Sample records for waste form requirements

  1. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic

  2. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  3. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  4. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  5. Development of Alternative Technetium Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-09-13

    The UREX+1 process is under consideration for the separation of transuranic elements from spent nuclear fuel. The first steps of this process extract the fission product technicium-99 ({sup 99}Tc) into an organic phase containing tributylphosphate together with uranium. Treatment of this stream requires the separation of Tc from U and placement into a suitable waste storage form. A potential candidate waste form involves immobilizing the Tc as an alloy with either excess metallic zirconium or stainless steel. Although Tc-Zr alloys seem to be promising waste forms, alternative materials must be investigated. Innovative studies related to the synthesis and behavior ofmore » a different class of Tc materials will increase the scientific knowledge related to development of Tc waste forms. These studies will also provide a better understanding of the behavior of {sup 99}Tc in repository conditions. A literature survey has selected promising alternative waste forms for further study: technetium metallic alloys, nitrides, oxides, sulfides, and pertechnetate salts. The goals of this project are to 1) synthesize and structurally characterize relevant technetium materials that may be considered as waste forms, 2) investigate material behavior in solution under different conditions of temperature, electrochemical potential, and radiation, and 3) predict the long-term behavior of these materials.« less

  6. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both

  7. Performance Test on Polymer Waste Form - 12137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Se Yup

    Polymer solidification was attempted to produce stable waste form for the boric acid concentrates and the dewatered spent resins. The polymer mixture was directly injected into the mold or drum which was packed with the boric acid concentrates and the dewatered spent resins, respectively. The waste form was produced by entirely curing the polymer mixture. A series of performance tests was conducted including compressive strength test, water immersion test, leach test, thermal stability test, irradiation stability test and biodegradation stability test for the polymer waste forms. From the results of the performance tests for the polymer waste forms, it ismore » believed that the polymer waste form is very stable and can satisfy the acceptance criteria for permanent disposal. At present, performance tests with full scale polymer waste forms are being carried out in order to obtain qualification certificate by the regulatory institute in Korea. Polymer waste forms were prepared with the surrogate of boric acid concentrates and the surrogate of spent ion exchange resins respectively. Waste forms were also made in lab scale and in full scale. Lab. scale waste forms were directly subjected to a series of the performance tests. In the case of full scale waste form, the test specimens for the performance test were taken from a part of waste form by coring. A series of performance tests was conducted including compressive strength test, thermal stability test, irradiation stability test and biodegradation stability test, water immersion test, leach test, and free standing water for the polymer waste forms. In addition, a fire resistance test was performed on the waste forms by the requirement of the regulatory institute in Korea. Every polymer waste forms containing the boric acid concentrates and the spent ion exchange resins had exhibited excellent structural integrity of more than 27.58 MPa (4,000 psi) of compressive strength. On thermal stability testing

  8. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  9. Reductive capacity measurement of waste forms for secondary radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less

  10. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  11. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  12. Final waste forms project: Performance criteria for phase I treatability studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence themore » development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).« less

  13. Secondary Waste Form Down Selection Data Package – Ceramicrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less

  14. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  15. Nuclear waste forms for actinides

    PubMed Central

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  16. Fundamental Aspects of Zeolite Waste Form Production by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The direct conversion of iodine-bearing sorbents into a stable waste form is a research topic of interest to the US Department of Energy. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary in order to comply with the regulatory requirements that apply to facilities sited within the United States (Jubin et al., 2012a), and any iodine-containing media or solid sorbents generated by this process would contain 129I and would be destined for eventual geological disposal. While recovery of iodine from some sorbents is possible, a method to directly convert iodineloaded sorbentsmore » to a durable waste form with little or no additional waste materials being formed and a potentially reduced volume would be beneficial. To this end, recent studies have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by hot isostatic pressing (HIPing) (Bruffey and Jubin, 2015). Silver mordenite (AgZ), of the zeolite class of minerals, is under consideration for use in adsorbing iodine from nuclear reprocessing off-gas streams. Direct conversion of I-AgZ by HIPing may provide the following benefits: (1) a waste form of high density that is tolerant to high temperatures, (2) a waste form that is not significantly chemically hazardous, and (3) a robust conversion process that requires no pretreatment.« less

  17. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  18. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Williams, B. D.; Snyder, Michelle M. V.

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting themore » U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption K d (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.« less

  19. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less

  20. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  1. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  2. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less

  3. Immobilization of Technetium in a Metallic Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products inmore » the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.« less

  4. Forming artificial soils from waste materials for mine site rehabilitation

    NASA Astrophysics Data System (ADS)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  5. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo

    2011-08-12

    To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target formore » cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests

  6. Minerals and design of new waste forms for conditioning nuclear waste

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  7. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less

  8. Equilibrium Temperature Profiles within Fission Product Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  9. Alternative High-Performance Ceramic Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  10. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Frank; Hwan Seo Park; Yung Zun Cho

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less

  11. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  12. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  13. Final report on cermet high-level waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.

  14. NDA issues with RFETS vitrified waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.; Veazey, G.

    1998-12-31

    A study was conducted at Los Alamos National Laboratory (LANL) for the purpose of determining the feasibility of using a segmented gamma scanner (SGS) to accurately perform non-destructive analysis (NDA) on certain Rocky Flats Environmental Technology Site (RFETS) vitrified waste samples. This study was performed on a full-scale vitrified ash sample prepared at LANL according to a procedure similar to that anticipated to be used at RFETS. This sample was composed of a borosilicate-based glass frit, blended with ash to produce a Pu content of {approximately}1 wt %. The glass frit was taken to a degree of melting necessary tomore » achieve a full encapsulation of the ash material. The NDA study performed on this sample showed that SGSs with either {1/2}- or 2-inch collimation can achieve an accuracy better than 6 % relative to calorimetry and {gamma}-ray isotopics. This accuracy is achievable, after application of appropriate bias corrections, for transmissions of about {1/2} % through the waste form and counting times of less than 30 minutes. These results are valid for ash material and graphite fines with the same degree of plutonium particle size, homogeneity, sample density, and sample geometry as the waste form used to obtain the results in this study. A drum-sized thermal neutron counter (TNC) was also included in the study to provide an alternative in the event the SGS failed to meet the required level of accuracy. The preliminary indications are that this method will also achieve the required accuracy with counting times of {approximately}30 minutes and appropriate application of bias corrections. The bias corrections can be avoided in all cases if the instruments are calibrated on standards matching the items.« less

  15. Waste forms, packages, and seals working group summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, N.

    1995-09-01

    This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.

  16. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less

  17. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  18. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  19. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... section are exempt from this subpart. (a) Waste in the form of gases or vapors that is emitted from process fluids. (b) Waste that is contained in a segregated storm water sewer system. Waste Requirements ...

  20. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  1. Glass binder development for a glass-bonded sodalite ceramic waste form

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with ∼20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  2. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  3. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; ...

    2017-06-01

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  4. DuraLith geopolymer waste form for Hanford secondary waste: correlating setting behavior to hydration heat evolution.

    PubMed

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L

    2014-08-15

    The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 40 CFR 261.9 - Requirements for Universal Waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Requirements for Universal Waste. 261.9 Section 261.9 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.9 Requirements for Universal Waste...

  6. Leaching boundary movement in solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang Ye Cheng; Bishop, P.L.

    1992-02-01

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indicators. The movement of the leaching boundary was found to be a single diffusion-controlled process.

  7. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  8. Glass-bonded iodosodalite waste form for immobilization of 129I

    NASA Astrophysics Data System (ADS)

    Chong, Saehwa; Peterson, Jacob A.; Riley, Brian J.; Tabada, Diana; Wall, Donald; Corkhill, Claire L.; McCloy, John S.

    2018-06-01

    Immobilization of radioiodine is an important requirement for current and future nuclear fuel cycles. Iodosodalite [Na8(AlSiO4)6I2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Dried unwashed sodalite powders were used to synthesize glass-bonded iodosodalite waste forms (glass composite materials) by heating pressed pellets at 650, 750, or 850 °C with two types of sodium borosilicate glass binders. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. For the best waste form produced (pellets mixed with 10 mass% of glass binder and heat-treated at 750 °C), the maximum possible elemental iodine loading was 19.8 mass%, but only ∼8-9 mass% waste loading of iodine was retained in the waste form after thermal processing. Other pellets with higher iodine retention either contained higher porosity or were incompletely sintered. ASTM C1308 and C1285 (product consistency test, PCT) experiments were performed to understand chemical durability under diffusive and static conditions. The C1308 test resulted in significantly higher normalized loss compared to the C1285 test, most likely because of the strong effect of neutral pH solution renewal and prevention of ion saturation in solution. Both experiments indicated that release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix or from initial sodalite synthesis; however the C1308 test result indicated that congruent dissolution of iodosodalite occurred. The average release rates of iodine obtained from C1308 were 0.17 and 1.29 g m-2 d-1 for 80 or 8 m-1, respectively, and the C1285 analysis gave a value of 2 × 10-5 g m-2 d-1, which is comparable to or better than the durability of

  9. Improvement of Leaching Resistance of Low-level Waste Form in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.Y.; Lee, B.C.; Kim, C.L.

    2006-07-01

    Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less

  10. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  11. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  12. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  13. Three-dimensional mapping of crystalline ceramic waste form materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.

    Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less

  14. Three-dimensional mapping of crystalline ceramic waste form materials

    DOE PAGES

    Cocco, Alex P.; DeGostin, Matthew B.; Wrubel, Jacob A.; ...

    2017-04-21

    Here, we demonstrate the use of synchrotron-based, transmission X-ray microscopy (TXM) and scanning electron microscopy to image the 3-D morphologies and spatial distributions of Ga-doped phases within model, single- and two-phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba 1.04Cs 0.24Ga 2.32Ti 5.68O 16) could be readily imaged. This analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid-state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. Our results represent a crucial stepmore » in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.« less

  15. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.345 Form of the waste to be sampled. PCB bulk product waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  16. Improvement of nuclide leaching resistance of paraffin waste form with low density polyethylene.

    PubMed

    Kim, Chang Lak; Park, Joo Wan; Kim, Ju Youl; Chung, Chang Hyun

    2002-01-01

    Low-level liquid borate wastes have been immobilized with paraffin wax using a concentrate waste drying system (CWDS) in Korean nuclear power plants. The possibility for improving chemical durability of paraffin waste form was suggested in this study. A small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form. The influence of LDPE on the leaching behavior of waste form was investigated by performing leaching test according to ANSI/ANS-16.1 procedure during 325 days. It was observed that the leaching of nuclides immobilized within paraffin waste form made a marked reduction although little content of LDPE was added to waste form. The acceptance criteria of paraffin waste form associated with leachability index (LI) and compressive strength after the leaching test were fully satisfied with the help of LDPE.

  17. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous wastes. 271.10 Section 271.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.10 Requirements for generators of hazardous wastes. (a) The State...

  18. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The State...

  19. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.11 Requirements for transporters of hazardous wastes. (a) The State...

  20. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hazardous wastes. 271.10 Section 271.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.10 Requirements for generators of hazardous wastes. (a) The State...

  1. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hazardous wastes. 271.10 Section 271.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements for Final Authorization § 271.10 Requirements for generators of hazardous wastes. (a) The State...

  2. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations andmore » leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.« less

  3. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  4. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  5. 40 CFR 271.11 - Requirements for transporters of hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that such wastes do not present a hazard to human health or the environment. These requirements shall... hazardous wastes. 271.11 Section 271.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) REQUIREMENTS FOR AUTHORIZATION OF STATE HAZARDOUS WASTE PROGRAMS Requirements...

  6. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  7. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less

  8. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration

  9. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  10. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  11. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  12. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  13. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  14. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  15. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  16. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  17. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  18. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  19. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattus, C.H.

    2001-04-19

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOEmore » Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with {approx}4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel

  20. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  1. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; Bowden, Mark E.; Amonette, James E.; Arey, Bruce W.; Pierce, Eric M.; Brown, Christopher F.; Qafoku, Nikolla P.

    2016-05-01

    Mitigation of hazardous and radioactive waste can be improved through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. However, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granular samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.

