringin was used to recover pectin using acid extraction method. The recovery of naringin and pectin was about 52 and 58 % respectively. The naringin finally obtained had 91-93 % purity.
Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar del Toro, M.; Calmano, W.; Ecke, H.
2009-09-15
Fly ash residues from combustion often do not meet the criteria neither for reuse as construction materials nor landfilling as non-hazardous waste, mainly because of the high concentration of heavy metals and chlorides. This work aimed to technically evaluate an innovative wet treatment process for the extraction of chloride (Cl{sup -}), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from fly ashes from a municipal solid waste incineration (MSWI) plant and from a straw combustion (SC) facility. Factors investigated were liquid/solid (L/S) ratio, full carbonation (CO{sub 2} treatment), influence of pH and leaching time, using a two-level full factorialmore » design. The most significant factor for all responses was low pH, followed by L/S ratio. Multiple linear regression models describing the variation in extraction data had R{sup 2} values ranging from 58% to 98%. An optimization of the element extraction models was performed and a set of treatment conditions is suggested.« less
Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.
Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F
2015-01-01
The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molybdenum-99 Isotope Production Preparation at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, S.D.; Longley, S.W.; McDonald, M.J.
`Q&c M. J. McDonald, S. D. Carson, S. W. Longley, E. J. Parma, M. E. Vern `~ I@ .,., Sandia National Laboratories*, P. .0. Box 5800, Albuquerque, NM, 8 W? 1$ tl?;:q `f. (3 . 8 /'~ Abstract This report was prepared as an account of work sponsored byanagency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its usemore » would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. loading on the Cintichem targets. These tests were designed to gain process knowledge prior to processing an irradiated target. The chemical separation tests were performed in a fime hood During cold testing, several tests were performed on individual components of the process to complete, a series of `hot' tests was designed to process irradiated targets. These were designed to optimize the process, identify problems prior to processing higher inventory targets, and to the shielded containment box (SCB). Table 1 is a summary of the tests performed prior to the Test Target Power Post irradiation Total inventory 99M0 inventory (kW)/ Irradiation decay (hrs) (TBq*) /decay (TBq)/decay Time (hrs) inventory (TBq) inventory(TBq) in the processing boxes as color comparisons. Product quality control testing was conducted for all the tests and the results were compared to The production process generates a high activity acidic liquid waste. Several waste stabilization processing box. The cement, in addition to stabilizing the waste, neutralized the waste resulting The processing hardware and fixtures were developed in parallel to the cold tests and tested in a that expected during processing. During processing, precautions will be taken to minimize the Island incident. The facility consisted of shielded glove boxes, unshielded glove box lines and the the facility for production operations; the glove box lines and shielded glove boxes, all the new configuration will have six windows, four extraction boxes and a waste packaging box on the shielding. The walls and windows of the processing boxes will have the equivalent 150 of the purification box will be considerably less than the processing boxes with dose being from only `gMo. The increased wall thickness will reduce the dose levels to boxes will have under the box transport systems to move material into and out of the boxes. prior to FDA requiring process validation and, consequently, had not pertlormed a process« less
In-Situ Containment and Extraction of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
Biological production of acetic acid from waste gases with Clostridium ljungdahlii
Gaddy, J.L.
1998-09-15
A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.
Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo
2011-08-12
To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target formore » cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, J.R.; Chang, L.W.; Meckes, M.C.
