Sample records for waste feed processability

  1. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less

  2. Organic Separation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less

  3. Characterization of Radioactive Waste Melter Feed Vitrified By Microwave Energy,

    DTIC Science & Technology

    processed in the Defense Waste Processing Facility ( DWPF ) and poured into stainless steel canisters for eventual disposal in a geologic repository...Vitrification of melter feed samples is necessary for DWPF process and product control. Microwave fusion of melter feed at approximately 12OO deg C for 10

  4. Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge.

    PubMed

    Mo, Wing Yin; Man, Yu Bon; Wong, Ming Hung

    2018-02-01

    China's aquaculture industry is growing dramatically in recent years and now accounts for 60.5% of global aquaculture production. Fish protein is expected to play an important role in China's food security. Formulated feed has become the main diet of farmed fish. The species farmed have been diversified, and a large amount of 'trash fish' is directly used as feed or is processed into fishmeal for fish feed. The use of locally available food waste as an alternative protein source for producing fish feed has been suggested as a means of tackling the problem of sourcing safe and sustainable feed. This paper reviews the feasibility of using locally available waste materials, including fish waste, okara and food waste. Although the fishmeal derived from fish waste, okara or food waste is less nutritious than fishmeal from whole fish or soybean meal, most fish species farmed in China, such as tilapia and various Chinese carp, grow well on diets with minimal amounts of fishmeal and 40% digestible carbohydrate. It can be concluded that food waste is suitable as a component of the diet of farmed fish. However, it will be necessary to revise regulations on feed and feed ingredients to facilitate the use of food waste in the manufacture of fish feed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options.

    PubMed

    Salemdeeb, Ramy; Zu Ermgassen, Erasmus K H J; Kim, Mi Hyung; Balmford, Andrew; Al-Tabbaa, Abir

    2017-01-01

    The disposal of food waste is a large environmental problem. In the United Kingdom (UK), approximately 15 million tonnes of food are wasted each year, mostly disposed of in landfill, via composting, or anaerobic digestion (AD). European Union (EU) guidelines state that food waste should preferentially be used as animal feed though for most food waste this practice is currently illegal, because of disease control concerns. Interest in the potential diversion of food waste for animal feed is however growing, with a number of East Asian states offering working examples of safe food waste recycling - based on tight regulation and rendering food waste safe through heat treatment. This study investigates the potential benefits of diverting food waste for pig feed in the UK. A hybrid, consequential life cycle assessment (LCA) was conducted to compare the environmental and health impacts of four technologies for food waste processing: two technologies of South Korean style-animal feed production (as a wet pig feed and a dry pig feed) were compared with two widespread UK disposal technologies: AD and composting. Results of 14 mid-point impact categories show that the processing of food waste as a wet pig feed and a dry pig feed have the best and second-best scores, respectively, for 13/14 and 12/14 environmental and health impacts. The low impact of food waste feed stems in large part from its substitution of conventional feed, the production of which has substantial environmental and health impacts. While the re-legalisation of the use of food waste as pig feed could offer environmental and public health benefits, this will require support from policy makers, the public, and the pig industry, as well as investment in separated food waste collection which currently occurs in only a minority of regions.

  6. The deep processing of seaweed industrial waste--Influence of several fermentation on seaweed waste of feed

    NASA Astrophysics Data System (ADS)

    Zhao, Shipeng; Zhang, Shuping

    2018-02-01

    This paper focuses on several factors on the effects of fermented seaweed feed, and obtains the optimal fermentation process through the analysis of nutrients. Through the experiment we can get, Seaweed waste fermented the best feed when adding 1% of microbial agents and 0.5% of corn powder, fermenting for 15 days.

  7. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  8. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Edwards, T.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.« less

  9. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  10. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  11. Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.

  12. The use of food wastes as feed ingredients for culturing grass carp (Ctenopharyngodon idellus) in Hong Kong.

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    Different types of food wastes, e.g., meats, bones, cereals, fruits, and vegetables, were collected from hotels in Hong Kong, mixed in different ratio, and processed into feed pellets (food wastes (FWs) A, B, and C) for feeding trials in aquaculture species. Grass carp fed with cereal-dominant feed (FW A) showed the best growth (in terms of specific growth rate, relative weight gain, and protein efficiency ratio), among all food waste feeds. However, the growth rates of food waste groups especially the meat product-contained feeds (FW B and FW C) were lower than the commercial feed, Jinfeng(®) 613 formulation (control). The results indicated that grass carp utilized plant proteins better than animal proteins and preferred carbohydrate as a major energy source than lipid. The high-lipid content in feed containing meat products was also a possible reason for hindering growth and resulted high body lipid. It is suggested that lipid should be removed in the preparation of food waste feed or further investigations by implementing supplements, e.g., enzymes in feed to enhance lipid or protein utilization by fish. This utilization of food waste could be an effective and practical way to deal with these wastes in this densely populated city.

  13. Melter Throughput Enhancements for High-Iron HLW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less

  14. Thermophilic biogasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.; Edwards, V.H.

    1980-01-01

    Secondary sewage effluent- and fresh-water-grown water hyacinths (Eichhornia crassipes), Coastal Bermuda grass (Cynodon dactylon), and a hyacinth-grass-municipal solid waste-sludge (biomass-waste) blend were used as test feeds to develop a fast thermophilic biomass- digestion process. For the pure biomass feeds thermophilic digestion has no apparent advantage over mesophilic digestion, but the reverse is true for the biomass-waste blend. Alkaline pretreatment of the feed improved thermophilic digester performance substantially. For a given plant feed load, the reactor volume, culture-heating requirements, and CH4 production rate for thermophilic digestion of the pretreated biomass-waste feed were 18,46, and 135% of those for conventional mesophilic digestion.more » For a biomass-waste feed the respective volatile solids reduction and energy recovery efficiencies were 46 and 49% for thermophilic and 36 and 43% for mesophilic digestions.« less

  15. Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1995-11-07

    A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.

  16. HIERARCHIAL DESIGN AND EVALUATION OF PROCESSES TO GENERATE WASTE-RECYCLED FEEDS

    EPA Science Inventory

    Hierarchical Design and Evaluation of Processes to Generate
    Waste-Recycled Feeds

    Raymond L. Smith
    U.S. Environmental Protection Agency
    Office of Research and Development
    National Risk Management Research Laboratory
    26 W. Martin Luther King Drive
    Cincinna...

  17. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  18. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less

  19. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  20. LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.; Crawford, C.; Duignan, M.

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so itsmore » disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.« less

  1. Process control plan for 242-A Evaporator Campaign 95-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaignmore » 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.« less

  2. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  3. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  4. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  5. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  6. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  7. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less

  8. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery.

    PubMed

    Kim, Mi-Hyung; Kim, Jung-Wk

    2010-09-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200kg of CO(2)-eq could be produced from dry feeding process, 61kg of CO(2)-eq from wet feeding process, 123kg of CO(2)-eq from composting process, and 1010kg of CO(2)-eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-01-12

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase I : Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activitymore » Waste and High-Level Waste Feed Data Quality Objectives (L and H DQO) (Patello et al. 1999), and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  10. A safety analysis of food waste-derived animal feeds from three typical conversion techniques in China.

    PubMed

    Chen, Ting; Jin, Yiying; Shen, Dongsheng

    2015-11-01

    This study was based on the food waste to animal feed demonstration projects in China. A safety analysis of animal feeds from three typical treatment processes (i.e., fermentation, heat treatment, and coupled hydrothermal treatment and fermentation) was presented. The following factors are considered in this study: nutritive values characterized by organoleptic properties and general nutritional indices; the presence of bovine- and sheep-derived materials; microbiological indices for Salmonella, total coliform (TC), total aerobic plate counts (TAC), molds and yeast (MY), Staphylococcus Aureus (SA), and Listeria; chemical contaminant indices for hazardous trace elements such as Cr, Cd, and As; and nitrite and organic contaminants such as aflatoxin B1 (AFB1) and hexachlorocyclohexane (HCH). The present study reveals that the feeds from all three conversion processes showed balanced nutritional content and retained a certain feed value. The microbiological indices and the chemical contaminant indices for HCH, dichlorodiphenyltrichloroethane (DDT), nitrite, and mercury all met pertinent feed standards; however, the presence of bovine- and sheep-derived materials and a few chemical contaminants such as Pb were close to or might exceed the legislation permitted values in animal feeding. From the view of treatment techniques, all feed retained part of the nutritional values of the food waste after the conversion processes. Controlled heat treatment can guarantee the inactivation of bacterial pathogens, but none of the three techniques can guarantee the absence of cattle- and sheep-derived materials and acceptable levels of certain contaminants. The results obtained in this research and the feedstuffs legislation related to animal feed indicated that food waste-derived feed could be considered an adequate alternative to be used in animal diets, while the feeding action should be changed with the different qualities of the products, such as restrictions on the application of ruminants, and recycling as formula feeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of Silica Particle Size of Nuclear Waste-to-Glass Conversion - 17319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Cutforth, Derek A.; Vanderveer, Bradley J.

    The process for converting nuclear waste-to-glass in an electric melter occurs in the cold cap, a crust of reacting solids floating on the glass pool. As the melter feed (a mixture of the nuclear waste and glass forming and modifying additives) heats up in the cold cap, glass-forming reactions ensue, causing the feed matrix to connect, trapping reaction gases to create a foam layer. The foam layer reduces the rate of melting by separating the reacting feed from the melt pool. The size of the silica particle additives in the melter feed affects melt viscosity and, hence, foam stability. Tomore » investigate this effect, seven nuclear waste simulant feeds of a high-level waste were batched as slurries and prepared with dissimilar ranges of silica particle size. Each slurry feed was charged into a laboratory-scale melter (LSM) to produce a cold cap and the propensity of feeds to foam was determined by pressing dried feeds into pellets and monitoring the change of pellet volume in response to heating. Two of these slurries were designed to have dissimilar glass viscosities at 1150°C. In the low temperature region of the cold cap, before the melter feed connects, the feeds without fine silica particles behaved similar to the high viscosity feed as their volume contracted while the feed with silica particles no larger than 5 µm reacted like the low viscosity feed. However, the feed volume similarities reversed as the feed connected and expanded through the foam region of the cold cap.« less

  12. Benchmarking of DFLAW Solid Secondary Wastes and Processes with UK/Europe Counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie E.; Swanberg, David J.; Surman, J.

    This report provides information and background on UK solid wastes and waste processes that are similar to those which will be generated by the Direct-Feed Low Activity Waste (DFLAW) facilities at Hanford. The aim is to further improve the design case for stabilizing and immobilizing of solid secondary wastes, establish international benchmarking and review possibilities for innovation.

  13. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  14. Data quality objectives for TWRS privatization phase 1: confirm tank T is an appropriate feed source for high-level waste feed batch X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    1999-06-01

    The U.S. Department of Energy-Richland Operations Office (DOE-RL) has initiated Phase 1 of a two-phase privatization strategy for treatment and immobilization of high-level waste (HLW) that is currently managed by the Hanford Tank Waste Remediation System (TWRS) Project. In this strategy, DOE will purchase services from a contractor-owned and operated facility under a fixed price. The Phase 1 TWRS privatization contract requires that the Project Hanford Management Contract (PHMC) contractors, on behalf of DOE, deliver HLW feed in specified quantities and composition to the Privatization Contractor in a timely manner (DOE-RL 1996). Additional requirements are imposed by the interface controlmore » document (ICD) for HLW feed (PHMC 1997). In response to these requirements, the Tank Waste Remediation System Operation and Utilization Plan (TWRSO and UP) (Kirkbride et al. 1997) was prepared by the PHMC. The TWRSO and UP, as updated by the Readiness-To-Proceed (RTP) deliverable (Payne et al. 1998), establishes the baseline operating scenario for the delivery of HLW feed to the Privatization Contractor. The scenario specifies tanks from which HLW will be provided for each feed batch, the operational activities needed to prepare and deliver each batch, and the timing of these activities. The operating scenario was developed based on current knowledge of waste composition and chemistry, waste transfer methods, and operating constraints such as tank farm logistics and availability of tank space. A project master baseline schedule (PMBS) has been developed to implement the operating scenario. The PMBS also includes activities aimed at reducing programmatic risks. One of the activities, ''Confirm Tank TI is Acceptable for Feed,'' was identified to verify the basis used to develop the scenario Additional data on waste quantity, physical and chemical characteristics, and transfer properties will be needed to support this activity. This document describes the data quality objective (DQO) process undertaken to assure appropriate data will be collected to support the activity, ''Confirm Tank T is Acceptable for HLW Feed.'' The DQO process was implemented in accordance with the TWRS DQO process (Banning 1997) with some modifications to accommodate project or tank-specific requirements and constraints.« less

  15. Thermal Flammable Gas Production from Bulk Vitrification Feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.

    2008-05-21

    The baseline bulk-vitrification (BV) process (also known as in-container vitrification ICV™) includes a mixer/dryer to convert liquid low-activity waste (LAW) into a dried, blended feed for vitrification. Feed preparation includes blending LAW with glass-forming minerals (GFMs) and cellulose and drying the mixture to a suitable dryness, consistency, and particle size for transport to the ICVTM container. The cellulose is to be added to the BV feed at a rate sufficient to destroy 75% of the nitrogen present as nitrate or nitrite. Concern exists that flammable gases may be produced during drying operations at levels that could pose a risk. Themore » drying process is conducted under vacuum in the temperature range of 60 to 80°C. These flammable gases could be produced either through thermal decomposition of cellulose or waste organics or as a by-product of the reaction of cellulose and/or waste organics with nitrate or the postulated small amount of nitrite present in the waste. To help address the concern about flammable gas production during drying, the Pacific Northwest National Laboratory (PNNL) performed studies to identify the gases produced at dryer temperatures and at possible process upset conditions. Studies used a thermogravimetric analyzer (TGA) up to 525°C and isothermal testing up to 120°C to determine flammable gas production resulting from the cellulose and organic constituents in bulk vitrification feed. This report provides the results of those studies to determine the effects of cellulose and waste organics on flammable gas evolution« less

  16. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  17. Fluid bed gasification--plasma converter process generating energy from solid waste: experimental assessment of sulphur species.

    PubMed

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Taylor, Richard

    2014-01-01

    Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Processing of electronic waste in a counter current teeter-bed separator.

    PubMed

    Dey, Sujit Kumar; Ari, Vidyadhar; Das, Avimanyu

    2012-09-30

    Advanced gravity separation of ground electronic waste (e-waste) in a teeter-bed separator was investigated. It was established that the Floatex Density Seprator (FDS) is a promising device for wet processing of e-waste to recover metal values physically. It was possible to enrich the metal content from 23% in the feed to 37% in the product in a single stage operation using the FDS with over 95% recovery of the metals. A two-stage processing scheme was developed that enriched the metal content further to 48.2%. The influence of the operating variables, namely, teeter water flow rate, bed pressure and feed rate were quantified. Low bed pressures and low teeter water rates produced higher mass yields with poorer product grades. On the contrary, a high bed pressure and high teeter water rate combination led to a lower mass yield but better product quality. A high feed rate introduced en-masse settling leading to higher yield but at a poorer product grade. For an FDS with 230 mm × 230 mm cross section and a height of 530 mm, the process condition with 6.6l pm teeter water rate, 5.27 kPa bed pressure and 82 kg/hr feed rate maximized the yield for a target product grade of 37% metal in a single pass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  20. Data quality objectives for TWRS privatization phase 1: confirm tank T is an appropriate feed source for low-activity waste feed batch X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NGUYEN, D.M.

    1999-06-01

    The US. Department of Energy, Richland Operations Office (DOE-RL) has initiated Phase 1 of a two-phase privatization strategy for treatment and immobilization of low-activity waste (LAW) currently being managed by the Hanford Tank Waste Remediation System (TWRS) Project. In this strategy, DOE will purchase services from a contractor-owned and operated facility under a fixed price. The Phase 1 TWRS privatization contract requires that the Project Hanford Management Contract (PHMC) contractors, on behalf of DOE, deliver LAW feed in specified quantities and composition to the Privatization Contractor in a timely manner (DOE-RL 1996). Additional requirements are imposed by the interface controlmore » document (ICD-19) for LAW feed (PHMC 1997). In response to these requirements, the Tank Waste Remediation System Operation and Utilization Plan (TWRSO and UP) (Kirkbride et al. 1997) was prepared by the PHMC. The TWRSO and UP, as updated by the Readiness-To-Proceed deliverable (Payne et al. 1998), establishes the baseline operating scenario for the delivery of LAW feed to the Privatization Contractor. The scenario specifies tanks from which LAW will be provided for each feed batch, the operational activities needed to prepare and deliver each batch, and the timing of these activities. The operating scenario was developed based on current knowledge of waste composition and chemistry, waste transfer methods, and operating constraints, such as tank farm logistics and availability of tank space. A project master baseline schedule (PMBS) has been developed to implement the operating scenario. The PMBS also includes activities aimed at reducing programmatic risks. One of the activities, ''Confirm Plans and Requirements,'' was identified to verify the basis used to develop the scenario. Additional data on waste quantity, physical and chemical characteristics, and transfer properties will be needed to support this activity. This document describes the data quality objective (DQO) process undertaken to assme appropriate data will be collected to support the activity, ''Confirm Tank Plans and Requirements.'' The DQO process was implemented in accordance with the TWRS DQO process (Banning 1997) with some modifications to accommodate project or tank-specific requirements and constraints.« less

  1. Evaluation of potato anaerobic digestate as a renewable alternative to peat moss in horticultural substrates

    USDA-ARS?s Scientific Manuscript database

    Potato peels and other low-value wastes from potato processing are currently being used as cattle feed or fermented to produce fuel-grade ethanol. The anaerobic fermentation of food wastes, including potato processing wastes, produces biogas (principally methane), which can be used directly for heat...

  2. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca; Colturato, L.F.; Font, X.

    2010-10-15

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSWmore » under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.« less

  3. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

    PubMed

    Martín-González, L; Colturato, L F; Font, X; Vicent, T

    2010-10-01

    Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Tank 241-AY-101 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEMPLETON, A.M.

    2000-05-19

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AY-101. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AY-101 required to satisfy ''Data Quality Objectives For RPP Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO)' (Nguyen 1999a), ''Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank T Is An Appropriate Feed Source For Low-Activity Waste Feed Butch X (LAW DQO) (Nguyen 1999b)'', ''Low Activity Wastemore » and High-Level Waste Feed Data Quality Objectives (L&H DQO)'' (Patello et al. 1999), and ''Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO)'' (Bloom 1996). Special instructions regarding support to the LAW and HLW DQOs are provided by Baldwin (1999). Push mode core samples will be obtained from risers 15G and 150 to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples; composite the liquids and solids; perform chemical analyses on composite and segment samples; archive half-segment samples; and provide sub-samples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AY-101 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plans and are not within the scope of this SAP.« less

  5. Preliminary low-level waste feed definition guidance - LLW pretreatment interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shade, J.W.; Connor, J.M.; Hendrickson, D.W.

    1995-02-01

    The document describes limits for key constituents in the LLW feed, and the bases for these limits. The potential variability in the stream is then estimated and compared to the limits. Approaches for accomodating uncertainty in feed inventory, processing strategies, and process design (melter and disposal system) are discussed. Finally, regulatory constraints are briefly addressed.

  6. Recycling agroindustrial waste by lactic fermentations: coffee pulp silage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrizales, V.; Ferrer, J.

    1985-04-03

    This UNIDO publication on lactic acid fermentation of coffee pulp for feed production covers (1) a process which can be adapted to existing coffee processing plants for drying the product once harvesting time has finished (2) unit operations involved: pressing (optional), silaging, liming and drying (3) experiments, results and discussion, bibliography, process statistics, and diagrams. Additional references: storage, biotechnology, lime, agricultural wastes, recycling, waste utilization.

  7. Valorisation of food waste to produce new raw materials for animal feed.

    PubMed

    San Martin, D; Ramos, S; Zufía, J

    2016-05-01

    This study assesses the suitability of vegetable waste produced by food industry for use as a raw material for animal feed. It includes safety and nutritional viability, technical feasibility and environmental evaluation. Vegetable by-products were found to be nutritionally and sanitarily appropriate for use in animal feed. The drying technologies tested for making vegetable waste suitable for use in the animal feed market were pulse combustion drying, oven and microwave. The different meal prototypes obtained were found to comply with all the requirements of the animal feed market. An action plan that takes into account all the stages of the valorisation process was subsequently defined in agreement with local stakeholders. This plan was validated in a pilot-scale demonstration trial. Finally, the technical feasibility was studied and environmental improvement was performed. This project was funded by the European LIFE+ program (LIFE09 ENV/ES/000473). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Production of a ruminant protein supplement by anaerobic fermentation of feedlot waste filtrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, C.A.; Erdman, M.D.

    1977-01-01

    In studies initiated to develop simple and efficient procedures for the production of feed supplements, it was shown that the filtrate from feedlot wastes diluted with water and filtered could be fermented under anaerobic conditions by mixed rumen bacteria, Lactobacilli, or natural microflora from the feedlot wastes to produce a protein-rich feed supplement. The filtrate is low in carbohydrate and therefore supplemental carbohydrate in the form of whey, molasses, starch from potato processing wastes, or corn starch is necessary. Rigid anaerobic conditions need not be maintained nor must aseptic conditions be observed. (JSR)

  9. 40 CFR 62.15410 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...

  10. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  11. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  12. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  13. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  14. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  15. 40 CFR 412.37 - Additional measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS CONCENTRATED ANIMAL FEEDING OPERATIONS (CAFO) POINT SOURCE CATEGORY Dairy Cows and Cattle Other... application; (4) Test methods used to sample and analyze manure, litter, process waste water, and soil; (5) Results from manure, litter, process waste water, and soil sampling; (6) Explanation of the basis for...

  16. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    PubMed

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  18. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates.

    PubMed

    Diener, Stefan; Zurbrügg, Christian; Tockner, Klement

    2009-09-01

    Larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), are voracious feeders of organic material and may thus be used in simple engineered systems to reduce organic waste in low- and middle-income countries. Controlled feeding experiments with standard fodder were conducted to assess the optimum amount of organic waste to be added to a CORS system (Conversion of Organic Refuse by Saprophages). A daily feeding rate of 100 mg chicken feed (60% moisture content) per larva resulted in an optimum trade-off between material reduction efficiency (41.8%, SE 0.61) and biomass production (prepupal dry weight: 48.0 mg, SE 2.0). Applied to market waste and human faeces, this corresponds to a potential daily feeding capacity of 3-5 kg/m(2) and 6.5 kg/m(2), respectively. In addition, H. illucens prepupae quality was assessed to determine their suitability to substitute fishmeal in animal feed production. The chitin-corrected crude protein content ranged from 28.2 to 42.5%, depending on the amount of food provided to the larvae. Based on our study, a waste processing unit could yield a daily prepupal biomass of 145 g (dry mass) per m(2). We conclude that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

  19. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  20. The use of food waste-based diets and Napier grass to culture grass carp: growth performance and contaminants contained in cultured fish.

    PubMed

    Cheng, Zhang; Mo, Wing-Yin; Nie, Xiang-Ping; Li, Kai-Bing; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The present study used commercial feeds, food waste feeds, Napier grass, and mixed feeds (food waste feed to Napier grass ratio, 1:10) to feed grass carp (Ctenopharyngodon idellus). The results indicated that grass carp fed with food waste feeds and mix feeds achieved growth performance (based on specific growth rate and feed conversion ratio) that was similar to commercial feeds (p > 0.05). Concentrations of metalloid/metals in food waste feeds and polycyclic aromatic hydrocarbons (PAHs) in Napier grass were relatively higher than other types of fish feeds (p < 0.05). However, most of the metalloid/metals and PAH levels in fish fed with four types of fish feeds were not significantly different (p > 0.05). These findings show that food waste feeds are suitable for using in the production of fish feed and Napier grass can be served as supplemental feeds for grass carp, and hence reducing the production cost.

  1. EMERGING TECHNOLOGY BULLETIN: RECLAMATION OF LEAD FROM SUPERFUND WASTE MATERIAL USING SECONDARY LEAD SMELTERS

    EPA Science Inventory

    This process involves incorporating lead-contaminated Superfund waste with the regular feed to a secondary lead smelter. Since secondary lead smelters already recover lead from recycled automobile batteries, it seems likely that this technology could be used to treat waste from ...

  2. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  3. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less

  4. Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Matt R.; Wilson, Robert A.

    Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less

  5. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  6. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  7. The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling.

    PubMed

    Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki

    2012-08-15

    In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  9. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  10. A comparison of process performance during the anaerobic mono- and co-digestion of slaughterhouse waste through different operational modes.

    PubMed

    Pagés-Díaz, Jhosané; Pereda-Reyes, Ileana; Sanz, Jose Luis; Lundin, Magnus; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-02-01

    The use of consecutive feeding was applied to investigate the response of the microbial biomass to a second addition of substrates in terms of biodegradation using batch tests as a promising alternative to predict the behavior of the process. Anaerobic digestion (AD) of the slaughterhouse waste (SB) and its co-digestion with manure (M), various crops (VC), and municipal solid waste were evaluated. The results were then correlated to previous findings obtained by the authors for similar mixtures in batch and semi-continuous operation modes. AD of the SB failed showing total inhibition after a second feeding. Co-digestion of the SB+M showed a significant improvement for all of the response variables investigated after the second feeding, while co-digestion of the SB+VC resulted in a decline in all of these response variables. Similar patterns were previously detected, during both the batch and the semi-continuous modes. Copyright © 2017. Published by Elsevier B.V.

  11. Baseline tests for arc melter vitrification of INEL buried wastes. Volume II: Baseline test data appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Conner, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  12. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less

  13. Infectious waste feed system

    DOEpatents

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  14. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea.

    PubMed

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-01-01

    The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO(2) reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  16. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    USDA-ARS?s Scientific Manuscript database

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  17. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  18. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  19. 242-A Evaporator quality assurance plan. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basra, T.S.

    1995-05-04

    The purpose of this quality assurance project plan (Plan) is to provide requirements for activities pertaining to sampling, shipping, and analyses associated with candidate feed tank samples for the 242-A Evaporator project. The purpose of the 242-A Evaporator project is to reduce the volume of aqueous waste in the Double Shell Tank (DST) System and will result in considerable savings to the disposal of mixed waste. The 242-A Evaporator feed stream originates from DSTs identified as candidate feed tanks. The 242-A Evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending the condensate (calledmore » process condensate) to the Liquid Effluent Retention Facility (LEPF) storage basin where it is stored prior to treatment in the Effluent Treatment Facility (ETF). The objective of this quality assurance project plan is to provide the planning, implementation, and assessment of sample collection and analysis, data issuance, and validation activities for the candidate feed tanks.« less

  20. Life cycle assessment of biohydrogen and biomethane production and utilisation as a vehicle fuel.

    PubMed

    Patterson, Tim; Esteves, Sandra; Dinsdale, Richard; Guwy, Alan; Maddy, Jon

    2013-03-01

    Environmental burdens for the production and utilisation of biomethane vehicle fuel or a biohydrogen/biomethane blend produced from food waste or wheat feed, based on data from two different laboratory experiments, have been compared. For food waste treated by batch processes the two stage system gave high hydrogen yields (84.2l H2kg(-1) VS added) but a lower overall energy output than the single stage system. Reduction in environmental burdens compared with diesel was achieved, supported by the diversion of waste from landfill. For wheat feed, the semi continuously fed two stage process gave low hydrogen yields (7.5l H2kg(-1) VS added) but higher overall energy output. The process delivers reduction in fossil fuel burdens, and improvements in process efficiencies will lead to reduction in CO2 burdens compared with diesel. The study highlights the importance of understanding and optimising biofuel production parameters according to the feedstock utilised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RASMUSSEN, J.H.

    1999-08-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102 required to satisfy the Data Quality Objectives For TWRS Privatization Phase I: Confirm Tank TIS An Appropriate Feed Source For High-Level Waste Feed Batch X(HLW DQO) (Nguyen 1999a), Data Quality Objectives For TWRS Privatization Phase 1: Confirm Tank TIS An Appropriate Feed Source For Low-Activity Waste Feed Batch X (LAW DQO) (Nguyen 1999b), Low Activity Waste andmore » High Level Waste Feed Data Quality Objectives (L&H DQO) (Patello et al. 1999) and Characterization Data Needs for Development, Design, and Operation of Retrieval Equipment Developed through the Data Quality Objective Process (Equipment DQO) (Bloom 1996). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues, except the Equipment DQO apply to tank 241-AZ-102 for this sampling event. The Equipment DQO is applied for shear strength measurements of the solids segments only. Poppiti (1999) requires additional americium-241 analyses of the sludge segments. Brown et al. (1998) also identify safety screening, regulatory issues and provision of samples to the Privatization Contractor(s) as applicable issues for this tank. However, these issues will not be addressed via this sampling event. Reynolds et al. (1999) concluded that information from previous sampling events was sufficient to satisfy the safety screening requirements for tank 241 -AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.« less

  2. Preliminary analysis of species partitioning in the DWPF melter. Sludge batch 7A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, A. S.; Smith III, F. G.; McCabe, D. J.