  2. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    DOE PAGES

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.; ...

    2015-12-23

    We can improve mitigation of hazardous and radioactive waste through conversion of existing waste to a more chemically stable and physically robust waste form. One option for waste conversion is the fluidized bed steam reforming (FBSR) process. The resulting FBSR granular material was encapsulated in a geopolymer matrix referred to here as Geo-7. This provides mechanical strength for ease in transport and disposal. But, it is necessary to understand the phase assemblage evolution as a result of geopolymer encapsulation. In this study, we examine the mineral assemblages formed during the synthesis of the multiphase ceramic waste form. The FBSR granularmore » samples were created from waste simulant that was chemically adjusted to resemble Hanford tank waste. Another set of samples was created using Savannah River Site Tank 50 waste simulant in order to mimic a blend of waste collected from 68 Hanford tank. Waste form performance tests were conducted using the product consistency test (PCT), the Toxicity Characteristic Leaching Procedure (TCLP), and the single-pass flow-through (SPFT) test. Finally, X-ray diffraction analyses revealed the structure of a previously unreported NAS phase and indicate that monolith creation may lead to a reduction in crystallinity as compared to the primary FBSR granular product.« less

  3. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  4. Colloid formation during waste form reaction: Implications for nuclear waste disposal

    USGS Publications Warehouse

    Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; Buchholtz ten Brink, Marilyn R.

    1992-01-01

    Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.

  5. Progress in the Assessment of Waste-forms for the Immobilisation of UK Civil Plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, M.T.; Scales, C.R.; Maddrell, E.R.

    The alternatives for the disposition of the UK's civil plutonium stocks are currently being investigated by Nexia Solutions Ltd. on behalf of the Nuclear Decommissioning Authority (NDA). A number of scenarios are currently being considered depending on the strategic requirements of the UK. The two main disposition options are: re-use as MOX (Mixed Oxide) fuel in reactors, or immobilisation in the event of any material being declared surplus to requirements. The amount of Pu which will require immobilisation will depend on future UK nuclear strategy, along with the extent of any stocks deemed unsuitable for re-use. However, it is likelymore » that some portion will have to be immobilised and therefore three credible waste-forms are under consideration; ceramic, glass and 'immobilisation' MOX. These are currently being developed and assessed in a systematic programme that involves periodic evaluation against a range of criteria. In this way, by down-selecting on the basis of robust and technical review, the most appropriate option for immobilising surplus civil plutonium in the UK can be recommended. The latest results from the immobilisation experimental programme are presented following the de-selection of the least favourable glass and ceramic candidates. The main criteria for this decision were waste loading, durability, processability, criticality and proliferation resistance. In addition, the durability of unirradiated MOX fuel is being examined to determine its potential as a wasteform for Pu, and recent leach test data is discussed. The current evaluation comprises not only a comparison of the relevant physical properties of the various waste-forms, but also key processing parameters, e.g. glass viscosity and melter technology, ceramic fabrication routes, and criticality issues. Other important aspects of the long-term behaviour of the waste-forms under consideration in a potential repository environment, such as radiation damage, criticality control and

  6. Controlling mechanisms of metals release form cement-based waste form in acetic acid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kuang Ye.

    1991-01-01

    The purpose of this dissertation is to identify the individual leaching mechanisms of metals by knowing the pH profile within the leached specimen and the physical and chemical properties of the leached material. Leaching of cement-based waste form in acetic acid solutions with different acidic strengths has been investigated in this work. The pH profile along the acid penetration route in the cement-based waste form was identified by various pH color indicators. The pH in the surface altered layer varies from 5.0 to 6.0, which is very close to the pH in the bulk leachate. A reacting zone, where themore » pH abruptly changes from 6 to 12, sharply divides the altered surface layer from the remaining unleached waste form or kernel. Leaching of metals is controlled by the acidity available in the leachant. Dissolution of alkaline materials leaves a silica-rich layer on the surface of the cement-based waste form. This surface layer exhibits different properties than those of the unleached material. The surface layer has a higher water content, is lighter weight, and is soft and friable. Furthermore, the abundant silicate content on the solid surface detains portion of the leached metals, while they are moving through the leached layer into bulk solution. The leaching of metals is a consequence of acid penetration. The distance from the solid/solution interface to the front of the leaching boundary can be regarded as the depth of leaching zone, where the metals dissolve and diffuse out of the waste form. The metal ions diffuse through the leached layer may be retarded on the solid surface by the pH-dependent adsorption reactions. It is found that the leaching process through the leached layer is diffusion-controlled for calcium and cadmium, whereas diffusion and adsorption occur simultaneously in the leached layer for lead and arsenic.« less

  7. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  8. Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Benedict, R.W.; Bateman, K.

    1996-07-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.

  9. Getters for improved technetium containment in cementitious waste forms

    DOE PAGES

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.; ...

    2017-07-26

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  10. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (D obs ) of Tc decreased from 4.6±0.2×10 -12 cm 2 /s for Cast Stone that did not contain a getter to 5.4±0.4×10 -13 cm 2 /s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 40 CFR 264.230 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...

  12. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  13. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  14. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    EPA Science Inventory

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  15. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  16. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  17. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  18. 40 CFR 264.282 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...

  19. Performance of NDA techniques on a vitrified waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.

    1997-11-01

    Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL)more » using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.« less

  20. 40 CFR 265.256 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.256 Special requirements for ignitable or reactive waste. (a) Ignitable or reactive waste must not be placed in a pile unless the waste and pile satisfy all applicable requirements of 40 CFR part 268, and: (1) Addition of the waste to an existing pile...

  1. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2014-01-01 2014-01-01 false Alternative requirements for waste classification and...

  2. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2012-01-01 2012-01-01 false Alternative requirements for waste classification and...

  3. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2010-01-01 2010-01-01 false Alternative requirements for waste classification and...

  4. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2013-01-01 2013-01-01 false Alternative requirements for waste classification and...

  5. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2011-01-01 2011-01-01 false Alternative requirements for waste classification and...

  6. 40 CFR 264.199 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...

  7. 40 CFR 265.257 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.257 Special requirements for incompatible wastes. (a... the same pile, unless § 265.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in other containers, piles, open tanks, or surface...

  8. U.S. Food Loss and Waste 2030 Champions Activity Form

    EPA Pesticide Factsheets

    To join the U.S. Food Loss and Waste 2030 Champions, organizations complete and submit the 2030 Champions form, in which they commit to reduce food loss and waste in their own operations and periodically report their progress on their website.

  9. Method for forming microspheres for encapsulation of nuclear waste

    DOEpatents

    Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.

    1984-01-01

    Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.

  10. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  11. 40 CFR 264.257 - Special requirements for incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL FACILITIES Waste Piles § 264.257 Special requirements for incompatible wastes. (a) Incompatible... placed in the same pile, unless § 264.17(b) is complied with. (b) A pile of hazardous waste that is incompatible with any waste or other material stored nearby in containers, other piles, open tanks, or surface...

  12. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  13. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  14. 40 CFR 761.345 - Form of the waste to be sampled.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....345 Section 761.345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation Waste Destined for Off... waste and PCB remediation waste destined for off-site disposal must be in the form of either flattened...

  15. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  16. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for themore » Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.« less

  17. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  18. Initial results of metal waste form development activities at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiser, D.D. Jr.; Westphal, B.R.; Hersbt, R.S.

    1997-10-01

    Argonne National Laboratory is developing a metal alloy to contain metallic waste constituents from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately}15 wt.% zirconium (from alloy fuel), fission products noble to the process (e.g., Ru, Pd, Tc, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using Ar cover gas. This paper discusses results from the meltingmore » campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with Tc and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment. 3 refs.« less

  19. Initial results of metal waste-form development activities at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keiser, D.D. Jr.; Westphal, B.R.; Herbst, R.S.

    1997-12-01

    Argonne National Laboratory (ANL) is developing a metal alloy to contain metallic waste constituent residual from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately} 15 wt% zirconium (from alloy fuel), fission products noble to the process (e.g., ruthenium, palladium, technetium, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using argon cover gas. This paper discusses resultsmore » from the melting campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with technetium and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment.« less

  20. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  1. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less

  2. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  3. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day basedmore » upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.« less

  4. Material Recover and Waste Form Development--2016 Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Terry A.; Vienna, John; Paviet, Patricia

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less

  5. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  6. 40 CFR 264.256 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., AND DISPOSAL FACILITIES Waste Piles § 264.256 Special requirements for ignitable or reactive waste. Ignitable or reactive waste must not be placed in a waste pile unless the waste and waste pile satisfy all... immediately after placement in the pile so that: (1) The resulting waste, mixture, or dissolution of material...

  7. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poineau, Frederic; Tamalis, Dimitri

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 10 5 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium wastemore » forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc ( 99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational

  8. Secondary Waste Form Screening Test Results—Cast Stone and Alkali Alumino-Silicate Geopolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Cantrell, Kirk J.; Westsik, Joseph H.

    2010-06-28

    PNNL is conducting screening tests on the candidate waste forms to provide a basis for comparison and to resolve the formulation and data needs identified in the literature review. This report documents the screening test results on the Cast Stone cementitious waste form and the Geopolymer waste form. Test results suggest that both the Cast Stone and Geopolymer appear to be viable waste forms for the solidification of the secondary liquid wastes to be treated in the ETF. The diffusivity for technetium from the Cast Stone monoliths was in the range of 1.2 × 10-11 to 2.3 × 10-13 cm2/smore » during the 63 days of testing. The diffusivity for technetium from the Geopolymer was in the range of 1.7 × 10-10 to 3.8 × 10-12 cm2/s through the 63 days of the test. These values compare with a target of 1 × 10-9 cm2/s or less. The Geopolymer continues to show some fabrication issues with the diffusivities ranging from 1.7 × 10-10 to 3.8 × 10-12 cm2/s for the better-performing batch to from 1.2 × 10-9 to 1.8 × 10-11 cm2/s for the poorer-performing batch. In the future more comprehensive and longer term performance testing will be conducted, to further evaluate whether or not these waste forms will meet the regulation and performance criteria needed to cost-effectively dispose of secondary wastes.« less

  9. APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, G.K.

    1997-01-01

    Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is tomore » provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria.« less

  10. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-02

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less

  11. Morphology and pH changes in leached solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.Y.; Bishop, P.L.

    1996-12-31

    Leaching of cement-based waste forms in acetic acid solutions with different acidic strengths has been investigated in this work. The examination of the morphology and pH profile along the acid penetration route by an optical microscope and various pH color indicators is reported. A clear-cut leaching boundary, where the pH changes from below 6 in the leached surface layers to above 12 in the unleached waste form, was observed in every leached sample.

  12. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  13. FY16 Annual Accomplishments - Waste Form Development and Performance: Evaluation Of Ceramic Waste Forms - Comparison Of Hot Isostatic Pressed And Melt Processed Fabrication Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J.; Dandeneau, C.

    FY16 efforts were focused on direct comparison of multi-phase ceramic waste forms produced via melt processing and HIP methods. Based on promising waste form compositions previously devised at SRNL, simulant material was prepared at SRNL and a portion was sent to the Australian Nuclear Science and Technology Organization (ANSTO) for HIP treatments, while the remainder of the material was melt processed at SRNL. The microstructure, phase formation, elemental speciation, and leach behavior, and radiation stability of the fabricated ceramics was performed. In addition, melt-processed ceramics designed with different fractions of hollandite, zirconolite, perovskite, and pyrochlore phases were investigated. for performancemore » and properties.« less

  14. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Riley, Brian J.

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii)more » development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.« less

  15. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE PAGES

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...

    2016-08-11

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  16. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  17. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and

  18. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, L.

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  19. 40 CFR 264.198 - Special requirements for ignitable or reactive wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste, mixture, or dissolved material no longer meets the definition of ignitable or reactive waste... comply with the requirements for the maintenance of protective distances between the waste management... reactive wastes. 264.198 Section 264.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  20. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  1. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  2. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  3. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...

  4. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  5. 40 CFR 63.1091 - What do the waste requirements do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... Operations. There are some differences between the ethylene production waste requirements and those of...