Soil from a site heavily contaminated with polychlorinated biphenyls (PCBs) was treated with a pilot-scale, solvent extraction technology. Bioassays in earthworms and plants were used to examine the efficacy of the remediation process for reducing the toxicity of the soil. The earthworm toxicity bioassays were the 14-d survival test and 21-d reproduction test, using Lumbricus terrestris and Eisenia fetida andrei. The plant bioassays included phytotoxicity tests for seed germination and root elongation in lettuce and oats, and a genotoxicity test (anaphase aberrations) in Allium cepa (common onion). Although the PCB content of the soil was reduced by 99% (below themore » remediation goal), toxicity to earthworm reproduction remained essentially unchanged following remediation. Furthermore, phytotoxicity and genotoxicity were higher for the remediated soil compared to the untreated soil. The toxicity remaining after treatment appeared to be due to residual solvent introduced during the remediation process, and/or to heavy metals or other inorganic contaminants not removed by the treatment. Mixture studies involving isopropanol and known toxicants indicated possible synergistic effects of the extraction solvent and soil contaminants. The toxicity in plants was essentially eliminated by a postremediation, water-rinsing step. These results demonstrate a need for including toxicity measurements in the evaluation of technologies used in hazardous waste site remediations, and illustrate the potential value of such measurements for making modifications to remediation processes.« less
Kunjadia, Prashant D; Nagee, Anju; Pandya, Parth Y; Mukhopadhyaya, Pratap N; Sanghvi, Gaurav V; Dave, Gaurav S
2014-01-01
Oyster mushrooms, species of the genus Pleurotus, are recognized for producing secondary metabolites with important medicinal properties. Investigations were carried out to evaluate the antioxidative and antimicrobial properties of the edible mushroom Pleurotus ostreatus (MTCC142) extracts cultivated on banana agrowastes. Ethanolic extracts showed antimicrobial activities against gram-positive and gram-negative bacteria, and their in vitro antifungal activities against all fungi tested revealed a promising role. Qualitative phytochemical analysis of Pleurotus grown on yeast dextrose broth and banana agrowaste confirmed the presence of steroids, cardiac glycosides, terpenoids, and alkaloids, whereas ethanolic extract after 40 days exhibited a phenol concentration of 521.67 µg/mL in banana waste compared to 155 µg/mL in yeast dextrose broth. The minimum inhibitory concentration of ethanolic extracts ranged from 19.74 to 56.84 mg/mL and 35.53 to 102.31 mg/mL in solid-state and submerged grown mycelium extracts, respectively, after 40 days. Moreover, banana agrowaste could be a significant economic source for the production of the oyster mushroom P. ostreatus. The nutritive, medicinal, and antimicrobial properties of P. ostreatus can be used to develop a new nutraceutical formulation; it can also be used as an additive to routine and fast food.
Núñez-López, Roberto Aurelio; Meas, Yunny; Gama, Silvia Citlalli; Borges, Raúl Ortega; Olguín, Eugenia J
2008-06-15
Plant biomass harvested after heavy-metal phytoremediation must be considered as a hazardous waste that should be contained or treated appropriately before disposal or reuse. As a potential method to detoxify the biomass and to convert this material to a suitable fertilizer or mulch, leaching of lead (Pb) from Salvinia minima biomass was studied by testing water, several aqueous ammonium salts, and EDTA solution as lead extractants. The research was carried out in two phases: (i) a leaching study to determine the lead-extraction efficiency of the different leachants, and (ii) a thermodynamic analysis to identify the likely reactions and stable Pb(II) species formed in the leaching systems of the most efficient leachants. Experimentally, lead concentrations measured in leached biomass and in leachates were significantly different among the various leachants. It was determined that the extraction strength of the leachants followed the order: EDTA>ammonium oxalate>water approximately ammonium nitrate>ammonium acetate, achieving Pb extraction efficiencies of 99%, 70%, 7.2%, 6.9% and 1.3%, respectively, in single-stage extractions. The thermodynamic study indicated that the dominant species produced by the leaching process should be the soluble species PbEDTA2- for EDTA system, and the insoluble Pb(COO)2S precipitate for the oxalate system.
Humic acid batteries derived from vermicomposts at different C/N ratios
NASA Astrophysics Data System (ADS)
Shamsuddin, R. M.; Borhan, A.; Lim, W. K.
2017-06-01
Humic acid is a known fertilizer derived from decomposed organic matters. Organic wastes are normally landfilled for disposal which had contributed negatively to the environment. From waste-to-wealth perspective, such wastes are potential precursors for compost fertilizers. When worms are added into a composting process, the process is termed as vermicomposting. In this work, humic acid from vermicompost derived from campus green wastes was developed into a battery. This adds value proposition to compost instead of being traditionally used solely as soil improver. This research work aimed to study the correlation between electrical potential generated by humic acid at different Carbon to Nitrogen (C/N) ratios of vermicompost at 20, 25, 30 and 35. The temperature and pH profiles of composting revealed that the compost was ready after 55 days. The humic acid was extracted from compost via alkaline extraction followed by precipitation in a strong acid. The extracted humic acid together with other additives were packed into a compartment and termed as vermibattery. Another set of battery running only on the additives was also prepared as a control. The net voltage produced by a single vermibattery cell with Zn and PbO electrodes was in the range of 0.31 to 0.44 V with compost at C/N ratio of 30 gave the highest voltage. The battery can be connected in series to increase the voltage generation. Quality assessment on the compost revealed that the final carbon content is between 16 to 23 wt%, nitrogen content of 0.4 to 0.5 wt%, humic acid yield of 0.7 to 1.5 wt% and final compost mass reduction of 10 to 35 wt%. Composting campus green wastes carries multi-fold benefits of reducing labour requirement, generating fertilizer for campus greenery and green battery construction.
Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.
1988-01-21
A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.
Mohapatra, S; Sarkar, B; Samantaray, D P; Daware, A; Maity, S; Pattnaik, S; Bhattacharjee, S
2017-12-01
Currently, one of the major problem affecting the world is solid waste management, predominantly petroleum-based plastic and fish solid waste (FSW). However, it is very difficult to reduce the consumption of plastic as well as fish products, but it is promising to convert FSW to biopolymer to reduce eco-pollution. On account of that, the bioconversion of FSW extract to polyhydroxybutyrate (PHB) was undertaken by using Bacillus subtilis (KP172548). Under optimized conditions, 1.62 g/L of PHB has been produced by the bacterium. The purified compound was further characterized by advanced analytical technologies to elucidate its chemical structure. Results indicated that the biopolymer was found to be PHB, the most common homopolymer of polyhydroxyalkanoates (PHAs). This is the first report demonstrating the efficacy of B. subtilis to utilize FSW extract to produce biopolymer. The biocompatibility of the PHB against murine macrophage cell line RAW264.7 demonstrated that, it was comparatively less toxic, favourable for surface attachment and proliferation in comparison with poly-lactic acid (PLA) and commercially available PHB. Thus, further exploration is highly indispensable to use FSW extract as a substrate for production of PHB at pilot scale.
Jung, W J; Jo, G H; Kuk, J H; Kim, K Y; Park, R D
2006-06-01
For one-step extraction of chitin from red crab shell waste, cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074, a lactic-acid-producing bacterium, and Serratia marcescens FS-3, a protease-producing bacterium, was conducted. Fermentation with single strain (L. 3074 or FS-3) was also conducted. At day 7, the pH in L. 3074, FS-3, and L. 3074+FS-3 (1:1) treatment decreased from 6.90 to 3.30, 5.88, and 3.48, respectively. Ash content in the residue after fermentation treatment of crab shells in L. 3074 and L. 3074+FS-3 (1:1) treatment drastically decreased from 41.2% to 3.19 and 1.15%, respectively. In L. 3074+FS-3 (1:1) cofermentation, the level of demineralization was the highest value of 97.2%, but the level of deproteinization in the cofermentation was 52.6% at day 7. Protein content in the treatment of FS-3 alone reduced from 22.4 to 3.62%. These results indicate that cofermentation of the shells using the two strains is efficient and applicable for the one-step extraction of crude chitin from red crab shell waste.
Liu, Yongfeng; Bai, Qingqing; Lou, Song; Di, Duolong; Li, Jintian; Guo, Mei
2012-02-15
According to the Friedel-Crafts and amination reaction, a series of macroporous adsorption resins (MARs) with novel structures were synthesized and identified by the Brunauer-Emmett-Teller (BET) method and Fourier transform infrared (FTIR) spectra, and corresponding adsorption behaviors for (-)-epigallocatechin gallate (EGCG) and caffeine (CAF) extracted from waste tea were systemically investigated. Based on evaluation of adsorption kinetics, the kinetic data were well fitted by pseudo-second-order kinetics. Langmuir, Freundlich, Temkin-Pyzhev, and Dubinin-Radushkevich isotherms were selected to illustrate the adsorption process of EGCG and CAF on the MARs. Thermodynamic parameters were adopted to explain in-depth information of inherent energetic changes associated with the adsorption process. The effect of temperature on EGCG and CAF adsorption by D101-3 was further expounded. Van der Waals force, hydrogen bonding, and electrostatic interaction were the main driving forces for the adsorption of EGCG and CAF on the MARs. This study might provide a scientific reference point to aid the industrial large-scale separation and enrichment of EGCG from the extracts of waste tea using modified MARs.