    2017-01-01

    The work described in this report is preliminary in nature since its goal was to demonstrate the feasibility of estimating the off-gas carryover from the Defense Waste Processing Facility (DWPF) melter based on a simple mass balance using measured feed and glass pour stream (PS) compositions and time-averaged melter operating data over the duration of one canister-filling cycle. The DWPF has been in radioactive operation for over 20 years processing a wide range of high-level waste (HLW) feed compositions under varying conditions such as bubbled vs. non-bubbled and feeding vs. idling. So it is desirable to find out how themore » varying feed compositions and operating parameters would have impacted the off-gas entrainment. However, the DWPF melter is not equipped with off-gas sampling or monitoring capabilities, so it is not feasible to measure off-gas entrainment rates directly. The proposed method provides an indirect way of doing so.« less

  3. Effect of feeding mode and dilution on the performance and microbial community population in anaerobic digestion of food waste.

    PubMed

    Park, Jong-Hun; Kumar, Gopalakrishnan; Yun, Yeo-Myeong; Kwon, Joong-Chun; Kim, Sang-Hyoun

    2018-01-01

    The effect of feeding mode and dilution was studied in anaerobic digestion of food waste. An upflow anaerobic digester with a settler was fed at six different organic loading rates (OLRs) from 4.6 to 8.6kgCOD/m 3 /d for 200days. The highest methane productivity of 2.78LCH 4 /L/d was achieved at 8.6kgCOD/m 3 /d during continuous feeding of diluted FW. Continuous feeding of diluted food waste showed more stable and efficient performance than stepwise feeding of undiluted food waste. Sharp increase in propionate concentration attributed towards deterioration of the digester performances in stepwise feeding of undiluted food waste. Microbial communities at various OLRs divulged that the microbial distribution in the continuous feeding of diluted food waste was not significantly perturbed despite the increase of OLR up to 8.6kgCOD/m 3 /d, which was contrast to the unstable distribution in stepwise feeding of undiluted food waste at 6.1kgCOD/m 3 /d. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, J; Miller, D; Stone, M

    The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less

  6. Performance assessment of two-stage anaerobic digestion of kitchen wastes.

    PubMed

    Bo, Zhang; Pin-Jing, He

    2014-01-01

    This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.

  7. Compression device for feeding a waste material to a reactor

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  8. Compatibility Grab Sampling and Analysis Plan for FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SASAKI, L.M.

    1999-12-29

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less

  9. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less

  10. Fluid bed gasification – Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, Swindon, Wiltshire SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2014-01-15

    Highlights: • We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. • Experiments performed using a two stage fluid bed gasifier – plasma converter process. • Notable SO{sub 2} and relatively low COS levels were identified. • Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. • Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particularmore » is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}’s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS – hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.« less

  11. Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: Leaching characteristics of bottom ashes.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H; Bergfeldt, Brita; Vehlow, Jürgen; Mogensen, Erhardt P B

    2004-02-01

    With the perspective of generating only one solid residue from waste incineration, co-feeding of municipal solid waste and air pollution control residues stabilized by the Ferrox process was investigated in the TAMARA pilot plant incinerator as described in Bergfeldt et al. (Waste Management Research, 22, 49-57, 2004). This paper reports on leaching from the combined bottom ashes. Batch leaching test, pH-static leaching tests, availability tests and column leaching tests were used to characterize the leaching properties. The leaching properties are key information in the context of reuse in construction or in landfilling of the combined residue. In general, the combined bottom ashes had leaching characteristics similar to the reference bottom ash, which contained no APC residue. However, As and Pb showed slightly elevated leaching from the combined bottom ashes, while Cr showed less leaching. The investigated combined bottom ashes had contents of metals comparable to what is expected at steady state after continuous co-feeding of APC residues. Only Cd and Pb were partly volatilized (30-40%) during the incineration process and thus the combined bottom ashes had lower contents of Cd and Pb than expected at steady state. Furthermore, a major loss of Hg was, not surprisingly, seen and co-feeding of Ferrox-products together with municipal solid waste will require dedicated removal of Hg in the flue gas to prevent a build up of Hg in the system. In spite of this, a combined single solid residue from waste incineration seems to be a significant environmental improvement to current technology.

  12. Biodegradable bioplastics from food wastes

    USDA-ARS?s Scientific Manuscript database

    An estimated 1.8 billion tons of waste are created annually from food processing in the US, including the peels, pulp, and pomace (PPP) generated from fruits and vegetables when they are converted into frozen or canned products or pressed into juice. PPP currently is sold as animal feed at low cost,...

  13. Utilization of waste of coal-mining enterprise in production of building materials

    NASA Astrophysics Data System (ADS)

    Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.

    2018-03-01

    Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.

  14. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.

  15. Recycle food wastes into high quality fish feeds for safe and quality fish production.

    PubMed

    Wong, Ming-Hung; Mo, Wing-Yin; Choi, Wai-Ming; Cheng, Zhang; Man, Yu-Bon

    2016-12-01

    The amount of food waste generated from modern societies is increasing, which has imposed a tremendous pressure on its treatment and disposal. Food waste should be treated as a valuable resource rather than waste, and turning it into fish feeds would be a viable alternative. This paper attempts to review the feasibility of using food waste to formulate feed pellets to culture a few freshwater fish species, such as grass carp, grey mullet, and tilapia, under polyculture mode (growing different species in the same pond). These species occupy different ecological niches, with different feeding modes (i.e., herbivorous, filter feeding, etc.), and therefore all the nutrients derived from the food waste could be efficiently recycled within the ecosystem. The problems facing environmental pollution and fish contamination; the past and present situation of inland fish culture (focusing on South China); upgrade of food waste based feed pellets by adding enzymes, vitamin-mineral premix, probiotics (yeast), prebiotics, and Chinese medicinal herbs into feeds; and potential health risks of fish cultivated by food waste based pellets are discussed, citing some local examples. It can be concluded that appropriate portions of different types of food waste could satisfy basic nutritional requirements of lower trophic level fish species such as grass carp and tilapia. Upgrading the fish pellets by adding different supplements mentioned above could further elevated the quality of feeds, leading to higher growth rates, and enhanced immunity of fish. Health risk assessments based on the major environmental contaminants (mercury, PAHs and DDTs) in fish flesh showed that fish fed food waste based pellets are safer for consumption, when compared with those fed commercial feed pellets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. FINAL REPORT INTEGRATED DM1200 MELTER TESTING USING AZ 102 AND C 106/AY-102 HLW SIMULANTS: HLW SIMULANT VERIFICATION VSL-05R5800-1 REV 0 6/27/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KRUGER AA; MATLACK KS; GONG W

    2011-12-29

    The principal objectives of the DM1200 melter tests were to determine the effects of feed rheology, feed solid content, and bubbler configuration on glass production rate and off-gas system performance while processing the HLW AZ-101 and C-106/AY-102 feed compositions; characterize melter off-gas emissions; characterize the performance of the prototypical off-gas system components, as well as their integrated performance; characterize the feed, glass product, and off-gas effluents; and perform pre- and post test inspections of system components. The specific objectives (including test success criteria) of this testing, along with how each objective was met, are outlined in a table. The datamore » provided in this Final Report address the impacts of HLW melter feed rheology on melter throughput and validation of the simulated HLW melter feeds. The primary purpose of this testing is to further validate/verify the HLW melter simulants that have been used for previous melter testing and to support their continued use in developing melter and off-gas related processing information for the Project. The primary simulant property in question is rheology. Simulants and melter feeds used in all previous melter tests were produced by direct addition of chemicals; these feed tend to be less viscous than rheological the upper-bound feeds made from actual wastes. Data provided here compare melter processing for the melter feed used in all previous DM100 and DM1200 tests (nominal melter feed) with feed adjusted by the feed vendor (NOAH Technologies) to be more viscous, thereby simulating more closely the upperbounding feed produced from actual waste. This report provides results of tests that are described in the Test Plan for this work. The Test Plan is responsive to one of several test objectives covered in the WTP Test Specification for this work; consequently, only part of the scope described in the Test Specification was addressed in this particular Test Plan. For the purpose of comparison, the tests reported here were performed with AZ-102 and C-106/AY-102 HLW simulants and glass compositions that are essentially the same as those used for recent DM1200 tests. One exception was the use of an alternate, higher-waste-loading C-106/AY-102 glass composition that was used in previous DM100 tests to further evaluate the performance of the optimized bubbler configuration.« less

  17. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    NASA Astrophysics Data System (ADS)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  18. Distillation Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange,Kevin E.; Conger, Bruce; Anderson, Molly

    2010-01-01

    Gravity-based distillation methods may be applied to the purification of wastewater on the lunar base. These solutions to water processing are robust physical separation techniques, which may be more advantageous than many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams.

  19. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle

    DTIC Science & Technology

    2011-11-30

    FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid...that is well-suited to provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating...provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating the technology at a DoD

  1. Comparison of fermented animal feed and mushroom growth media as two value-added options for waste Cassava pulp management.

    PubMed

    Trakulvichean, Sivalee; Chaiprasert, Pawinee; Otmakhova, Julia; Songkasiri, Warinthorn

    2017-12-01

    Cassava is one of the main processed crops in Thailand, but this generates large amounts (7.3 million tons in 2015) of waste cassava pulp (WCP). The solid WCP is sold directly to farmers or pulp-drying companies at a low cost to reduce the burden of on-site waste storage. Using an integrated direct and environmental cost model, fermented animal feed and mushroom growth media were compared as added-value waste management alternatives for WCP to mitigate environmental problems. Primary and secondary data were collected from the literature, field data, and case studies. Data boundaries were restricted to a gate-to-gate scenario with a receiving capacity of 500 t WCP/d, and based on a new production unit being set up at the starch factory. The total production cost of each WCP utilization option was analyzed from the economic and environmental costs. Fermented animal feed was an economically attractive scenario, giving a higher net present value (NPV), lower investment cost and environmental impact, and a shorter payback period for the 10-year operational period. The selling price of mushrooms was the most sensitive parameter regarding the NPV, while the NPV for the price of fermented animal feed had the highest value in the best-case scenario.

  2. Method for preventing jamming conditions in a compression device

    DOEpatents

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2002-06-18

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  3. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  4. Detection and recognition of uneaten fish food pellets in aquaculture using image processing

    NASA Astrophysics Data System (ADS)

    Liu, Huanyu; Xu, Lihong; Li, Dawei

    2015-03-01

    The waste of fish food has always been a serious problem in aquaculture. On one hand, the leftover fish food spawns a big waste in the aquaculture industry because fish food accounts for a large proportion of the investment. On the other hand, the left over fish food may pollute the water and make fishes sick. In general, the reason for fish food waste is that there is no feedback about the consumption of delivered fish food after feeding. So it is extremely difficult for fish farmers to determine the amount of feedstuff that should be delivered each time and the feeding intervals. In this paper, we propose an effective method using image processing techniques to solve this problem. During feeding events, we use an underwater camera with supplementary LED lights to obtain images of uneaten fish food pellets on the tank bottom. An algorithm is then developed to figure out the number of left pellets using adaptive Otsu thresholding and a linear-time component labeling algorithm. This proposed algorithm proves to be effective in handling the non-uniform lighting and very accurate number of pellets are counted in experiments.

  5. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids.

    PubMed

    Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo

    2018-06-01

    Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Laboratory-scale integrated ARP filter test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less

  8. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  9. Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Peu, P; Sadowski, A G; Béline, F

    2012-02-01

    In this study, the maximum ratio of greasy sludge to incorporate with waste activated sludge was investigated in batch and CSTR experiments. In batch experiments, inhibition occurred with a greasy sludge ratio of more than 20-30% of the feed COD. In CSTR experiments, the optimal greasy sludge ratio was 60% of the feed COD and inhibition occurred above a ratio of 80%. Hence, batch experiments can predict the CSTR yield when the degradation phenomenon are additive but cannot be used to determine the maximum ratio to be used in a CSTR configuration. Additionally, when the ratio of greasy sludge increased from 0% to 60% of the feed COD, CSTR methane production increased by more than 60%. When the greasy sludge ratio increased from 60% to 90% of the feed COD, the reactor yield decreased by 75%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Photoconversion of organic materials into single-cell protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, P.F.

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  11. Photoconversion of organic materials into single-cell protein

    DOEpatents

    Weaver, Paul F.

    2001-01-01

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be as high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  12. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less

  14. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  15. Critical Protection Item classification for a waste processing facility at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less

  16. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Pegg, I.; Joseph, I.

    This report describes work performed to develop and test new glass and feed formulations originating from a potential flow-sheet for the direct vitrification of High Level Waste (HLW) with minimal or no pretreatment. In the HLW direct feed option that is under consideration for early operations at the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the pretreatment facility would be bypassed in order to support an earlier start-up of the vitrification facility. For HLW, this would mean that the ultrafiltration and caustic leaching operations that would otherwise have been performed in the pretreatment facility would either not be performedmore » or would be replaced by an interim pretreatment function (in-tank leaching and settling, for example). These changes would likely affect glass formulations and waste loadings and have impacts on the downstream vitrification operations. Modification of the pretreatment process may result in: (i) Higher aluminum contents if caustic leaching is not performed; (ii) Higher chromium contents if oxidative leaching is not performed; (iii) A higher fraction of supernate in the HLW feed resulting from the lower efficiency of in-tank washing; and (iv) A higher water content due to the likely lower effectiveness of in-tank settling compared to ultrafiltration. The HLW direct feed option has also been proposed as a potential route for treating HLW streams that contain the highest concentrations of fast-settling plutoniumcontaining particles, thereby avoiding some of the potential issues associated with such particles in the WTP Pretreatment facility [1]. In response, the work presented herein focuses on the impacts of increased supernate and water content on wastes from one of the candidate source tanks for the direct feed option that is high in plutonium.« less

  17. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  18. Dynamic waste management (DWM): towards an evolutionary decision-making approach.

    PubMed

    Rojo, Gabriel; Glaus, Mathias; Laforest, Valerie; Laforest, Valérie; Bourgois, Jacques; Bourgeois, Jacques; Hausler, Robert

    2013-12-01

    To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conservation of energy, which allows the balancing of a network, while considering the constraints of incoming (h1 ) and outgoing (h2 ) loads, as well as the distribution network (ΔH) characteristics. The developed approach lies on the identification of the prioritization index (PI) for waste generators (analogy to h1 ), a global allocation index for each of the treatment processes (analogy to h2 ) and the linear index load loss (ΔH) associated with waste transport. To demonstrate the scope of DWM, we outline this approach, and then present an example of its application. The case study shows that the variable monthly waste from the three considered sources is dynamically distributed in priority to the more favourable processes. Moreover, the reserve (stock) helps temporarily store waste in order to ease the global load of the network and favour a constant feeding of the treatment processes. The DWM approach serves as a decision-making tool by evaluating new waste treatment processes, as well as their location and new means of transport for waste.

  19. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery.

    PubMed

    Nigam, Poonam Singh

    2017-04-01

    This overview has focused on the options available for the utilisation of residual-biomass generated in distillery and brewery for the production of added-value products. Bio-processing approaches have been reviewed and discussed for the economical bioconversion and utilisation of this waste for the production of bioproducts, such as lactic acid, enzymes, xylitol and animal feed. Though this overview provides several options for the bioprocessing of this residual material, a more suitable one could be chosen according to the processing-facilities available and the amount of residue available in local area. The feasibility of any chosen process should be evaluated on the basis of cost of material available, its local utilisation for animal feed, and the overall economical advantages that could be gained by changing its current traditional landfill use to produce higher added value products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  1. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith; Woosley, Steve; Campbell, Brett

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less

  2. Effect of moisture content on fed batch composting reactor of vegetable and fruit wastes.

    PubMed

    Jolanun, B; Tripetchkul, S; Chiemchaisri, C; Chaiprasert, P; Towprayoon, S

    2005-03-01

    Vegetable and fruit wastes mixed with sawdust were composted in a laboratory scale reactor by controlling the waste feeding rate at 21 kg m(-3) day(-1) and aeration rate at 10.6 l m(-3) min(-1). The effects of initial moisture content on organic matter degradation and process performance of fed batch composting were investigated. The absolute amount of removal, removal percentage, and removal rate of dry mass obtained were substantially different among the initial moisture contents. The rapid rise of moisture content and the lowest absolute amount of removal observed were achieved in the 50% condition. The initial moisture content yielding the largest absolute amount of removal in both feeding and curing stage was 30% whereas the removal percentage and rate constant of waste decomposition were highest in the 50% condition. Examined by traditional soil physics method, the moisture content at 50-55% was suitable for satisfying the degree of free air space (65-70%) of compost during the fed batch composting. Most degradable organic matter was mainly consumed in the feeding stage as indicated by a higher removal rate of dry mass in all cases. It is recommended that the initial moisture content of 30% and mode of aeration and agitation should be adopted for achieving practical fed batch composting of vegetable and fruit wastes. The study also demonstrated that the composting kinetics of vegetable and fruit wastes mixed with sawdust can be described by a first order model.

  3. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  4. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  5. Reforming of glucose and wood at the critical conditions of water

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1977-01-01

    Reforming of organics in aqueous solutions is being investigated as a potential waste treatment process. Earlier studies showed that glucose in water reacts to form a gaseous mixture of CO, H2, CH4, CO2, C2H6, and C2H4 in the vicinity of the critical conditions of water (374 C, 22 MPa). The earlier work has been extended to determine the effect of variations in temperature and feed concentration on the extent of gasification. The percent gasification decreases with increasing feed concentration, indicating an overall kinetic order less than unity. Surprisingly, the percent gasification decreases with increasing temperature. A number of preliminary experiments were conducted with maple sawdust feed, which was thought to be representative of complex organic wastes from paper and vegetable matter. Once again, no solid products were found under the critical conditions; the percent gasification ranged from 16 to 88 percent, depending on the feed composition and residence time.

  6. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    PubMed

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIRKBRIDE, R.A.

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  9. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, andmore » summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation.« less

  10. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN, G.P.

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  12. Options for the Separation and Immobilization of Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glassmore » melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the processing of ion exchange eluate. The second objective of this report is to assess the compatibility of the available waste forms with the anticipated waste streams. Two major categories of Tc-specific waste forms are considered in this report including mineral and metal waste forms. Overall, it is concluded that a metal alloy waste form is the most promising and mature Tc-specific waste form and offers several benefits. One obvious advantage of the disposition of Tc in the metal alloy waste form is the significant reduction of the generated waste form volume, which leads to a reduction of the required storage facility footprint. Among mineral waste forms, glass-bonded sodalite and possibly goethite should also be considered for the immobilization of Tc.« less

  13. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    PubMed

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.

  14. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production.

    PubMed

    Varotto Boccazzi, Ilaria; Ottoboni, Matteo; Martin, Elena; Comandatore, Francesco; Vallone, Lisa; Spranghers, Thomas; Eeckhout, Mia; Mereghetti, Valeria; Pinotti, Luciano; Epis, Sara

    2017-01-01

    Feed security, feed quality and issues surrounding the safety of raw materials are always of interest to all livestock farmers, feed manufacturers and competent authorities. These concerns are even more important when alternative feed ingredients, new product developments and innovative feeding trends, like insect-meals, are considered. The black soldier fly (Hermetia illucens) is considered a good candidate to be used as feed ingredient for aquaculture and other farm animals, mainly as an alternative protein source. Data on transfer of contaminants from different substrates to the insects, as well as the possible occurrence of toxin-producing fungi in the gut of non-processed insects are very limited. Accordingly, we investigated the impact of the substrate/diet on the intestinal mycobiota of H. illucens larvae using culture-dependent approaches (microbiological analyses, molecular identification through the typing of isolates and the sequencing of the 26S rRNA D1/D2 domain) and amplicon-based next-generation sequencing (454 pyrosequencing). We fed five groups of H. illucens larvae at the third growing stage on two substrates: chicken feed and/or vegetable waste, provided at different timings. The obtained results indicated that Pichia was the most abundant genus associated with the larvae fed on vegetable waste, whereas Trichosporon, Rhodotorula and Geotrichum were the most abundant genera in the larvae fed on chicken feed only. Differences in the fungal communities were highlighted, suggesting that the type of substrate selects diverse yeast and mold genera, in particular vegetable waste is associated with a greater diversity of fungal species compared to chicken feed only. A further confirmation of the significant influence of diet on the mycobiota is the fact that no operational taxonomic unit common to all groups of larvae was detected. Finally, the killer phenotype of isolated yeasts was tested, showing the inhibitory activity of just one species against sensitive strains, out of the 11 tested species.

  15. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production

    PubMed Central

    Varotto Boccazzi, Ilaria; Ottoboni, Matteo; Martin, Elena; Comandatore, Francesco; Vallone, Lisa; Spranghers, Thomas; Eeckhout, Mia; Mereghetti, Valeria; Pinotti, Luciano

    2017-01-01

    Feed security, feed quality and issues surrounding the safety of raw materials are always of interest to all livestock farmers, feed manufacturers and competent authorities. These concerns are even more important when alternative feed ingredients, new product developments and innovative feeding trends, like insect-meals, are considered. The black soldier fly (Hermetia illucens) is considered a good candidate to be used as feed ingredient for aquaculture and other farm animals, mainly as an alternative protein source. Data on transfer of contaminants from different substrates to the insects, as well as the possible occurrence of toxin-producing fungi in the gut of non-processed insects are very limited. Accordingly, we investigated the impact of the substrate/diet on the intestinal mycobiota of H. illucens larvae using culture-dependent approaches (microbiological analyses, molecular identification through the typing of isolates and the sequencing of the 26S rRNA D1/D2 domain) and amplicon-based next-generation sequencing (454 pyrosequencing). We fed five groups of H. illucens larvae at the third growing stage on two substrates: chicken feed and/or vegetable waste, provided at different timings. The obtained results indicated that Pichia was the most abundant genus associated with the larvae fed on vegetable waste, whereas Trichosporon, Rhodotorula and Geotrichum were the most abundant genera in the larvae fed on chicken feed only. Differences in the fungal communities were highlighted, suggesting that the type of substrate selects diverse yeast and mold genera, in particular vegetable waste is associated with a greater diversity of fungal species compared to chicken feed only. A further confirmation of the significant influence of diet on the mycobiota is the fact that no operational taxonomic unit common to all groups of larvae was detected. Finally, the killer phenotype of isolated yeasts was tested, showing the inhibitory activity of just one species against sensitive strains, out of the 11 tested species. PMID:28771577

  16. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  17. Method for the recovery of actinide elements from nuclear reactor waste

    DOEpatents

    Horwitz, E. Philip; Delphin, Walter H.; Mason, George W.

    1979-01-01

    A process for partitioning and recovering actinide values from acidic waste solutions resulting from reprocessing of irradiated nuclear fuels by adding hydroxylammonium nitrate and hydrazine to the waste solution to adjust the valence of the neptunium and plutonium values in the solution to the +4 oxidation state, thus forming a feed solution and contacting the feed solution with an extractant of dihexoxyethyl phosphoric acid in an organic diluent whereby the actinide values, most of the rare earth values and some fission product values are taken up by the extractant. Separation is achieved by contacting the loaded extractant with two aqueous strip solutions, a nitric acid solution to selectively strip the americium, curium and rare earth values and an oxalate solution of tetramethylammonium hydrogen oxalate and oxalic acid or trimethylammonium hydrogen oxalate to selectively strip the neptunium, plutonium and fission product values. Uranium values remain in the extractant and may be recovered with a phosphoric acid strip. The neptunium and plutonium values are recovered from the oxalate by adding sufficient nitric acid to destroy the complexing ability of the oxalate, forming a second feed, and contacting the second feed with a second extractant of tricaprylmethylammonium nitrate in an inert diluent whereby the neptunium and plutonium values are selectively extracted. The values are recovered from the extractant with formic acid.

  18. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  19. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  20. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  1. Generation rates and chemical compositions of waste streams in a typical crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Golub, Morton A.

    1990-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  2. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive andmore » extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The Cleanup of Hanford's 56 million gallons of radioactive and chemical waste stored in 177 large underground tanks represents the Department's largest and most complex environmental remediation project. Sixty percent by volume of the nation's high-level radioactive waste is stored in the underground tanks grouped into 18 'tank farms' on Hanford's central plateau. Hanford's mission to safely remove, treat and dispose of this waste includes the construction of a first-of-its-kind Waste Treatment Plant (WTP), ongoing retrieval of waste from single-shell tanks, and building or upgrading the waste feed delivery infrastructure that will deliver the waste to and support operations of the WTP beginning in 2019. Our discussion of the 2020 Vision for Hanford tank waste cleanup will address the significant progress made to date and ongoing activities to manage the operations of the tank farms and WTP as a single system capable of retrieving, delivering, treating and disposing Hanford's tank waste. The initiation of hot operations and subsequent full operations of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when it is required for hot operations. - Ensure immobilized waste and waste recycle streams can be received by the TF when required to support 2016 production of immobilized low-activity waste (ILAW). - Ensure the required baseline and additional funding is provided beginning in fiscal year 2011. - Modify TF and WTP contracts to adequately address this vision. The 2020 Vision provides a summary of strategies and key actions that optimize the approach to startup, commissioning, and turnover of WTP facilities. This vision focuses on the legally enforceable requirement to achieve the Consent Decree milestones of starting radioactive operations in 2019, and achieving initial WTP operations in 2022. (authors)« less

  3. Solid-state fermentation of industrial solid wastes from the fruits of milk thistle Silybum marianum for feed quality improvement.

    PubMed

    Li, Fang; Li, Feng; Zhao, Ting; Mao, Guanghua; Zou, Ye; Zheng, Daheng; Takase, Mohammed; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing

    2013-08-01

    The industrial solid wastes generated during the production of silymarin from the fruits of milk thistle Silybum marianum was used as the substrate. Preparation and evaluation of the feeds produced by solid-state fermentation (SSF) of the industrial solid wastes was carried out. The protein content of the fermented feed (FF) from a combination of Aspergillus niger and Candida tropicalis was the highest among the examined strains. The optimal process parameters for protein enrichment with SSF using A. niger and C. tropicalis included incubation temperature of 30.8 °C, fermentation time of 87.0 h, and initial moisture content of 59.7 %. Under these conditions, the value additions of FF occurred. The fiber of FF was decreased by 25.07 %, while the digestibility of protein, protein content, and the ratio of total essential amino acids to total amino acids were increased by 79.85, 16.22, and 8.21 %, respectively. The analysis indicated that FF contained 1.44 mg/kg flavonoids and 0.5 mg/kg silybin, which significantly increased by 2.42 and 1.63 times, respectively than those in unfermented substrates. FF recorded reduced molecular weight of proteins from 20.1 to 44.3 kDa to below 14.3 kDa. The results of feeding trial of FF replacement with soybean meal in broilers diets for 8 weeks showed that FF significantly improved carcass characteristics including abdominal fat rate, serum biochemical parameters including aspartate transaminase, blood urea nitrogen and high density lipoprotein cholesterol, and immune responses of broilers. A potential feed quality improvement was achieved through mixed strains SSF of industrial solid wastes of S. marianum fruits.

  4. Process for the production of ultrahigh purity silane with recycle from separation columns

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  5. Process for the production of ultrahigh purity silane with recycle from separation columns

    DOEpatents

    Coleman, Larry M.

    1982-07-20

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  6. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processingmore » simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.« less

  7. Application of food waste based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density.

    PubMed

    Mo, Wing Yin; Cheng, Zhang; Choi, Wai Ming; Man, Yu Bon; Liu, Yihui; Wong, Ming Hung

    2014-08-30

    Food waste was collected from local hotels and fish feed pellets were produced for a 6 months long field feeding trial. Three types of fish feed pellets (control diet: Jinfeng® 613 formulated feed, contains mainly fish meal, plant product and fish oil; Diet A: food waste based diet without meat and 53% cereal; Diet B: food waste based diet with 25% meat and 28% cereal) were used in polyculture fish ponds to investigate the growth of fish (grass carp, bighead and mud carp), changes in water quality and plankton density. No significant differences in the levels of nitrogen and phosphorous compounds of water body were observed between 3 fish ponds after the half-year feeding trial, while pond receiving Diet A had the highest density of plankton. The food waste combination of Diet B seems to be a better formulation in terms of the overall performance on fish growth. Copyright © 2014. Published by Elsevier Ltd.