  6. Safeguards and retrievability from waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danker, W.

    1996-05-01

    This report describes issues discussed at a session from the PLutonium Stabilization and Immobilization Workshop related to safeguards and retrievability from waste forms. Throughout the discussion, the group probed the goals of disposition efforts, particularly an understanding of the {open_quotes}spent fuel standard{close_quotes}, since the disposition material form derives from these goals. The group felt strongly that not only the disposition goals but safeguards to meet these goals could affect the material form. Accordingly, the Department was encouraged to explore and apply safeguards as early in the implementation process as possible. It was emphasized that this was particularly true for anymore » planned use of existing facilities. It is much easier to build safeguards approaches into the development of new facilities, than to backfit existing facilities. Accordingly, special safeguards challenges are likely to be encountered, given the cost and schedule advantages offered by use of existing facilities.« less

  7. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, Xiangdong; Einziger, Robert E.

    1997-01-01

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  8. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-08-12

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  9. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-01-28

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  10. Method of making nanostructured glass-ceramic waste forms

    DOEpatents

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  11. Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Davis, J.; Olufson, K.; Chironi, I.; Karatchevtseva, I.; Farnan, I.

    2012-01-01

    Sodalite/glass bodies prepared by hot isostatic pressing (HIPing) at ˜850 °C/100 MPa are candidates for immobilising fission product-bearing waste KCl-LiCl pyroprocessing salts. To study the capacity of sodalite to structurally incorporate such pyroprocessing salts, K, Li, Cs, Sr, Ba and La were individually targeted for substitution in a Na site in sodalite (Na vacancies targeted as charge compensators for alkaline and rare earths) and studied by X-ray diffraction and scanning electron microscopy after sintering in the range of 800-1000 °C. K and Li appeared to enter the sodalite, but Cs, Sr and Ba formed aluminosilicate phases and La formed an oxyapatite phase. However these non-sodalite phases have reasonable resistance to water leaching. Pure chlorapatite gives superior leach resistance to sodalite, and alkalis, alkaline and rare earth ions are generally known to enter chlorapatite, but attempts to incorporate simulated waste salt formulations into HIPed chlorapatite-based preparations or to substitute Cs alone into the structure of Ca-based chlorapatite were not successful on the basis of scanning electron microscopy. The materials exhibited severe water leachability, mainly in regard to Cs release. Attempts to substitute Cs into Ba- and Sr-based chlorapatites also did not look encouraging. Consequently the use of apatite alone to retain fission product-bearing waste pyroprocessing salts from electrolytic nuclear fuel reprocessing is problematical, but chlorapatite glass-ceramics may be feasible, albeit with reduced waste loadings. Spodiosite, Ca 2(PO 4)Cl, does not appear to be suitable for incorporation of Cl-bearing waste containing fission products.

  12. Frequent Questions about the Hazardous Waste Manifest Form

    EPA Pesticide Factsheets

    FAQs including Are generators required to use all six copies of the manifest? How will state-only waste manifests be affected by the new rule? Where must the importer and foreign generator’s information be entered in the generator identification block?

  13. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  14. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  15. [Hygienic requirements for transportation of industrial waste and consumption residues].

    PubMed

    Metel'skiĭ, S V; Sin'kova, N V

    2009-01-01

    All wishing legal persons and individual entrepreneurs are presently engaged in garbage disposal Sanitary-and-epidemiological examination of activities in transportation of waste is complicated by that the existing sanitary regulations lack no requirements for storage, repair, washing, sanitization of waste-carrying transport, particularly epidemiologically dangerous (domestic, food, and biological waste, animal excreta, cut hair, etc.).

  16. 40 CFR 264.229 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...

  17. Technical viability and development needs for waste forms and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less

  18. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J.; Zhang, Yanwen

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less

  19. GlassForm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  20. 40 CFR 265.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.281 Section 265.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... waste is immediately incorporated into the soil so that: (1) The resulting waste, mixture, or...

  1. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less

  2. Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Asmussen, R.; Neeway, James J.; Kaspar, Tiffany C.

    Glass ceramic waste forms present a potentially viable technology for the long term immobilization and disposal of liquid nuclear wastes. Through control of chemistry during fabrication, such waste forms can have designed secondary crystalline phases within a borosilicate glass matrix. In this work, a glass ceramic containing powellite and oxyapatite secondary phases was tested for its corrosion properties in dilute conditions using single pass flow through testing (SPFT). Three glass ceramic samples were prepared using different cooling rates to produce samples with varying microstructure sizes. In testing at 90 °C in buffered pH 7 and pH 9 solutions, it wasmore » found that increasing pH and decreasing microstructure size (resulting from rapid cooling during fabrication) both led to a reduction in overall corrosion rate. The phases of the glass ceramic were found, using a combination of solutions analysis, SEM and AFM, to corrode preferably in the order of powellite > bulk glass matrix > oxyapatite.« less

  3. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less

  4. Design and characterization of microporous zeolitic hydroceramic waste forms for the solidification and stabilization of sodium bearing wastes

    NASA Astrophysics Data System (ADS)

    Bao, Yun

    During the production of nuclear weapon by the DOE, large amounts of liquid waste were generated and stored in millions of gallons of tanks at Savannah River, Hanford and INEEL sites. Typically, the waste contains large amounts of soluble NaOH, NaNO2 and NaNO3 and small amounts of soluble fission products, cladding materials and cleaning solution. Due to its high sodium content it has been called sodium bearing waste (SBW). We have formulated, tested and evaluated a new type of hydroceramic waste form specifically designed to solidify SBW. Hydroceramics can be made from an alumosilicate source such as metakaolin and NaOH solutions or the SBW itself. Under mild hydrothermal conditions, the mixture is transformed into a solid consisting of zeolites. This process leads to the incorporation of radionuclides into lattice sites and the cage structures of the zeolites. Hydroceramics have high strength and inherent stability in realistic geologic settings. The process of making hydroceramics from a series of SBWs was optimized. The results are reported in this thesis. Some SBWs containing relatively small amounts of NaNO3 and NaNO2 (SigmaNOx/Sigma Na<25 mol%) can be directly solidified with metakaolin. The remaining SBW having high concentrations of nitrate and nitrite (SigmaNOx/Sigma Na>25 mol%) require pretreatment since a zeolitic matrix such as cancrinite is unable to host more than 25 mol% nitrate/nitrite. Two procedures to denitrate/denitrite followed by solidification were developed. One is based on calcination in which a reducing agent such as sucrose and metakaolin have been chosen as a way of reducing nitrate and nitrite to an acceptable level. The resulting calcine can be solidified using additional metakaolin and NaOH to form a hydroceramic. As an alternate, a chemical denitration/denitrition process using Si and Al powders as the reducing agents, followed by adding metakaolin to the solution prepare a hydroceramic was also investigated. Si and Al not only are

  5. 48 CFR 53.101 - Requirements for use of forms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... matter applicable to each form is addressed. The specific location of each requirement is identified in... forms. 53.101 Section 53.101 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS FORMS General 53.101 Requirements for use of forms. The requirements for use of...

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol; Herman, Connie; Crawford, Charles

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less

  7. Phase-Pure and Multiphase Ceramic Waste Forms: Microstructure Evolution and Cesium Immobilization

    NASA Astrophysics Data System (ADS)

    Tumurugoti, Priyatham

    Efforts of this thesis are directed towards developing ceramic waste forms as a potential replacement for the conventional glass waste forms for the safe immobilization and disposal of nuclear wastes from the legacy weapons programs as well as commercial power production. The body of this work consists of two equal parts with first focused on multiphase waste form containing hollandite as major phase and the later, on single-phase hollandites for Cs incorporation. Part I: Multiphase waste forms:. Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by X-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirm hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of select elements observed by wavelength dispersive spectroscopy (WDS) maps indicate that Cs forms a secondary phase during SPS processing, which is considered undesirable. On the other hand Cs partitioned into hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition, by selected area electron diffraction (SAED), reveals ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice. Following the microstructural analysis, the crystallization behavior of the multiphase composition during melt-processing was studied. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, in-situ XRD, and scanning electron microscopy (SEM). Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500°C and heat-treated at crystallization temperatures of 1285

  8. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  9. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  10. Supplemental Immobilization Cast Stone Technology Development and Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey; Pierce, Eric M.

    2013-05-31

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). The pretreatment facility will have the capacity to separate all of the tank wastes into the HLW and LAW fractions, and the HLW Vitrification Facility will have the capacity to vitrifymore » all of the HLW. However, a second immobilization facility will be needed for the expected volume of LAW requiring immobilization. A number of alternatives, including Cast Stone—a cementitious waste form—are being considered to provide the additional LAW immobilization capacity.« less

  11. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests

  12. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    PubMed

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  13. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  14. Ceramic Single Phase High-Level Nuclear Waste Forms: Hollandite, Perovskite, and Pyrochlore

    NASA Astrophysics Data System (ADS)

    Vetter, M.; Wang, J.

    2017-12-01

    The lack of viable options for the safe, reliable, and long-term storage of nuclear waste is one of the primary roadblocks of nuclear energy's sustainable future. The method being researched is the incorporation and immobilization of harmful radionuclides (Cs, Sr, Actinides, and Lanthanides) into the structure of glasses and ceramics. Borosilicate glasses are the main waste form that is accepted and used by today's nuclear industry, but they aren't the most efficient in terms of waste loading, and durability is still not fully understood. Synroc-phase ceramics (i.e. hollandite, perovskite, pyrochlore, zirconolite) have many attractive qualities that glass waste forms do not: high waste loading, moderate thermal expansion and conductivity, high chemical durability, and high radiation stability. The only downside to ceramics is that they are more complex to process than glass. New compositions can be discovered by using an Artificial Neural Network (ANN) to have more options to optimize the composition, loading for performance by analyzing the non-linear relationships between ionic radii, electronegativity, channel size, and a mineral's ability to incorporate radionuclides into its structure. Cesium can be incorporated into hollandite's A-site, while pyrochlore and perovskite can incorporate actinides and lanthanides into their A-site. The ANN is used to predict new compositions based on hollandite's channel size, as well as the A-O bond distances of pyrochlore and perovskite, and determine which ions can be incorporated. These new compositions will provide more options for more experiments to potentially improve chemical and thermodynamic properties, as well as increased waste loading capabilities.

  15. M3FT-17OR0301070211 - Preparation of Hot Isostatically Pressed AgZ Waste Form Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Bruffey, Stephanie H.; Jordan, Jacob A.

    The production of radioactive iodine-bearing waste forms that exhibit long-term stability and are suitable for permanent geologic disposal has been the subject of substantial research interest. One potential method of iodine waste form production is hot isostatic pressing (HIP). Recent studies at Oak Ridge National Laboratory (ORNL) have investigated the conversion of iodine-loaded silver mordenite (I-AgZ) directly to a waste form by HIP. ORNL has performed HIP with a variety of sample compositions and pressing conditions. The base mineral has varied among AgZ (in pure and engineered forms), silver-exchanged faujasite, and silverexchanged zeolite A. Two iodine loading methods, occlusion andmore » chemisorption, have been explored. Additionally, the effects of variations in temperature and pressure of the process have been examined, with temperature ranges of 525°C–1,100°C and pressure ranges of 100–300 MPa. All of these samples remain available to collaborators upon request. The sample preparation detailed in this document is an extension of that work. In addition to previously prepared samples, this report documents the preparation of additional samples to support stability testing. These samples include chemisorbed I-AgZ and pure AgI. Following sample preparation, each sample was processed by HIP by American Isostatic Presses Inc. and returned to ORNL for storage. ORNL will store the samples until they are requested by collaborators for durability testing. The sample set reported here will support waste form durability testing across the national laboratories and will provide insight into the effects of varied iodine content on iodine retention by the produced waste form and on potential improvements in waste form durability provided by the zeolite matrix.« less

  16. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for generators of... for Final Authorization § 271.10 Requirements for generators of hazardous wastes. (a) The State program must cover all generators covered by 40 CFR part 262. States must require new generators to...

  17. Unirradiated testing of the demonstration-scale ceramic waste form at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Simpson, M.F.; Bateman, K.J.