Alvarenga, P; Palma, P; Mourinha, C; Farto, M; Dôres, J; Patanita, M; Cunha-Queda, C; Natal-da-Luz, T; Renaud, M; Sousa, J P
2017-03-01
A field study was established to assess the effects of a sewage sludge (SS), a mixed municipal solid waste compost (MMSWC) and a compost produced from agricultural wastes (AWC), in a Vertisol, using Lolium multiflorum L. The amendments were applied for two consecutive years: 6, 12 and 24t dry matter ha -1 for SS, and the amendment doses for MMSWC and AWC were calculated to deliver the same amount of organic matter (OM) per unit area. The amendments had significant beneficial effects on some soil properties (e.g. soil OM, N Kjeldahl , extractable P and K), and on plant productivity parameters (e.g. biomass yield, chlorophyll, foliar area). For instance, soil OM increased from 0.78% to 1.71, 2.48 and 2.51%, after two consecutive years of application of 24t dry matter ha -1 of SS, MMSWC and AWC, respectively, while the plant biomass obtained increased from 7.75tha -1 to 152.41, 78.14 and 29.26tha -1 , for the same amendments. On the plant, effects were more pronounced for SS than for both compost applications, a consequence of its higher capacity to provide N to the plant in a readily available form. However, after two years of application, the effects on soil properties were more noticeable for both composts, as their OM is more resistant to mineralization, which endures their beneficial effects on soil. Cadmium, Cr, Ni and Pb pseudo-total concentrations, were not affected significantly by the application of the organic wastes to soil, in all tested doses, neither their extractability by 0.01M CaCl 2 . On the contrary, Cu and Zn pseudo-total concentrations increased significantly in the second year of the experiment, following the application of the higher rate of MMSWC and AWC, although their extractability remained very low (<0.5% of their pseudo-total fraction). Trace elements concentrations in the aboveground plant material were lower than their maximum tolerable levels for cattle, used as an indicator of risk of their entry into the human food chain. Despite these results, it is interesting to note that the SS promoted a significant increase in the foliar concentrations of Cu, Ni and Zn that did not happen in composts application, which can be explained by the reduction of the soil pH, as a consequence of SS degradation in soil. Concluding, if this type of organic wastes were to be used in a single application, the rate could be as high as 12 or even 24tha -1 , however, if they are to be applied in an annual basis, the application rates should be lowered to assure their safe application (e.g. to 6tha -1 ). Moreover, it is advisable to use more stable and mature organic wastes, which have longer lasting positive effects on soil characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of spectral signatures of substances in natural waters
NASA Technical Reports Server (NTRS)
Klemas, V.; Philpot, W. D.; Davis, G.
1978-01-01
Optical remote sensing of water pollution offers the possibility of fast, large scale coverage at a relatively low cost. The possibility of using the spectral characteristics of the upwelling light from water for the purpose of ocean water quality monitoring was explained. The work was broken into several broad tasks as follows: (1) definition of a remotely measured spectral signature of water, (2) collection of field data and testing of the signature analysis, and (3) the possibility of using LANDSAT data for the identification of substances in water. An attempt to extract spectral signatures of acid waste and sediment was successful.
Green bio-oil extraction for oil crops
NASA Astrophysics Data System (ADS)
Zainab, H.; Nurfatirah, N.; Norfaezah, A.; Othman, H.
2016-06-01
The move towards a green bio-oil extraction technique is highlighted in this paper. The commonly practised organic solvent oil extraction technique could be replaced with a modified microwave extraction. Jatropha seeds (Jatropha curcas) were used to extract bio-oil. Clean samples were heated in an oven at 110 ° C for 24 hours to remove moisture content and ground to obtain particle size smaller than 500μm. Extraction was carried out at different extraction times 15 min, 30 min, 45 min, 60 min and 120 min to determine oil yield. The biooil yield obtained from microwave assisted extraction system at 90 minutes was 36% while that from soxhlet extraction for 6 hours was 42%. Bio-oil extracted using the microwave assisted extraction (MAE) system could enhance yield of bio-oil compared to soxhlet extraction. The MAE extraction system is rapid using only water as solvent which is a nonhazardous, environment-friendly technique compared to soxhlet extraction (SE) method using hexane as solvent. Thus, this is a green technique of bio-oil extraction using only water as extractant. Bio-oil extraction from the pyrolysis of empty fruit bunch (EFB), a biomass waste from oil palm crop, was enhanced using a biocatalyst derived from seashell waste. Oil yield for non-catalytic extraction was 43.8% while addition of seashell based biocatalyst was 44.6%. Oil yield for non-catalytic extraction was 43.8% while with addition of seashell-based biocatalyst was 44.6%. The pH of bio-oil increased from 3.5 to 4.3. The viscosity of bio-oil obtained by catalytic means increased from 20.5 to 37.8 cP. A rapid and environment friendly extraction technique is preferable to enhance bio-oil yield. The microwave assisted approach is a green, rapid and environmental friendly extraction technique for the production of bio-oil bearing crops.