  8. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    PubMed

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less

  10. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    PubMed

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to contribute to economic and environmental sustainability.

  11. High density Polyethylene plastic waste treatment with microwave heating pyrolysis method using coconut-shell activated carbon to produce alternative fuels

    NASA Astrophysics Data System (ADS)

    Juliastuti, S. R.; Hisbullah, M. I.; Abdillah, M.

    2018-03-01

    Pyrolysis is a technology that could crack polimer such as plastic waste into alternative fuels. This research uses microwave heating methode, which more efficient than conventional heating methode. The plastic waste used is 200 grams of HDPE, with feed to catalyst weight ratio are 1:1, 0.6:1, 0.4:1. Pyrolysis was run at temperatures of 250, 300, 350, & 400 °C for 15, 30 and 45 min. From the experimental result, the best variable of pyrolysis process with microwave method is at 45 minutes, at 400°C, and 1:1 feed to catalyst weight ratio. Result shows that yield of liquid and gas product is 99.22%; yield of residue is 0.78%; value of liquid product’s composition (cycloparaffin and n-paraffin) is 54.09% and concentration of methane gas is 10.2%.

  12. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    PubMed Central

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria’s waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria’s waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap-1. In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap-1 a-1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita. PMID:27474393

  13. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    PubMed

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  14. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    PubMed

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  15. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  16. Biogasification of Walt Disney World biomass waste blend. Annual report Jan-Dec 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Chynoweth, D.P.; Janulis, J.

    1983-05-01

    The objective of this research is to develop efficient processes for conversion of biomass-waste blends to methane and other resources. To evaluate the technical and economic feasibility, an experimental test facility (ETU) is being designed and installed at the Reedy Creek Wastewater Treatment Plant at Walt Disney World, Orlando, Florida. The facility will integrate a biomethanogenic conversion process with a waste-water treatment process employing water hyacinth ponds for secondary and tertiary treatment of sewage produced at Walt Disney World. The ETU will be capable of feeding 1-wet ton per day of water hyacinth-sludge blends to the digestion system for productionmore » of methane and other byproducts. The detailed design of the facility has been completed and procurement of equipment is in progress.« less

  17. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    PubMed

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics.

  18. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    NASA Astrophysics Data System (ADS)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (< 1 g·h-1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  19. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium.

    PubMed

    Duan, Chenlong; Wen, Xuefeng; Shi, Changsheng; Zhao, Yuemin; Wen, Baofeng; He, Yaqun

    2009-07-15

    Research on the recycling of waste printed circuit boards (PCB) is at the forefront of environmental pollution prevention and resource recycling. To effectively crush waste PCB and to solve the problem of secondary pollution from fugitive odors and dust created during the crushing process, a wet impacting crusher was employed to achieve comminution liberation of the PCB in a water medium. The function of water in the crushing process was analyzed. When using slippery hammerheads, a rotation speed of 1470 rpm, a water flow of 6m(3)/h and a sieve plate aperture of 2.2mm, 95.87% of the crushed product was sized less than 1mm. 94.30% of the metal was in this grade of product. Using smashed material graded -1mm for further research, a Falcon concentrator was used to recover the metal from the waste PCB. Engineering considerations were the liberation degree, the distribution ratio of the metal and a way to simplify the technology. The separation mechanism for fine particles of different densities in a Falcon concentrator was analyzed in detail and the separation process in the segregation and separation zones was deduced. Also, the magnitude of centrifugal acceleration, the back flow water pressure and the feed slurry concentration, any of which might affect separation results, were studied. A recovery model was established using Design-Expert software. Separating waste PCB, crushed to -1mm, with the Falcon separator gave a concentrated product graded 92.36% metal with a recovery of 97.05%. To do this the reverse water pressure was 0.05 MPa, the speed transducer frequency was set at 30 Hz and the feed density was 20 g/l. A flow diagram illustrating the new technique of wet impact crushing followed by separation with a Falcon concentrator is provided. The technique will prevent environmental pollution from waste PCB and allow the effective recovery of resources. Water was used as the medium throughout the whole process.

  20. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  1. Development of immobilized cellulase through functionalized gold nano-particles for glucose production by continuous hydrolysis of waste bamboo chopsticks.

    PubMed

    Cheng, Cheanyeh; Chang, Kuo-Chung

    2013-12-10

    Cellulase immobilized on silica through the assistance of l-cysteine functionalized gold nano-particle was applied for the continuous hydrolysis of waste bamboo chopsticks powder to produce glucose. The optimal conditions for the continuous hydrolysis were pH 8.0, 50°C. A 4-day reaction with an initial 0.3 gL⁻¹ waste bamboo chopsticks powder, a feed containing 0.2 gL⁻¹ waste bamboo chopsticks powder at a continuous feed and draw rate of 0.5 mLmin⁻¹, and an enzyme loading of 40 mgcellulase(gsilica)⁻¹, has 72.0-76.6% conversion rates of repeated hydrolyses that correspond to a total production of 630.5-671.2mg glucose and are much better than batch hydrolyses. At higher enzyme loading (117 mgcellulase(gsilica)⁻¹), higher initial concentration (0.5 gL⁻¹), and higher feed concentration (0.42 gL⁻¹) the conversion rate increases to 82.9% and a total amount of 1418 mgglucose. The immobilized cellulase can be recovered easily by filtration and used repeatedly at least 6 times over a period more than 90 days with a recovered activity approximately the same as or better than previous reactions. Thus the process is promising for scaling up. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Sludge batch 9 simulant runs using the nitric-glycolic acid flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Williams, M. S.; Brandenburg, C. H.

    Testing was completed to develop a Sludge Batch 9 (SB9) nitric-glycolic acid chemical process flowsheet for the Defense Waste Processing Facility’s (DWPF) Chemical Process Cell (CPC). CPC simulations were completed using SB9 sludge simulant, Strip Effluent Feed Tank (SEFT) simulant and Precipitate Reactor Feed Tank (PRFT) simulant. Ten sludge-only Sludge Receipt and Adjustment Tank (SRAT) cycles and four SRAT/Slurry Mix Evaporator (SME) cycles, and one actual SB9 sludge (SRAT/SME cycle) were completed. As has been demonstrated in over 100 simulations, the replacement of formic acid with glycolic acid virtually eliminates the CPC’s largest flammability hazards, hydrogen and ammonia. Recommended processingmore » conditions are summarized in section 3.5.1. Testing demonstrated that the interim chemistry and Reduction/Oxidation (REDOX) equations are sufficient to predict the composition of DWPF SRAT product and SME product. Additional reports will finalize the chemistry and REDOX equations. Additional testing developed an antifoam strategy to minimize the hexamethyldisiloxane (HMDSO) peak at boiling, while controlling foam based on testing with simulant and actual waste. Implementation of the nitric-glycolic acid flowsheet in DWPF is recommended. This flowsheet not only eliminates the hydrogen and ammonia hazards but will lead to shorter processing times, higher elemental mercury recovery, and more concentrated SRAT and SME products. The steady pH profile is expected to provide flexibility in processing the high volume of strip effluent expected once the Salt Waste Processing Facility starts up.« less

  3. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.

  4. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics,more » glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.« less

  6. Production of hydrogen using an anaerobic biological process

    DOEpatents

    Kramer, Robert; Pelter, Libbie S.; Patterson, John A.

    2016-11-29

    Various embodiments of the present invention pertain to methods for biological production of hydrogen. More specifically, embodiments of the present invention pertain to a modular energy system and related methods for producing hydrogen using organic waste as a feed stock.

  7. EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Laurinat, J.

    2011-08-15

    When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plusmore » adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment 8.2 of the DWPF Waste Compliance Plan (WCP).« less

  8. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae.

    PubMed

    Gervasi, Teresa; Pellizzeri, Vito; Calabrese, Giorgio; Di Bella, Giuseppa; Cicero, Nicola; Dugo, Giacomo

    2018-03-01

    Food waste is the single-largest component of the waste stream, in order to protect and safeguard the public health, useful and innovative recycling methods are investigated. The conversion of food wastes in value-added products is becoming a more economically viable and interesting practice. Food waste, collected in the distribution sector and citrus industries, was characterised for its potential as a raw material to use in fermentation processes. In this study, the production of single-cell protein (SCP) using food waste as a substrate was investigated. The purpose of this study has been to produce SCP from mixtures of food waste using Saccharomyces cerevisiae. The main fermentation test was carried out using a 25 l bioreactor. The utilisation of food waste can allow us to not only to reduce environmental pollution, but also to obtain value-added products such as protein supply for animal feed.

  9. Wet Oxidation as a Waste Treatment Method in Closed Systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  10. Wet oxidation as a waste treatment in closed systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  11. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  12. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  13. Feedstock for ruminant, non-ruminant and aquatic fish in Malaysia-A review

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Muzarpar, Syafiq; Baba, I.; Sunar, N. M.; Wahab, R. Abdul

    2017-09-01

    Large demand of feedstock in Malaysia initiated the farmers to accelerate animal growth by improving quality of livestock's. However, quality increase will effect to the cost increment as well. Therefore, main objective of this study is to review various material and methods which acceptable in Malaysia in order to teach the farmer in selecting appropriate material for animal feed. Animal feed for ruminant, non-ruminant and aquatic fish has big issues in Halal animal feed. It caused by sources of existing animal feed from non-halal material such as blood meal and pig bone. There are various sources of halal animal feed sources such as from plant such as napier, PKC, banana tree and corn leaf as well as from waste material such as waste toufu, waste coconut, soy meal, coconut meal and sagoo. Therefore, the farmer able to select the appropriate material for own animal feed to reduce cost and fulfill the animal feed requirement regarding to protein and nutrient need.

  14. Prion infectivity detected in swine challenged with chronic wasting disease via the intracerebral or oral route

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. The potential for swine to serve as a host for the agent of chronic wasting disease is unknown. In the US, feeding of ruminant by-products to ruminants is prohibited, but feeding of rum...

  15. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  16. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, andmore » urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions. Collect and analyze discharged glass to determine sulfur retention in the glass. Prepare and characterize feeds and glasses with the additives to confirm that the feeds and the glass melts are suitable for processing in the DM100 melter. Prepare and characterize glasses with the additives to confirm that the glasses meet the waste form (ILAW) performance requirements.« less

  17. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  18. Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.

    1997-12-01

    DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less

  19. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  20. A junk-food hypothesis for gannets feeding on fishery waste

    PubMed Central

    Grémillet, David; Pichegru, Lorien; Kuntz, Grégoire; Woakes, Anthony G; Wilkinson, Sarah; Crawford, Robert J.M; Ryan, Peter G

    2008-01-01

    Worldwide fisheries generate large volumes of fishery waste and it is often assumed that this additional food is beneficial to populations of marine top-predators. We challenge this concept via a detailed study of foraging Cape gannets Morus capensis and of their feeding environment in the Benguela upwelling zone. The natural prey of Cape gannets (pelagic fishes) is depleted and birds now feed extensively on fishery wastes. These are beneficial to non-breeding birds, which show reduced feeding effort and high survival. By contrast, breeding gannets double their diving effort in an attempt to provision their chicks predominantly with high-quality, live pelagic fishes. Owing to a scarcity of this resource, they fail and most chicks die. Our study supports the junk-food hypothesis for Cape gannets since it shows that non-breeding birds can survive when complementing their diet with fishery wastes, but that they struggle to reproduce if live prey is scarce. This is due to the negative impact of low-quality fishery wastes on the growth patterns of gannet chicks. Marine management policies should not assume that fishery waste is generally beneficial to scavenging seabirds and that an abundance of this artificial resource will automatically inflate their populations. PMID:18270155

  1. Economics of feeding pasteurized colostrum and pasteurized waste milk to dairy calves.

    PubMed

    Jamaluddin, A A; Carpenter, T E; Hird, D W; Thurmond, M C

    1996-08-15

    To estimate the marginal contribution of pasteurization of waste milk and colostrum to gross margin per calf at weaning and to estimate the minimum number of cattle on a dairy farm for pasteurization to be profitable. Randomized, controlled, clinical trial. 300 Holstein calves. The performance of calves fed pasteurized colostrum and waste milk was compared with the performance of calves fed nonpasteurized colostrum and waste milk. Costs, revenues, and gross margins for the 2 groups were compared. Calves fed pasteurized colostrum and waste milk were worth an extra $8.13 in gross margin/calf, compared with calves fed nonpasteurized colostrum and waste milk. The minimum number of cattle for which feeding pasteurized colostrum and waste milk was calculated to be economically feasible was 315 calves/d (1,260-cow dairy farm). An economic benefit was associated with feeding pasteurized colostrum and waste milk. Additional benefits that may accrue include higher mean weight gain and lower mortality rate of calves as well as calves that have fewer days in which they are affected with diarrhea and pneumonia.

  2. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste.

    PubMed

    Nguyen, Trinh T X; Tomberlin, Jeffery K; Vanlaerhoven, Sherah

    2015-04-01

    Accumulation of organic wastes, especially in livestock facilities, can be a potential pollution issue. The black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), can consume a wide range of organic material and has the potential to be used in waste management. In addition, the prepupae stage of this insect can be harvested and used as a valuable nutritious feed for animal livestock. Five waste types with a wide range of organic source matter were specifically chosen to evaluate the consumption and reduction ability of black soldier fly larvae. H. illucens was able to reduce all waste types examined: 1) control poultry feed, 2) pig liver, 3) pig manure, 4) kitchen waste, 5) fruits and vegetables, and 6) rendered fish. Kitchen waste had the greatest mean rate of reduction (consumption by black soldier fly) per day and produced the longest and heaviest black soldier flies. Larvae reared on liver, manure, fruits and vegetables, and fish were approximately the same length and weight as larvae fed the control feed, although some diets produced larvae with a higher nutritional content. The black soldier fly has the ability to consume and reduce organic waste and be utilized as valuable animal feed. Exploration of the potential use of black soldier flies as an agent for waste management on a large-scale system should continue. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Cultivation of Microalgae Chlorella sp on Fresh Water and Waste Water of Tofu Industry

    NASA Astrophysics Data System (ADS)

    Widayat; Philia, John; Wibisono, Jessica

    2018-02-01

    Chlorella sp. is a microalgae that potential for food supplement, pharmaceuticals, animal feed, aqua culture and cosmetics. Chlorella sp. commonly growth in sea water. Indonesia as a producer of tofu generated more liquid waste. Nutrient that contained in the tofu wastewater are very useful for the production of microalgae. Cultivation carried out for 7 days at different percent volume of tofu liquid waste showed that the more volume of tofu liquid waste make them longer process decipherment of polymer compounds in the waste, that's make the growth rate of Chlorella sp. are slowness. Variable of10%V has the fastest growth rate. While, 90% v/v variable has the highest concentration of algae. It shows that Chlorella sp. better to grows in tofu wastewater than seawater.

  4. Synthesis of carbon nanotubes from waste polyethylene plastics

    NASA Astrophysics Data System (ADS)

    Zhuo, Chuanwei

    Generation of non-biodegradable wastes, such as plastics, and resulting land as well as water pollution therefrom discarded plastics have been continuously increasing, while landfill space decreases and recycling markets dwindle. Exploration of novel uses of such materials becomes therefore imperative. Here I present an innovative and unique partial conversion of plastic waste to valuable carbon nanomaterials. It is an overall exothermic and scalable process based on feeding waste plastics to a multi-stage, pyrolysis/combustion-synthesis reactor. Plain stainless steel screens are used as substrates as well as low-cost catalyst for both carbon nanomaterials synthesis and pyrolyzates generation. Nano carbon yields of as high as 13.6% of the weight of the polymer precursor were recorded. This demonstration provides a sustainable solution to both plastic waste utilization, and carbon nanomaterials mass production.

  5. Implementation of an evaporative oxidation process for treatment of aqueous mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bounini, L.; Stelmach, J.

    1995-12-31

    The US Department of Energy and Rust Geotech conducted treatability tests for mixed wastes with a pilot-scale evaporative oxidation unit known as the mini-PO*WW*ER unit. In the evaporative oxidation process, water and volatile organic compounds are vaporized and passed through a catalytic oxidizer to destroy the organic compounds. Nonvolatiles are concentrated into a brine that may be solidified. Ten experiment runs were made. The oxidation of the unit was calculated using total organic carbon analyses of feed and composite product condensate samples. These data indicate that the technology is capable of achieving oxidation efficiencies as high as 99.999 percent onmore » mixed wastes when the bed temperature is near 600 C, residence times are about 0.2 seconds, and adequate oxygen flow is maintained. Concentrations of the tested volatile organic compounds in the product-condensate composite samples were well below standards for wastewaters. Combined gross alpha and beta radioactivity levels in the samples were below detection limites of 12.5 pico-Cu/l, so the liquid would not qualify as a radioactive waste. Thus, the product condensate process by the process is not restricted as either hazardous or mixed waste and is suitable for direct disposal. The brines produced were not considered mixed waste and could be handled and disposed of as radioactive waste.« less

  6. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  7. Oil sorbents from plastic wastes and polymers: A review.

    PubMed

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk; Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process.more » This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.« less

  9. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4)

    NASA Astrophysics Data System (ADS)

    Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.

    2018-02-01

    Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.

  10. Protein enrichment of corn cob heteroxylan waste slurry by thermophilic aerobic digestion using Bacillus stearothermophilus.

    PubMed

    Ugwuanyi, J Obeta; Harvey, Linda M; McNeil, Brian

    2008-10-01

    Thermophilic aerobic digestion (TAD) of heteroxylan waste was implemented at waste load of 30gL(-1) with mineral nitrogen supplementation to study effect of the process on waste degradation, protein accretion and quality. Digestions were carried out at 45 50, 55, 60 and 65 degrees C using Bacillusstearothermophilus in a CSTR under batch conditions at 1.0vvm aeration rate, pH 7.0 for a maximum of 120h. Amylase and xylanase activities appeared rapidly in the digest, while basal protease activity appeared early in the digestion and increased towards end of the processes. Highest degradation of volatile suspended solid, hemicellulose and fibre occurred at 55 degrees C while highest degradation of total suspended solid occurred at 60 degrees C. Highest protein accretion (258.8%) and assimilation of mineral nitrogen and soluble protein occurred at 55 degrees C. The % content of amino acids of digest crude protein increased relative to raw waste and with digestion temperature. Quality of digest protein was comparable to the FAO standard for feed use. TAD has potentials for use in the protein enrichment of waste.

  11. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida.

    PubMed

    Garg, V K; Gupta, Renuka

    2011-01-01

    This paper reports the optimization of cow dung (CD) spiked pre-consumer processing vegetable waste (PPVW) for vermicomposting using Eisenia fetida in a laboratory scale study. Vermicomposting process decreased carbon and organic matter concentration and increased N, P and K content in the vermicompost. The C:N ratio was decreased by 45-69% in different vermireactors indicating stabilization of the waste. The heavy metal content was within permissible limits of their application in agricultural soils. It has been concluded from the results that addition of PPVW up to 40% with CD can produce a good quality vermicompost. Whereas, growth and fecundity of E. fetida was best when reared in 20% PPVW+80% CD feed mixture. However, higher percentages of PPVW in different vermireactors significantly affected the growth and fecundity of worms. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  13. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  14. Production of gaseous fuel by pyrolysis of municipal solid waste

    NASA Technical Reports Server (NTRS)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  15. Reducing the land use of EU pork production: where there’s swill, there’s a way

    PubMed Central

    zu Ermgassen, Erasmus K.H.J.; Phalan, Ben; Green, Rhys E.; Balmford, Andrew

    2016-01-01

    Livestock production occupies approximately 75% of agricultural land, consumes 35% of the world’s grain, and produces 14.5% of anthropogenic greenhouse gas emissions. With demand for meat and dairy products forecast to increase 60% by 2050, there is a pressing need to reduce the footprint of livestock farming. Food wastes have a long history as a source of environmentally benign animal feed, but their inclusion in feed is currently banned in the EU because of disease control concerns. A number of East Asian states have in the last 20 years, however, introduced regulated, centralised systems for safely recycling food wastes into animal feed. This study quantifies the land use savings that could be realised by changing EU legislation to promote the use of food wastes as animal feed and reviews the policy, public, and industry barriers to the use of food waste as feed. Our results suggest that the application of existing technologies could reduce the land use of EU pork (20% of world production) by one fifth, potentially saving 1.8 million hectares of agricultural land. While swill presents a low-cost, low-impact animal feed, widespread adoption would require efforts to address consumer and farmer concerns over food safety and disease control. PMID:26949285

  16. Reducing the land use of EU pork production: where there's swill, there's a way.

    PubMed

    Zu Ermgassen, Erasmus K H J; Phalan, Ben; Green, Rhys E; Balmford, Andrew

    2016-01-01

    Livestock production occupies approximately 75% of agricultural land, consumes 35% of the world's grain, and produces 14.5% of anthropogenic greenhouse gas emissions. With demand for meat and dairy products forecast to increase 60% by 2050, there is a pressing need to reduce the footprint of livestock farming. Food wastes have a long history as a source of environmentally benign animal feed, but their inclusion in feed is currently banned in the EU because of disease control concerns. A number of East Asian states have in the last 20 years, however, introduced regulated, centralised systems for safely recycling food wastes into animal feed. This study quantifies the land use savings that could be realised by changing EU legislation to promote the use of food wastes as animal feed and reviews the policy, public, and industry barriers to the use of food waste as feed. Our results suggest that the application of existing technologies could reduce the land use of EU pork (20% of world production) by one fifth, potentially saving 1.8 million hectares of agricultural land. While swill presents a low-cost, low-impact animal feed, widespread adoption would require efforts to address consumer and farmer concerns over food safety and disease control.

  17. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    NASA Astrophysics Data System (ADS)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A conceptual lithostratigraphic model is proposed for five morpho-sedimentary environments: lobe rims, lobe body, distributaries, levees, feeding channel. This study shows that high-resolution bathymetry ROV observations are necessary to fully understand the build-up processes of modern channel-mouth lobes.

  18. ACTUAL WASTE TESTING OF GYCOLATE IMPACTS ON THE SRS TANK FARM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    2014-05-28

    Glycolic acid is being studied as a replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste Tank Farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the Tank Farm were addressed via a literature review and simulant testing, but several outstanding issues remained. This report documents the actual-waste tests to determine the impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The objectives of this study are to address the following: Determine the extentmore » to which sludge constituents (Pu, U, Fe, etc.) dissolve (the solubility of sludge constituents) in the glycolate-containing 2H-evaporator feed. Determine the impact of glycolate on the sorption of fissile (Pu, U, etc.) components onto sodium aluminosilicate solids. The first objective was accomplished through actual-waste testing using Tank 43H and 38H supernatant and Tank 51H sludge at Tank Farm storage conditions. The second objective was accomplished by contacting actual 2H-evaporator scale with the products from the testing for the first objective. There is no anticipated impact of up to 10 g/L of glycolate in DWPF recycle to the Tank Farm on tank waste component solubilities as investigated in this test. Most components were not influenced by glycolate during solubility tests, including major components such as aluminum, sodium, and most salt anions. There was potentially a slight increase in soluble iron with added glycolate, but the soluble iron concentration remained so low (on the order of 10 mg/L) as to not impact the iron to fissile ratio in sludge. Uranium and plutonium appear to have been supersaturated in 2H-evaporator feed solution mixture used for this testing. As a result, there was a reduction of soluble uranium and plutonium as a function of time. The change in soluble uranium concentration was independent of added glycolate concentration. The change in soluble plutonium content was dependent on the added glycolate concentration, with higher levels of glycolate (5 g/L and 10 g/L) appearing to suppress the plutonium solubility. The inclusion of glycolate did not change the dissolution of or sorption onto actual-waste 2H-evaporator pot scale to an extent that will impact Tank Farm storage and concentration. The effects that were noted involved dissolution of components from evaporator scale and precipitation of components onto evaporator scale that were independent of the level of added glycolate.« less

  19. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  20. Results for the First, Second, and Third Quarter Calendar Year 2015 Tank 50H WAC slurry samples chemical and radionuclide contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.

    2016-02-18

    This report details the chemical and radionuclide contaminant results for the characterization of the Calendar Year (CY) 2015 First, Second, and Third Quarter sampling of Tank 50H for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering (D&S-FE) to support the transfer of low-level aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50H Waste Characterization System. Previous memorandamore » documenting the WAC analyses results have been issued for these three samples.« less

  1. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans

    NASA Astrophysics Data System (ADS)

    Li, LeYuan; Zhao, ZhiRuo; Liu, Hong

    2013-11-01

    In bioregenerative life support systems, using inedible plant biomass to feed animals can provide animal protein for astronauts, while at the same time treating with wastes so as to increase the degree of system closure. In this study, the potential of yellow mealworms (Tenebrio molitor L.) as an animal candidate in the system was analyzed. The feasibility of feeding T. molitor with inedible parts of wheat and vegetable was studied. To improve the feed quality of wheat straw, three methods of fermentation were tested. A feeding regime was designed to contain a proper proportion of bran, straw and old leaves. The results showed that T. molitor larvae fed on the plant waste diets grew healthily, their fresh and dry weight reached 56.15% and 46.76% of the larvae fed on a conventional diet (control), respectively. The economic coefficient of the larvae was 16.07%, which was 88.05% of the control. The protein and fat contents of the larvae were 76.14% and 6.44% on dry weigh basis, respectively. Through the processes of facultative anaerobic fermentation and larval consumption, the straw lost about 47.79% of the initial dry weight, and its lignocellulose had a degradation of about 45.74%. Wheat germination test indicated that the frass of T. molitor needs a certain treatment before the addition to the cultivation substrate.

  2. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  3. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.; Hart, T.R.

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less

  4. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Washton, Nancy

    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  5. Breakthrough Adsorption Study of Crude Oil Removal Using Buffing Dust

    NASA Astrophysics Data System (ADS)

    Setyaningsih, L. W. N.; Yuliansyah, A. T.; Prasetyo, A.; Arimanintan, S. K.; Putri, D. R.

    2018-05-01

    The utilization of leather industry solid waste as adsorbent to separate oil from water emulsions of surfactant flooding process is a solution that is relatively inexpensive. This study was conducted aiming to obtain a mathematical model that is appropriate for the adsorption process of crude oil by buffing dust in emulsion phase with a continuous adsorption method. Variations in the column adsorption experiments were carried out, such as: flow rate of feed of water-crude oil-surfactant, the concentration of crude oil in the feed, and mass of adsorbent used. Data were evaluated using three models: Adams Bohart, Thomas and Yan. Best results are obtained on the following conditions, the feed flow rate of 60 mL/minute, the crude oil concentration in feed is 1.5% volume and the mass of adsorbent used was 10 g. The values of kinetic constant and adsorption capacity obtained from Yan Model was 21.7774 mL/mg/minute and 220.9581 mg/g with the relative error obtained is 5.4424%.

  6. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  7. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Tucker, Abigail E.

    2015-10-01

    Volatile loss of radioactive 99Tc to offgas is a concern with processing the low-activity waste (LAW) at Hanford site. We investigated the partitioning and incorporation of Re (a nonradioactive surrogate for 99Tc) into the glass melt during crucible melting of two simulated LAW feeds that resulted in a large difference in 99mTc/Re retention in glass from the small-scale melter tests. Each feed was prepared from a simulated liquid LAW and chemical and mineral additives (boric acid, silica sand, etc.). The as-mixed slurry feeds were dried at 105°C and heated to 600–1100°C at 5 K/min. The dried feeds and heat treatedmore » samples were leached with deionized water for 10 min at room temperature followed by 24-h leaching at 80°C. Chemical compositions of the resulting solutions and insoluble solids were analyzed. Volume expansion measurement and X-ray diffraction were performed on dried feeds and heat treated samples to characterize the progress of feed-to-glass conversion reactions. It was found that the incorporation of Re into glass melt virtually completed during the major feed-to-glass conversion reactions were going on at ≤ 700°C. The present results suggest that the different composition of the salt phase is responsible for the large difference in Re incorporation into glass melt during early stages of glass melting at ≤ 700°C. Additional studies with modified and simplified feeds are underway to understand the details on how the different salt composition affects the Re incorporation.« less

  8. 40 CFR 264.345 - Operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... variations in the physical or chemical properties of the waste feed which will not affect compliance with the... (CO) level in the stack exhaust gas; (2) Waste feed rate; (3) Combustion temperature; (4) An appropriate indicator of combustion gas velocity; (5) Allowable variations in incinerator system design or...