    1997-12-01

    The ceramic waste form is being developed by Argonne National Laboratory (ANL) as part of the demonstration of the electrometallurgical treatment of spent nuclear fuel for disposal. The alkali, alkaline earth, halide, and rare earth fission products are stabilized in zeolite, which is combined with glass and processed in a hot isostatic press (HIP) to form a ceramic composite. The transuranics, including plutonium, are also stabilized in this high-level waste. Most of the laboratory-scale development work is performed in the Chemical Technology Division of ANL in Illinois. At ANL-West in Idaho, this technology is being demonstrated on an engineering scalemore » before implementation with irradiated materials in a remote environment.« less

  18. 40 CFR 264.281 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... immediately incorporated into the soil so that: (1) The resulting waste, mixture, or dissolution of material...

  19. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  20. Separations and Waste Forms Research and Development FY 2013 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less

  1. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    EPA Pesticide Factsheets

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  2. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Screening Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Piepel, Gregory F.; Lindberg, Michael J.

    2013-09-30

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in southeastern Washington State. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the wastes and immobilize them in a glass waste form. The WTP includes a pretreatment facility to separate the wastes into a small volume of high-level waste (HLW) containing most of the radioactivity and a larger volume of low-activity waste (LAW) containing most of the nonradioactive chemicals. The HLW will be converted to glass in themore » HLW vitrification facility for ultimate disposal at an offsite federal repository. At least a portion (~35%) of the LAW will be converted to glass in the LAW vitrification facility and will be disposed of onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize the wastes destined for each facility. However, a second LAW immobilization facility will be needed for the expected volume of LAW requiring immobilization. A cementitious waste form known as Cast Stone is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. Further, the waste form must be tested to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support risk assessment and performance assessment (PA) analyses of the long-term environmental impact of the waste disposal in the

  3. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  4. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less

  5. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Terry Allen; Braase, Lori Ann

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less

  6. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  7. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  8. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  10. SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

    2010-11-01

    ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materialsmore » in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.« less

  11. Functions and requirements document for interim store solidified high-level and transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture,more » and interfaces.« less

  12. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    NASA Technical Reports Server (NTRS)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  13. 32 CFR 1901.12 - Requirements as to form.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Requirements as to form. 1901.12 Section 1901.12 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC RIGHTS UNDER THE PRIVACY ACT OF 1974 Filing of Privacy Act Requests § 1901.12 Requirements as to form. (a) In...

  14. 32 CFR 1901.12 - Requirements as to form.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Requirements as to form. 1901.12 Section 1901.12 National Defense Other Regulations Relating to National Defense CENTRAL INTELLIGENCE AGENCY PUBLIC RIGHTS UNDER THE PRIVACY ACT OF 1974 Filing of Privacy Act Requests § 1901.12 Requirements as to form. (a) In...

  15. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  16. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO 4 - in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases [Shuh, et al., 1994, Shuh, et al., 2000, Shuh, et al., 2003]. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O 4 -, which is very soluble. Consequently the rate of technetium oxidation front advancementmore » into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate was used as a non-radioactive surrogate for pertechnetate in simulated waste form samples. Depth discrete subsamples were cut from material exposed to Savannah River Site (SRS) field cured conditions. The subsamples were prepared and analyzed for both reduction capacity and chromium leachability. Results from field-cured samples indicate that the depth at which leachable chromium was detected advanced further into the sample exposed for 302 days compared to the sample exposed to air for 118 days (at least 50 mm compared to at least 20 mm). Data for only two exposure time intervals is currently available. Data for additional exposure times are required to develop an equation for the oxidation front progression. Reduction capacity measurements (per the Angus-Glasser method, which is a measurement of the ability of a material to chemically reduce Ce(IV) to Ce(III) in solution) performed on depth

  17. Hanford Site Composite Analysis Technical Approach Description: Waste Form Release.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardie, S.; Paris, B.; Apted, M.

    2017-09-14

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs,more » if potential problems are identified.« less

  18. Impeding 99Tc(IV) mobility in novel waste forms

    PubMed Central

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra

    2016-01-01

    Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures. PMID:27357121

  19. 48 CFR 752.7023 - Required visa form for USAID participants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Required visa form for... Clauses 752.7023 Required visa form for USAID participants. For use in any USAID direct contract which involves training of USAID participants. Required Visa Form for USAID Participants (APR 1984) The...

  20. 48 CFR 752.7023 - Required visa form for USAID participants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Required visa form for... Clauses 752.7023 Required visa form for USAID participants. For use in any USAID direct contract which involves training of USAID participants. Required Visa Form for USAID Participants (APR 1984) The...

  1. 48 CFR 752.7023 - Required visa form for USAID participants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Required visa form for... Clauses 752.7023 Required visa form for USAID participants. For use in any USAID direct contract which involves training of USAID participants. Required Visa Form for USAID Participants (APR 1984) The...

  2. 48 CFR 752.7023 - Required visa form for USAID participants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Required visa form for... Clauses 752.7023 Required visa form for USAID participants. For use in any USAID direct contract which involves training of USAID participants. Required Visa Form for USAID Participants (APR 1984) The...

  3. 48 CFR 752.7023 - Required visa form for USAID participants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Required visa form for... Clauses 752.7023 Required visa form for USAID participants. For use in any USAID direct contract which involves training of USAID participants. Required Visa Form for USAID Participants (APR 1984) The...

  4. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  5. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  6. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  7. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  8. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  9. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  10. Final Project Report CFA-14-6357: A New Paradigm for Understanding Multiphase Ceramic Waste Form Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth

    This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.

  11. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  12. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  13. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less

  14. Tank waste remediation system functions and requirements document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technicalmore » Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.« less

  15. Effect of electric signal frequency and form on physical-chemical oxidation of organic wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    The behavior conditions of physical-chemical reactions securing organic wastes’ oxidation in H _{2}O _{2} aqueous medium aimed at an increase of mass exchange processes in a life support system (LSS) for a space purpose have been under study. The character of dependence of organic wastes oxidation rate in H _{2}O _{2} aqueous medium, activated with alternating current of different frequency and form have been considered. Ways of those parameters optimization for the purpose to efficiently increase the physical-chemical decomposition of organic wastes in LSS have been proposed. Specifically, power consumption and reaction time of wastes mineralization have been determined to reduce more than twice. Involvement ways of mineralized organic wastes received in intrasystem mass exchange have been shown. Application feasibility of the obtained results both for space and terrestrial purpose has been discussed. Key words: life support sustem, mineralization, turnover, frequency, organic wastes

  16. Civilian Radioactive Waste Management System Requirements Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.A. Kouts

    2006-05-10

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible formore » design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by

  17. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  18. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Taylor, Christopher D.; Kim, Eunja

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models.more » herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.« less

  19. 42 CFR 441.258 - Consent form requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Consent form requirements. 441.258 Section 441.258... informed consent as set forth on the consent form; and (iii) To the best of his or her knowledge and belief...) To the best of his or her knowledge and belief, the individual appeared mentally competent and...

  20. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.

    2013-10-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives anmore » overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.« less

  1. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  2. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  3. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  4. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  5. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  6. Impeding 99Tc(IV) mobility in novel waste forms

    DOE PAGES

    Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; ...

    2016-06-30

    Technetium ( 99Tc) is a long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state1. Immobilization of Tc in mineral substrates is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels2, 3 has been proposed as a novel method to increase Tc retention in glass waste forms. However, experiments with Tc-magnetite under high temperature and oxic conditions showed re-oxidation of Tc(IV) to volatile pertechnetate Tc(VII)O4-.4, 5 Here we address this problem with large-scale ab initio molecular dynamics simulations and propose that elevated temperatures, 1st row transition metal dopants can significantly enhancemore » Tc retention in the order Co > Zn > Ni. Experiments with doped spinels at T=700 ºC provided quantitative confirmation of increased Tc retention in the same order predicted by theory. This work highlights the power of modern state-of-the-art simulations to provide essential insights and generate bottom-up design criteria of complex oxide materials at elevated temperatures.« less

  7. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventorymore » at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.« less

  8. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGES

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  9. Biennial Hazardous Waste Report

    EPA Pesticide Factsheets

    Federal regulations require large quantity generators to submit a report (EPA form 8700-13A/B) every two years regarding the nature, quantities and disposition of hazardous waste generated at their facility.

  10. 21 CFR 701.2 - Form of stating labeling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Form of stating labeling requirements. 701.2 Section 701.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.2 Form of stating labeling requirements. (a...

  11. 21 CFR 701.2 - Form of stating labeling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Form of stating labeling requirements. 701.2 Section 701.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.2 Form of stating labeling requirements. (a...

  12. 21 CFR 701.2 - Form of stating labeling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Form of stating labeling requirements. 701.2 Section 701.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.2 Form of stating labeling requirements. (a...

  13. 21 CFR 701.2 - Form of stating labeling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Form of stating labeling requirements. 701.2 Section 701.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.2 Form of stating labeling requirements. (a...

  14. 21 CFR 701.2 - Form of stating labeling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Form of stating labeling requirements. 701.2 Section 701.2 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC LABELING General Provisions § 701.2 Form of stating labeling requirements. (a...

  15. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  16. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  17. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  18. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  19. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  20. 40 CFR 267.202 - What special requirements must I meet for ignitable or reactive wastes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material no longer meets the definition of ignitable or reactive waste under § 261.21 or § 261.23 of this... requirements for the maintenance of protective distances between the waste management area and any public ways... for ignitable or reactive wastes? 267.202 Section 267.202 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... batteries managed under the requirements of 40 CFR part 266, subpart G; or (6) Is universal waste managed... waste prior to beneficial use or reuse, or legitimate recycling or reclamation; or (vii) For universal... waste prior to beneficial use or reuse, or legitimate recycling or reclamation; or (vii) For universal...

  2. 40 CFR 261.5 - Special requirements for hazardous waste generated by conditionally exempt small quantity...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... batteries managed under the requirements of 40 CFR part 266, subpart G; or (6) Is universal waste managed... waste prior to beneficial use or reuse, or legitimate recycling or reclamation; or (vii) For universal... waste prior to beneficial use or reuse, or legitimate recycling or reclamation; or (vii) For universal...

  3. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Thomas

    Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less

  4. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less

  5. Iodosodalite Waste Forms from Low-Temperature Aqueous Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Junghune; Chong, Saehwa; Riley, Brian J.

    ABSTRACT Nuclear energy is one option to meet rising electricity demands, although one concern of this technology is the proper capture and storage of radioisotopes produced during fission processes. One of the more difficult radioisotopes is 129I due to its volatility and poor solubility in traditional waste forms such as borosilicate glass. Iodosodalite has been previously proposed as a viable candidate to immobilize iodine due to high iodine loading and good chemical durability. Iodosodalite was traditionally synthesized using solid state and hydrothermal techniques, but this paper discusses an aqueous synthesis approach to optimize and maximize the iodosodalite yield. Products weremore » pressed into pellets and fired with glass binders. Chemical durability and iodine retention results are included.« less

  6. 76 FR 16035 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ...-0022] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... submit a report, and maintain records related to the report, concerning the number of such vehicles that... reporting period, this information collection requires a simple written report on the respondent's annual...

  7. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, B.D.

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  8. 7 CFR 1780.4 - Availability of forms and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Availability of forms and regulations. 1780.4 Section..., DEPARTMENT OF AGRICULTURE (CONTINUED) WATER AND WASTE LOANS AND GRANTS General Policies and Requirements § 1780.4 Availability of forms and regulations. Information about the availability of forms, instructions...

  9. Membrane Treatment of Aqueous Film Forming Foam (AFFF) Wastes for Recovery of Its Active Ingredients

    DTIC Science & Technology

    1980-10-01

    T ME1MBRANE TREATMENT OF AQUEOUS FILM FORMING FOAM~ (AFFF) WASTES FOR RECOVERY OFI Fts ACTIVE INGREDIENTS FINAL REPORT October 1980 by Edward S. K...OF THIS PAGEOPMn Date AVntr* d)__ ---- Ultrafiltration (UF) and Reverse Osmosis (RO) treatment of Aqueous Film Forming Foam (AFFF) solutions was...of Aqueous Film Forming Foam (AFFF) solutions was investigated to determine the feasibility of employing membrane processes to separate and recover

  10. Instructions and Form for Hazardous Waste Generators, Transporters and Treatment, Storage and Disposal Facilities to Obtain an EPA Identification Number (EPA Form 8700-12/Site Identification Form)

    EPA Pesticide Factsheets

    This booklet is designed to help you determine if you are subject to requirements under the Resource Conservation and Recovery Act (RCRA) for notifying the U.S. Environmental Protection Agency (EPA) of your regulated waste activities.