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y
2015-01-01
Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recycling of CdTe photovoltaic waste
Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.
1999-04-27
A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.
Recycling of CdTe photovoltaic waste
Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.
1999-04-27
A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.
Additional Equipment for Soil Biodegradation
NASA Astrophysics Data System (ADS)
Vondráčková, Terezie; Kraus, Michal; Šál, Jiří
2017-12-01
Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for on-sit biodegradation.
Akkajit, Pensiri; DeSutter, Thomas; Tongcumpou, Chantra
2013-05-01
Numerous waste products have been widely studied and used as soil amendments and metal immobilizing agents. Waste utilization from ethanol production processes as soil amendments is one of the most promising and sustainable options to help utilize materials effectively, reduce waste disposal, and add value to byproducts. As a consequence, this present work carried out a four-month pot experiment of sugarcane (Saccharum officinarum L.) cultivation in Cd and Zn contaminated soil to determine the effect of three sugarcane waste products (boiler ash, filter cake and vinasse) as soil amendment on sugarcane growth, metal translocation and accumulation in sugarcane, and fractionation of Cd and Zn in soil by the BCR sequential extraction. Four treatments were tested: (1) non-amended soil; (2) 3% w/w boiler ash; (3) 3% w/w filter cake; and (4) a combination of 1.5% boiler ash and 1.5% vinasse (w/w). Our findings showed the improved biomass production of sugarcanes; 6 and 3-fold higher for the above ground parts (from 8.5 to 57.6 g per plant) and root (from 2.1 to 6.59 g per plant), respectively, as compared to non-amended soil. Although there was no significant difference in Cd and Zn uptake in sugarcane (mg kg(-1)) between the non-amended soil and the treated soils (0.44 to 0.52 mg Cd kg(-1) and 39.9 to 48.1 mg Zn kg(-1), respectively), the reduction of the most bioavailable Cd concentration (BCR1 + 2) in the treated soils (35.4-54.5%) and the transformation of metal into an insoluble fraction (BCR3) highlighted the beneficial effects of sugarcane waste-products in promoting the sugarcane growth and Cd stabilization in soil.
Kim, Yong Ho; Wyrzykowska-Ceradini, Barbara; Touati, Abderrahmane; Krantz, Q Todd; Dye, Janice A; Linak, William P; Gullett, Brian; Gilmour, M Ian
2015-10-06
Disposal of electronic waste (e-waste) in landfills, incinerators, or at rudimentary recycling sites can lead to the release of toxic chemicals into the environment and increased health risks. Developing e-waste recycling technologies at commercial facilities can reduce the release of toxic chemicals and efficiently recover valuable materials. While these e-waste operations represent a vast improvement over previous approaches, little is known about environmental releases, workplace exposures, and potential health impacts. In this study, airborne particulate matter (PM) was measured at various locations within a modern U.S.-based e-waste recycling facility that utilized mechanical processing. In addition, composite size fractionated PM (coarse, fine and ultrafine) samples were collected, extracted, chemically analyzed, and given by oropharyngeal aspiration to mice or cultured with lung slices for lung toxicity tests. Indoor total PM concentrations measured during the study ranged from 220 to 1200 μg/m(3). In general, the coarse PM (2.5-10 μm) was 3-4 times more abundant than fine/ultrafine PM (<2.5 μm). The coarse PM contained higher levels of Ni, Pb, and Zn (up to 6.8 times) compared to the fine (0.1-2.5 μm) and ultrafine (<0.1 μm) PM. Compared to coarse PM measurements from a regional near-roadway study, Pb and Ni were enriched 170 and 20 times, respectively, in the indoor PM, with other significant enrichments (>10 times) observed for Zn and Sb, modest enrichments (>5 times) for Cu and Sr, and minor enrichments (>2 times) for Cr, Cd, Mn, Ca, Fe, and Ba. Negligible enrichment (<2 times) or depletion (<1 time) were observed for Al, Mg, Ti, Si, and V. The coarse PM fraction elicited significant pro-inflammatory responses in the mouse lung at 24 h postexposure compared to the fine and ultrafine PM, and similar toxicity outcomes were observed in the lung slice model. We conclude that exposure to coarse PM from the facility caused substantial inflammation in the mouse lung and enrichment of these metals compared to levels normally present in the ambient PM could be of potential health concern.
Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke
2014-02-01
Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.
40 CFR 761.326 - Conducting the comparison study.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Conducting the comparison study. 761...-liquid PCB Remediation Waste Samples § 761.326 Conducting the comparison study. Extract or analyze the comparison study samples using the alternative method. For an alternative extraction method or alternative...
40 CFR 761.326 - Conducting the comparison study.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Conducting the comparison study. 761...-liquid PCB Remediation Waste Samples § 761.326 Conducting the comparison study. Extract or analyze the comparison study samples using the alternative method. For an alternative extraction method or alternative...
Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report
This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...
Determination of service standard time for liquid waste parameter in certification institution
NASA Astrophysics Data System (ADS)
Sembiring, M. T.; Kusumawaty, D.
2018-02-01
Baristand Industry Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industry Medan is liquid waste testing service. The company set the standard of service 9 working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company. The purpose of this research is to specify the standard time of each parameter in testing services liquid waste. The method used is the stopwatch time study. There are 45 test parameters in liquid waste laboratory. The measurement of the time done 4 samples per test parameters using the stopwatch. From the measurement results obtained standard time that the standard Minimum Service test of liquid waste is 13 working days if there is testing E. coli.
WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. E.; Newell, J. D.; Johnson, F. C.
The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less
Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David
1999-01-01
A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.
Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.
1999-03-30
A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.
Housseiny, Manal M
2014-05-01
Two different substrates, sunflower (Helianthus annuus L.) tubers and lettuce (Lactuca sativa) roots, were tested. Using a mixture of both wastes resulted in higher production of endoinulinase than either waste alone. Also, ten fungal species grown on these substrates as inexpensive, carbon sources were screened for the best production of endoinulinase activities. Of these, Aspergillus niger AUMC 9375 was the most productive, when grown on the mixture using a 6:1 w/w ratio of sun flower: lettuce, and yielded the highest levels of inulinase at 50% moisture, 30°C, pH 5.0, with seven days of incubation, and with yeast extract as the best nitrogen source. Inulinase was purified to homogeneity by ion-exchange chromatography and gel-filtration giving a 51.11 fold purification. The mixture of sunflower tubers and lettuce roots has potential to be an effective and economical substrate for inulinase production. Inulinase was successfully immobilized with an immobilization yield of 71.28%. After incubation for 2 h at 60°C, the free enzyme activity decreased markedly to 10%, whereas that of the immobilized form decreased only to 87%. A reusability test demonstrated the durability of the immobilized inulinase for 10 cycles and in addition, that it could be stored for 32 days at 4°C. These results indicate that this inulinase, in the immobilized form, is a potential candidate for large-scale production of high purity fructose syrups.
Paschoa, A S
1998-03-01
The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminum. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10(3) kBq/kg for 226Ra, and not much less for 228Ra. Unfortunately, thus far there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries.
NASA Astrophysics Data System (ADS)
Strayer, Richard; Hummerick, Mary; Richards, Jeffrey; Birmele, Michele; Roberts, Michael
AdHocReviewCycleID-309796538 NewReviewCycle EmailSubjectPlease review this (?today?) AuthorEm Richard F. (KSC)[DYNAMAC CORP] ReviewingToolsShownOnceurn:schemas-microsoft-com:office:smart One goal of Exploration Life Support solid waste processing is to stabilize wastes for storage, mitigate crew risks, and enable resource recovery. Food and crew fecal wastes contain easily biodegraded organic components that support microbial growth. Our objective is to determine a baseline for the fate of selected microbes in wastes prior to processing treatments. Challenge microbes, including human-associated pathogens, were added to unsterilized, simulated food trash solid waste containing a mixed microbial community. The fate of the microbial community and challenge microbes was determined over a 6 week time course of waste storage. Challenge microbes were selected from a list of microorganisms common to residual food or fecal wastes and included: Escherichia coli, Salmonella enterica serovar typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger (a common mold), and Bacillus pumilus SAFR-032, a spore-forming bacterium previously isolated from spacecraft assembly facilities selected for its resistance to heat, uv, and desiccation. The trash model simulant contained 