  9. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less

  10. Impact of chemistry on Standard High Solids Vessel Design mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.

    2016-03-02

    The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping tomore » establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility, and vapor pressure, or chemical reactions that occur at high temperatures. Organic compounds will affect SHSVD mixing through their effect on properties such as rheology, particle agglomeration/size, particle density, and particle concentration.« less

  11. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees Cmore » was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.« less

  12. Recycling of waste tyre rubber into oil absorbent.

    PubMed

    Wu, B; Zhou, M H

    2009-01-01

    The abundant and indiscriminant disposal of waste tyres has caused both health and environmental problems. In this work, we provide a new way to dispose off waste tyres by reusing the waste tyre rubber (WTR) for oil absorptive material production. To investigate this feasibility, a series of absorbents were prepared by graft copolymerization-blending method, using waste tyre rubber and 4-tert-butylstyrene (tBS) as monomers. Divinylbenzene (DVB) and benzoyl peroxide (BPO) were employed as crosslinker and initiator, respectively. The existence of graft-blends (WTR-g-tBS) was determined by FTIR spectrometry and verified using thin-layer chromatography (TLC). In addition, the thermal properties of WTR-g-tBS were confirmed by a thermogravimetric analyzer (TGA). Oil absorbency of the grafted-blends increased with increases in either feed ratio of WTR to tBS or DVB concentration. This absorbency reached a maximum of 24.0gg(-1) as the feed ratio and DVB concentration were 60/40 and 1wt%, respectively, after which it decreased. At other ratios and concentrations the absorbency decreased. The gel fraction of grafted-blends increased with increasing concentration of DVB. Oil-absorption processes in pure toluene and crude oil diluted with toluene were found to adhere to first-order absorption kinetics. Furthermore, the oil-absorption rate in diluted crude oil was observed to be lower than pure toluene.

  13. Assessing impacts of land-applied manure from concentrated animal feeding operations on fish populations and communities

    EPA Science Inventory

    Concentrated animal feeding operation (CAFO) waste is a cost effective fertilizer. In the Midwest, networks of subsurface tile-drains expedite transport of animal hormones and nutrients from land-applied CAFO waste to adjacent waterways. The objective of this study was to evaluat...

  14. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  15. The Utilization of Sago Waste as Cattle Feed

    NASA Astrophysics Data System (ADS)

    Tiro, B. M. W.; Beding, P. A.; Baliadi, Y.

    2018-02-01

    This study aimed was to evaluate nutrition value of sago waste and its effect on cattle performance.The collected data were analyzed using analysis of variance. The results of the study showed that of the utilization of sago waste had a positive effect on average daily gain (ADG), where with 2% sago waste of body weight (P2 treatment) gave the highest ADG 0.43 ± 0.02 kg/h/day and cattle which consumed only forage without sago waste (P0) gave the lowest ADG 0.26 ± 0.04 kg/h/day. Statistical analysis showed that the addition of sago waste significantly affected the ADG (P<0.05). The consumption of dry matter (DM) and crude protein (CP) also increased with the supplementation of the sago waste, where the highest consumption of DM was on the treatment P2 (5.09 ± 1.27 kg/day), and the lowest on the treatment P0 (4.25 ± 1.69 kg/day), while consumption of CP was highest at treatment P2 (0.37 ± 0.09 kg/day), and the lowest on the treatment P3 (0.34 ± 0.06 kg/day), while the feed conversionshowed the lowest level on the treatment P2 (12.01 ± 3.35) and highest on the treatment P0 (18.10 ± 7.39). However, supplementation of sago waste were not affect CP consumption (P>0.05), but significant affect(P<0.05) DM consumption and feed conversion. Based on the results of this study it can be concluded that the sago waste as local resources have the potential to be used as a source of energy of feed supplement to beef cattle.

  16. Effect of Feed Composition on Cold-Cap Formation in Laboratory-Scale Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Schweiger, Michael J.; Lee, Seung Min

    The development of advanced glass formulations are a part of the plan for reducing the cost and time for treatment and vitrification of the 210,000 m3 of nuclear waste at the Hanford Site in southeastern Washington State. One property of interest in this development is melt viscosity, which has a decisive influence on the rate of glass production. In an electric melter, the conversion process from feed-to-glass above the melt pool occurs in the cold cap. At the final stage of conversion when the glass-forming melt becomes connected, gas evolving reactions cause foaming. The melt viscosity affects foam stability. Threemore » glasses were formulated with viscosities of 1.5, 3.5, and 9.5 Pa s at 1150°C by varying the SiO2 content at the expense of B2O3, Li2O, and Na2O kept at constant proportions. Cold caps were produced by charging simulated high-alumina, high-level waste feeds in a laboratory-scale melter (LSM). The spread of the feed on the cold cap during charging and the cross-sectional structure of the final cold caps were compared. The amount of the foam and the size of the bubbles increased as the viscosity increased.« less

  17. Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed.

    PubMed

    Yan, Jinyong; Han, Bingnan; Gui, Xiaohua; Wang, Guilong; Xu, Li; Yan, Yunjun; Madzak, Catherine; Pan, Dujie; Wang, Yaofeng; Zha, Genhan; Jiao, Liangcheng

    2018-01-15

    Lipases are scarcely exploited as feed enzymes in hydrolysis of lipids for increasing energy supply and improving nutrient use efficiency. In this work, we performed homologous overexpression, in vitro characterization and in vivo assessment of a lipase from the yeast Yarrowia lipolytica for feed purpose. Simultaneously, a large amount of yeast cell biomass was produced, for use as single cell protein, a potential protein-rich feed resource. Three kinds of low cost agro-industrial wastes were tested as substrates for simultaneous production of lipase and single cell protein (SCP) as feed additives: sugarcane molasses, waste cooking oil and crude glycerol from biodiesel production. Sugarcane molasses appeared as the most effective cheap medium, allowing production of 16420 U/ml of lipase and 151.2 g/L of single cell protein at 10 liter fermentation scale. In vitro characterization by mimicking a gastro-intestinal environment and determination of essential amino acids of the SCP, and in vivo oral feeding test on fish all revealed that lipase, SCP and their combination were excellent feed additives. Such simultaneous production of this lipase and SCP could address two main concerns of feed industry, poor utilization of lipid and shortage of protein resource at the same time.

  18. Optimizing the performance of microbial fuel cells fed a combination of different synthetic organic fractions in municipal solid waste.

    PubMed

    Pendyala, Brahmaiah; Chaganti, Subba Rao; Lalman, Jerald A; Heath, Daniel D

    2016-03-01

    The objective of this study was to establish the impact of different steam exploded organic fractions in municipal solid waste (MSW) on electricity production using microbial fuel cells (MFCs). In particular, the influence of individual steam exploded liquefied waste components (food waste (FW), paper-cardboard waste (PCW) and garden waste (GW)) and their blends on chemical oxygen demand (COD) removal, columbic efficiency (CE) and microbial diversity was examined using a mixture design. Maximum power densities from 0.56 to 0.83 W m(-2) were observed for MFCs fed with different feedstocks. The maximum COD removed and minimum CE were observed for a GW feed. However, a reverse trend (minimum COD removed and maximum CE) was observed for the FW feed. A maximum COD removal (78%) accompanied with a maximum CE (24%) was observed for a combined feed of FW, PCW plus GW in a 1:1:1 ratio. Lactate, the major byproduct detected, was unutilized by the anodic biofilm community. The organic fraction of municipal solid waste (OFMSW) could serve as a potential feedstock for electricity generation in MFCs; however, elevated protein levels will lead to reduced COD removal. The microbial communities in cultures fed FW and PCW was highly diversified; however, the communities in cultures fed FW or a feed mixture containing high FW levels were similar and dominated by Bacteroidetes and β-proteobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modified version of ADM1 model for agro-waste application.

    PubMed

    Galí, A; Benabdallah, T; Astals, S; Mata-Alvarez, J

    2009-06-01

    Agro-residues account for a large proportion of the wastes generated around the world. There is thus a need for a model to simulate the anaerobic digestion processes used in their treatment. We have developed model based on ADM1, to be applied to agro-wastes. We examined and tested the biodegradability of apple, pear, orange, rape, sunflower, pig manure and glycerol wastes to be used as the basis for feeding the model. Moreover, the fractions of particulate COD (X(c)) were calculated, and the disintegration constant was obtained from biodegradability profiles, considering disintegration to be the limiting process. The other kinetic and stoichiometric parameters were taken from the ADM1 model. The model operating under mono-substrate and co-substrate conditions was then validated with batch tests. At the same time the model was validated on a continuous anaerobic reactor operating with pig manure at lab scale. In both cases the correlation between the model and the experimental results was satisfactory. We conclude that the anaerobic digestion model is a reliable tool for the design and operation of plants in which agro-wastes are treated.

  20. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    PubMed

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less

  2. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent solution using a high lead content borate glass, or other low melting glass is also recommended for further evaluation and development. Additional laboratory studies of phase behavior and chemical durability of low-temperature glasses is also recommended to provide risk mitigation if one of the primary development paths proves infeasible. This report is a deliverable for the task “Candidate Low-T Glass Waste Forms for EMF Bottoms On-Site Disposition Alternative Option.”« less

  3. Effect of feed source and pyrolysis conditions on sugarcane bagasse biochar

    USDA-ARS?s Scientific Manuscript database

    Processing of sugarcane in sugar mills yield ca. 30% bagasse, a fibrous waste material composed mostly of crushed cane stalks. While 80-90% of the bagasse used on site as fuel, the remaining portion can be converted into a value-added product. One such option is thermal conversion of bagasse into bi...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, Ralph; Schindler, Anton; Duke, Steve

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels weremore » examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.« less

  5. Production of biogas from municipal solid waste with domestic sewage.

    PubMed

    Elango, D; Pulikesi, M; Baskaralingam, P; Ramamurthi, V; Sivanesan, S

    2007-03-06

    In this study, experiments were conducted to investigate the production of biogas from municipal solid waste (MSW) and domestic sewage by using anaerobic digestion process. The batch type of reactor was operated at room temperature varying from 26 to 36 degrees C with a fixed hydraulic retention time (HRT) of 25 days. The digester was operated at different organic feeding rates of 0.5, 1.0, 2.3, 2.9, 3.5 and 4.3kg of volatile solids (VS)/m(3) of digester slurry per day. Biogas generation was enhanced by the addition of domestic sewage to MSW. The maximum biogas production of 0.36m(3)/kg of VS added per day occurred at the optimum organic feeding rate of 2.9kg of VS/m(3)/day. The maximum reduction of total solids (TS) (87.6%), VS (88.1%) and chemical oxygen demand (COD) (89.3%) occurred at the optimum organic loading rate of 2.9kg of VS/m(3)/day. The quality of biogas produced during anaerobic digestion process was 68-72%.

  6. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.

    2013-11-13

    The principal objective of the work reported here was to develop and identify HLW glass compositions that maximize waste processing rates for the aluminum limted waste composition specified by ORP while maintaining high waste loadings and acceptable glass properties. This was accomplished through a combination of crucible-scale tests, confirmation tests on the DM100 melter system, and demonstration at pilot scale (DM1200). The DM100-BL unit was selected for these tests since it was used previously with the HLW waste streams evaluated in this study, was used for tests on HLW glass compositions to support subsequent tests on the HLW Pilot Melter,more » conduct tests to determine the effect of various glass properties (viscosity and conductivity) and oxide concentrations on glass production rates with HLW feed streams, and to assess the volatility of cesium and technetium during the vitrification of an HLW AZ-102 composition. The same melter was selected for the present tests in order to maintain comparisons between the previously collected data. These tests provide information on melter processing characteristics and off-gas data, including formation of secondary phases and partitioning. Once DM100 tests were completed, one of the compositions was selected for further testing on the DM1200; the DM1200 system has been used for processing a variety of simulated Hanford waste streams. Tests on the larger melter provide processing data at one third of the scale of the actual WTP HLW melter and, therefore, provide a more accurate and reliable assessment of production rates and potential processing issues. The work focused on maximizing waste processing rates for high aluminum HLW compositions. In view of the diversity of forms of aluminum in the Hanford tanks, tests were also conducted on the DM100 to determine the effect of changes in the form of aluminum on feed properties and production rate. In addition, the work evaluated the effect on production rate of modest increases in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.« less

  7. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  9. Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus

    PubMed Central

    Lundy, Mark E.; Parrella, Michael P.

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026

  10. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus.

    PubMed

    Lundy, Mark E; Parrella, Michael P

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.

  11. Determination of heat conductivity of waste glass feed and its applicability for modeling the batch-to-glass conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hujova, Miroslava; Pokorny, Richard; Klouzek, Jaroslav

    The heat conductivity of reacting melter feed affects the heat transfer and conversion process in the cold cap (the reacting feed floating on molten glass). To investigate it, we simulated the feed conditions and morphology in the cold-cap by preparing “fast-dried slurry blocks”, formed by rapidly evaporating water from feed slurry poured onto a 200°C surface. A heat conductivity meter was used to measure heat conductivity of samples cut from the fast-dried slurry blocks, samples of a cold cap retrieved from a laboratory-scale melter, and loose dry powder feed samples. Our study indicates that the heat conductivity of the feedmore » in the cold cap is significantly higher than that of loose dry powder feed, resulting from the feed solidification during the water evaporation from the feed slurry. To assess the heat transfer at higher temperatures when feed turns into foam, we developed a theoretical model that predicts the foam heat conductivity based on morphology data from in-situ X-ray computed tomography. The implications for the mathematical modeling of the cold cap are discussed.« less

  12. WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Smith, T. E.

    The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combinedmore » 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These simulants were tested at different temperatures using purge gas spiked with varying amounts of hydrogen to provide verification that the system could accurately measure the hydrogen in the vent gas at steady state.« less

  13. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  14. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    PubMed

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Useful byproducts from cellulosic wastes of agriculture and food industry--a critical appraisal.

    PubMed

    Das, Himanish; Singh, Sudhir Kumar

    2004-01-01

    Cellulose, an important cell wall polysaccharide, which is replenished constantly in nature by photosynthesis, goes waste in a lion's share in the form of pre-harvest and post-harvest agricultural losses and wastes of food processing industry. These cellulose wastes have an immense potential to be utilized for the production and recovery of several products and ingredients in food application. In this present study, a wide spectrum of researches in the arena of properties of cellulose, hemicellulose and lignin; their degradation; sources and composition of cellulosic and lignocellulosic wastes of agriculture and food industry; present status of converting them into value-added products of food applications; constraints in their conversions and future prospects therein has been reviewed in details. The study has encompassed production of biomass for various utilization and production and recovery of protein and amino acids, carbohydrates, lipids, organic acids, foods & feeds and other miscellaneous products.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    The Savannah River Site (SRS) Actinide Removal Process has been processing salt waste since 2008. This process includes a filtration step in the 512-S facility. Initial operations included the addition, or strike, of monosodium titanate (MST) to remove soluble actinides and strontium. The added MST and any entrained sludge solids were then separated from the supernate by cross flow filtration. During this time, the filter operations have, on many occasions, been the bottleneck process limiting the rate of salt processing. Recently, 512-S- has started operations utilizing “No-MST” where the MST actinide removal strike was not performed and the supernate wasmore » simply pre-filtered prior to Cs removal processing. Direct filtration of decanted tank supernate, as demonstrated in 512-S, is the proposed method of operation for the Hanford Low Activity Waste Pretreatment System (LAWPS) facility. Processing decanted supernate without MST solids has been demonstrated for cross flow filtration to provide a significant improvement in production with the SRS Salt Batches 8 and 9 feed chemistries. The average filtration rate for the first 512-S batch processing cycle using No-MST has increased filtrate production by over 35% of the historical average. The increase was sustained for more than double the amount of filtrate batches processed before cleaning of the filter was necessary. While there are differences in the design of the 512-S and Hanford filter systems, the 512-S system should provide a reasonable indication of LAWPS filter performance with similar feed properties. Based on the data from the 512-S facility and with favorable feed properties, the LAWPS filter, as currently sized at over twice the size of the 512-S filter (532 square feet filtration area versus 235 square feet), has the potential to provide sustained filtrate production at the upper range of the planned LAWPS production rate of 17 gpm.« less

  17. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    PubMed

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.A. Robbins; R.A. Winschel; S.D. Brandes

    This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made tomore » ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.« less

  19. A closed life-support system for space colonies

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.; Jebens, H. J.; Sweet, H. C.

    1977-01-01

    In 1975, a system design study was performed to examine a completely self-contained system for a permanent colony of 10,000 inhabitants in space. Fundamental to this design was the life support system. Since resupply from earth is prohibitive in transportation costs, it was decided to use a closed system with the initial supply of oxygen coming from processing of lunar ores, and the supply of carbon, nitrogen and hydrogen from earth. The problem of life support was treated starting with the nutritional and metabolic requirements for the human population, creating a food and water chain sufficient to supply these demands, adding the additional requirements for the animal and plant sources in the food chain, feeding back useful waste products, supplying water as required from different sources, and closing the loop by processing organic wastes into CO2. This concept places the burden of the system upon plants for O2 generation and waste processing the CO2 generation.

  20. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK.

    PubMed

    Walker, M; Theaker, H; Yaman, R; Poggio, D; Nimmo, W; Bywater, A; Blanch, G; Pourkashanian, M

    2017-03-01

    This paper describes the analysis of an AD plant that is novel in that it is located in an urban environment, built on a micro-scale, fed on food and catering waste, and operates as a purposeful system. The plant was built in 2013 and continues to operate to date, processing urban food waste and generating biogas for use in a community café. The plant was monitored for a period of 319days during 2014, during which the operational parameters, biological stability and energy requirements of the plant were assessed. The plant processed 4574kg of food waste during this time, producing 1008m 3 of biogas at average 60.6% methane. The results showed that the plant was capable of stable operation despite large fluctuations in the rate and type of feed. Another innovative aspect of the plant was that it was equipped with a pre-digester tank and automated feeding, which reduced the effect of feedstock variations on the digestion process. Towards the end of the testing period, a rise in the concentration of volatile fatty acids and ammonia was detected in the digestate, indicating biological instability, and this was successfully remedied by adding trace elements. The energy balance and coefficient of performance (COP) of the system were calculated, which concluded that the system used 49% less heat energy by being housed in a greenhouse, achieved a net positive energy balance and potential COP of 3.16 and 5.55 based on electrical and heat energy, respectively. Greenhouse gas emissions analysis concluded that the most important contribution of the plant to the mitigation of greenhouse gases was the avoidance of on-site fossil fuel use, followed by the diversion of food waste from landfill and that the plant could result in carbon reduction of 2.95kg CO 2eq kWh -1 electricity production or 0.741kg CO 2eq kg -1 waste treated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed.

    PubMed

    Heo, Hyeon Su; Park, Hyun Ju; Park, Young-Kwon; Ryu, Changkook; Suh, Dong Jin; Suh, Young-Woong; Yim, Jin-Heong; Kim, Seung-Soo

    2010-01-01

    The amount of waste furniture generated in Korea was over 2.4 million tons in the past 3 years, which can be used for renewable energy or fuel feedstock production. Fast pyrolysis is available for thermo-chemical conversion of the waste wood mostly into bio-oil. In this work, fast pyrolysis of waste furniture sawdust was investigated under various reaction conditions (pyrolysis temperature, particle size, feed rate and flow rate of fluidizing medium) in a fluidized-bed reactor. The optimal pyrolysis temperature for increased yields of bio-oil was 450 degrees C. Excessively smaller or larger feed size negatively affected the production of bio-oil. Higher flow and feeding rates were more effective for the production of bio-oil, but did not greatly affect the bio-oil yields within the tested ranges. The use of product gas as the fluidizing medium had a potential for increased bio-oil yields.

  2. Detox{sup SM} wet oxidation system studies for engineering scale up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.

    1995-12-31

    Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less

  3. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  4. Demonstration of the TRUEX process for partitioning of actinides from actual ICPP tank waste using centrifugal contactors in a shielded cell facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, J.D.; Brewer, K.N.; Herbst, R.S.

    1996-09-01

    TRUEX is being evaluated at Idaho Chemical Processing Plant (ICPP) for separating actinides from acidic radioactive waste stored at ICPP; efforts have culminated in a recent demonstration with actual tank waste. A continuous countercurrent flowsheet test was successfully completed at ICPP using waste from tank WM-183. This demonstration was performed using 24 states of 2-cm dia centrifugal contactors in the shielded hot cell at the ICPP Remote Analytical Laboratory. The flowsheet had 8 extraction stages, 5 scrub stages, 6 strip stages, 3 solvent wash stages, and 2 acid rinse stages. A centrifugal contactor stage in the scrub section was notmore » working during testing, and the scrub feed (aqueous) solution followed the solvent into the strip section, eliminating the scrub section in the flowsheet. An overall removal efficiency of 99.97% was obtained for the actinides, reducing the activity from 457 nCi/g in the feed to 0.12 nCi/g in the aqueous raffinate, well below the NRC Class A LLW requirement of 10 nCi/g for non-TRU waste.The 0.04 M HEDPA strip section back-extracted 99.9998% of the actinide from the TRUEX solvent. Removal efficiencies of >99. 90, 99.96, 99.98, >98.89, 93.3, and 89% were obtained for {sup 241}Am, {sup 238}Pu, {sup 239}Pu, {sup 235}U, {sup 238}U, and {sup 99}Tc. Fe was partially extracted by the TRUEX solvent, resulting in 23% of the Fe exiting in the strip product. Hg was also extracted by the TRUEX solvent (73%) and stripped from the solvent in the 0.25 M Na2CO3 wash section. Only 1.4% of the Hg exited with the high activity waste strip product.« less

  5. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, John L.

    1990-01-01

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  6. Multi-step process for concentrating magnetic particles in waste sludges

    DOEpatents

    Watson, J.L.

    1990-07-10

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  7. Nutritional value of ensiled grocery food waste for cattle.

    PubMed

    Froetschel, M A; Ross, C L; Stewart, R L; Azain, M J; Michot, P; Rekaya, R

    2014-11-01

    Assessment of nutrient variability, feed value, ensiling capability, intake, and digestibility of grocery food waste recycled from large retail stores was conducted in 3 experiments. In Exp. 1, 115 proximate nutrient analyses of grocery byproduct feed (GBP) from stores in the southern United States from April 8, 2011, to November 18, 2012, were evaluated for variation in nutrient concentration. Grocery byproduct feed was characterized as being a readily fermentable, high-moisture energy feed with an average DM content of 17.5 ± 3.7% and TDN of 89.8 ± 7.1%. In Exp. 2 and 3, grocery food waste consisting of fruit, vegetables, and bakery items from large retail stores in the Atlanta, GA, area was used for ensiling and feeding studies. The GBP material for Exp. 2 was processed on farm into homogenous slurry and treated to reduce its moisture content and preserved in experimental silos. Drying treatments included 3 levels of citrus pulp substitution (8, 16, and 24% as-fed basis), or passively removing liquid as seepage after stacking for 24 h, or oven drying (24 h at 80°C). All GBP mixtures effectively ensiled after 28 d, as determined by changes in pH, soluble carbohydrates, and fermentation acids. Ensiled GBP was moderately stable during 72-h aerobic exposure. In Exp. 3, a feeding/digestibility trial, 8 yearling Holstein steers were used in a replicated 4 × 4 Latin Square and fed 4 incremental levels of ensiled GBP in total mixed rations (TMR). Steers were fed 0, 18, 36, and 54% ensiled GBP as part of a TMR containing 68% wheat silage and 32% concentrate on a DM basis. The rations averaged 35.9, 30.7, 26.8, and 23.8% DM with incremental levels of GBP. Steers increased DM intake and digestibility when fed increasing GBP (P < 0.5). Digestible energy and TDN were linearly related to the level of GBP fed (P < 0.01). The TDN content of GBP was 82.7% (DM basis) and similar to predicted TDN values from commercial feed analyses of GBP. The feeding and nutritive value of ensiled GBP indicates it can be priced to be used effectively as an energy supplement in TMR for cattle.

  8. Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.

    2011-01-01

    The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.

  9. Key factors of eddy current separation for recovering aluminum from crushed e-waste.

    PubMed

    Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming

    2017-02-01

    Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Formulation of a fish feed for goldfish with natural astaxanthin extracted from shrimp waste.

    PubMed

    Weeratunge, W K O V; Perera, B G K

    2016-01-01

    Astaxanthin is a xanthophyll carotenoid, which exhibits many important biological activities including a high degree of antioxidant capacity (AOC) and antibacterial activity, hence has a significant applicability in food, pharmaceutical and cosmetic industries. An attempt was made towards optimization of astaxanthin extraction conditions using three different extraction conditions and a solvent series, from uncooked, cooked and acid-treated shrimp waste, which is a readily available and cheap source of the pigment. The astaxanthin extracts were analyzed by comparing their UV-visible absorbance spectra and thin layer chromatograms with a standard astaxanthin sample. The percentage of astaxanthin in each crude sample was determined using the Beer-Lambert law. The Folin-Ciocalteu assay and the disk diffusion assay were used to investigate the antioxidant capacities and antibacterial activities of extracted astaxanthin samples respectively. The extracted astaxanthin was incorporated into fish feeds to test its ability to enhance the skin color of goldfish. The best astaxanthin percentage of 68 % was observed with the acetone:ethyl acetate (1:1) solvent system facilitated by maceration of cooked and acid treated shrimp, whereas the best crude yield of 33 % was found to be in the acetone extract of the acid-treated shrimp sample. The highest AOC of 65 µg pyrogallol equivalents/mg was observed for the EtOAc extract obtained by maceration of acid-treated shrimp waste. The highest AOC by sonication and soxhlet extraction methods were also obtained with the EtOAc solvent. The extracts exhibited antibacterial activity against four selected bacterial strains. The newly formulated astaxanthin enriched fish feed was economical and indicated a significant improvement of the skin color and healthiness of goldfish compared to the control feeds. Biologically active astaxanthin can be successfully extracted from shrimp waste in higher percentages. The extraction technique and the solvent used to extract astaxanthin from shrimp waste should be decided depending on the desired outcome and application of astaxanthin. Moreover, the novel astaxanthin enriched fish feed formulated during this study was found to effectively enhance the skin color of goldfish within 10 days, a much shorter feeding period compared to previously reported feeding periods in similar studies.Graphical abstractFormulation of a skin color enhancing fish feed for ornamental fish using crude astaxanthin extracted from shrimp waste.

  11. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less

  12. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less

  13. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    PubMed

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  15. Catalytic Pyrolysis of Waste Plastic Mixture

    NASA Astrophysics Data System (ADS)

    Sembiring, Ferdianta; Wahyu Purnomo, Chandra; Purwono, Suryo

    2018-03-01

    Inorganic waste especially plastics still become a major problem in many places. Low biodegradability of this materials causes the effort in recycling become very difficult. Most of the municipal solid waste (MSW) recycling facilities in developing country only use composting method to recover the organic fraction of the waste, while the inorganic fraction is still untreated. By pyrolysis, plastic waste can be treated to produce liquid fuels, flammable gas and chars. Reduction in volume and utilization of the liquid and gas as fuel are the major benefits of the process. By heat integration actually this process can become a self-sufficient system in terms of energy demand. However, the drawback of this process is usually due to the diverse type of plastic in the MSW creating low grade of liquid fuel and harmful gases. In this study, the mixture of plastics i.e. polypropylene (PP) and polyethylene terephthalate (PET) is treated using pyrolysis with catalyst in several operating temperature. PET is problematic to be treated using pyrolysis due to wax-like byproduct in liquid which may cause pipe clogging. The catalyst is the mixture of natural zeolite and bentonite which is able to handle PP and PET mixture feed to produce high grade liquid fuels in terms of calorific value and other fuel properties.

  16. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less

  17. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  18. Force Provider Solid Waste Characterization Study

    DTIC Science & Technology

    2004-08-01

    energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce

  19. Interactions of aquaculture and waste disposal in the coastal zone

    NASA Astrophysics Data System (ADS)

    Zhai, Xuemei; Hawkins, S. J.