  11. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  12. 75 FR 65395 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... Number NHTSA-2010-0135] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic...: Part 575 requires tire manufacturers and tire brand owners to submit reports to NHTSA regarding the... estimates it cost $0.60 per vehicle mile including salaries, overhead and reports. This brings the annual...

  13. 76 FR 17186 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Number NHTSA-2011-0039] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... and Reports (part 573) and 49 CFR part 577, Defect and Noncompliance Notification. Pursuant to the Act... recall campaign, and are required to provide NHTSA with a minimum of six quarterly reports reporting on...

  14. Mercury in aqueous tank waste at the Savannah River Site: Facts, forms, and impacts

    DOE PAGES

    Bannochie, C. J.; Fellinger, T. L.; Garcia-Strickland, P.; ...

    2017-03-28

    Over the past two years, there has been an intense effort to understand the chemistry of mercury across the Savannah River Site’s high-level liquid waste system to determine the impacts of various mercury species. This effort started after high concentrations of mercury were measured in the leachates from a toxicity characteristic leaching procedure (TCLP) test on the low-level cementitious waste form produced in the Savannah River Saltstone facility. Speciation showed the dominant form of leached mercury to be the methylmercury cation. Neither the source of the methylmercury nor its concentration in the Saltstone feed was well established at the timemore » of the testing. Finally, this assessment of mercury was necessary to inform points in the process operations that may be subject to new separation technologies for the removal of mercury.« less

  15. Mercury in aqueous tank waste at the Savannah River Site: Facts, forms, and impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Fellinger, T. L.; Garcia-Strickland, P.

    Over the past two years, there has been an intense effort to understand the chemistry of mercury across the Savannah River Site’s high-level liquid waste system to determine the impacts of various mercury species. This effort started after high concentrations of mercury were measured in the leachates from a toxicity characteristic leaching procedure (TCLP) test on the low-level cementitious waste form produced in the Savannah River Saltstone facility. Speciation showed the dominant form of leached mercury to be the methylmercury cation. Neither the source of the methylmercury nor its concentration in the Saltstone feed was well established at the timemore » of the testing. Finally, this assessment of mercury was necessary to inform points in the process operations that may be subject to new separation technologies for the removal of mercury.« less

  16. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200°C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ~93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200°C with a 30-min hold and under 207 MPa. The fullymore » densified waste form had a bulk density of 3.3 g/cm3 and contained ~39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.« less

  17. 76 FR 37189 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Number NHTSA-2011-0084] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... equipment to keep records, and a manufacturer, distributor, or dealer to make reports, to enable (NHTSA) to... lbs GVWR are required to report what percent of their vehicles are equipped with ESC during each of a...

  18. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ROOT, R.W.

    1999-05-18

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.

  19. 76 FR 72750 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Number NHTSA-2011-0156] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... information for the reports has decreased and is expected to take approximately a total of 13,375 burden hours... information for the reports. There has also been a decrease in the number of companies required to report...

  20. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  1. On-line Technology Information System (OTIS): Solid Waste Management Technology Information Form (SWM TIF)

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Boulanger, Richard; Hogan, John A.; Rodriguez, Luis

    2003-01-01

    Contents include the following: What is OTIS? OTIS use. Proposed implementation method. Development history of the Solid Waste Management (SWM) Technology Information Form (TIF) and OTIS. Current development state of the SWM TIF and OTIS. Data collection approach. Information categories. Critiques/questions/feedback.

  2. Hanford's Simulated Low Activity Waste Cast Stone Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process asmore » this time and could not be concluded.« less

  3. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    PubMed

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.

  4. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, J; Vickie Williams, V

    2008-07-18

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loadingmore » is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that

  5. 40 CFR 265.229 - Special requirements for ignitable or reactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Special requirements for ignitable or reactive waste. 265.229 Section 265.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... qualified chemist or engineer that, to the best of his knowledge and opinion, the design features or...

  6. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  7. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  8. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  9. Disposal of LLW and ILW in Germany - Characterisation and Documentation of Waste Packages with Respect to the Change of Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandt, G.; Spicher, G.; Steyer, St.

    2008-07-01

    Since the 1998 termination of LLW and ILW emplacement in the Morsleben repository (ERAM), Germany, the treatment, conditioning and documentation of radioactive waste products and packages have been continued on the basis of the waste acceptance requirements as of 1995, prepared for the Konrad repository near Salzgitter in Lower Saxony, Germany. The resulting waste products and packages are stored in interim storage facilities. Due to the Konrad license issued in 2002 the waste acceptance requirements have to be completed by additional requirements imposed by the licensing authority, e. g. for the declaration of chemical waste package constituents. Therefore, documentation ofmore » waste products and packages which are checked by independent experts and are in parts approved by the responsible authority (Office for Radiation Protection, BfS) up to now will have to be checked again for fulfilling the final waste acceptance requirements prior to disposal. In order to simplify these additional checks, databases are used to ensure an easy access to all known facts about the waste packages. A short balance of the existing waste products and packages which are already checked and partly approved by BfS as well as an overview on the established databases ensuring a fast access to the known facts about the conditioning processes is presented. (authors)« less

  10. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  11. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  12. Comparison of waste combustion and waste electrolysis - A systems analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.

    1989-01-01

    A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.

  13. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiringmore » cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process.« less

  14. 78 FR 69744 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [NHTSA-2013-0117] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on proposed collection of...

  15. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  16. 8 CFR 204.310 - Filing requirements for Form I-800A.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Filing requirements for Form I-800A. 204.310 Section 204.310 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRANT PETITIONS Intercountry Adoption of a Convention Adoptee § 204.310 Filing requirements for Form I...

  17. 77 FR 11623 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2011-0154] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration, Department of Transportation. ACTION: Notice. SUMMARY: In compliance with the Paperwork Reduction...

  18. 76 FR 72747 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2011-0154] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on proposed collection...

  19. 75 FR 59321 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2010-0086] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Request for public comment on proposed...

  20. 76 FR 28300 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2010-0124] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Notice. SUMMARY: In compliance with the Paperwork...

  1. 78 FR 25351 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2013-0002] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Notice. SUMMARY: In compliance with the Paperwork...

  2. 76 FR 11848 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2011-0001] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (NHTSA). ACTION: Request for extension of a currently...

  3. 76 FR 24957 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2011-0051] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for extension of a currently approved...

  4. 76 FR 210 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2010-0111] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for extension of a currently approved...

  5. Classification methodology for tritiated waste requiring interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cana, D.; Dall'ava, D.; Decanis, C.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less

  6. 75 FR 4447 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0010] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  7. 76 FR 74845 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0164] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  8. 77 FR 7658 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0165] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  9. 75 FR 59319 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0124] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  10. 76 FR 9633 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0086] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  11. 76 FR 74846 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0165] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  12. 78 FR 57000 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2013-0096] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  13. 75 FR 13806 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0027] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  14. 75 FR 54217 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0124] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  15. 77 FR 6855 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2012--0014] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  16. 75 FR 34521 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0085] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  17. 75 FR 54218 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0123] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  18. 77 FR 7659 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0164] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  19. 77 FR 11621 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0169] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on...

  20. 12 CFR 614.4940 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... LOAN POLICIES AND OPERATIONS Flood Insurance Requirements § 614.4940 Required use of standard flood hazard determination form. (a) Use of form. System institutions must use the standard flood hazard...

  1. 76 FR 20438 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0181 ] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation. ACTION: Notice. SUMMARY: In compliance...

  2. 78 FR 20172 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket Number NHTSA-2013-0044] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation (DOT). ACTION: Request for public comment on extension...

  3. 76 FR 6514 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0011] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on an...

  4. 76 FR 35270 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0025] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on a...

  5. 76 FR 6512 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0010] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on an...

  6. 75 FR 17831 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [DOT Docket Number NHTSA-2010-0010] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on extension of a...

  7. 77 FR 16115 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket No. NHTSA-2012-0029] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration, DOT. ACTION: Notice and request for comments. SUMMARY: Before a Federal agency can collect...

  8. 75 FR 38173 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0086] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Request for public comment on extension of a currently...

  9. 76 FR 6515 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0181] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation. ACTION: Request for public comment on...

  10. 76 FR 6513 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2010-0182] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), U.S. Department of Transportation. ACTION: Request for public comment on...

  11. 75 FR 21385 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2010-0023] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Request for public comment on proposed...

  12. 77 FR 51609 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2012-0121] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Notice of request for public comment on proposed collection of information...

  13. 77 FR 35473 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2012-0066] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Request for public comment on proposed revision of the previously approved...

  14. 75 FR 25033 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2010-0049] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Request for public comment on proposed collection of information. SUMMARY...

  15. 76 FR 71122 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    .... NHTSA-2011-0162] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... intake questionnaires that will ask about their demographics, riding history, self-reported behavior, and... if a rider's demographic characteristics, riding history, self-reported behavior, and perceptions are...

  16. 76 FR 17746 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket Number NHTSA-2011-0045] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... relevant seat belt and child passenger protection statutes plan and/or reports on statewide seat belt...

  17. Mechanisms and modelling of waste-cement and cement-host rock interactions

    NASA Astrophysics Data System (ADS)

    2017-06-01

    Safe and sustainable disposal of hazardous and radioactive waste is a major concern in today's industrial societies. The hazardous waste forms originate from residues of thermal treatment of waste, fossil fuel combustion and ferrous/non-ferrous metal smelting being the most important ones in terms of waste production. Low- and intermediate-level radioactive waste is produced in the course of nuclear applications in research and energy production. For both waste forms encapsulation in alkaline, cement-based matrices is considered to ensure long-term safe disposal. Cementitious materials are in routine use as industrial materials and have mainly been studied with respect to their evolution over a typical service life of several decades. Use of these materials in waste management applications, however, requires assessments of their performance over much longer time periods on the order of thousands to several ten thousands of years.

  18. Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.

    2010-10-01

    Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less

  19. 76 FR 30424 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Notice. SUMMARY: In compliance with the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.), this notice...

  20. 75 FR 55627 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    .... NHTSA-2010-0105] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... and results of program evaluations, media reports and level of media exposure, level of public... be expended gathering data and past reports, writing a response to the questionnaire, and speaking...

  1. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  2. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  3. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  4. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  5. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...

  6. Ni and Cr addition to alloy waste forms to reduce radionuclide environmental releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, L.

    2016-10-11

    Reference alloy waste forms (RAW) were fabricated and underwent hybrid corrosion/immersion testing to parameterize the ANL analytical oxidative-dissolution model to enable the calculation of fractional release rates and to determine the effectiveness of Ni and Cr trim additions in reducing release rates of radionuclide surrogates. Figure 1 shows the prototypical multiphase microstructure of the alloys with each phase type contributing about equally to the exposed surface area. The waste forms tested at SRNL were variations of the RAW-6 formulation that uses HT9 as the main alloy component, and are meant to enable evaluation of the impact of Ni and Crmore » trim additions on the release rates of actinides and Tc-99. The test solutions were deaerated alkaline and acidic brines, ranging in pH 3 to pH 10, representing potential repositories with those conditions. The testing approach consisted of 4 major steps; 1) bare surface corrosion measurements at pH values of 3, 5, 8, and 10, 2) hybrid potentiostatic hold/exposure measurements at pH 3, 3) measurement of radionuclide concentrations and relations to anodic current from potentiostatic holds, and 4) identification of corroding phases using SEM/EDS of electrodes.« less

  7. Energy requirements for waste water treatment.

    PubMed

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  8. 40 CFR 270.18 - Specific part B information requirements for waste piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...

  9. 40 CFR 270.18 - Specific part B information requirements for waste piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... complied with or detailed plans and an engineering report describing how the requirements of § 264.90(b)(2) will be met. (c) Detailed plans and an engineering report describing how the waste pile is designed and...(b) of this chapter, submit detailed plans, and engineering and hydrogeological reports, as...