80% food trash (food waste and containers) and 20% hygiene wipes. Cultures of challenge microbes were grown overnight on Nutrient Agar (Difco), harvested, re-suspended in physiological saline, and diluted to achieve the desired optical density for inoculation. The six organisms were pooled and inoculated into the simulated food wastes and packaging before manual mixing. Inoculated simulated waste was stored in custom FlexfoilTM gas sampling bags (SKC, Inc.) which were then connected to a gas analysis system designed to supply fresh air to each bag to maintain O2 above 1%. Bag headspace was monitored for CO2 (PP Systems) and O2 (Maxtec). Total microbes were quantified by microscopic direct counts and general cultivation-based methods. Detection and enumeration of challenge microbes was accomplished by cultivation-based microbiological methods with specific selective media and by molecular methods using quantitative stocktickerPCR (qPCR) with stocktickerDNA primers specific for each challenge organism. stocktickerDNA was extracted and purified from residual wastes with a stocktickerDNA isolation kit (Mo Bio), and quantified (NanoDrop) from standard curves prepared from pure culture isolates of each challenge organism. QPCR was conducted on a Roche LightCycler 480 using the Roche stocktickerSYBR Green Master Mix Kit. The identity of all challenge microbes in recovered isolates was verified by stocktickerDNA sequencing (stocktickerABI 3130 Genetic Analyzer - Applied Biosystems). To date, concentrations of challenge microbial populations at concentrations ranging from ˜107 - 108 have been added to simulated food waste and extracted either immediately after mixing or after 1 week of storage. Cultivation-based counts indicated that 5 of 6 challenge microbes could be recovered from simulated food wastes after inoculation for both concentrations. Only S. enterica serovar typhimurium could not be detected at week 0 for the 107 inoculum. Between week 0 and 1, challenge microbes increased in density: S. aureus, E. coli, and P. aeruginosa increasing up to 4 orders of magnitude from the 107 inoculum. Molecular results for the week 0 and week 1 stored samples indicated that the relative concentrations of target stocktickerDNA for the challenge microbes had increased between 1 and 3 orders of magnitude. These preliminary studies demonstrate that potential problems regarding pathogens as cross-contaminants from other waste streams could develop during storage of space mission solid wastes. Ongoing studies are examining longer storage times up to 6 weeks. The results can be used to determine requirements and criteria for waste treatment prior to storage and provides a means of testing the ability of treatment technologies to limit contaminant survival and proliferation.
The goal of the project is to calculate the net social, environmental, and economic benefits of a systems approach to organic waste and resource management in Santa Barbara County. To calculate these benefits, a comparative method was chosen of the proposed desi...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2011 CFR
2011-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2013 CFR
2013-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2014 CFR
2014-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
40 CFR 761.292 - Chemical extraction and analysis of individual samples and composite samples.
Code of Federal Regulations, 2012 CFR
2012-07-01
... individual samples and composite samples. 761.292 Section 761.292 Protection of Environment ENVIRONMENTAL... Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761... individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated...
USDA-ARS?s Scientific Manuscript database
Steam treatment of citrus processing waste (CPW) at 160°C followed by a rapid decompression (steam explosion) at either pH 2.8 or 4.5 provides an efficient and rapid fragmentation of protopectin in CPW and renders a large fraction of fragmented pectins, arabinans, galactans and arabinogalactans solu...
NASA Astrophysics Data System (ADS)
Ortega, Luis Humberto
The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste were also tested. The final solid product was a hard dense ceramic with a density that varied from 2.12 g/cm3 for a 19% waste loading with a 1200°C sintering temperature to 3.03 g/cm 3 with a 29% waste loading and sintered at 1100°C. Differential Scanning Calorimetry and Thermal Gravimetric Analysis (DSC-TGA) of the loaded bentonite displayed mass loss steps which were consistent with water losses in pure bentonite. Water losses were complete after dehydroxylation at ˜650°C. No mass losses were evident beyond the dehydroxylation. The ceramic melts at temperatures greater than 1300°C. Light flash analysis found heat capacities of the ceramic to be comparable to those of strontium and barium feldspars as well as pollucite. Thermal conductivity improved with higher sintering temperatures, attributed to lower porosity. Porosity was minimized in 1200°C sinterings. Ceramics with waste loadings less than 25 wt% displayed slump, the lowest waste loading, 15 wt% bloated at a 1200°C sintering. Waste loading above 25 wt% produced smooth uniform ceramics when sintered >1100°C. Sintered bentonite may provide a simple alternative to vitrification and other engineered radioactive waste-forms.