    2002-04-01

    Throughout the world, the coastal zones of many countries are used increasingly for aquaculture in addition to other activities such as waste disposal. These activities can cause environmental problems and health problems where they overlap. The interaction between aquaculture and waste disposal, and their relationship with eutrophication are the subjects of this paper. Sewage discharge without adequate dispersion can lead to nutrient elevation and hence eutrophication which has clearly negative effects on aquaculture with the potential for toxic blooms. Blooms may be either toxic or anoxia-causing through the decay process or simply clog the gills of filter-feeding animals in some cases. With the development of aquaculture, especially intensive aquaculture, many environmental problems appeared, and have resulted in eutrophication in some areas. Eutrophication may destroy the health of whole ecosystem which is important for sustainable aquaculture. Sewage discharge may also cause serious public health problems. Filter-feeding shellfish growing in sewage-polluted waters accumulate micro-organims, including human pathogenic bacteria and viruses, and heavy metal ion, presenting a significant health risk. Some farmed animals may also accumulate heavy metals from sewage. Bivalves growing in areas affected by toxic algae blooms may accumulate toxins (such as PSP, DSP) which can be harmful to human beings.

  20. Substrate effects on pupation and adult emergence of Hermetia illucens (Diptera: Stratiomyidae).

    PubMed

    Holmes, L A; Vanlaerhoven, S L; Tomberlin, J K

    2013-04-01

    Black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), are of particular interest for their applications in waste management. Feeding on decaying organic waste, black soldier flies successfully reduce manure in confined animal feeding operations of poultry, swine, and cattle. To optimize waste conversion in confined animal feeding operations and landfill facilities, it is imperative to optimize black soldier fly development. Unfortunately, black soldier flies only convert waste during their larval feeding stages and therefore it is of interest to optimize the nonfeeding stages of development, specifically, the postfeeding and pupal stages. The time spent in these stages is thought to be determined by the pupation substrate encountered by the postfeeding larvae. The objective of this study was to determine the effect different pupation substrates have on postfeeding development time, pupation time, and adult emergence success. Five pupation substrates were compared: wood shavings, potting soil, topsoil, sand, and nothing. Postfeeding larvae took longer to reach pupation in the absence of a pupation substrate, although reaching pupation in the shortest time in potting soil and wood shavings. The time spent in the pupal stage was shortest in the absence of a pupation substrate. However, fewer adults emerged when a pupation substrate was not provided.

  1. Thermophilic biogasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Klass, D.L.; Christopher, R.W.

    1980-01-01

    Mesophilic and thermophilic digestion runs were conducted with the pure land-based biomass species, water hyacinth (Eichhornia crassipes) and Coastal Bermuda grass (Cynodon dactylon), and a blend of hyacinth, grass, MSW, and sewage sludge. A mixed biomass-waste hybrid feed was included because it has a superior nutritional balance relative to the pure feeds and it facilitates year-round operation of a biomass-to-SNG process. (7) The studies were conducted at 35/sup 0/ and 55/sup 0/C, generally believed to be optimum for mesophilic and thermophilic digestion of organic feeds. Results of mesophilic digestion were to provide baseline performance data for evaluation of thermophilic digestermore » performance. It was decided that the feed affording the best thermophilic performance would be pretreated with dilute sodium hydroxide solution at the selected digestion temperature of 55/sup 0/C to improve methane production rate and yield. In addition, thermophilic runs were planned to investigate ways to reduce chemical requirements for alkaline pretreatment and feed slurry neutralization.« less

  2. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.« less

  3. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  4. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... hazardous waste burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for... prior to release to the atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes...

  5. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  6. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  7. Using slaughterhouse waste in a biochemical-based biorefinery - results from pilot scale tests.

    PubMed

    Schwede, Sebastian; Thorin, Eva; Lindmark, Johan; Klintenberg, Patrik; Jääskeläinen, Ari; Suhonen, Anssi; Laatikainen, Reino; Hakalehto, Elias

    2017-05-01

    A novel biorefinery concept was piloted using protein-rich slaughterhouse waste, chicken manure and straw as feedstocks. The basic idea was to provide a proof of concept for the production of platform chemicals and biofuels from organic waste materials at non-septic conditions. The desired biochemical routes were 2,3-butanediol and acetone-butanol fermentation. The results showed that hydrolysis resulted only in low amounts of easily degradable carbohydrates. However, amino acids released from the protein-rich slaughterhouse waste were utilized and fermented by the bacteria in the process. Product formation was directed towards acidogenic compounds rather than solventogenic products due to increasing pH-value affected by ammonia release during amino acid fermentation. Hence, the process was not effective for 2,3-butanediol production, whereas butyrate, propionate, γ-aminobutyrate and valerate were predominantly produced. This offered fast means for converting tedious protein-rich waste mixtures into utilizable chemical goods. Furthermore, the residual liquid from the bioreactor showed significantly higher biogas production potential than the corresponding substrates. The combination of the biorefinery approach to produce chemicals and biofuels with anaerobic digestion of the residues to recover energy in form of methane and nutrients that can be utilized for animal feed production could be a feasible concept for organic waste utilization.

  8. Pilot-scale tests of HEME and HEPA dissolution process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qureshi, Z.H.; Strege, D.K.

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less

  9. Can direct conversion of used nitrogen to new feed and protein help feed the world?

    PubMed

    Matassa, Silvio; Batstone, Damien J; Hülsen, Tim; Schnoor, Jerald; Verstraete, Willy

    2015-05-05

    The increase in the world population, vulnerability of conventional crop production to climate change, and population shifts to megacities justify a re-examination of current methods of converting reactive nitrogen to dinitrogen gas in sewage and waste treatment plants. Indeed, by up-grading treatment plants to factories in which the incoming materials are first deconstructed to units such as ammonia, carbon dioxide and clean minerals, one can implement a highly intensive and efficient microbial resynthesis process in which the used nitrogen is harvested as microbial protein (at efficiencies close to 100%). This can be used for animal feed and food purposes. The technology for recovery of reactive nitrogen as microbial protein is available but a change of mindset needs to be achieved to make such recovery acceptable.

  10. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  11. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  12. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  13. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch micro-autoclaves and the experimental variables considered where temperature (and corresponding saturated vapour pressure), residence time and oxidizer-to-feed ratio. The feed material was sludge from the C-I compartment treating MELiSSA model waste (vegetables, toilet paper, feces). The feed was diluted down to 1 wt% DM. Our experimental results show that, given sufficient residence time, complete or near-complete (>90%) oxidation of carbon at supercritical (in case 400°C) conditions can be attained. However, the most influencing parameter is the stoichiometric oxidizer-to-feed ratio. Below ratios of 1.5, incomplete oxidation occurred together with the formation of char or tar-like carbonaceous dispersion in the effluent. Gas phase chromatographic analysis confirmed the presence of significant quantities of O2, formed out of the hydrogen peroxide supplied and not having taking part in the oxidation reaction.

  14. Utilizing waste activated sludge for animal feeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beszedits, S.

    1981-01-01

    Activated sludge has a high protein content and is a good source of B-group vitamins and generally also of minerals (Ca, Mg, Fe and K). Propionibacterium freudenreichii can be readily incorporated into the activated sludge to synthesize vitamin B12, particularly high vitamin yields being obtained with sewage mixed with dairy waste. Numerous examples of successful use of activated sludge in animal feeding are given.

  15. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc throughout the WTP flowsheet and the underlying mechanisms that dictate its partitioning between streams within the LAW vitrification facility. These studies are aimed at increasing the single-pass Tc retention in glass and the potential use of high-temperature mineral phases to capture Tc. The Tc-bearing mineral phases would be thermally stable and resistant to Tc release during feed melting reactions or they could serve as alternative waste forms. The LAW glass research and development is focused on reducing the total volume of LAW glass produced and minimizing the impact of (or potentially eliminating) the need for recycle.« less

  16. Effects of the feeding ratio of food waste on fed-batch aerobic composting and its microbial community.

    PubMed

    Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua

    2017-01-01

    To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Approach for Configuring a Standardized Vessel for Processing Radioactive Waste Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.; Minette, Michael J.

    2015-09-10

    A standardized vessel design is being considered at the Waste Treatment and Immobilization Plant (WTP) that is under construction at Hanford, Washington. The standardized vessel design will be used for storing, blending, and chemical processing of slurries that exhibit a variable process feed including Newtonian to non-Newtonian rheologies over a range of solids loadings. Developing a standardized vessel is advantageous and reduces the testing required to evaluate the performance of the design. The objectives of this paper are to: 1) present a design strategy for developing a standard vessel mixing system design for the pretreatment portion of the waste treatmentmore » plant that must process rheologically and physically challenging process streams, 2) identify performance criteria that the design for the standard vessel must satisfy, 3) present parameters that are to be used for assessing the performance criteria, and 4) describe operation of the selected technology. Vessel design performance will be assessed for both Newtonian and non-Newtonian simulants which represent a range of waste types expected during operation. Desired conditions for the vessel operations are the ability to shear the slurry so that flammable gas does not accumulate within the vessel, that settled solids will be mobilized, that contents can be blended, and that contents can be transferred from the vessel. A strategy is presented for adjusting the vessel configuration to ensure that all these conditions are met.« less

  18. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.

  19. Consumption of particulate wastes derived from cage fish farming by aggregated wild fish. An experimental approach.

    PubMed

    Ballester-Moltó, M; Sanchez-Jerez, P; Aguado-Giménez, F

    2017-09-01

    Particulate wastes derived from cage fish farming are a trophic resource used by wild fish. This study assesses waste consumption by wild fish and the impact on the final balance of wastes. Consumption was determined according to the difference between the particulate matter exiting the cages and that reaching 5 m away at three different depths, in the presence and absence of wild fish. Wild fish around the experimental cages were counted during feeding and non-feeding periods. A weighted abundance of 1057 fish 1000 m -3 consumed 17.75% of the particulate wastes exiting the cages, on average. Consumption was higher below the cages, where waste outflow was greater. However, waste removal by wild fish was noteworthy along the shallow and deep sides of the cages. Wild fish diminished the net particulate wastes by about 14%, transforming them into more easily dispersible and less harmful wastes. This study demonstrates the mitigating potential of wild fish in reducing environmental impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. SLUDGE BATCH 4 BASELINE MELT RATE FURNACE AND SLURRY-FED MELT RATE FURNACE TESTS WITH FRITS 418 AND 510 (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M. E.; Jones, T. M.; Miller, D. H.

    Several Slurry-Fed Melt Rate Furnace (SMRF) tests with earlier projections of the Sludge Batch 4 (SB4) composition have been performed.1,2 The first SB4 SMRF test used Frits 418 and 320, however it was found after the test that the REDuction/OXidation (REDOX) correlation at that time did not have the proper oxidation state for manganese. Because the manganese level in the SB4 sludge was higher than previous sludge batches tested, the impact of the higher manganese oxidation state was greater. The glasses were highly oxidized and very foamy, and therefore the results were inconclusive. After resolving this REDOX issue, Frits 418,more » 425, and 503 were tested in the SMRF with the updated baseline SB4 projection. Based on dry-fed Melt Rate Furnace (MRF) tests and the above mentioned SMRF tests, two previous frit recommendations were made by the Savannah River National Laboratory (SRNL) for processing of SB4 in the Defense Waste Processing Facility (DWPF). The first was Frit 503 based on the June 2006 composition projections.3 The recommendation was changed to Frit 418 as a result of the October 2006 composition projections (after the Tank 40 decant was implemented as part of the preparation plan). However, the start of SB4 processing was delayed due to the control room consolidation outage and the repair of the valve box in the Tank 51 to Tank 40 transfer line. These delays resulted in changes to the projected SB4 composition. Due to the slight change in composition and based on preliminary dry-fed MRF testing, SRNL believed that Frit 510 would increase throughput in processing SB4 in DWPF. Frit 418, which was used in processing Sludge Batch 3 (SB3), was a viable candidate and available in DWPF. Therefore, it was used during the initial SB4 processing. Due to the potential for higher melt rates with Frit 510, SMRF tests with the latest SB4 composition (1298 canisters) and Frits 510 and 418 were performed at a targeted waste loading (WL) of 35%. The '1298 canisters' describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. The melt rate for the SMRF SB4/Frit 510 test was 14.6 grams/minute. Due to cold cap mounding problems with the SMRF SB4/Frit 418 feed at 50 weight % solids that prevented a melt rate determination, this feed was diluted to 45 weight % solids. The melt rate for this diluted feed was 8.9 grams/minute. A correction factor of 1.2 for estimating the melt rate at 50 weight % solids from 45 weight % solids test results (based on previous SMRF testing5) was then used to estimate a melt rate of 10.7 grams/minute for SB4/Frit 418 at 50 weight % solids. Therefore, the use of Frit 510 versus Frit 418 with SB4 resulted in a higher melt rate (14.6 versus an estimated 10.7 grams/minute). For reference, a previous SMRF test with SB3/Frit 418 feed at 35% waste loading and 50 weight % solids resulted in a melt rate of 14.1 grams/minute. Therefore, depending on the actual feed rheology, the use of Frit 510 with SB4 could result in similar melt rates as experienced with SB3/Frit 418 feed in the DWPF.« less

  1. Yield Stress Reduction of DWPF Melter Feed Slurries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M.E.; Smith, M.E.

    2007-07-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides and soluble sodium salts. The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah Rivermore » National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process. Yield stress reduction was measured by preparing melter feed slurries (using nonradioactive HLW simulants) that contain beads and comparing the yield stress with melter feed containing frit. A second set of tests was performed with beads of various diameters to determine if a decrease in diameter affected the results. Smaller particle size was shown to increase yield stress when frit is utilized. The settling rate of the beads was required to match the settling rate of the frit, therefore a decrease in particle size was anticipated. Settling tests were conducted in water, xanthan gum solutions, and in non-radioactive simulants of the HLW. The tests used time-lapse video-graphy as well as solids sampling to evaluate the settling characteristics of beads compared to frit of the same particle size. A preliminary melt rate evaluation was performed using a dry-fed Melt Rate Furnace (MRF) developed by SRNL. Preliminary evaluation of the impact of beading the frit on the frit addition system were completed by conducting flow loop testing. A recirculation loop was built with a total length of about 30 feet. Pump power, flow rate, outlet pressure, and observations of the flow in the horizontal upper section of the loop were noted. The recirculation flow was then gradually reduced and the above items recorded until settling was noted in the recirculation line. Overall, the data shows that the line pressure increased as the solids were increased for the same flow rate. In addition, the line pressure was higher for Frit 320 than the beads at the same solids level and flow. With the observations, a determination of minimum velocity to prevent settling could be done, but a graph of the line pressures versus velocity for the various tests was deemed to more objective. The graph shows that the inflection point in pressure drop is about the same for the beads and Frit 320. This indicates that the bead slurry would not require higher flows rates than frit slurry at DWPF during transfers. Another key finding was that the pump impeller was not significantly damaged by the bead slurry, while the Frit 320 slurry rapidly destroyed the impeller. Evidence of this was first observed when black particles were seen in the Frit 320 slurry being recirculated and then confirmed by a post-test inspection of the impeller. Finally, the pumping of bead slurry could be recovered even if flow is stopped. The Frit 320 slurry could not be restarted after stopping flow due to the nature of the frit to pack tightly when settled. Beads were shown to represent a significant process improvement versus frit for the DWPF process in lowering yield stress of the melter feed. Lower erosion of process equipment is another expected benefit.« less

  2. 40 CFR 60.1175 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit. (e) Procedures for maintaining a proper level of combustion air supply. (f... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... municipal waste combustion units. (c) Procedures for receiving, handling, and feeding municipal solid waste...

  3. Potential for Gulls to Transport Bacteria from Human Waste Sites to Beaches

    EPA Science Inventory

    Contamination of recreational beaches due to fecal waste from gulls complicates beach monitoring and may pose a risk to public health. Gulls that feed at human waste sites may ingest human-associated fecal microorganisms associated with that waste. If these gulls also visit beach...

  4. Ferric ion as a scavenging agent in a solvent extraction process

    DOEpatents

    Bruns, Lester E.; Martin, Earl C.

    1976-01-01

    Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.

  5. Hermetic turbine generator

    DOEpatents

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  6. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less

  7. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  8. Thermophilic methane production from cattle waste.

    PubMed Central

    Varel, V H; Isaacson, H R; Bryant, M P

    1977-01-01

    Methane production from waste of cattle fed a finishing diet was investigated, using four 3-liter-working volume anaerobic digestors at 60 degrees C. At 55 degrees C a start-up culture, in which waste was the only source of bacteria, was generated within 8 days and readily adapted to 60 degrees C, where efficiency of methanogenesis was greater. Increasing the temperature from 60 to 65 degrees C tended to drastically lower efficiency. When feed concentrations of volatile solids (VS, organic matter) were increased in steps of 2% after holding for 1 months at a given concentration, the maximum concentrations for efficient fermentation were 8.2, 10.0, 11.6, and 11.6% for the retention times (RT) of 3, 6, 9, and 12 days, respectively. The VS destructions for these and lower feed concentrations were 31 to 37, 36 to 40, 47 to 49 and 51 to 53% for the 3-, 6-, 9-, and 12-day RT digestors, respectively, and the corresponding methane production rates were about 0.16, 0.18, 0.20, and 0.22 liters/day per g of VS in the feed. Gas contained 52 to 57% methane. At the above RT and feed concentrations, alkalinity rose to 5,000 to 7,700 mg of CaCo3 per liter (pH to 7.5 to 7.8), NH3 plus NH4+ to 64 to 90 mM, and total volatile acids to 850 to 2,050 mg/liter as acetate. The 3-day RT digestor was quite stable up to 8.2% feed VS and at this feed concentration produced methane at the very high rate of 4.5 liters/day per liter of digestor. Increasing the percentage of feed VS beyond those values indicated above resulted in greatly decreased organic matter destruction and methane production, variable decrease in pH, and increased alkalinity, ammonia, and total volatile acid concentrations, with propionate being the first to accumulate in large amounts. In a second experiment with another lot of waste, the results were similar. These studies indicate that loading rates can be much higher than those previously thought useful for maximizing methanogenesis from cattle waste. PMID:557954

  9. Waste feed from coastal fish farms: A trophic subsidy with compositional side-effects for wild gadoids

    NASA Astrophysics Data System (ADS)

    Fernandez-Jover, Damian; Martinez-Rubio, Laura; Sanchez-Jerez, Pablo; Bayle-Sempere, Just T.; Lopez Jimenez, Jose Angel; Martínez Lopez, Francisco Javier; Bjørn, Pål-Arne; Uglem, Ingebrigt; Dempster, Tim

    2011-03-01

    Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild saithe ( Pollachius virens) and Atlantic cod ( Gadus morhua) associated with fish farms (F assoc), where waste feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that both cod and saithe consumed waste feed in the vicinity of farms (6-96% of their diet was composed of food pellets). This translated into elevated body and liver condition compared to fish caught distant from farms for cod at both locations and elevated body condition for saithe at one of the locations. As a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-derived fatty acids (FAs) such as linoleic (18:2ω6) and oleic (18:1ω9) acids and decreased concentrations of DHA (22:6ω3) in the muscle and/or liver of F assoc cod and saithe when compared with UA fish. In addition, the ω3:ω6 ratio clearly differed between F assoc and UA fish. Linear discriminant analysis (LDA) correctly classified 97% of fish into F assoc or UA origin for both cod and saithe based on the FA composition of liver tissues, and 89% of cod and 86% of saithe into F assoc or UA origin based on the FA composition of muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty acid compositions affects physiological performance or reproductive potential requires further research.

  10. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling.

    PubMed

    Amulya, K; Jukuri, Srinivas; Venkata Mohan, S

    2015-01-01

    Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  12. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  13. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    PubMed

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  14. Spent coffee grounds as a versatile source of green energy.

    PubMed

    Kondamudi, Narasimharao; Mohapatra, Susanta K; Misra, Mano

    2008-12-24

    The production of energy from renewable and waste materials is an attractive alternative to the conventional agricultural feed stocks such as corn and soybean. This paper describes an approach to extract oil from spent coffee grounds and to further transesterify the processed oil to convert it into biodiesel. This process yields 10-15% oil depending on the coffee species (Arabica or Robusta). The biodiesel derived from the coffee grounds (100% conversion of oil to biodiesel) was found to be stable for more than 1 month under ambient conditions. It is projected that 340 million gallons of biodiesel can be produced from the waste coffee grounds around the world. The coffee grounds after oil extraction are ideal materials for garden fertilizer, feedstock for ethanol, and as fuel pellets.

  15. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  16. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  17. The use of fly larvae for organic waste treatment.

    PubMed

    Čičková, Helena; Newton, G Larry; Lacy, R Curt; Kozánek, Milan

    2015-01-01

    The idea of using fly larvae for processing of organic waste was proposed almost 100 years ago. Since then, numerous laboratory studies have shown that several fly species are well suited for biodegradation of organic waste, with the house fly (Musca domestica L.) and the black soldier fly (Hermetia illucens L.) being the most extensively studied insects for this purpose. House fly larvae develop well in manure of animals fed a mixed diet, while black soldier fly larvae accept a greater variety of decaying organic matter. Blow fly and flesh fly maggots are better suited for biodegradation of meat processing waste. The larvae of these insects have been successfully used to reduce mass of animal manure, fecal sludge, municipal waste, food scrapes, restaurant and market waste, as well as plant residues left after oil extraction. Higher yields of larvae are produced on nutrient-rich wastes (meat processing waste, food waste) than on manure or plant residues. Larvae may be used as animal feed or for production of secondary products (biodiesel, biologically active substances). Waste residue becomes valuable fertilizer. During biodegradation the temperature of the substrate rises, pH changes from neutral to alkaline, ammonia release increases, and moisture decreases. Microbial load of some pathogens can be substantially reduced. Both larvae and digested residue may require further treatment to eliminate pathogens. Facilities utilizing natural fly populations, as well as pilot and full-scale plants with laboratory-reared fly populations have been shown to be effective and economically feasible. The major obstacles associated with the production of fly larvae from organic waste on an industrial scale seem to be technological aspects of scaling-up the production capacity, insufficient knowledge of fly biology necessary to produce large amounts of eggs, and current legislation. Technological innovations could greatly improve performance of the biodegradation facilities and decrease production costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Kurath; DL Blanchard; JR Bontha

    The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of Superlig{reg_sign} materials for the removal of {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium selective Superlig 632 and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The work contained in this report involves testing the Superlig 644 ion exchange material in a small dual column system (15 mL each; L/D = 5.7). The sample processed was approximately 2.5 L of dilutedmore » waste [Na{sup +}] = 4.6M from Tank 241-AW-101 (Envelope A). This waste had been previously clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested including resin bed preparation, loading, feed displacement water rinse, elution and resin regeneration. During the initial run, the lag column did not perform as expected so that the {sup 137}Cs concentration in the effluent composite was above the LAW treatment limits. This required a second column run with the partially decontaminated feed that was conducted at a higher flow rate. A summary of performance measures for both runs is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 143 for the lead column in run 1 is very similar to the value obtained by the Savannah River Technology Center during Phase 1A testing. The larger Cs {lambda} value for run 2 reflects a general trend for the effective capacity of the SL-644 material to increase as the cesium concentration decreases. The low value for the lag column during the first run indicates that it did not perform as expected. This may have been due to insufficient conditioning of the bed prior to the start of the loading step or to air in the bed that caused channeling. Equilibrium data obtained with batch contacts using the AW-101 Cs IX feed indicates a range for the Cs {lambda} of 80--97. The maximum decontamination factor (DF) for {sup 137}CS is based on analysis of the first samples collected from each column and the concentration in the feed for each run. While the DF's are lower for the second run, this is attributed to the lower {sup 137}Cs concentration in the feed and the increased flowrate. The overall composite DF for run 2 was quite good since both columns functioned well. The overall DF for both runs was 3,000, which provided an effluent with a {sup 137}Cs concentration of 5.89E-02 Ci/m{sup 3} (C/C{sub 0} = 3.3 IE-04). The {sup 137}Cs concentration in the effluent composite was 7.3% of the contract limit for {sup 137}Cs and also below the basis of design limit.« less

  19. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  20. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  1. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  2. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  3. 40 CFR 63.1220 - What are the replacement standards for hazardous waste burning cement kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning cement kilns? 63.1220 Section 63.1220 Protection of Environment ENVIRONMENTAL... burning cement kilns? (a) Emission and hazardous waste feed limits for existing sources. You must not... (whether burning hazardous waste or not) did not previously exist, to 50 parts per million by volume, over...

  4. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the capacity to combust greater than 250 tons per day of municipal solid waste and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...

  5. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  6. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  7. Pilot installation for the thermo-chemical characterisation of solid wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marculescu, C.; Antonini, G.; Badea, A.

    The increasing production and the large variety of wastes require operators of thermal treatment units to continuously adapt the installations or the functioning parameters to the different physical and chemical properties of the wastes. Usually, the treated waste is encountered in the form of heterogeneous mixtures. The classical tests such as thermogravimetry and calorimetric bomb operate component by component, separately. In addition to this, they can analyse only small quantities of waste at a time (a few grams). These common tests are necessary but insufficient in the global waste analysis in the view further thermal treatment. This paper presents anmore » experimental installation, which was designed and built at the CNRS Science Division, Department of Industrial Methods, Compiegne University of Technology, France. It allows the determination of waste thermal and chemical properties by means of thermal treatment. Also, it is capable of continuously analysing significant quantities of waste (up to 50 kg/h) as compared to the classical tests and it can work under various conditions: {center_dot}oxidant or reductive atmosphere (on choice); {center_dot}variable temperature between 400 and 1000 deg. C; {center_dot}independently set residence time of treated sample in the installation and flow conditions. The installation reproduces the process conditions from incinerators or pyrolysis reactors. It also provides complete information on the kinetics of the waste thermal degradation and on the pollutant emissions. Using different mixtures of components present in the municipal solid waste and also in the reconstituted MSW samples, we defined a series of criteria for characterising waste behaviour during the stages of the main treatment process such as: feeding, devolatilisation/oxidation, advancement, solid residue evacuation, and pollutants emission.« less

  8. Application of wet waste from shrimp ( Litopenaeus vannamei) with or without sea mud to feeding sea cucumber ( Stichopus monotuberculatus)

    NASA Astrophysics Data System (ADS)

    Chen, Yanfeng; Hu, Chaoqun; Ren, Chunhua

    2015-02-01

    In the present study, the applicability of the wet waste collected from shrimp ( Litopenaeus vannamei) to the culture of sea cucumber ( Stichopus monotuberculatus) was determined. The effects of dietary wet shrimp waste on the survival, specific growth rate (SGR), fecal production rate (FPR), ammonia- and nitrite-nitrogen productions of sea cucumber were studied. The total organic matter (TOM) level in the feces of sea cucumber was compared with that in corresponding feeds. Diet C (50% wet shrimp waste and 50% sea mud mash) made sea cucumber grow faster than other diets. Sea cucumber fed with either diet D (25% wet shrimp waste and 75% sea mud mash) or sole sea mud exhibited negative growth. The average lowest total FPR of sea cucumber occurred in diet A (wet shrimp waste), and there was no significant difference in total FPR between diet C and diet E (sea mud mash) ( P > 0.05). The average ammonia-nitrogen production of sea cucumber in different diet treatments decreased gradually with the decrease of crude protein content in different diets. The average highest nitrite-nitrogen production occurred in diet E treatment, and there was no significant difference in nitrite-nitrogen production among diet A, diet B (75% wet shrimp waste and 25% sea mud mash) and diet C treatments ( P > 0.05). In each diet treatment, the total organic matter (TOM) level in feces decreased to different extent compared with that in corresponding feeds.

  9. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  12. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  13. Microbial population dynamics during startup of a full-scale anaerobic digester treating industrial food waste in Kyoto eco-energy project.

    PubMed

    Ike, Michihiko; Inoue, Daisuke; Miyano, Tomoki; Liu, Tong Tong; Sei, Kazunari; Soda, Satoshi; Kadoshin, Shiro

    2010-06-01

    The microbial community in a full-scale anaerobic digester (2300m3) treating industrial food waste in the Kyoto Eco-Energy Project was analyzed using terminal restriction fragment length polymorphism for eubacterial and archaeal 16S rRNA genes. Both thermophilic and mesophilic sludge of treated swine waste were seeded to the digestion tank. During the 150-day startup period, coffee grounds as a main food waste, along with potato, kelp and boiled beans, tofu, bean curd lees, and deep-fried bean curd were fed to the digestion process step-by-step (max. 40t/d). Finally, the methane yield reached 360m3/t-feed with 40days' retention time, although temporary accumulation of propionate was observed. Eubacterial communities that formed in the thermophilic digestion tank differed greatly from both thermophilic and mesophilic types of seed sludge. Results suggest that the Actinomyces/Thermomonospora and Ralstonia/Shewanella were contributors for hydrolyzation and degradation of food waste into volatile fatty acids. Acetate-utilizing methanogens, Methanosaeta, were dominant in seed sludges of both types, but they decreased drastically during processing in the digestion tank. Methanosarcina and Methanobrevibacter/Methanobacterium were, respectively, possible main contributors for methane production from acetate and H2 plus CO2. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SCHAUS, P.S.