  10. 76 FR 7897 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    .... NHTSA-2011-0018] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... voluntarily collect and annually report the data described above utilizing the described Web- based data collection tool. Reporting entities are State level 9-1-1 program officials, and the data reported will...

  11. 78 FR 3496 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    .... NHTSA-2012-0179] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... other economic costs associated with motor vehicle crashes. In 2010, 899,000 police-reported crashes involved a distracted driver. This number accounts for 17 percent of the total number of police-reported...

  12. 78 FR 26848 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2013-0051] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... results will be reported in the aggregate. Description of the Need for the Information and Proposed Use of...

  13. Zirconia-magnesia inert matrix fuel and waste form: Synthesis, characterization and chemical performance in an advanced fuel cycle

    NASA Astrophysics Data System (ADS)

    Holliday, Kiel Steven

    There is a significant buildup in plutonium stockpiles throughout the world, because of spent nuclear fuel and the dismantling of weapons. The radiotoxicity of this material and proliferation risk has led to a desire for destroying excess plutonium. To do this effectively, it must be fissioned in a reactor as part of a uranium free fuel to eliminate the generation of more plutonium. This requires an inert matrix to volumetrically dilute the fissile plutonium. Zirconia-magnesia dual phase ceramic has been demonstrated to be a favorable material for this task. It is neutron transparent, zirconia is chemically robust, magnesia has good thermal conductivity and the ceramic has been calculated to conform to current economic and safety standards. This dissertation contributes to the knowledge of zirconia-magnesia as an inert matrix fuel to establish behavior of the material containing a fissile component. First, the zirconia-magnesia inert matrix is synthesized in a dual phase ceramic containing a fissile component and a burnable poison. The chemical constitution of the ceramic is then determined. Next, the material performance is assessed under conditions relevant to an advanced fuel cycle. Reactor conditions were assessed with high temperature, high pressure water. Various acid solutions were used in an effort to dissolve the material for reprocessing. The ceramic was also tested as a waste form under environmental conditions, should it go directly to a repository as a spent fuel. The applicability of zirconia-magnesia as an inert matrix fuel and waste form was tested and found to be a promising material for such applications.

  14. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  15. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  16. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  17. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  18. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...

  19. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given formore » habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.« less

  20. 77 FR 9725 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Reports, Forms, and... review and compile information for the reports will take approximately a total of 19,625 burden hours (17... reports. There has been a decrease in the number of companies required to report since the last reporting...

  1. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  2. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  3. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  4. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  5. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  6. 75 FR 61365 - Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... proposing to revise certain financial reporting forms required to be filed by natural gas companies (FERC... the above-referenced proceeding \\1\\ proposing to revise certain financial reporting forms required by...] Revisions to Forms, Statements, and Reporting Requirements for Natural Gas Pipelines September 24, 2010...

  7. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FREEMAN, D.A.

    2003-02-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Informationmore » and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency.« less

  8. 76 FR 34803 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Number NHTSA-2011-0039] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... specificity in, 49 CFR Part 573, Defect and Noncompliance Responsibility and Reports (Part 573) and 49 CFR 577... NHTSA with a minimum of six quarterly reports reporting on the progress of their recall campaigns. See...

  9. 78 FR 71714 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Number NHTSA-2013-0128] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic... brand owners to submit reports to NHTSA regarding the UTQGS grades of all passenger car tire lines they... salaries, overhead and reports. This brings the annual treadwear testing cost to $2,520,000. For the...

  10. 77 FR 31910 - Reports, Forms, and Recordkeeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    .... NHTSA-2012-0022] Reports, Forms, and Recordkeeping Requirements AGENCY: National Highway Traffic Safety... weight rating (GVWR) of 2,722 kilograms (6,000 pounds) or less, to annually submit a report, and maintain records related to the report, concerning the number of such vehicles that meet the upgraded test...

  11. POLYETHYLENE ENCAPSULATES FOR HAZARDOUS WASTE DRUMS

    EPA Science Inventory

    This capsule report summarizes studies of the use of polyethylene (P.E.) for encapsulating drums of hazardous wastes. Flat PE sheet is welded to roto moded PE containers which forms the encapsulates. Plastic pipe welding art was used, but the prototype welding apparatus required ...

  12. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  13. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  14. 21 CFR 1314.05 - Requirements regarding packaging of nonliquid forms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Requirements regarding packaging of nonliquid forms. 1314.05 Section 1314.05 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RETAIL SALE OF SCHEDULED LISTED CHEMICAL PRODUCTS General § 1314.05 Requirements regarding packaging of...

  15. 21 CFR 1314.05 - Requirements regarding packaging of nonliquid forms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Requirements regarding packaging of nonliquid forms. 1314.05 Section 1314.05 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RETAIL SALE OF SCHEDULED LISTED CHEMICAL PRODUCTS General § 1314.05 Requirements regarding packaging of...

  16. 21 CFR 1314.05 - Requirements regarding packaging of nonliquid forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Requirements regarding packaging of nonliquid forms. 1314.05 Section 1314.05 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE RETAIL SALE OF SCHEDULED LISTED CHEMICAL PRODUCTS General § 1314.05 Requirements regarding packaging of...

  17. 12 CFR 572.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Required use of standard flood hazard... TREASURY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 572.6 Required use of standard flood hazard determination form. (a) Use of form. A savings association shall use the standard flood hazard determination...

  18. 12 CFR 339.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Required use of standard flood hazard... STATEMENTS OF GENERAL POLICY LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 339.6 Required use of standard flood hazard determination form. (a) Use of form. A bank shall use the standard flood hazard...

  19. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Required use of standard flood hazard... AFFECTING CREDIT UNIONS LOANS IN AREAS HAVING SPECIAL FLOOD HAZARDS § 760.6 Required use of standard flood hazard determination form. (a) Use of form. A credit union shall use the standard flood hazard...

  20. Oregon Graduation Requirements: Guidelines for Record Keeping Procedures and Sample Forms.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    These guidelines and sample forms for record keeping are intended to serve as a supplement to Oregon Graduation Requirements, Administrative Guidelines (Section 1), which was published in September 1973. The purposes of the guidelines and sample forms are to outline various record-keeping procedures and to provide sample forms that districts may…

  1. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  2. A finite difference model used to predict the consolidation of a ceramic waste form produced from the electrometallurgical treatment of spent nuclear fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, K. J.; Capson, D. D.

    2004-03-29

    Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less

  3. Functional requirements for Waste Area Grouping 6 Monitoring Station 3 upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiuzat, A.A.

    1991-06-01

    The surface Waste Area Grouping (WAG)6 at ORNL may undergo many changes in the future as part of the closure activities. Changes in surface characteristics will cause changes in runoff characteristics of the MS 3 watershed. Appropriate assumptions are to be made in this project regarding the future surface conditions of the watershed. The extent to which the assumed surface conditions will affect the project objectives (defined in Section 1.0) is to be identified. The purpose of this FRD is to establish performance requirements for MS 3 consisting of the following: (1) The expected range of discharges passing through themore » station and the required accuracy levels for discharge measurements. (2) The equipment required to measure the expected discharges at the required accuracy levels. (3) The sampling requirements for monitoring water quality. (4) The hydraulic requirements for the discharge conveyance structure to be located under the IWMF access road. (5) The design loads to be used for the bridge over the IWMF access road. 12 refs., 5 figs.« less

  4. 77 FR 30352 - Reports, Forms, and Record Keeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [Docket Number NHTSA-2012-0064] Reports, Forms, and Record Keeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation. ACTION: Request for public comment on proposed collection...

  5. 17 CFR 4.1 - Requirements as to form.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... table of contents is required, the electronic document must either include page numbers in the text or... as to form. (a) Each document distributed pursuant to this part 4 must be: (1) Clear and legible; (2...” disclosed under this part 4 must be displayed in capital letters and in boldface type. (c) Where a document...

  6. 17 CFR 4.1 - Requirements as to form.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... table of contents is required, the electronic document must either include page numbers in the text or... as to form. (a) Each document distributed pursuant to this part 4 must be: (1) Clear and legible; (2...” disclosed under this part 4 must be displayed in capital letters and in boldface type. (c) Where a document...

  7. 17 CFR 4.1 - Requirements as to form.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... table of contents is required, the electronic document must either include page numbers in the text or... as to form. (a) Each document distributed pursuant to this part 4 must be: (1) Clear and legible; (2...” disclosed under this part 4 must be displayed in capital letters and in boldface type. (c) Where a document...

  8. 17 CFR 4.1 - Requirements as to form.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... table of contents is required, the electronic document must either include page numbers in the text or... as to form. (a) Each document distributed pursuant to this part 4 must be: (1) Clear and legible; (2...” disclosed under this part 4 must be displayed in capital letters and in boldface type. (c) Where a document...

  9. 17 CFR 4.1 - Requirements as to form.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... table of contents is required, the electronic document must either include page numbers in the text or... as to form. (a) Each document distributed pursuant to this part 4 must be: (1) Clear and legible; (2...” disclosed under this part 4 must be displayed in capital letters and in boldface type. (c) Where a document...

  10. Heat of Hydration of Low Activity Cementitious Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasol, D.

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulantsmore » of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.« less

  11. Interpretation of leaching data for cementitious waste forms using analytical solutions based on mass transport theory and empiricism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, R.D.; Godbee, H.W.; Tallent, O.K.

    1989-01-01

    The analysis of leaching data using analytical solutions based on mass transport theory and empiricism is presented. The waste forms leached to generate the data used in this analysis were prepared with a simulated radioactive waste slurry with traces of potassium ion, manganese ions, carbonate ions, phosphate ions, and sulfate ions solidified with several blends of cementitious materials. Diffusion coefficients were estimated from the results of ANS - 16.1 tests. Data of fraction leached versus time is presented and discussed.

  12. 42 CFR Appendix to Subpart F of... - Required Consent Form

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Required Consent Form Appendix to Subpart F of Part 441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Sterilizations Pt. 441, Subpt. F, App....

  13. 42 CFR Appendix to Subpart F of... - Required Consent Form

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Required Consent Form Appendix to Subpart F of Part 441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Sterilizations Pt. 441, Subpt. F, App....

  14. 42 CFR Appendix to Subpart F of... - Required Consent Form

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Required Consent Form Appendix to Subpart F of Part 441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Sterilizations Pt. 441, Subpt. F, App....

  15. 42 CFR Appendix to Subpart F of... - Required Consent Form

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Required Consent Form Appendix to Subpart F of Part 441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Sterilizations Pt. 441, Subpt. F, App....

  16. 42 CFR Appendix to Subpart F of... - Required Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Required Consent Form Appendix to Subpart F of Part 441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS SERVICES: REQUIREMENTS AND LIMITS APPLICABLE TO SPECIFIC SERVICES Sterilizations Pt. 441, Subpt. F, App....

  17. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  18. 8 CFR 204.309 - Factors requiring denial of a Form I-800A or Form I-800.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Factors requiring denial of a Form I-800A or Form I-800. 204.309 Section 204.309 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY IMMIGRATION REGULATIONS IMMIGRANT PETITIONS Intercountry Adoption of a Convention Adoptee § 204.309 Factors...

  19. 78 FR 47488 - Reports, Forms, and Record Keeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2013-0085] Reports, Forms, and Record Keeping Requirements AGENCY: National Highway Traffic Safety... Safety Research (NTI-131), National Highway Traffic Safety Administration, 1200 New Jersey Avenue SE...

  20. 78 FR 54727 - Reports, Forms, and Record Keeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... age school children in developing age appropriate traffic safety knowledge and practical pedestrian... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2013-0087] Reports, Forms, and Record Keeping Requirements AGENCY: National Highway Traffic Safety...

  1. 78 FR 65038 - Reports, Forms, and Record Keeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration [U.S. DOT Docket No. NHTSA-2013-0113] Reports, Forms, and Record Keeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Request for public comment on proposed collection of information. SUMMARY...

  2. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. 10 CFR 110.32 - Information required in an application for a specific license/NRC Form 7.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment or material. (c) Country of origin of equipment or material, and any other countries that have... characteristics, route of transit of shipment, and ultimate disposition (including forms of management) of the...-level waste compact or State to accept the material for management purposes or disposal. (7) Description...

  4. 76 FR 30423 - Reports, Forms, and Record keeping Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Reports, Forms, and Record keeping Requirements AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT. ACTION: Notice. SUMMARY: In compliance with the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.), this...

  5. 40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...

  6. 40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...

  7. 40 CFR 264.259 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.259 Section 264.259 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.259 Special requirements for...

  8. Waste Management Using Request-Based Virtual Organizations

    NASA Astrophysics Data System (ADS)

    Katriou, Stamatia Ann; Fragidis, Garyfallos; Ignatiadis, Ioannis; Tolias, Evangelos; Koumpis, Adamantios

    Waste management is on top of the political agenda globally as a high priority environmental issue, with billions spent on it each year. This paper proposes an approach for the disposal, transportation, recycling and reuse of waste. This approach incorporates the notion of Request Based Virtual Organizations (RBVOs) using a Service Oriented Architecture (SOA) and an ontology that serves the definition of waste management requirements. The populated ontology is utilized by a Multi-Agent System which performs negotiations and forms RBVOs. The proposed approach could be used by governments and companies searching for a means to perform such activities in an effective and efficient manner.

  9. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  10. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  11. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  12. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  13. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  14. Requirement analysis to promote small-sized E-waste collection from consumers.

    PubMed

    Mishima, Kuniko; Nishimura, Hidekazu

    2016-02-01

    The collection and recycling of small-sized waste electrical and electronic equipment is an emerging problem, since these products contain certain amounts of critical metals and rare earths. Even if the amount is not large, having a few supply routes for such recycled resources could be a good strategy to be competitive in a world of finite resources. The small-sized e-waste sometimes contains personal information, therefore, consumers are often reluctant to put them into recycling bins. In order to promote the recycling of E-waste, collection of used products from the consumer becomes important. Effective methods involving incentives for consumers might be necessary. Without such methods, it will be difficult to achieve the critical amounts necessary for an efficient recycling system. This article focused on used mobile phones among information appliances as the first case study, since it contains relatively large amounts of valuable metals compared with other small-sized waste electrical and electronic equipment and there are a large number of products existing in the market. The article carried out surveys to determine what kind of recycled material collection services are preferred by consumers. The results clarify that incentive or reward money alone is not a driving force for recycling behaviour. The article discusses the types of effective services required to promote recycling behaviour. The article concludes that securing information, transferring data and providing proper information about resources and environment can be an effective tool to encourage a recycling behaviour strategy to promote recycling, plus the potential discount service on purchasing new products associated with the return of recycled mobile phones. © The Author(s) 2015.

  15. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    DOE PAGES

    Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...

    2017-01-18

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less

  16. Estimation of construction and demolition waste using waste generation rates in Chennai, India.

    PubMed

    Ram, V G; Kalidindi, Satyanarayana N

    2017-06-01

    A large amount of construction and demolition waste is being generated owing to rapid urbanisation in Indian cities. A reliable estimate of construction and demolition waste generation is essential to create awareness about this stream of solid waste among the government bodies in India. However, the required data to estimate construction and demolition waste generation in India are unavailable or not explicitly documented. This study proposed an approach to estimate construction and demolition waste generation using waste generation rates and demonstrated it by estimating construction and demolition waste generation in Chennai city. The demolition waste generation rates of primary materials were determined through regression analysis using waste generation data from 45 case studies. Materials, such as wood, electrical wires, doors, windows and reinforcement steel, were found to be salvaged and sold on the secondary market. Concrete and masonry debris were dumped in either landfills or unauthorised places. The total quantity of construction and demolition debris generated in Chennai city in 2013 was estimated to be 1.14 million tonnes. The proportion of masonry debris was found to be 76% of the total quantity of demolition debris. Construction and demolition debris forms about 36% of the total solid waste generated in Chennai city. A gross underestimation of construction and demolition waste generation in some earlier studies in India has also been shown. The methodology proposed could be utilised by government bodies, policymakers and researchers to generate reliable estimates of construction and demolition waste in other developing countries facing similar challenges of limited data availability.

  17. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  18. Assessment of remote sensing technologies to discover and characterize waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-03-11

    This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.

  19. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.

    2007-07-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less

  20. 38 CFR 36.4705 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flood hazard determination form. 36.4705 Section 36.4705 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) LOAN GUARANTY Sale of Loans, Guarantee of Payment, and Flood Insurance § 36.4705 Required use of standard flood hazard determination form. (a) Use of form. The Secretary...

  1. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  2. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  3. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  4. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  5. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  6. 76 FR 33997 - Requirements for Taxpayers Filing Form 5472

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... Services and Enforcement. Emily S. McMahon, Acting Assistant Secretary for the Treasury (Tax Policy). [FR... requirement for Form 5472, ``Information Return of a 25% Foreign-Owned U.S. Corporation or a Foreign Corporation Engaged in a U.S. Trade or Business.'' The temporary regulations affect certain 25-percent foreign...

  7. Waste management technology development and demonstration programs at Brookhaven National Laboratory

    NASA Technical Reports Server (NTRS)

    Kalb, Paul D.; Colombo, Peter

    1991-01-01

    Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.

  8. Midwest Interstate Low-Level Radioactive Waste Commission annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less

  9. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...

  10. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...

  11. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...

  12. 40 CFR Table 11 to Subpart G of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Wastewater-Inspection and Monitoring... and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection or monitoring Method Tanks: 63.133(b)(1) Inspect fixed roof and all...

  13. Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form

    DOE PAGES

    Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; ...

    2015-12-31

    We proposed sodalites as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. We produced two samples made using a steam reformer samples using nonradioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of themore » non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 C) 9 and 40 C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. Moreover, the similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.« less

  14. Test Plan: WIPP bin-scale CH TRU waste tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less

  15. Working conditions and environmental exposures among electronic waste workers in Ghana.

    PubMed

    Akormedi, Matthew; Asampong, Emmanuel; Fobil, Julius N

    2013-01-01

    To investigate and describe informal e-waste recycling and working conditions at Agbogbloshie, Accra, Ghana. We conducted in-depth interviews which were qualitatively analysed from a grounded theory perspective. Workers obtained e-waste from the various residential areas in Accra, then dismantled and burned them in open air to recover copper, aluminum, steel, and other products for sale to customers on-site or at the nearby Agbogbloshie market. The processers worked under unhealthy conditions often surrounded by refuse and human excreta without any form of protective gear and were thus exposed to frequent burns, cuts, and inhalation of highly contaminated fumes. We observed no form of social security/support system for the workers, who formed informal associations to support one another in times of difficulty. e-waste recycling working conditions were very challenging and presented serious hazards to worker health and wellbeing. Formalizing the e-waste processing activities requires developing a framework of sustainable financial and social security for the e-waste workers, including adoption of low-cost, socially acceptable, easy-to-operate, and cleaner technologies that would safeguard the health of the workers and the general public.

  16. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Wastewater-Inspection and Monitoring..., Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection...

  17. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Wastewater-Inspection and Monitoring..., Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of inspection...

  18. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  19. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...

  20. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...

  1. 40 CFR 264.317 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.317 Section 264.317 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.317 Special requirements for...

  2. 40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...

  3. 40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...

  4. 40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...

  5. 40 CFR 264.283 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastes FO20, FO21, FO22, FO23, FO26, and FO27. 264.283 Section 264.283 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.283 Special requirements...

  6. Hot Isostatic Pressing of Engineered Forms of I-AgZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubin, Robert Thomas; Watkins, Thomas R.; Bruffey, Stephanie H.

    Hot isostatic pressing (HIP) is being considered for direct conversion of 129I-bearing materials to a radiological waste form. The removal of volatile radioactive 129I from the off-gas of a nuclear fuel reprocessing facility will be necessary to comply with regulatory requirements regarding reprocessing facilities sited within the United States, and any iodine-containing media or solid sorbents generated by offgas abatement will require disposal. Zeolite minerals such as silver-exchanged mordenite (AgZ) have been studied as potential iodine sorbents and will contain 129I as chemisorbed AgI. Oak Ridge National Laboratory (ORNL) has conducted several recent studies on the HIP of both iodine-loadedmore » AgZ (I-AgZ) and other iodine-bearing zeolite minerals. The goal of these research efforts is to achieve a stable, highly leach resistant material that is reduced in volume as compared to bulk iodine-loaded I-AgZ. Through the use of HIP, it may be possible to achieve this with the addition of little or no additional materials (waste formers). Other goals for the process include that the waste form will be tolerant to high temperatures and pressures, not chemically hazardous, and that the process will result in minimal secondary waste generation. This document describes the preparation of 27 samples that are distinct from previous efforts in that they are prepared exclusively with an engineered form of AgZ that is manufactured using a binder. Iodine was incorporated solely by chemisorption. This base material is expected to be more representative of an operational system than were samples prepared previously with pure minerals.« less

  7. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  8. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  9. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  10. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...

  11. 40 CFR Table 7 to Subpart Ggg of... - Wastewater-Inspection and Monitoring Requirements for Waste Management Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Wastewater-Inspection and Monitoring... Production Pt. 63, Subpt. GGG, Table 7 Table 7 to Subpart GGG of Part 63—Wastewater—Inspection and Monitoring Requirements for Waste Management Units To comply with Inspection or monitoring requirement Frequency of...

  12. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.; Sorensen, N.R.; Wicks, G.G.

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews ofmore » the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.« less

  13. 40 CFR 271.10 - Requirements for generators of hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the transportation and delivery of hazardous waste shipments. No other electronic signature other than... in connection with the signing of an electronic manifest. (3) Ensure that all wastes offered for... hazardous wastes. 271.10 Section 271.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  14. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Johnson, F.; Crawford, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge canmore » be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than

  15. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  16. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    NASA Astrophysics Data System (ADS)

    Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James

    2013-07-01

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  17. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica

  18. 40 CFR 265.198 - Special requirements for ignitable or reactive wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The resulting waste, mixture, or dissolved material no longer meets the definition of ignitable or... reactive wastes. 265.198 Section 265.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  19. 40 CFR 267.13 - What are my waste analysis requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What are my waste analysis...

  20. 40 CFR 267.13 - What are my waste analysis requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 28 2013-07-01 2013-07-01 false What are my waste analysis...

  1. 40 CFR 267.13 - What are my waste analysis requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What are my waste analysis...

  2. 40 CFR 267.13 - What are my waste analysis requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 28 2012-07-01 2012-07-01 false What are my waste analysis...

  3. 40 CFR 267.13 - What are my waste analysis requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representative sample of the wastes. At a minimum, the analysis must contain all the information needed to treat... analysis for these parameters will provide sufficient information on the waste's properties to comply with... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are my waste analysis...

  4. Concrete and cement composites used for radioactive waste deposition.

    PubMed

    Koťátková, Jaroslava; Zatloukal, Jan; Reiterman, Pavel; Kolář, Karel

    2017-11-01

    This review article presents the current state-of-knowledge of the use of cementitious materials for radioactive waste disposal. An overview of radwaste management processes with respect to the classification of the waste type is given. The application of cementitious materials for waste disposal is divided into two main lines: i) as a matrix for direct immobilization of treated waste form; and ii) as an engineered barrier of secondary protection in the form of concrete or grout. In the first part the immobilization mechanisms of the waste by cement hydration products is briefly described and an up-to date knowledge about the performance of different cementitious materials is given, including both traditional cements and alternative binder systems. The advantages, disadvantages as well as gaps in the base of information in relation to individual materials are stated. The following part of the article is aimed at description of multi-barrier systems for intermediate level waste repositories. It provides examples of proposed concepts by countries with advanced waste management programmes. In the paper summary, the good knowledge of the material durability due to its vast experience from civil engineering is highlighted however with the urge for specific approach during design and construction of a repository in terms of stringent safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Requirements Verification Report AN Farm to 200 E Waste Transfer System for Project W-314 Tank Farm Restoration & Safe Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCGREW, D.L.

    2001-10-31

    This Requirements Verification Report provides the traceability of how Project W-314 fulfilled the Project Development Specification requirements for the AN Farm to 200E Waste Transfer System Upgrade package.