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Wastemore » Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.« less

  15. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, S.B.; Lin, Y.; Mohr, R.K.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less

  16. Presidential Green Chemistry Challenge: 1996 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1996 award winner, Professor Mark Holtzapple, developed methods to convert waste biomass (e.g., sewage sludge, agricultural wastes), into animal feed, industrial chemicals, or fuels.

  17. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  18. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigatemore » that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.« less

  19. Impacts of waste from concentrated animal feeding operations on water quality

    USGS Publications Warehouse

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  20. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality

    PubMed Central

    Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784

  1. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  3. Literature Review: Assessment of DWPF Melter and Melter Off-gas System Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    Testing to date for the MOC for the Hanford Waste Treatment and Immobilization Plant (WTP) melters is being reviewed with the lessons learned from DWPF in mind and with consideration to the changes in the flowsheet/feed compositions that have occurred since the original testing was performed. This information will be presented in a separate technical report that identifies any potential gaps for WTP processing.

  4. Removing Chlorides From Metallurgical-Grade Silicon

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Coleman, L. M.

    1982-01-01

    Process for making low-cost silicon for solar cells is further improved. Silane product recycled to feed stripper column converts some of heavy impurities to volatile ones that pass off at top of column with light wastes. Impurities--chlorides of arsenic, phosphorus, and boron-would otherwise be carried to subsequent distillations where they would be difficult to remove. Since only a small amount of silane is recycled, silicon production efficiency remains high.

  5. Sulfuric Acid Regeneration Waste Disposal Technology.

    DTIC Science & Technology

    1986-11-01

    or poorer correlations of acid load with SAR production. The National Pollutant Discharge Elimination System (NPDES) permit requires one daily 24 hour...systems; and * essentially eliminates [(NH4 )2So4 ] disposal problem. The chief concerns for this process are: " high chemical cost of BaCO 3... biofiltration and fluorination prior to being discharged to a stream which feeds into the Allegheny River. PLANT 6: Sulfuric acid plant in New Jersey

  6. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae.

    PubMed

    Maiorella, B L; Blanch, H W; Wilke, C R

    1984-10-01

    Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.

  7. Examples from the Greenland-Project - Gentle Remediation Optiones (GROs) on Pb/zn Contaminated Sites

    NASA Astrophysics Data System (ADS)

    Friesl-Hanl, Wolfgang; Kidd, Petra; Siebielec, Grzegorz

    2017-04-01

    The GREENLAND-project brought together "best practice" examples of several field applied gentle remediation techniques (EUFP7-project "Gentle remediation of trace element-contaminated land - GREENLAND; www.greenland-project.eu) with 17 partners from 11 countries. Gentle remediation options (GRO) comprise environmentally friendly technologies that have little or no negative impact on the soil. The main technologies are • phytoextraction • in situ immobilization and • assisted phytostabilization. Mining and processing activities affecting many sites worldwide negatively. The huge amounts of moved and treated materials have led to considerable flows of wastes and emissions. Alongside the many advantages of processed ores to our society, adverse effects in nature and risks for the environment and human health are observed. Three stages of impact of Pb/Zn-ore-treatment on the environment are discussed here: (1) On sites where the ores are mined impacts are the result of crushing, grinding, concentrating activities, and where additionally parts of the installations remain after abandoning the mine, as well as by the massive amounts of remaining deposits or wastes (mine tailings). (2) On sites where smelting and processing takes place, depending on the process (Welz, Doerschel) different waste materials are deposited. The Welz process waste generally contains less Cd and Pb than the Doerschel process waste which additionally shows higher water- extractable metals. (3) On sites close to the emitting source metal contamination can be found in areas for housing, gardening, and agricultural use. Emissions consist mainly from oxides and sulfides (Zn, Cd), sulfates (Zn, Pb, and Cd), chlorides (Pb) and carbonates (Cd). All these wastes and emissions pose potential risks of dispersion of pollutants into the food chain due to erosion (wind, water), leaching and the transfer into feeding stuff and food crops. In-situ treatments have the potential for improving the situation on site and will be shown by means of field experiments in Spain, Poland and Austria. Keywords: Mining and smelting, in-situ remediation, phytomanagement, gentle remediation options

  8. Microbial keratinases: industrial enzymes with waste management potential.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  9. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    PubMed

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickenheim, B.; Hansen, E.; Leishear, R.

    A 10-inch READCO mixer is used for mixing the premix (45 (wt%) fly ash, 45 wt% slag, and 10 wt% portland cement) with salt solution in the Saltstone Production Facility (SPF). The Saltstone grout free falls into the grout hopper which feeds the suction line leading to the Watson SPX 100 duplex hose pump. The Watson SPX 100 pumps the grout through approximately 1500 feet of piping prior to being discharged into the Saltstone Disposal Facility (SDF) vaults. The existing grout hopper has been identified by the Saltstone Enhanced Low Activity Waste Disposal (ELAWD) project for re-design. The current nominalmore » working volume of this hopper is 12 gallons and does not permit handling an inadvertent addition of excess dry feeds. Saltstone Engineering has proposed a new hopper tank that will have a nominal working volume of 300 gallons and is agitated with a mechanical agitator. The larger volume hopper is designed to handle variability in the output of the READCO mixer and process upsets without entering set back during processing. The objectives of this task involve scaling the proposed hopper design and testing the scaled hopper for the following processing issues: (1) The effect of agitation on radar measurement. Formation of a vortex may affect the ability to accurately measure the tank level. The agitator was run at varying speeds and with varying grout viscosities to determine what parameters cause vortex formation and whether measurement accuracy is affected. (2) A dry feeds over addition. Engineering Calculating X-ESR-Z-00017 1 showed that an additional 300 pounds of dry premix added to a 300 gallon working volume would lower the water to premix ratio (W/P) from the nominal 0.60 to 0.53 based on a Salt Waste Processing Facility (SWPF) salt simulant. A grout with a W/P of 0.53 represents the upper bound of grout rheology that could be processed at the facility. A scaled amount of dry feeds will be added into the hopper to verify that this is a recoverable situation. (3) The necessity of baffles in the hopper. The preference of the facility is not to have baffles in the hopper; however, if the initial testing indicates inadequate agitation or difficulties with the radar measurement, baffles will be tested.« less

  11. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change.

    PubMed

    Makkar, H P S

    2017-12-04

    The food-feed competition is one of the complex challenges, and so are the ongoing climate change, land degradation and water shortage for realizing sustainable food production systems. By 2050 the global demand for animal products is projected to increase by 60% to 70%, and developing countries will have a lion's share in this increase. Currently, ~800 million tonnes of cereals (one-third of total cereal production) are used in animal feed and by 2050 it is projected to be over 1.1 billion tonnes. Most of the increase in feed demand will be in developing countries, which already face many food security challenges. Additional feed required for the projected increased demand of animal products, if met through food grains, will further exacerbate the food insecurity in these countries. Furthermore, globally, the production, processing and transport of feed account for 45% of the greenhouse gas emissions from the livestock sector. This paper presents approaches for addressing these challenges in quest for making livestock sector more sustainable. The use of novel human-inedible feed resources such as insect meals, leaf meals, protein isolates, single cell protein produced using waste streams, protein hydrolysates, spineless cactus, algae, co-products of the biofuel industry, food wastes among others, has enormous prospects. Efficient use of grasslands also offers possibilities for increasing carbon sequestration, land reclamation and livestock productivity. Opportunities also exist for decreasing feed wastages by simple and well proven practices such as use of appropriate troughs, increase in efficiency of harvesting crop residues and their conversion to complete feeds especially in the form of densified feed blocks or pellets, feeding as per the nutrient requirements, among others. Available evidence have been presented to substantiate arguments that: (a) for successful and sustained adoption of a feed technology, participation of the private sector and a sound business plan are required, (b) for sustainability of the livestock production systems, it is also important to consider the consumption of animal products and a case has been presented to assess future needs of animal source foods based on their requirements for healthy living, (c) for dairy animals, calculation of Emission Intensity based on the lifetime lactation rather than one lactation may also be considered and (d) for assessment of the efficiency of livestock production systems a holistic approach is required that takes into consideration social dimensions and net human-edible protein output from the system in addition to carbon and water footprints.

  12. Incorporating technetium in minerals and other solids: A review

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Schweiger, Michael; Hrma, Pavel

    2015-11-01

    Technetium (Tc) can be incorporated into a number of different solids including spinel, sodalite, rutile, tin dioxide, pyrochlore, perovskite, goethite, layered double hydroxides, cements, and alloys. Synthetic routes are possible for each of these phases, ranging from high-temperature ceramic sintering to ball-milling of constituent oxides. However, in practice, Tc has only been incorporated into solid materials by a limited number of the possible syntheses. A review of the diverse ways in which Tc-immobilizing materials can be made shows the wide range of options available. Special consideration is given to hypothetical application to the Hanford Tank Waste and Vitrification Plant, such as adding a Tc-bearing mineral to waste glass melter feed. A full survey of solid Tc waste forms, the common synthesis routes to those waste forms, and their potential for application to vitrification processes are presented. The use of tin dioxide or ferrite spinel precursors to reduce Tc(VII) out of solution and into a durable form are shown to be of especially high potential.

  13. Risk factors for wasting and stunting among children in Metro Cebu, Philippines.

    PubMed

    Ricci, J A; Becker, S

    1996-06-01

    Risk factors for wasting and stunting were examined in a longitudinal study of 18 544 children younger than 30 mo in Metro Cebu, Philippines. Measures of household demographic and socioeconomic characteristics, maternal characteristics and behavior, and child biological variables were analyzed cross-sectionally in six child age-residence strata by using logistic regression. Our results support biological and epidemiologic evidence that wasting and stunting represent different processes of malnutrition. They also indicate that the principal risk factors for stunting and wasting in infants < 6 mo of age were either maternal behaviors or child biological characteristics under maternal control, eg, breast-feeding status and birth weight. After 6 mo of age, household socioeconomic characteristics emerged with behavioral and biological variables as important determinants of malnutrition, eg, father's education and presence of a television and/or radio. Household socioeconomic status influenced the risk of stunting earlier in rural than in urban barangays. Implications of the results for interventions are discussed.

  14. Anaerobic co-digestion of high-strength organic wastes pretreated by thermal hydrolysis.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Seungyong; Lee, Changsoo

    2018-06-01

    Thermal hydrolysis (TH) pretreatment was investigated for the anaerobic digestion (AD) of a mixture of high-strength organic wastes (i.e., dewatered human feces, dewatered sewage sludge, and food wastewater) at laboratory scale to simulate a full-scale plant and evaluate its feasibility. The reactors maintained efficient and stable performance at a hydraulic retention time of 20 days, which may be not sufficient for the mesophilic AD of high-suspended-solid wastes, despite the temporal variations in organic load. The addition of FeCl 3 was effective in controlling H 2 S and resulted in significant changes in the microbial community structure, particularly the methanogens. The temporary interruption in feeding or temperature control led to immediate performance deterioration, but it recovered rapidly when normal operations were resumed. The overall results suggest that the AD process coupled with TH pretreatment can provide an efficient, robust, and resilient system to manage high-suspended-solid wastes, supporting the feasibility of its full-scale implementation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  16. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  17. 40 CFR 63.1221 - What are the replacement standards for hazardous waste burning lightweight aggregate kilns?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hazardous waste burning lightweight aggregate kilns? 63.1221 Section 63.1221 Protection of Environment... burning lightweight aggregate kilns? (a) Emission and hazardous waste feed limits for existing sources... atmosphere. (2) 99.9999% DRE. If you burn the dioxin-listed hazardous wastes F020, F021, F022, F023, F026, or...

  18. The influence of maternal psychosocial circumstances and physical environment on the risk of severe wasting in rural Gambian infants: a mixed methods approach.

    PubMed

    Nabwera, Helen M; Moore, Sophie E; Mwangome, Martha K; Molyneux, Sassy C; Darboe, Momodou K; Camara-Trawally, Nyima; Sonko, Bakary; Darboe, Alhagie; Singhateh, Seedy; Fulford, Anthony J; Prentice, Andrew M

    2018-01-06

    Severe wasting affects 16 million under 5's and carries an immediate risk of death. Prevalence remains unacceptably high in sub-Saharan Africa and early infancy is a high-risk period. We aimed to explore risk factors for severe wasting in rural Gambian infants. We undertook a case-control study from November 2014 to June 2015, in rural Gambia. Cases had WHO standard weight-for-length z-scores (WLZ) < -3 on at least 1 occasion in infancy. Controls with a WLZ > -3 in the same interval, matched on age, gender, village size and distance from the clinic were selected. Standard questionnaires were used to assess maternal socioeconomic status, water sanitation and hygiene and maternal mental health. Conditional logistic regression using a multivariable model was used to determine the risk factors for severe wasting. Qualitative in depth interviews were conducted with mothers and fathers who were purposively sampled. A thematic framework was used to analyse the in-depth interviews. Two hundred and eighty (77 cases and 203 controls) children were recruited. In-depth interviews were conducted with 16 mothers, 3 fathers and 4 research staff members. The mean age of introduction of complementary feeds was similar between cases and controls (5.2 [SD 1.2] vs 5.1 [SD 1.3] months). Increased odds of severe wasting were associated with increased frequency of complementary feeds (range 1-8) [adjusted OR 2.06 (95%: 1.17-3.62), p = 0.01]. Maternal adherence to the recommended infant care practices was influenced by her social support networks, most importantly her husband, by infant feeding difficulties and maternal psychosocial stressors that include death of a child or spouse, recurrent ill health of child and lack of autonomy in child spacing. In rural Gambia, inappropriate infant feeding practices were associated with severe wasting in infants. Additionally, adverse psychosocial circumstances and infant feeding difficulties constrain mothers from practising the recommended child care practices. Interventions that promote maternal resilience through gender empowerment, prioritising maternal psychosocial support and encouraging the involvement of fathers in infant and child care promotion strategies, would help prevent severe wasting in these infants.

  19. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks weremore » evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid particles have higher density and/or larger size than indicated by previous analysis of SRS sludge and sludge simulants. (5) Tank 21 waste characterization, laboratory settling tests, and additional field turbidity measurements during mixing evolutions are recommended to better understand potential risk for extended (> 60 days) settling times in Tank 21.« less

  20. 40 CFR 63.1207 - What are the performance testing requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...

  1. 40 CFR 63.1207 - What are the performance testing requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...

  2. 40 CFR 63.1207 - What are the performance testing requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) If you own or operate a hazardous waste cement kiln that recycles collected particulate matter (i.e... on a hazardous waste thermal concentration basis (i.e., pounds emitted per million Btu of heat input... this section for all hazardous waste feedstreams; (E) Interlock the HAP thermal feed concentration for...

  3. 40 CFR 264.342 - Principal organic hazardous constituents (POHCs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... feed to be burned. This specification will be based on the degree of difficulty of incineration of the... results of waste analyses and trial burns or alternative data submitted with part B of the facility's...

  4. Land application of organic residuals: Public health threat or environmental benefit

    USDA-ARS?s Scientific Manuscript database

    Waste residuals consist of manure and biosolids produced by concentrated animal feeding operations and municipal waste water treatment plants. All wastes need to be disposed of in a proper manner, protecting public and environmental health, but also in a sustainable fashion to ensure that no system...

  5. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  6. 40 CFR 265.341 - Waste analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incinerator to enable him to establish steady state (normal) operating conditions (including waste and auxiliary fuel feed and air flow) and to determine the type of pollutants which might be emitted. At a...

  7. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  8. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  10. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that labour availability should be used to estimate compost demand beside cash. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Feeding untreated and pasteurized waste milk and bulk milk to calves: effects on calf performance, health status and antibiotic resistance of faecal bacteria.

    PubMed

    Aust, V; Knappstein, K; Kunz, H-J; Kaspar, H; Wallmann, J; Kaske, M

    2013-12-01

    Non-saleable milk (waste milk, WM) is contaminated with an undefined spectrum of potentially harmful pathogens and antimicrobial residues. The objective of this study was to determine the impact of feeding bulk milk (BM) or WM - both pasteurized or not - on calf performance, health and the antibiotic resistance of specific faecal bacteria. A total of 114 calves from a large-scale dairy were housed outdoors in individual hutches and were randomly assigned to one of four feeding groups. The calves were fed either WM, pasteurized WM (pWM), BM or pasteurized BM (pBM) from day 3 to 56 of life. Milk samples taken from the pasteurizer and calves' nipple buckets were investigated at regular intervals for total plate count and counts of thermoduric bacteria, coliforms and mastitis pathogens. Faecal samples were taken on days 2, 14, 28 and 56 of life from randomly selected calves of the WM, pWM and BM groups (each N = 8-9) and processed to obtain from each sample preferably two isolates of Escherichia (E.) coli and Enterococcus spp. respectively. Isolates were tested for their antimicrobial susceptibility to 25 antimicrobial agents by broth microdilution. Daily weight gain, milk and calf starter intake and health parameters did not differ significantly between the calves of the four feeding groups. The proportion of resistant E. coli isolates was significantly higher in calves fed WM and in calves fed pWM (most pronounced for cephalosporins) than in calves receiving BM. No differences in resistance were found for Enterococus spp. Thus, the concerns for selecting resistant faecal bacteria by feeding WM seem to be justified. Nonetheless, pasteurized WM of cows not treated with antimicrobials represents an acceptable feed for young calves. © 2012 Blackwell Verlag GmbH.

  12. CONCENTRATED ANIMAL FEEDING OPERATIONS AS A SOURCE OF EDCS AND THEIR MANAGEMENT

    EPA Science Inventory

    In the United States, there is an estimated 376,000 animal feed operations, generating approximately 128 billion pounds of waste each year. A facility is an animal feed operation (AFO) if animals are stabled/confined, or fed/maintained, for 45 days or more within any 12-month per...

  13. A thematic review of life cycle assessment (LCA) applied to pig production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAuliffe, Graham A., E-mail: g.a.mcauliffe@umail.ucc.ie; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork; Chapman, Deborah V.

    Commercial livestock production is known to have significant impacts on the environment. Pig production is a complex system which involves the production of animal feed, transportation, animal rearing and waste management. One tool for assessing the environmental performance of such complex systems is life cycle assessment (LCA). LCA has been applied to pig production considerably to date. This paper provides a chronological review of state-of-the-art pig production LCAs under three themes: feed production; entire-system livestock rearing; and waste management. The study considers how LCA applications have addressed technological improvements in animal husbandry, and highlights methodological limitations, particularly related to cross-studymore » comparisons. Recent research demonstrates crude protein reduction in feed and anaerobic treatment of pig excreta resulting in bioenergy production are the key targets for environmental performance improvements related to pig production. - Highlights: • An extensive review of LCA applied to pig production is provided chronologically over the past decade. • Individual studies have been categorised into feed, whole-system pig production and waste management themes. • We consider how LCAs have addressed state-of-the-art pig husbandry. • We offer a discussion on key findings, limitations and future research.« less

  14. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less

  15. 50. VIEW OF CHEMICAL FEED PUMP HOUSE AND NEUTRALIZATION TANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. VIEW OF CHEMICAL FEED PUMP HOUSE AND NEUTRALIZATION TANK FOR WASTE WATER TREATMENT LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. A new hyperspectral imaging based device for quality control in plastic recycling

    NASA Astrophysics Data System (ADS)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  17. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-01

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re2O7. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO4- were to be encapsulated in a Tc-sodalite prior to vitrification.

  18. Mercury in aqueous tank waste at the Savannah River Site: Facts, forms, and impacts

    DOE PAGES

    Bannochie, C. J.; Fellinger, T. L.; Garcia-Strickland, P.; ...

    2017-03-28

    Over the past two years, there has been an intense effort to understand the chemistry of mercury across the Savannah River Site’s high-level liquid waste system to determine the impacts of various mercury species. This effort started after high concentrations of mercury were measured in the leachates from a toxicity characteristic leaching procedure (TCLP) test on the low-level cementitious waste form produced in the Savannah River Saltstone facility. Speciation showed the dominant form of leached mercury to be the methylmercury cation. Neither the source of the methylmercury nor its concentration in the Saltstone feed was well established at the timemore » of the testing. Finally, this assessment of mercury was necessary to inform points in the process operations that may be subject to new separation technologies for the removal of mercury.« less

  19. Mercury in aqueous tank waste at the Savannah River Site: Facts, forms, and impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Fellinger, T. L.; Garcia-Strickland, P.

    Over the past two years, there has been an intense effort to understand the chemistry of mercury across the Savannah River Site’s high-level liquid waste system to determine the impacts of various mercury species. This effort started after high concentrations of mercury were measured in the leachates from a toxicity characteristic leaching procedure (TCLP) test on the low-level cementitious waste form produced in the Savannah River Saltstone facility. Speciation showed the dominant form of leached mercury to be the methylmercury cation. Neither the source of the methylmercury nor its concentration in the Saltstone feed was well established at the timemore » of the testing. Finally, this assessment of mercury was necessary to inform points in the process operations that may be subject to new separation technologies for the removal of mercury.« less

  20. Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks

    NASA Astrophysics Data System (ADS)

    Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr

    2017-08-01

    Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.

  1. Potential of chicken by-products as sources of useful biological resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasekan, Adeseye; Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my; Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealingmore » with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.« less

  2. Nutritional status and feeding problems in pediatric attention deficit-hyperactivity disorder.

    PubMed

    Sha'ari, Norsuhaila; Manaf, Zahara Abdul; Ahmad, Mahadir; Rahman, Fairuz Nazri Abd

    2017-04-01

    Children with attention deficit-hyperactivity disorder (ADHD) may be at risk of nutrient deficiency due to the inability to sit through meals. This comparative cross-sectional study was therefore carried out to determine the nutritional status and feeding problems of ADHD children aged 4-12 years. Sociodemographic data, anthropometric measurements and 3 day dietary intake record were collected from 54 ADHD children and 54 typical development (TD) children. The Behavioral Pediatrics Feeding Assessment Scale was used to assess feeding problems. Mean subject age was 8.6 ± 2.1 years. On anthropometric assessment, 11.1% of the ADHD children had wasting, while 1.9% had severe wasting. In contrast, none of the TD children had wasting. Approximately 5.6% of the ADHD children had stunting, as compared with 3.7% of the TD children, while none of the TD children had severe stunting compared with 3.7% of the ADHD children. More than half of the ADHD children had mid-upper arm circumference (MUAC) below the 5th percentile, indicating undernutrition, compared with only 35.2% of TD children. More than one-third of the ADHD children had feeding problems compared with 9.3% of TD children. There was a significant negative relationship between the ADHD children's feeding problems and bodyweight (r = -0338, P = 0.012), body mass index (r = -0322, P = 0.017) and MUAC (r = -0384, P = 0.004). Almost half of the ADHD children had suboptimal nutrition compared with 11.1% of the TD children. It is imperative to screen ADHD children for nutritional status and feeding problems to prevent negative health impacts later on. © 2016 Japan Pediatric Society.

  3. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  4. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    EPA Science Inventory

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  5. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.

    PubMed

    Tsiliyannis, Christos Aristeides

    2013-09-01

    Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Production of single cell protein from agro-waste using Rhodococcus opacus.

    PubMed

    Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J

    2018-06-18

    Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.

  7. Food waste collection and recycling for value-added products: potential applications and challenges in Hong Kong.

    PubMed

    Lo, Irene M C; Woon, Kok Sin

    2016-04-01

    About 3600 tonnes food waste are discarded in the landfills in Hong Kong daily. It is expected that the three strategic landfills in Hong Kong will be exhausted by 2020. In consideration of the food waste management environment and community needs in Hong Kong, as well as with reference to the food waste management systems in cities such as Linköping in Sweden and Oslo in Norway, a framework of food waste separation, collection, and recycling for food waste valorization is proposed in this paper. Food waste can be packed in an optic bag (i.e., a bag in green color), while the residual municipal solid waste (MSW) can be packed in a common plastic bag. All the wastes are then sent to the refuse transfer stations, in which food waste is separated from the residual MSW using an optic sensor. On the one hand, the sorted food waste can be converted into valuable materials (e.g., compost, swine feed, fish feed). On the other hand, the sorted food waste can be sent to the proposed Organic Waste Treatment Facilities and sewage treatment works for producing biogas. The biogas can be recovered to produce electricity and city gas (i.e., heating fuel for cooking purpose). Due to the challenges faced by the value-added products in Hong Kong, the biogas is recommended to be upgraded as a biogas fuel for vehicle use. Hopefully, the proposed framework will provide a simple and effective approach to food waste separation at source and promote sustainable use of waste to resource in Hong Kong.

  8. Bioconversion of water hyacinth-Coastal Bermuda grass-MSW-sludge blends to methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.; Henry, M.P.; Klass, D.L.

    1979-01-01

    Continuous operation of a biomethanation plant could be acheved more readily if mixtures of biomass and organic wastes could be utilized as feedstock. The research reported in this paper was directed to a laboratory evaluation of a blend of terrestrial and aquatic biomass with organic wastes as an anaerobic digester feed. Specifically, a blend of water hyacinth, Coastal Bermuda grass, the combustible fraction of municipal solid waste, and a small quantity of sludge was digested under standard, high-rate mesophilic conditions. Good methane production was achieved without the addition of external nutrients. As expected, biodegradabilities in decreasing order were hemicellulose, cellulose,more » crude protein, and lignin. The digester effluent was easily dewatered by filtration without chemical conditioning. Pretreatment of the feed slurry with 3 wt % sodium hydroxide solution under ambient conditions improved methane yield about 20% over that of the fresh untreated feed. A kinetic analysis of the experimental data indicated that hydrolysis or acidification was the rate limiting step of digestion of the biomass-waste blend. It was concluded from this work that biomass-waste blends of the type studied in this work can sustain anaerobic digestion under conventional conditions for long periods with little difficulty. Substantial improvements in methane yield should be possible, however, by use of advanced digestion techniques because methane recovery efficiencies in this work ranged up to about 46%.« less

  9. FY 2000 Saltcake Dissolution and Feed Stability Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, R.D.; McGinnis, C.P.; Weber, C.F.

    2000-07-31

    The Tanks Focus Area (TFA) continues to work closely with the Office of River Protection (ORP) to better understand the chemistry involved with the retrieval, transport, and pretreatment of nuclear wastes at Hanford. Since a private contractor is currently responsible for the pretreatment and immobilization activities in this remediation effort, the TFA has concentrated on saltcake dissolution and waste transport at the request of the ORP. Researchers at Hanford have performed a series of dissolution experiments on actual saltcake samples. Staff members at Mississippi State University (MSU) continue to model the dissolution results with the Environmental Simulation Program (ESP), whichmore » is used extensively by ORP personnel. Several ways to improve the predictive capabilities of the ESP were identified. Since several transfer lines at Hanford have become plugged, TFA tasks at AEA Technologies, Florida International University (FIU), MSU, and Oak Ridge National Laboratory (ORNL) are investigating the behavior of the supernatants and slurries during transport. A combination of experimental and theoretical techniques is used to study the transport chemistry. This effort is expected to develop process control tools for waste transfer. The results from these TFA tasks were presented to ORP personnel during the FY 2000 Saltcake Dissolution and Feed Stability Workshop, which was held on May 16-17 in Richland, Washington. The minutes from this workshop are provided in this report.« less

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  13. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  14. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C; Michael Stone, M

    2007-03-30

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.« less

  15. A brief review on fly ash and its use in surface engineering

    NASA Astrophysics Data System (ADS)

    Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar

    2018-04-01

    Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. SRR requested SRNL to conduct bench-scale filter tests to evaluate whether sodium oxalate, sodiummore » aluminosilicate, or aluminum solids (i.e., gibbsite and boehmite) could be the cause of excessive fouling of the crossflow or secondary filter at ARP. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate, 2.5 g MST/L slurry, and varying concentrations of sodium oxalate, sodium aluminosilicate, and aluminum solids, processing the slurry through a bench-scale filter unit that contains a crossflow primary filter and a dead-end secondary filter, and measuring filter flux and transmembrane pressure as a function of time. Among the conclusions drwn from this work are the following: (1) All of the tests showed some evidence of fouling the secondary filter. This fouling could be from fine particles passing through the crossflow filter. (2) The sodium oxalate-containing feeds behaved differently from the sodium aluminosilicate- and gibbsite/boehmite-containing feeds.« less

  17. Reutilization of discarded biomass for preparing functional polymer materials.

    PubMed

    Wang, Jianfeng; Qian, Wenzhen; He, Yufeng; Xiong, Yubing; Song, Pengfei; Wang, Rong-Min

    2017-07-01

    Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  19. Environmentally sustainable production of food, feed and fuel from natural resources in the tropics.

    PubMed

    Preston, T Reg

    2009-08-01

    Responding to the challenges posed by global warming, peak oil and biofuels will require a paradigm shift in the practice of agriculture and in the role of live stock within the farming system. Farming systems should aim at maximizing plant biomass production from locally available diversified resources, processing of the biomass on farm to provide food, feed and energy and recycling of all waste materials. The approach that is the subject of this paper is that the generation of electricity can be a by-product of food/feed production. The concept is the fractionation of biomass into inedible cell wall material that can be converted to an inflammable gas by gasification, the gas in turn being the source of fuel for internal combustion engines driving electrical generators. The cell contents and related structures such as tree leaves are used as human food or animal feed. As well as providing food and feed the model is highly appropriate for decentralized small scale production of electricity in rural areas. It also offers opportunities for sequestration of carbon in the form of biochar the solid residue remaining after gasification of the biomass.

  20. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  1. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  2. Environmental and resource implications of phosphorus recovery from waste activated sludge.

    PubMed

    Sørensen, Birgitte Lilholt; Dall, Ole Leinikka; Habib, Komal

    2015-11-01

    Phosphorus is an essential mineral resource for the growth of crops and thus necessary to feed the ever increasing global population. The essentiality and irreplaceability of phosphorus in food production has raised the concerns regarding the long-term phosphorus availability and the resulting food supply issues in the future. Hence, the recovery of phosphorus from waste activated sludge and other waste streams is getting huge attention as a viable solution to tackle the potential availability issues of phosphorus in the future. This study explores the environmental implications of phosphorus recovery from waste activated sludge in Denmark and further elaborates on the potential availability or scarcity issue of phosphorus today and 2050. Life cycle assessment is used to assess the possibility of phosphorus recovery with little or no environmental impacts compared to the conventional mining. The phosphorus recovery method assessed in this study consists of drying process, and thermal gasification of the waste activated sludge followed by extraction of phosphorus from the ashes. Our results indicate that the environmental impacts of phosphorus recovery in an energy efficient process are comparable to the environmental effects from the re-use of waste activated sludge applied directly on farmland. Moreover, our findings conclude that the general recommendation according to the waste hierarchy, where re-use of the waste sludge on farmland is preferable to material and energy recovery, is wrong in this case. Especially when phosphorus is a critical resource due to its life threatening necessity, lack of substitution options and potential future supply risk originating due to the high level of global supply concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...-minute average) is permitted during startup periods during the first 30 minutes of operation of the unit...

  4. A method for sampling waste corn

    USGS Publications Warehouse

    Frederick, R.B.; Klaas, E.E.; Baldassarre, G.A.; Reinecke, K.J.

    1984-01-01

    Corn had become one of the most important wildlife food in the United States. It is eaten by a wide variety of animals, including white-tailed deer (Odocoileus virginianus ), raccoon (Procyon lotor ), ring-necked pheasant (Phasianus colchicus , wild turkey (Meleagris gallopavo ), and many species of aquatic birds. Damage to unharvested crops had been documented, but many birds and mammals eat waste grain after harvest and do not conflict with agriculture. A good method for measuring waste-corn availability can be essential to studies concerning food density and food and feeding habits of field-feeding wildlife. Previous methods were developed primarily for approximating losses due to harvest machinery. In this paper, a method is described for estimating the amount of waste corn potentially available to wildlife. Detection of temporal changes in food availability and differences caused by agricultural operations (e.g., recently harvested stubble fields vs. plowed fields) are discussed.

  5. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less

  6. Fungal fermentation on anaerobic digestate for lipid-based biofuel production.

    PubMed

    Zhong, Yuan; Liu, Zhiguo; Isaguirre, Christine; Liu, Yan; Liao, Wei

    2016-01-01

    Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid. The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations. A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter-high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.

  7. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less

  8. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less

  9. Effect of non-feeding period length on the intermittent operation of UASB reactors treating dairy effluents.

    PubMed

    Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F

    2007-02-01

    Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.

  10. Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.

    PubMed

    Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann

    2016-03-01

    Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiorella, B.L.; Blanch, H.W.; Wilke, C.R.

    1984-01-01

    Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl/sub 2/, (NH/sub 4/)/sub 2/SO/sub 4/ > NaCl, NH/sub 4/Cl > KH/sub 2/PO/sub 4/ > xylose, MgCl/sub 2/ > MgSO/sub 4/ > KCl. Reduction of the water activity alone is not an adequate predictor of themore » variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. It is postulated that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they related to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80% decline in cell mass production at 0.23 mol Ca/sup 2 +//L and calcium is present at substantial concentration in many carbohydate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than one-third of the feed rate; otherwise inhibitory effects will be observed.« less

  12. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  13. Prospects of effective microorganisms technology in wastes treatment in Egypt

    PubMed Central

    Shalaby, Emad A

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.

    This document presents the visual and ultrasonic PulseEcho critical velocity test results obtained from the System Performance test campaign that was completed in September 2012 with the Remote Sampler Demonstration (RSD)/Waste Feed Flow Loop cold-test platform located at the Monarch test facility in Pasco, Washington. This report is intended to complement and accompany the report that will be developed by WRPS on the design of the System Performance simulant matrix, the analysis of the slurry test sample concentration and particle size distribution (PSD) data, and the design and construction of the RSD/Waste Feed Flow Loop cold-test platform.

  15. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth

    USDA-ARS?s Scientific Manuscript database

    The U.S. Environmental Protection Agency (USEPA) has restricted concentrated animal feeding operation(CAFO) release of waste products into U.S. waters. These waste products must be disposed of using best management practices. Most of the waste is spread on cropland, but some operations have found ot...

  16. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y.-Y.

    1976-01-01

    An estimate is obtained of the yearly supply of organic material for conversion to fuels, the energy potential is evaluated, and the fermentation and pyrolysis conversion processes are discussed. An investigation is conducted of the estimated cost of fuel from organics and the conclusions of an overall evaluation are presented. It is found that climate, land availability and economics of agricultural production and marketing, food demand, fertilizer shortage, and water availability combine to cast doubts on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. Less controversial is the utilization of agricultural, industrial, and domestic waste as a conversion feedstock. The evaluation of a demonstration size system is recommended.

  17. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less

  18. PEP Support Laboratory Leaching and Permeate Stability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.

    2009-09-25

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP and vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-VSL-T01A and B, the 19-M NaOH is added to un-concentrated waste slurry (3 to 8 wt% solids), while for leaching in UFP-VSL-T02A, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before adding caustic.« less

  19. A review of water recovery by vapour permeation through membranes.

    PubMed

    Bolto, Brian; Hoang, Manh; Xie, Zongli

    2012-02-01

    In vapour permeation the feed is a vapour, not a liquid as in pervaporation. The process employs a polymeric membrane as a semi-permeable barrier between the feed side under high pressure and the permeate side under low pressure. Separation is achieved by the different degrees to which components are dissolved in and diffuse through the membrane, the system working according to a solution-diffusion mechanism. The materials used in the membrane depend upon the types of compounds being separated, so water transport is favoured by hydrophilic material, whether organic or inorganic. The process is used for the dehydration of natural gas and various organic solvents, notably alcohol as biofuel, as well as the removal of water from air and its recovery from waste steam. Waste steam can be found in almost every plant/factory where steam is used. It is frequently contaminated and cannot be reused. Discharging the spent steam to the atmosphere is a serious energy loss and environmental issue. Recycling the steam can significantly improve the overall energy efficiency of an industry, which is responsible for massive CO(2) emissions. Steam separation at high fluxes and temperatures has been accomplished with a composite poly(vinyl alcohol) membrane containing silica nanoparticles, and also, less efficiently, with an inorganic zeolite membrane. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  20. Enhancement of anaerobic biodegradability of flower stem wastes with vegetable wastes by co-hydrolysis.

    PubMed

    Zhang, Bo; He, Pinjing; Lü, Fan; Shao, Liming

    2008-01-01

    The vegetable wastes and flower stems were co-digested to evaluate the anaerobic hydrolysis performance of difficultly biodegradable organic wastes by introducing readily biodegradable organic wastes. The experiments were carried out in batches. When the vegetable wastes were mixed with the flower stems at the dry weight ratio of 1 to 13, the overall hydrolysis rate increased by 8%, 12%, and 2% according to the carbon, nitrogen, and total solid (TS) conversion rate, respectively. While the dry weight ratio was designed as 1 to 3, there was a respective rise of 5%, 15%, and 4% in the conversion rate of carbon, nitrogen, and TS. The enhancement of anaerobic hydrolysis from the mixed vegetable wastes and flower stems can be attributed to the formation of volatile fatty acids (VFA) and nutrient supplement like nitrogen content. The maximum VFA concentration can achieve 1.7 g/L owing to the rapid acidification of vegetable wastes, loosing the structure of lignocellulose materials. The statistic bivariate analysis revealed that the hydrolysis performance was significantly related to the physical and biochemical compositions of the feeding substrate. Especially, the soluble carbon concentration in the liquid was significantly positively correlated to the concentration of nitrogen and hemicellulose, and negatively correlated to the concentration of carbon and lignocellulose in the feeding substrate, suggesting that the regulation and control of feedstock can have an important influence on the anaerobic hydrolysis of organic wastes.

  1. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 andmore » R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.« less

  2. Co-ensiling as a new technique for long-term storage of agro-industrial waste with low sugar content prior to anaerobic digestion.

    PubMed

    Hillion, Marie-Lou; Moscoviz, Roman; Trably, Eric; Leblanc, Yoann; Bernet, Nicolas; Torrijos, Michel; Escudié, Renaud

    2018-01-01

    Biodegradable wastes produced seasonally need an upstream storage, because of the requirement for a constant feeding of anaerobic digesters. In the present article, the potential of co-ensiling biodegradable agro-industrial waste (sugar beet leaves) and lignocellulosic agricultural residue (wheat straw) to obtain a mixture with low soluble sugar content was evaluated for long-term storage prior to anaerobic digestion. The aim is to store agro-industrial waste while pretreating lignocellulosic biomass. The dynamics of co-ensiling was evaluated in vacuum-packed bags at lab-scale during 180 days. Characterization of the reaction by-products and microbial communities showed a succession of metabolic pathways. Even though the low initial sugars content was not sufficient to lower the pH under 4.5 and avoid undesirable fermentations, the methane potential was not substantially impacted all along the experiment. No lignocellulosic damages were observed during the silage process. Overall, it was shown that co-ensiling was effective to store highly fermentable fresh waste evenly with low sugar content and offers new promising possibilities for constant long-term supply of industrial anaerobic digesters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of an Alternative Treatment Scheme for Sr/TRU Removal: Permanganate Treatment of AN-107 Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RT Hallen; SA Bryan; FV Hoopes

    A number of Hanford tanks received waste containing organic complexants, which increase the volubility of Sr-90 and transuranic (TRU) elements. Wastes from these tanks require additional pretreatment to remove Sr-90 and TRU for immobilization as low activity waste (Waste Envelope C). The baseline pretreatment process for Sr/TRU removal was isotopic exchange and precipitation with added strontium and iron. However, studies at both Battelle and Savannah River Technology Center (SRTC) have shown that the Sr/Fe precipitates were very difficult to filter. This was a result of the formation of poor filtering iron solids. An alternate treatment technology was needed for Sr/TRUmore » removal. Battelle had demonstrated that permanganate treatment was effective for decontaminating waste samples from Hanford Tank SY-101 and proposed that permanganate be examined as an alternative Sr/TRU removal scheme for complexant-containing tank wastes such as AW107. Battelle conducted preliminary small-scale experiments to determine the effectiveness of permanganate treatment with AN-107 waste samples that had been archived at Battelle from earlier studies. Three series of experiments were performed to evaluate conditions that provided adequate Sr/TRU decontamination using permanganate treatment. The final series included experiments with actual AN-107 diluted feed that had been obtained specifically for BNFL process testing. Conditions that provided adequate Sr/TRU decontamination were identified. A free hydroxide concentration of 0.5M provided adequate decontamination with added Sr of 0.05M and permanganate of 0.03M for archived AN-107. The best results were obtained when reagents were added in the sequence Sr followed by permanganate with the waste at ambient temperature. The reaction conditions for Sr/TRU removal will be further evaluated with a 1-L batch of archived AN-107, which will provide a large enough volume of waste to conduct crossflow filtration studies (Hallen et al. 2000a).« less

  4. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State

    NASA Astrophysics Data System (ADS)

    Rankin, Matthew J.

    Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make codigestion of multiple feedstocks in centralized anaerobic codigestion facilities an economically attractive alternative to traditional waste disposal pathways (e.g. landfill and wastewater treatment facilities). A technical and environmental assessment of processing food manufacturing wastes and dairy manure for production of electricity via cogeneration, while dependent on biogas quantity and quality as well as the proximity of the waste generators to the centralized codigestion facility, suggests that a real possibility exists for integrating dairy operations with food manufacturing facilities, dependent on the values of the parameters indicated in this thesis. The results of the environmental analysis show that considerable electricity generation and greenhouse gas emissions reductions are possible, depending primarily on feedstock availability and proximity to the centralized anaerobic digester. The initial results are encouraging and future work is warranted for analyzing the site-specific technical and economic viability of codigesting dairy manure and food manufacturing wastes to produce high quality biogas for renewable energy generation in New York State.

  5. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less

  6. Combustion Of Poultry-Derived Fuel in a CFBC

    NASA Astrophysics Data System (ADS)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  7. Reuse of Concentrated Animal Feeding Operating Wastewater on Agricultural Lands

    EPA Science Inventory

    Concentrated animal feeding operations (CAFOs) generate large volumes of manure and manure-contaminated wash and runoff water. Transportation, storage, and treatment of manure and manure-contaminated water are costly. The large volume of waste generated, and the lack of disposal ...

  8. 40 CFR 265.347 - Monitoring and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... minutes. Appropriate corrections to maintain steady state combustion conditions must be made immediately... would normally include those measuring waste feed, auxiliary fuel feed, air flow, in-ciner-a-tor temperature, scrubber flow, scrubber pH, and relevant level -controls. (b) The complete incinerator and...

  9. Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri

    2013-07-01

    A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less

  10. Co-digestion of livestock effluents, energy crops and agro-waste: feeding and process optimization in mesophilic and thermophilic conditions.

    PubMed

    Giuliano, A; Bolzonella, D; Pavan, P; Cavinato, C; Cecchi, F

    2013-01-01

    In this study the optimization of the biogas yield from anaerobic co-digestion of manures and energy crops was carried out using four pilot scale CSTRs under different operating conditions. The effect on biogas yield of the partial substitution of energy crops with agro-waste was also investigated. For each substrate used during the continuous trials, BMP batch assays were also carried out to verify the maximum methane yield theoretically obtainable. Continuous operation results indicated that the co-digestion of manures, energy crops and agro-waste was viable at all operating conditions tested, with the greatest specific gas production of 0.54 m(3)/kg VS(fed) at an organic load rate of 2 kg TVS/m(3)(r)d consisting of 50% manure, 25% energy crops and 25% agro-waste on VS basis. No significant differences were observed between high and low loaded reactors suggesting the possibility of either improving the OLR in existing anaerobic reactors or reducing the design volumes of new reactors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Thermal and Physical Property Determinations for Ionsiv IE-911 Crystalline Silicotitanate and Savannah River Site Waste Simulant Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, D.T.; Steele, W.V.

    1999-08-01

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site (SRS) waste streams using ion exchange on crystalline silicotitanate (CST). The research will aid in the understanding of potential issues associated with cooling of feed streams within SRS waste treatment processes. Toward this end, the thermophysical properties of engineered CST, manufactured under the trade name, Ionsive{reg_sign} IE-911 by UOP, Mobile, AL, were determined. The heating profiles of CST samples from several manufacturers' production runs were observed using differential scanning calorimetric (DSC) measurements. DSC data were obtainedmore » over the region of 10 to 215 C to check for the possibility of a phase transition or any other enthalpic event in that temperature region. Finally, the heat capacity, thermal conductivity, density, viscosity, and salting-out point were determined for SRS waste simulants designated as Average, High NO{sub 3}{sup {minus}} and High OH{sup {minus}} simulants.« less

  12. Amelioration and degradation of pressmud and bagasse wastes using vermitechnology.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Jaswinder; Vig, Adarsh Pal

    2017-11-01

    This study evaluated the amelioration of pressmud (PM) and bagasse (BG) wastes by the vermiremediation process. The wastes were spiked with cattle dung (CD) in different concentrations to find out the best proportion supporting maximum earthworm growth and nutrients availability. The highest growth rate was observed in PMBG 50 (282.2mg/d/worm) feed mixture. Response surface design of earthworm growth parameters enumerated best concentration of wastes in CD with maximum value of 21.81% for earthworm number, 30.86% for earthworm weight, 27.09% for cocoons, 29.71% for hatchlings and 34.0% for hatchlings weight. Vermicomposting enhanced nutrient parameters like pH (6-8%), total kjeldahl nitrogen (19-48%), total phosphorus (9-67%), total calcium (13-111%), while decrease in total organic carbon (14-32%), electrical conductivity (21-30%), C:N ratio (36-51%), total potassium (9-19%) and total sodium (3-21%). Heavy metals in the final products were found to be under safe limits. SEM micrographs were more fragmented which indicated maturity and stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  14. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover.

    PubMed

    Xu, Fuqing; Shi, Jian; Lv, Wen; Yu, Zhongtang; Li, Yebo

    2013-01-01

    Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5L/kg VS(feed), while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6L/kg VS(feed). The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3g CaCO(3)/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Testing Report: Littleford-Day Dryer Operation: Dryer Operation Impacts of Proposed MIS Mitigation Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimskey, Rick W.; Buchmiller, William C.; Elmore, Monte R.

    2007-06-01

    Pacific Northwest National Laboratory performed a series of tests using the Littleford Day 22-liter dryer during investigations that evaluated changes in the melter-feed composition for the Demonstration Bulk Vitrification System. During testing, a new melter-feed formulation was developed that improved dryer performance while improving the retention of waste salts in the melter feed during vitrification.

  16. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  17. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE PAGES

    Jantzen, Carol M.

    2017-03-27

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  18. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less

  19. Estimated vapor pressure for WTP process streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J.; Poirier, M.

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less

  20. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technicalmore » Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  1. STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOHL, T.; PLACE, D.; WITTMAN, R.

    2004-08-05

    A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

  2. Integrated crop/livestock systems reduce late-fall livestock feeding costs

    USDA-ARS?s Scientific Manuscript database

    Feed costs during the late-fall and winter periods represent the greatest cost to cow-calf production in the northern Great Plains. Integration of crop and livestock enterprises may improve sustainability through synergisms among enterprises reducing waste and improving productivity, and providing b...

  3. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  4. Effect of melter feed foaming on heat flux to the cold cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less

  5. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    PubMed

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  6. Small Column Ion Exchange Design and Safety Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streamsmore » for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.« less

  7. Feasibility of Meeting the Energy Needs of Army Bases with Self- Generated Fuels Derived from Solar Energy Plantations (Appendices D, E, F, G, and H)

    DTIC Science & Technology

    1976-07-01

    solid waste can be consumed by anaerobic digestion . The second has been concerned with ren- dering wood digestible by ruminant animals. Until about...rendering wood digestible by ruminant animals. In these experiments, wood was treated in various ways and then exposed to rumen fluid,which is...of pretreatments is considered in the literature, primarily in connection with processes for making wood into a feed digestible by ruminants

  8. Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T. L.; Wiedenman, B. J.; Lambert, D. P.

    The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tankmore » farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.« less

  9. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, A. L. II; Peters, T. B.

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less

  10. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects.

    PubMed

    Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O

    2016-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

  11. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects

    PubMed Central

    Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.

    2017-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567

  12. A fast linear predictive adaptive model of packed bed coupled with UASB reactor treating onion waste to produce biofuel.

    PubMed

    Milquez-Sanabria, Harvey; Blanco-Cocom, Luis; Alzate-Gaviria, Liliana

    2016-10-03

    Agro-industrial wastes are an energy source for different industries. However, its application has not reached small industries. Previous and current research activities performed on the acidogenic phase of two-phase anaerobic digestion processes deal particularly with process optimization of the acid-phase reactors operating with a wide variety of substrates, both soluble and complex in nature. Mathematical models for anaerobic digestion have been developed to understand and improve the efficient operation of the process. At present, lineal models with the advantages of requiring less data, predicting future behavior and updating when a new set of data becomes available have been developed. The aim of this research was to contribute to the reduction of organic solid waste, generate biogas and develop a simple but accurate mathematical model to predict the behavior of the UASB reactor. The system was maintained separate for 14 days during which hydrolytic and acetogenic bacteria broke down onion waste, produced and accumulated volatile fatty acids. On this day, two reactors were coupled and the system continued for 16 days more. The biogas and methane yields and volatile solid reduction were 0.6 ± 0.05 m 3 (kg VS removed ) -1 , 0.43 ± 0.06 m 3 (kg VS removed ) -1 and 83.5 ± 9.8 %, respectively. The model application showed a good prediction of all process parameters defined; maximum error between experimental and predicted value was 1.84 % for alkalinity profile. A linear predictive adaptive model for anaerobic digestion of onion waste in a two-stage process was determined under batch-fed condition. Organic load rate (OLR) was maintained constant for the entire operation, modifying effluent hydrolysis reactor feed to UASB reactor. This condition avoids intoxication of UASB reactor and also limits external buffer addition.

  13. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    PubMed

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Final Report - Enhanced LAW Glass Formulation Testing, VSL-07R1130-1, Rev. 0, dated 10/05/07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Matlack, K. S.

    2013-11-13

    The principal objective of this work was to extend the glass formulation methodology developed in the earlier work [2, 5, 6] for Envelope A, B and C waste compositions for development of compliant glass compositions targeting five high sodium-sulfur waste loading regions. This was accomplished through a combination of crucible-scale tests, and tests on the DM10 melter system. The DM10 was used for several previous tests on LAW compositions to determine the maximum feed sulfur concentrations that can be processed without forming secondary sulfate phases on the surface of the melt pool. This melter is the most efficient melter platformmore » for screening glass compositions over a wide range of sulfate concentrations and therefore was selected for the present tests. The tests were conducted to provide information on melter processing characteristics and off-gas data, including sulfur incorporation and partitioning. As described above, the main objective was to identify the limits of waste loading in compliant glass formulations spanning the range of expected Na{sub 2}O and SO{sub 3} concentrations in the LAW glasses.« less

  15. Understanding the Sustainability of Retail Food Recovery

    PubMed Central

    Phillips, Caleb; Hoenigman, Rhonda; Higbee, Becky; Reed, Tom

    2013-01-01

    In this paper we study the simultaneous problems of food waste and hunger in the context of food (waste) rescue and redistribution as a means for mitigating hunger. To this end, we develop an empirical model that can be used in Monte Carlo simulations to study the dynamics of the underlying problem. Our model's parameters are derived from a data set provided by a large food bank and food rescue organization in north central Colorado. We find that food supply is a non-parametric heavy-tailed process that is well modeled with an extreme value peaks over threshold model. Although the underlying process is stochastic, the basic approach of food rescue and redistribution to meet hunger demand appears to be feasible. The ultimate sustainability of this model is intimately tied to the rate at which food expires and hence the ability to preserve and quickly transport and redistribute food. The cost of the redistribution is related to the number and density of participating suppliers. The results show that costs can be reduced (and supply increased) simply by recruiting additional donors to participate. With sufficient funding and manpower, a significant amount of food can be rescued from the waste stream and used to feed the hungry. PMID:24130716

  16. Quantifying tetracycline resistance genes in swine waste anaerobic digester over a period of 100 days

    USDA-ARS?s Scientific Manuscript database

    Unregulated use of growth promoting antibiotics like Tetracyclines in agricultural feeds is becoming an increasing problem in antibiotic resistance. Undigested antibiotics leads to significant concentrations in livestock waste. These concentrations provide continuous selection pressure for the devel...

  17. Possible sources of nitrate in ground water at swine licensed-managed feeding operations in Oklahoma, 2001

    USGS Publications Warehouse

    Becker, Mark F.; Peter, Kathy D.; Masoner, Jason

    2002-01-01

    Samples collected and analyzed by the Oklahoma Department of Agriculture, Food, and Forestry from 1999 to 2001 determined that nitrate exceeded the U.S. Environmental Protection Agency maximum contaminant level for public drinking-water supplies of 10 milligrams per liter as nitrogen in 79 monitoring wells at 35 swine licensed-managed feeding operations (LMFO) in Oklahoma. The LMFOs are located in rural agricultural settings where long-term agriculture has potentially affected the ground-water quality in some areas. Land use prior to the construction of the LMFOs was assessed to evaluate the types of agricultural land use within a 500-meter radius of the sampled wells. Chemical and microbiological techniques were used to determine the possible sources of nitrate in water sampled from 10 wastewater lagoons and 79 wells. Samples were analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, nitrogen isotope ratios of nitrate and ammonia, wastewater organic compounds, and fecal coliform bacteria. Bacteria ribotyping analysis was done on selected samples to identify possible specific animal sources. A decision process was developed to identify the possible sources of nitrate. First, nitrogen isotope ratios were used to define sources as animal, mixed animal and fertilizer, or fertilizer. Second, wastewater organic compound detections, nitrogen-isotope ratios, fecal coliform bacteria detections, and ribotyping were used to refine the identification of possible sources as LFMO waste, fertilizer, or unidentified animal or mixtures of these sources. Additional evidence provided by ribotyping and wastewater organic compound data can, in some cases, specifically indicate the animal source. Detections of three or more wastewater organic compounds that are indicators of animal sources and detections of fecal coliform bacteria provided additional evidence of an animal source. LMFO waste was designated as a possible source of nitrate in water from 10 wells. The source of waste in water from five of those wells was determined through ribotyping, and the source of waste in water from the remaining five wells was determined by detections of three or more animal-waste compounds in the well samples. LMFO waste in the water from wells with unidentified animal source of nitrate does not indicate that LMFO waste was not the source, but indicated that multiple animal sources, including LMFO waste, may be the source of the nitrate.

  18. 7 CFR 982.453 - Disposition of substandard hazelnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... only be shipped directly to an approved location where the crushing, feed manufacture, or feeding is to..., or livestock feeders, and of the locations of the facilities to which substandard hazelnuts may be shipped. Users interested in purchasing substandard hazelnuts or hazelnut waste must make prior...

  19. 7 CFR 982.453 - Disposition of substandard hazelnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... only be shipped directly to an approved location where the crushing, feed manufacture, or feeding is to..., or livestock feeders, and of the locations of the facilities to which substandard hazelnuts may be shipped. Users interested in purchasing substandard hazelnuts or hazelnut waste must make prior...

  20. 7 CFR 982.453 - Disposition of substandard hazelnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... only be shipped directly to an approved location where the crushing, feed manufacture, or feeding is to..., or livestock feeders, and of the locations of the facilities to which substandard hazelnuts may be shipped. Users interested in purchasing substandard hazelnuts or hazelnut waste must make prior...

  1. 7 CFR 982.453 - Disposition of substandard hazelnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... only be shipped directly to an approved location where the crushing, feed manufacture, or feeding is to..., or livestock feeders, and of the locations of the facilities to which substandard hazelnuts may be shipped. Users interested in purchasing substandard hazelnuts or hazelnut waste must make prior...