  6. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent

  7. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  8. 26 CFR 301.1474-1 - Required use of magnetic media for financial institutions filing Form 1042-S or Form 8966.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Required use of magnetic media for financial... Information and Returns Returns and Records § 301.1474-1 Required use of magnetic media for financial... magnetic media. Additionally, if a financial institution is required to file Form 8966, “FATCA Report,” (or...

  9. 26 CFR 301.1474-1 - Required use of magnetic media for financial institutions filing Form 1042-S or Form 8966.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Required use of magnetic media for financial... Information and Returns Returns and Records § 301.1474-1 Required use of magnetic media for financial... magnetic media. Additionally, if a financial institution is required to file Form 8966, “FATCA Report,” (or...

  10. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  11. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.

    2013-12-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSRmore » NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion

  12. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are

  13. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  14. 12 CFR 760.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 760.6 Section 760.6 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS..., computerized, or electronic manner. A credit union may obtain the standard flood hazard determination form from...

  15. 76 FR 34019 - Requirements for Taxpayers Filing Form 5472

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... CFR U.S.C. 7805 * * * Par. 2. Section 1.6038A-1 is amended by revising paragraph (n)(2) to read as... elsewhere in this same issue of the Federal Register]. * * * * * Par. 3. Section 1.6038A-2 is amended by... regulations remove the requirement contained in Sec. 1.6038A-2(d) and Sec. 1.6038A-2(e) that a duplicate Form...

  16. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  17. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  18. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  19. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  20. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...

  1. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste

  2. 13 CFR 107.640 - Requirement to file Portfolio Financing Reports (SBA Form 1031).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Requirement to file Portfolio... Licensees Reporting Requirements for Licensees § 107.640 Requirement to file Portfolio Financing Reports... Portfolio Financing Report on SBA Form 1031 within 30 days of the closing date. ...

  3. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  4. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  5. Agricultural waste as a source for the production of silica nanoparticles.

    PubMed

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Required use of standard flood hazard determination form. 22.6 Section 22.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... the Act. The standard flood hazard determination form may be used in a printed, computerized, or...

  7. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  8. Data requirements for simulation of hydrogeologic effects of liquid waste injection, Harrison and Jackson Counties, Mississippi

    USGS Publications Warehouse

    Rebich, Richard A.

    1994-01-01

    Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.

  9. Possibility of forming artificial soil based on drilling waste and sewage sludge

    NASA Astrophysics Data System (ADS)

    Kujawska, J.; Pawłowska, M.; Wasag, H.

    2018-05-01

    Land redevelopment is necessary due to the amount of a degraded area. Depositing waste on the small area of landfills is harmful for the environment. New methods of managing and utilizing waste are being sought in order to minimize the deposition of waste. In small amounts, many types of waste can be treated as a substrate or material improving physicochemical properties of soils, and hence can be used in reclamation of degraded lands. The study analysed the effect of different doses of sewage sludge (35%, 17.5%) with addition (2.5% and 5%) of drilling waste on the properties of degraded soils. The results show that created mixtures improve the sorption properties of soil. The mixtures contain the optimal the ratio of nutrient elements for growth of plants is N:P:K.

  10. Wasting and stunting--similarities and differences: policy and programmatic implications.

    PubMed

    Briend, André; Khara, Tanya; Dolan, Carmel

    2015-03-01

    Wasting and stunting are often presented as two separate forms of malnutrition requiring different interventions for prevention and/or treatment. These two forms of malnutrition, however, are closely related and often occur together in the same populations and often in the same children. Wasting and stunting are both associated with increased mortality, especially when both are present in the same child. A better understanding of the pathophysiology of these two different forms of malnutrition is needed to design efficient programs. A greatly reduced muscle mass is characteristic of severe wasting, but there is indirect evidence that it also occurs in stunting. A reduced muscle mass increases the risk of death during infections and also in many other different pathological situations. Reduced muscle mass may represent a common mechanism linking wasting and stunting with increased mortality. This suggests that to decrease malnutrition-related mortality, interventions should aim at preventing both wasting and stunting, which often share common causes. Also, this suggests that treatment interventions should focus on children who are both wasted and stunted and therefore have the greatest deficits in muscle mass, instead of focusing on one or the other form of malnutrition. Interventions should also focus on young infants and children, who have a low muscle mass in relation to body weight to start with. Using mid-upper-arm circumference (MUAC) to select children in need of treatment may represent a simple way to target young wasted and stunted children efficiently in situations where these two conditions are present. Wasting is also associated with decreased fat mass. A decreased fat mass is frequent but inconsistent in stunting. Fat secretes multiple hormones, including leptin, which may have a stimulating effect on the immune system. Depressed immunity resulting from low fat stores may also contribute to the increased mortality observed in wasting. This may represent

  11. 12 CFR 22.6 - Required use of standard flood hazard determination form.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Required use of standard flood hazard determination form. 22.6 Section 22.6 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY... electronic manner. A bank may obtain the standard flood hazard determination form from FEMA, P.O. Box 2012...

  12. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  13. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  14. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  15. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  16. 17 CFR 249.821 - Form PILOT, information required of self-regulatory organizations operating pilot trading systems...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required of self-regulatory organizations operating pilot trading systems pursuant to § 240.19b-5 of this... (CONTINUED) FORMS, SECURITIES EXCHANGE ACT OF 1934 Forms for Self-Regulatory Organization Rule Changes and... Associations § 249.821 Form PILOT, information required of self-regulatory organizations operating pilot...

  17. Influence of Planetary Protection Guidelines on Waste Management Operations

    NASA Technical Reports Server (NTRS)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  18. Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator.

    PubMed

    Nam, Sangchul; Namkoong, Wan

    2012-01-15

    Fly ash from a municipal solid waste incinerator (MSWI) is commonly classified as hazardous waste. High-energy electron beam irradiation systems have gained popularity recently as a clean and promising technology to remove environmental pollutants. Irradiation effects on leaching behavior and form of heavy metals in MSWI fly ash have not been investigated in any significant detail. An electron beam accelerator was used in this research. Electron beam irradiation on fly ash significantly increased the leaching potential of heavy metals from fly ash. The amount of absorbed dose and the metal species affected leaching behavior. When electron beam irradiation intensity increased gradually up to 210 kGy, concentration of Pb and Zn in the leachate increased linearly as absorbed dose increased, while that of Cu underwent no significant change. Concentration of Pb and Zn in the leachate increased up to 15.5% (10.7 mg/kg), and 35.6% (9.6 mg/kg) respectively. However, only 4.8% (0.3mg/kg) increase was observed in the case of Cu. The results imply that irradiation has significant effect on the leaching behavior of heavy metals in fly ash, and the effect is quite different among the metal species tested in this study. A commonly used sequential extraction analysis which can classify a metal species into five forms was conducted to examine any change in metal form in the irradiated fly ash. Notable change in metal form in fly ash was observed when fly ash was irradiated. Change in Pb form was much greater than that of Cu form. Change in metal form was related to leaching potential of the metals. Concentration of heavy metal in leachate was positively related to the exchangeable form which is the most mobile. It may be feasible to treat fly ash by electron beam irradiation for selective recovery of valuable metals or for pretreatment prior to conventional processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Flash Cracking Reactor for Waste Plastic Processing

    NASA Technical Reports Server (NTRS)

    Timko, Michael T.; Wong, Hsi-Wu; Gonzalez, Lino A.; Broadbelt, Linda; Raviknishan, Vinu

    2013-01-01

    Conversion of waste plastic to energy is a growing problem that is especially acute in space exploration applications. Moreover, utilization of heavy hydrocarbon resources (wastes, waxes, etc.) as fuels and chemicals will be a growing need in the future. Existing technologies require a trade-off between product selectivity and feedstock conversion. The objective of this work was to maintain high plastic-to-fuel conversion without sacrificing the liquid yield. The developed technology accomplishes this goal with a combined understanding of thermodynamics, reaction rates, and mass transport to achieve high feed conversion without sacrificing product selectivity. The innovation requires a reaction vessel, hydrocarbon feed, gas feed, and pressure and temperature control equipment. Depending on the feedstock and desired product distribution, catalyst can be added. The reactor is heated to the desired tempera ture, pressurized to the desired pressure, and subject to a sweep flow at the optimized superficial velocity. Software developed under this project can be used to determine optimal values for these parameters. Product is vaporized, transferred to a receiver, and cooled to a liquid - a form suitable for long-term storage as a fuel or chemical. An important NASA application is the use of solar energy to convert waste plastic into a form that can be utilized during periods of low solar energy flux. Unlike previous work in this field, this innovation uses thermodynamic, mass transport, and reaction parameters to tune product distribution of pyrolysis cracking. Previous work in this field has used some of these variables, but never all in conjunction for process optimization. This method is useful for municipal waste incinerator operators and gas-to-liquids companies.

  20. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive

  1. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Benjamin D.; Neeway, James J.; Snyder, Michelle M. V.

    2016-05-01

    Current plans for nuclear waste vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) lack the capacity to treat all of the low activity waste (LAW) that is not encapsulated in the vitrified product. Fluidized Bed Steam Reforming (FBSR) is one of the supplemental technologies under consideration to fill this gap. The FBSR process results in a granular product mainly composed of feldspathoid mineral phases that encapsulate the LAW and other contaminants of concern (COCs). In order to better understand the characteristics of the FBSR product, characterization testing has been performed on the granular product as well asmore » the granular product encapsulated in a monolithic geopolymer binder. The non-radioactive simulated tank waste samples created for use in this study are the result of a 2008 Department of Energy sponsored Engineering Scale Technology Demonstration (ESTD) in 2008. These samples were created from waste simulant that was chemically shimmed to resemble actual tank waste, and rhenium has been used as a substitute for technetium. Another set of samples was created by the Savannah River Site Bench-Scale Reformer (BSR) using a chemical shim of Savannah River Site Tank 50 waste in order to simulate a blend of 68 Hanford tank wastes. This paper presents results from coal and moisture removal tests along with XRD, SEM, and BET analyses showing that the major mineral components are predominantly sodium aluminosilicate minerals and that the mineral product is highly porous. Results also show that the materials pass the short-term leach tests: the Toxicity Characteristic Leaching Procedure (TCLP) and Product Consistency Test (PCT).« less

  2. 40 CFR 265.273 - Waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis. 265.273 Section 265... FACILITIES Land Treatment § 265.273 Waste analysis. In addition to the waste analyses required by § 265.13... listed as a hazardous waste. As required by § 265.13, the waste analysis plan must include analyses...

  3. Waste Characterization Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  4. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    PubMed

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  5. 42 CFR Appendix to Subpart B of... - Required Consent Form

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Required Consent Form Appendix to Subpart B of Part 50 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects Pt. 50, Subpt. B, App. Appendix to Subpart B of Part 50...

  6. 42 CFR Appendix to Subpart B of... - Required Consent Form

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Required Consent Form Appendix to Subpart B of Part 50 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects Pt. 50, Subpt. B, App. Appendix to Subpart B of Part 50...

  7. 42 CFR Appendix to Subpart B of... - Required Consent Form

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Required Consent Form Appendix to Subpart B of Part 50 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects Pt. 50, Subpt. B, App. Appendix to Subpart B of Part 50...

  8. 42 CFR Appendix to Subpart B of... - Required Consent Form

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Required Consent Form Appendix to Subpart B of Part 50 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects Pt. 50, Subpt. B, App. Appendix to Subpart B of Part 50...

  9. 42 CFR Appendix to Subpart B of... - Required Consent Form

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Required Consent Form Appendix to Subpart B of Part 50 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects Pt. 50, Subpt. B, App. Appendix to Subpart B of Part 50...

  10. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  11. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  12. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  13. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  14. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  15. EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists

    EPA Pesticide Factsheets

    On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).

  16. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  17. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  18. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  19. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  20. 40 CFR 80.1454 - What are the recordkeeping requirements under the RFS program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... blending, in the designated form. (6) Copies of registration documents required under § 80.1450, including...-fossil fraction of fuel made from separated municipal solid waste. (iv) Such other records as may be...