  2. A novel bioconversion for value-added products from food waste using Musca domestica.

    PubMed

    Niu, Yi; Zheng, Dong; Yao, Binghua; Cai, Zizhe; Zhao, Zhimin; Wu, Shengqing; Cong, Peiqing; Yang, Depo

    2017-03-01

    Food waste, as a major part of the municipal solid waste has been generated increasingly worldwide. Efficient and feasible utilization of this waste material for productivity process is significant for both economical and environmental reasons. In the present study, Musca domestica larva was used as the carrier to conduct a bioconversion with food waste to get the value-added maggot protein, oil and organic fertilizers. Methods of adult flies rearing, culture medium adjuvant selection, maggot culture conditions, stocking density and the valorization of the waste have been explored. From the experimental results, every 1000g culture mediums (700g food waste and 300g adjuvant) could be disposed by 1.5g M. domestica eggs under proper culture conditions after emergence in just 4days, 42.95±0.25% of which had been consumed and the culture medium residues could be used as good organic fertilizers, accompanying with the food waste consumption, ∼53.08g dried maggots that contained 57.06±2.19% protein and 15.07±2.03% oil had been produced. The maggot protein for its outstanding pharmacological activities is regarded as a good raw material in the field of medicine and animal feeding. Meanwhile, the maggot oil represents a potential alternative feedstock for biodiesel production. In our study, the maggot biodiesel was obtained after the procedure of transesterification reaction with methanol and the productivity was 87.71%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  4. The role of different methanogen groups evaluated by Real-Time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste

    PubMed Central

    2011-01-01

    Methanogen populations and their domains are poorly understood; however, in recent years, research on this topic has emerged. The relevance of this field has also been enhanced by the growing economic interest in methanogen skills, particularly the production of methane from organic substrates. Management attention turned to anaerobic wastes digestion because the volume and environmental impact reductions. Methanogenesis is the biochemically limiting step of the process and the industrially interesting phase because it connects to the amount of biogas production. For this reason, several studies have evaluated the structure of methanogen communities during this process. Currently, it is clear that the methanogen load and diversity depend on the feeding characteristics and the process conditions, but not much data is available. In this study, we apply a Real-Time Polymerase Chain Reaction (RT-PCR) method based on mcrA target to evaluate, by specific probes, some subgroups of methanogens during the mesophilic anaerobic digestion process fed wastewater sludge and organic fraction of the municipal solid waste with two different pre-treatments. The obtained data showed the prevalence of Methanomicrobiales and significantly positive correlation between Methanosarcina and Methanosaetae and the biogas production rate (0.744 p < 0.01 and 0.641 p < 0.05). Methanosarcina detected levels are different during the process after the two pre-treatment of the input materials (T-test p < 0.05). Moreover, a role as diagnostic tool could be suggested in digestion optimisation. PMID:21982396

  5. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less

  6. The Complete and Updated "Rotifer Polyculture Method" for Rearing First Feeding Zebrafish

    PubMed Central

    Lawrence, Christian; Best, Jason; Cockington, Jason; Henry, Eric C.; Hurley, Shane; James, Althea; Lapointe, Christopher; Maloney, Kara; Sanders, Erik

    2016-01-01

    The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an "on-demand", nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding. PMID:26863035

  7. The Complete and Updated "Rotifer Polyculture Method" for Rearing First Feeding Zebrafish.

    PubMed

    Lawrence, Christian; Best, Jason; Cockington, Jason; Henry, Eric C; Hurley, Shane; James, Althea; Lapointe, Christopher; Maloney, Kara; Sanders, Erik

    2016-01-17

    The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an "on-demand", nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding.

  8. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review

    NASA Astrophysics Data System (ADS)

    Umer Zahid, Muhammad; Pervaiz, Erum; Hussain, Arshad; Shahzad, Muhammad Imran; Niazi, Muhammad Bilal Khan

    2018-05-01

    In the current age, the significance of carbon-based nanomaterials for many applications has made the efforts for the facile synthesis methods from abundantly available wastes in a cost-effective way. Pyrolysis in a broad spectrum is commonly employed for the synthesis of carbon nanostructures by thermally treating the organic waste. The mechanism of growth of the nanoparticles determines the functional distribution of nanoparticles based on the growing size, medium, and physio-chemical properties. Carbon nanomaterial’s growth is a complicated process which is profoundly influenced by temperature, catalyst, and type of precursor. Nowadays, significant progress has been made in improving nanomaterial’s growth techniques, opening new paths for commercial production of carbon-based nanomaterials. The most promising are the methods involving hydrocarbon-rich organic waste as the feed source. In this review, synthesis of carbon-based nanomaterials, specifically carbon nanotubes (CNTs), Carbon nanofibers (CNFs) and Graphene (G) are discussed by different pyrolysis techniques. Furthermore, the review explores recent advancements made in the context of pyrolysis.

  9. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Optimizing T Cell Expansion in a Hollow-Fiber Bioreactor.

    PubMed

    Nankervis, Brian; Jones, Mark; Vang, Boah; Brent Rice, R; Coeshott, Claire; Beltzer, Jim

    2018-01-01

    Recent developments in regenerative medicine have precipitated the need to expand gene-modified human T cells to numbers that exceed the capacity of well-plate-based, and flask-based processes. This review discusses the changes in process development that are needed to meet the cell expansion requirements by utilizing hollow-fiber bioreactors . Maintenance of cell proliferation over long periods can become limited by unfilled demands for nutrients and oxygen and by the accumulation of waste products in the local environment. Perfusion feeding, improved gas exchange, and the efficient removal of lactate can increase the yield of T cells from an average of 10.8E +09 to more than 28E +09 in only 10 days. Aggressively feeding cells and actively keeping cells in the bioreactor improves gas exchange and metabolite management over semi-static methods. The ability to remove the environmental constraints that can limit cell expansion by using a two-chamber hollow-fiber bioreactor will be discussed.

  11. Waste separation: Does it influence municipal waste combustor emissions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, A.J.; Rigo, H.G.

    1996-09-01

    It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less

  12. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations,more » work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  13. Food, Feed, or Fuel? Phosphorus Flows Embodied in US Agricultural Production and Trade

    NASA Astrophysics Data System (ADS)

    MacDonald, G.; Bennett, E.; Carpenter, S.

    2012-12-01

    Agricultural phosphorus (P) use is integral to sustainable food production and water quality regulation. Globalization of agricultural systems, changing diets, and increasing biofuel production pose new challenges for managing non-renewable P reserves, particularly in key agricultural producing regions such as the US. We used a detailed model of the US agricultural system to assess the quantity of mineral P fertilizers used to produce food crops, livestock, and biofuels relative to the P ultimately consumed in domestic diets. We also quantified linkages in fertilizer use between the US and its trading partners globally via agricultural trade. Feed and livestock production drove by far the largest demand for P fertilizers in the US (56% of all P use for domestic and imported products). Of the total mineral P inputs to US domestic agriculture in 2007 (1905 Gg P), 28% were retained in agricultural soils as surplus P, 40% were lost through processing and waste prior to consumption in human diets, while 10% were diverted directly to biofuel production. One quarter of P fertilizer in the US was required to produce exports, particularly major food and feed crops (corn, soybean, and wheat) that drove a large net P flux out of the country (338 Gg P) with strongly crop-specific effects on soil P imbalances nationally. However, US meat consumption involved considerable reliance on P fertilizer use in other countries to produce red meat imports linked primarily to soil P surpluses abroad. We show that changes in domestic farm management and consumer waste could together reduce the P fertilizer needed to produce food consumed in the US by half, which is comparable to the P fertilizer reduction attainable by cutting domestic meat consumption (44%). More effective distribution of P use for major crops nationally and greater recycling of all agricultural wastes is critical to using US phosphate rock reserves as efficiently as possible while maintaining export-oriented agriculture.

  14. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierro, J.; Martínez, E.J.; Morán, A.

    Highlights: • Anaerobic codigestion of UCO sludge and swine manure was successful at 50 d HRT. • VFA build-up was present during the reactor start-up but were reduced after 50 d. • CH{sub 4} yield was 326 l/kg VS{sub feed}, decreasing HRT to 30 d resulted in poor performance. • Digestate at 50 d HRT was unstable although the load applied to the reactor was low. - Abstract: The addition of lipid wastes to the digestion of swine manure was studied as a means of increasing biogas production. Lipid waste was obtained from a biodiesel plant where used cooking oilmore » is the feedstock. Digestion of this co-substrate was proposed as a way of valorising residual streams from the process of biodiesel production and to integrate the digestion process into the biorefinery concept. Batch digestion tests were performed at different co-digesting proportions obtaining as a result an increase in biogas production with the increase in the amount of co-substrate added to the mixture. Semi-continuous digestion was studied at a 7% (w/w) mass fraction of total solids. Co-digestion was successful at a hydraulic retention time (HRT) of 50 d but a decrease to 30 d resulted in a decrease in specific gas production and accumulation of volatile and long chain fatty acids. The CH{sub 4} yield obtained was 326 ± 46 l/kg VS{sub feed} at an HRT of 50 d, while this value was reduced to 274 ± 43 l/kg VS{sub feed} when evaluated at an HRT of 30 d. However these values were higher than the one obtained under batch conditions (266 ± 40 l/kg VS{sub feed}), thus indicating the need of acclimation to the co-substrate. Despite of operating at low organic loading rate (OLR), measurements from respirometry assays of digestate samples (at an HRT of 50 d) suggested that the effluent could not be directly applied to the soil as fertiliser and might have a negative effect over soil or crops.« less

  16. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  17. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  18. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  19. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  20. 40 CFR 265.195 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous waste (e.g., wet spots, dead vegetation). (c) Owners or operators of tank systems that... operating day, data gathered from monitoring and leak detection equipment (e.g., pressure or temperature... must inspect at least once each operating day: (1) Overfill/spill control equipment (e.g., waste-feed...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Geeting, John GH; Bredt, Ofelia P.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes." The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEPmore » also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3-8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration before the addition of caustic. In both scenarios, following the caustic leach, the slurry was then concentrated to 17 wt% and washed with inhibited water to remove NaOH and other soluble salts. Next, the slurry was oxidatively leached using sodium permanganate to solubilize chrome. The slurry was then washed to remove the dissolved chrome and concentrated.« less

  2. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and datamore » interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy's extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.« less

  3. Applicability of Perinereis aibuhitensis Grube for fish waste removal from fish cages in Sanggou Bay, P. R. China

    NASA Astrophysics Data System (ADS)

    Fang, Jinghui; Jiang, Zengjie; Jansen, Henrice M.; Hu, Fawen; Fang, Jianguang; Liu, Yi; Gao, Yaping; Du, Meirong

    2017-04-01

    The present study investigated the applicability of integrated polychaete-fish culture for fish waste removal to offset negative impact induced by organic benthic enrichment. A field study demonstrated that deposition rate was significantly higher underneath the fish farm than that in control area. The material settling under the farm was characterized by a high amount of fish feces (45%) and uneaten feed (27%). Both feeding rate (FR) and apparent digestibility rate (ADR) increased with decreasing body weight, as was indicated by significantly a higher rate observed for the groups containing smaller individuals in a lab study. The nutrient in fresh deposited material (De) was higher than that in sediments collected under the farm (Se), resulting in lower feces production but higher apparent digestibility rate for the De group as feeding rate was similar. Consequently, higher nutrient removal efficiency was observed in the De group. A mass balance approach indicated that approximately 400-500 individuals m-2 is required for removing all waste materials deposited underneath the fish farm, whereas abundance can be lower (about 300-350 individuals m-2) when only the fish waste needs to be removed. The results showed that a significant amount of waste had been accumulated in the fish cages in Sanggou Bay. The integration of fish with P. aibuhitensis seems promising for preventing organic pollution in the sediment and therefore is an effective strategy for mitigating negative effect of fish farms. Thus such integration can become a new IMTA (integrated multi-trophic aquaculture) model in Sanggou Bay.

  4. In vitro assays for assessment of androgenic and estrogenic activity in defined mixtures and complex environmental samples

    EPA Science Inventory

    Eflluents from sources such as waste water treatment plants and animal feeding operations invariably contain complex mixtures of chemicals. Recent research on effluent from cattle feeding operations in the US have linked morphological alterations in fish with in vitro androgenic ...

  5. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the nationalmore » geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater. Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.« less

  6. Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process

    PubMed Central

    Parra, Lorena; García, Laura

    2018-01-01

    The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €. PMID:29494560

  7. Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process.

    PubMed

    Parra, Lorena; Sendra, Sandra; García, Laura; Lloret, Jaime

    2018-03-01

    The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.

  8. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation.

    PubMed

    Mu, Lan; Zhang, Lei; Zhu, Kongyun; Ma, Jiao; Li, Aimin

    2018-01-01

    Recently, extrusion press treatment shows some promising advantages for effectively separating of organic fraction of municipal solid waste (OFMSW) from the mixed MSW, which is critical for their following high-efficiency treatment. In this study, an extruded OFMSW obtained from a demonstrated MSW treatment plant was characterized, and submitted to a series of semi-continuous anaerobic experiments to examine its biodegradability and process stability. The results indicated that the extruded OFMSW was a desirable substrate with a high biochemical methane potential (BMP), balanced nutrients and reliable stability. For increasing organic loading rates (OLRs), feeding higher volatile solid (VS) contents in feedstock was much better than shortening the hydraulic retention times (HRTs), while excessively high contents caused a low biodegradability due to the mass transfer limitation. For energetics evaluation, a high electricity output of 129.19-156.37kWh/ton raw MSW was obtained, which was further improved by co-digestion with food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  10. Aquacultural and socio-economic aspects of processing carps into some value-added products.

    PubMed

    Sehgal, H S; Sehgal, G K

    2002-05-01

    Carps are the mainstay of Indian aquaculture, contributing over 90% to the total fish production, which was estimated to be 1.77 million metric tonnes in 1996. Carp culture has a great potential for waste utilization and thus for pollution abatement. Many wastes such as cow, poultry, pig, duck, goat, and sheep excreta, biogas slurry, effluents from different kinds of factories/industries have been efficiently used for enhancing the productivity of natural food of carps and related species. Besides, several organic wastes/byproducts such as plant products, wastes from animal husbandry, and industrial by-products have been used as carp feed ingredients to lower the cost of supplementary feeding. However, to ensure the continued expansion of fish ponds and the pollution control, there must be a market for the fish (carps) produced in these ponds. The carps have, however, a low market value due to the presence of intra-muscular bones, which reduces their consumer acceptability. Thus, a need was felt to develop some boneless convenience products for enhancing the consumer acceptability of the carps. Efforts were made to prepare three value-added fish products, namely fish patty, fish finger and fish salad from carp flesh and were compared with a reference product ('fish pakoura'). Sensory evaluation of these products gave highly encouraging results. The methods of preparation of these products were transferred to some progressive farmers of the region who prepared and sold these products at very attractive prices. Carp processing has a great potential for the establishment of a fish ancillary industry and thus for boosting the production of these species. In Punjab alone, there is a potential of consuming 32,448 metric tonnes per annum of such value-added products (which would require 54,080 metric tonnes of raw fish). The development of value-added products has a significant role in raising the socio-economic status of the people associated with carp culture. The average cost of production of these products was estimated to be INR 80 per kg. With a sale price of INR 110 per kg, and a sale of 50 kg per day of the value-added products (26 days a month), the average monthly income of a carp-processing unit comes to be INR 39,000 (929 USD, approximately).

  11. Effects of size and thermophilic pre-hydrolysis of banana peel during anaerobic digestion, and biomethanation potential of key tropical fruit wastes.

    PubMed

    Odedina, Mary Jesuyemi; Charnnok, Boonya; Saritpongteeraka, Kanyarat; Chaiprapat, Sumate

    2017-10-01

    Methane production potential of tropical fruit wastes, namely lady-finger banana peel, rambutan waste and longan waste were compared using BMP assay and stoichiometric modified Buswell and Mueller equation. Methane yields based on volatile solid (VS) were in the order of ground banana peel, chopped banana peel, chopped longan waste, and chopped rambutan waste (330.6, 268.3, 234.6 and 193.2 mLCH 4 /gVS) that corresponded to their calculated biodegradability. In continuous operations of banana peel digestion at feed concentrations based on total solid (TS) 1-2%, mesophilic single stage digester run at 20-day hydraulic retention time (20-day HRT) failed at 2%TS, but successfully recovered at 1.5%TS. Pre-hydrolysis thermophilic reactor (4-d HRT) was placed as pre-treatment to mesophilic reactor (20-d HRT). Higher biogas (with an evolution of H 2 ) and energy yields were obtained and greater system stability was achieved over the single stage digestion, particularly at higher solid feedstock. The best performance of two stage digestion was 68.5% VS destruction and energy yield of 2510.9kJ/kgVS added at a feed concentration of 2%TS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process.

    PubMed

    Hashimoto, S; Fujita, M; Terai, K

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  13. Self-mixing of fly larvae during feeding

    NASA Astrophysics Data System (ADS)

    Shishkov, Olga; Johnson, Christopher; Zhang, Bryan; Hu, David

    2016-11-01

    How do we sustainably feed a growing world population? One solution of increasing interest is the use of black solider fly larvae, pea-sized grubs envisioned to transform hundreds of tons of food waste into a sustainable protein source. Although startups across the world are raising these larvae, a physical understanding of how they should be raised and fed remains missing. In this study, we present experiments measuring their feeding rate as a function of number of larvae. We show that larger groups of larvae have greater mixing which entrains hungry larvae around the food, increasing feeding rate. Feeding of larvae thus differs from feeding of cattle or other livestock which exhibit less self-mixing.

  14. Self mixing of fly larvae during feeding

    NASA Astrophysics Data System (ADS)

    Shishkov, Olga; Johnson, Christopher; Hu, David

    How do we sustainably feed a growing world population? One solution of increasing interest is the use of black solider fly larvae, pea-sized grubs envisioned to transform hundreds of tons of food waste into a sustainable protein source. Although startups across the world are raising these larvae, a physical understanding of how they should be raised and fed remains missing. In this study, we present experiments measuring their feeding rate as a function of number of larvae. We show that larger groups of larvae have greater mixing which entrains hungry larvae around the food, increasing feeding rate. Feeding of larvae thus differs from feeding of cattle or other livestock which exhibit less self-mixing.

  15. Composite Gypsum Binders with Silica-containing Additives

    NASA Astrophysics Data System (ADS)

    Chernysheva, N. V.; Lesovik, V. S.; Drebezgova, M. Yu; Shatalova, S. V.; Alaskhanov, A. H.

    2018-03-01

    New types of fine mineral additives are proposed for designing water-resistant Composite Gypsum Binders (CGB); these additives significantly differ from traditional quartz feed: wastes from wet magnetic separation of Banded Iron Formation (BIF WMS waste), nanodispersed silica powder (NSP), chalk. Possibility of their combined use has been studied as well.

  16. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...

  17. 40 CFR 266.106 - Standards to control metals emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE MANAGEMENT FACILITIES Hazardous Waste Burned in Boilers and Industrial Furnaces § 266.106... implemented by limiting feed rates of the individual metals to levels during the trial burn (for new... screening limit for the worst-case stack. (d) Tier III and Adjusted Tier I site-specific risk assessment...

  18. 40 CFR 60.1885 - What must I include in my annual report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring system (§ 60.1850(a)(1)). (d) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates... municipal waste combustion units only, nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load...

  19. 40 CFR 60.1410 - What must I include in my annual report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For municipal waste combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates recorded during the most recent..., nitrogen oxides emissions. (3) Carbon monoxide emissions. (4) Load level of the municipal waste combustion...

  20. Effect of feed to inoculum ratios on biogas yields of food and green wastes.

    PubMed

    Liu, Guangqing; Zhang, Ruihong; El-Mashad, Hamed M; Dong, Renjie

    2009-11-01

    Biogas and methane yields of food and green wastes and their mixture were determined using batch anaerobic digesters at mesophilic (35+/-2 degrees C) and thermophilic (50+/-2 degrees C) temperatures. The mixture was composed of 50% food waste and 50% green waste, based on the volatile solids (VS) initially added to the reactors. The thermophilic digestion tests were performed with four different feed to inoculum (F/I) ratios (i.e., 1.6, 3.1, 4.0 and 5.0) and the mesophilic digestion was conducted at one F/I (3.1). The results showed that the F/I significantly affected the biogas production rate. At four F/Is tested, after 25 days of thermophilic digestion, the biogas yield was determined to be 778, 742, 784 and 396 mL/g VS for food waste, respectively; 631, 529, 524 and 407 mL/g VS for green waste, respectively; and 716, 613, 671 and 555 mL/g VS for the mixture, respectively. About 80% of the biogas production was obtained during the first 10 days of digestion. At the F/I of 3.1, the biogas and methane yields from mesophilic digestion of food waste, green waste and their mixture were lower than the yields obtained at thermophilic temperature. The biogas yields were 430, 372 and 358 mL/g VS, respectively, and the methane yields were 245, 206, and 185 mL/g VS, respectively.

  1. Factors governing particle number emissions in a waste-to-energy plant.

    PubMed

    Ozgen, Senem; Cernuschi, Stefano; Giugliano, Michele

    2015-05-01

    Particle number concentration and size distribution measurements were performed on the stack gas of a waste-to-energy plant which co-incinerates municipal solid waste, sewage sludge and clinical waste in two lines. Average total number of particles was found to be 4.0·10(5)cm(-3) and 1.9·10(5)cm(-3) for the line equipped with a wet flue gas cleaning process and a dry cleaning system, respectively. Ultrafine particles (dp<100nm) accounted for about 97% of total number concentration for both lines, whereas the nanoparticle (dp<50nm) contribution differed slightly between the lines (87% and 84%). The experimental data is explored statistically through some multivariate pattern identifying methods such as factor analysis and cluster analysis to help the interpretation of the results regarding the origin of the particles in the flue gas with the objective of determining the factors governing the particle number emissions. The higher moisture of the flue gas in the wet cleaning process was found to increase the particle number emissions on average by a factor of about 2 due to increased secondary formation of nanoparticles through nucleation of gaseous precursors such as sulfuric acid, ammonia and water. The influence of flue gas dilution and cooling monitored through the variation of the sampling conditions also confirms the potential effect of the secondary new particle formation in increasing the particle number emissions. This finding shows the importance of reporting the experimental conditions in detail to enable the comparison and interpretation of particle number emissions. Regarding the fuel characteristics no difference was observed in terms of particle number concentration and size distributions between the clinical waste feed and the municipal solid waste co-incineration with sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    PubMed

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An automatic 14-day paste diet feeder for animals

    NASA Technical Reports Server (NTRS)

    Vasques, Marilyn; Mulenburg, Jerry; Gundo, Dan; Griffith, Jon

    1994-01-01

    During a centrifuge experiment, any interruption that requires stopping the centrifuge may influence the results. Centrifuges often must be stopped for animal maintenance (food, water and waste removal), especially in cases of timed feedings. To eliminate the need for stopping the centrifuge while still providing timed feeding, an automatic paste diet feeder was developed. The feeder is based on a constant volume concept and can deliver a predetermined amount of paste diet at specified time intervals. This unit was supported by water delivery and waste collection systems. The entire system performed reliably and maintained the animals well for a continuous centrifugation experiment of 14 days.

  4. The management challenge for household waste in emerging economies like Brazil: realistic source separation and activation of reverse logistics.

    PubMed

    Fehr, M

    2014-09-01

    Business opportunities in the household waste sector in emerging economies still evolve around the activities of bulk collection and tipping with an open material balance. This research, conducted in Brazil, pursued the objective of shifting opportunities from tipping to reverse logistics in order to close the balance. To do this, it illustrated how specific knowledge of sorted waste composition and reverse logistics operations can be used to determine realistic temporal and quantitative landfill diversion targets in an emerging economy context. Experimentation constructed and confirmed the recycling trilogy that consists of source separation, collection infrastructure and reverse logistics. The study on source separation demonstrated the vital difference between raw and sorted waste compositions. Raw waste contained 70% biodegradable and 30% inert matter. Source separation produced 47% biodegradable, 20% inert and 33% mixed material. The study on collection infrastructure developed the necessary receiving facilities. The study on reverse logistics identified private operators capable of collecting and processing all separated inert items. Recycling activities for biodegradable material were scarce and erratic. Only farmers would take the material as animal feed. No composting initiatives existed. The management challenge was identified as stimulating these activities in order to complete the trilogy and divert the 47% source-separated biodegradable discards from the landfills. © The Author(s) 2014.

  5. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant

    2018-01-01

    In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

  6. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    PubMed

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate.

    PubMed

    Cai, Huiwen; Sun, Yinglan

    2007-11-01

    Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities.

  8. Integrated assessment of runoff from concentrated animal feeding operations: Analytical approaches, in vitro bioassays, and in vivo fish exposures

    EPA Science Inventory

    While the trend toward using concentrated animal feeding operations (CAFOs) has resulted in increased efficiency in food production, this has prompted concern regarding the impact these operations have on the environment. For example, animal waste from CAFOs can contain natural a...

  9. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure.

    PubMed

    Wang, Ming; Sun, Xianli; Li, Pengfei; Yin, Lili; Liu, Dan; Zhang, Yingwei; Li, Wenzhe; Zheng, Guoxiang

    2014-07-01

    A novel alternate feeding mode was introduced to study the possibilities of improving methane yield from anaerobic co-digestion of food waste (FW) with chicken manure (CM). Two kinds of feeding sequence (a day FW and next day CM (FM/CM), two days FM and the third day CM (FW/FM/CM)) were investigated in semi-continuous anaerobic digestion and lasted 225 days, and the mono-digestions of FW and CM were used as control group, respectively. The feeding sequence of FW/CM and mono-digestion of CM were observed to fail to produce gas at hydraulic retention time (HRT) of 70 days due to the ammonia inhibition, however, the mode of FW/FM/CM was proved to successfully run at HRT of 35 days with a higher OLR of 2.50 kg L(-1)d(-1) and obtain a higher methane production rate of 507.58 ml g(-1) VS and volumetric biogas production rate of 2.1 L L(-1)d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, W.; Cao, Q.; Lv, Y.

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yieldmore » change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.« less

  11. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    NASA Astrophysics Data System (ADS)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, J.

    Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses formore » apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.« less

  13. Co-combustion of E+E waste plastics in the TAMARA test plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Wanke, T.; Bergfeldt, B.

    1997-12-01

    The co-combustion of different amounts of various plastic fractions of electrical and electronic (E+E) waste together with municipal solid waste has been tested in the Karlsruhe test incinerator TAMARA. The tests revealed no negative influences upon the combustion process. In general the increased heating value of the fuel causes an improved burnout in all residue streams. The halogens Cl and Br added with the plastics are mainly transferred as HCl or HBr into the flue gas. An influence upon the formation of chlorinated dioxins and furans could not be observed. With increasing Br feed bromine containing homologues were detected inmore » the raw gas. The furans formed easier than the dioxins and those homologues carrying one Br atom were by far prevailing. Even at high Br input the total amount of mixed halogenated species was limited to approximately 30% of the total load of such compounds which did not leave the typical operation window for PCDD/PCDF in TAMARA. The co-combustion tests demonstrated that MSW combustion is an ecologically acceptable and economically sound disposal route for limited amounts of specific E+E waste.« less

  14. Livestock waste-to-bioenergy generation opportunities.

    PubMed

    Cantrell, Keri B; Ducey, Thomas; Ro, Kyoung S; Hunt, Patrick G

    2008-11-01

    The use of biological and thermochemical conversion (TCC) technologies in livestock waste-to-bioenergy treatments can provide livestock operators with multiple value-added, renewable energy products. These products can meet heating and power needs or serve as transportation fuels. The primary objective of this work is to present established and emerging energy conversion opportunities that can transform the treatment of livestock waste from a liability to a profit center. While biological production of methanol and hydrogen are in early research stages, anaerobic digestion is an established method of generating between 0.1 to 1.3m3m(-3)d(-1) of methane-rich biogas. The TCC processes of pyrolysis, direct liquefaction, and gasification can convert waste into gaseous fuels, combustible oils, and charcoal. Integration of biological and thermal-based conversion technologies in a farm-scale hybrid design by combining an algal CO2-fixation treatment requiring less than 27,000m2 of treatment area with the energy recovery component of wet gasification can drastically reduce CO2 emissions and efficiently recycle nutrients. These designs have the potential to make future large scale confined animal feeding operations sustainable and environmentally benign while generating on-farm renewable energy.

  15. Rotary Kiln Gasification of Solid Waste for Base Camps

    DTIC Science & Technology

    2017-10-02

    cup after full day run 3.3 Feedstock Handling System Garbage bags containing waste feedstock are placed into feed bin FB-101. Ram feeder RF-102...Environmental Science and Technology using the Factory Talk SCADA software running on a laptop computer. A wireless Ethernet router that is located within the...pyrolysis oil produced required consistent draining from the system during operation and became a liquid waste disposal problem. A 5-hour test run could

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Shah, H.; Bannochie, C. J.

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less

  17. MST Filterability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less

  18. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less

  19. Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.

    As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles,more » gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.« less

  20. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less

Top