Sample records for waste glass corrosion

  1. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  2. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion,more » and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.« less

  3. High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunnane, J.C.; Bates, J.K.; Bradley, C.R.

    1994-03-01

    The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II.

  4. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE PAGES

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...

    2016-08-11

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  5. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  6. Corrosion resistance of ceramic refractories to simulated waste glasses at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, S.B.; Lin, Y.; Mohr, R.K.

    1996-08-01

    In many vitrification processes, refractory materials are used to contain the waste glass melt. The corrosive nature of the high-temperature melt consumes the waste feed materials but also limits refractory life. As vitrification is applied to more diverse waste streams, and particularly in higher-temperature applications, increasingly severe demands are placed on the refractory materials. A variety of potential refractory materials including Fused-cast AZS, Monofrax K3, Monofrax E, and the Corhart refractories ER1195, ER2161, C1215, C1215Z, Rechrome, and T1186, were subjected to corrosion testing at 1,450 C using the ASTM C-621 procedure. A series of simulated waste glasses was used whichmore » included F, Cl, S, Cu, Zn, Pb; these minor components were found to cause significant, and in some cases drastic, increases in corrosion rates. The corrosion tests were conducted over a range of time intervals extending to 144 hrs in order to investigate the kinetics of the corrosion processes. The change of the concentrations of constituents in the glass was monitored by compositional analysis of glass samples and correlated to the observed extent of corrosion; typically, components of the material under test increase with time while key minor components, such as Co and Pb, decrease. The rate of corrosion of high-zirconia refractories was slowed considerably by adding zirconia to the waste glass composition; this has the added benefit of improving the aqueous leach resistance of the waste form that is produced.« less

  7. Corrosion of inconel in high-temperature borosilicate glass melts containing simulant nuclear waste

    NASA Astrophysics Data System (ADS)

    Mao, Xianhe; Yuan, Xiaoning; Brigden, Clive T.; Tao, Jun; Hyatt, Neil C.; Miekina, Michal

    2017-10-01

    The corrosion behaviors of Inconel 601 in the borosilicate glass (MW glass) containing 25 wt.% of simulant Magnox waste, and in ZnO, Mn2O3 and Fe2O3 modified Mg/Ca borosilicate glasses (MZMF and CZMF glasses) containing 15 wt.% of simulant POCO waste, were evaluated by dimensional changes, the formation of internal defects and changes in alloy composition near corrosion surfaces. In all three kinds of glass melts, Cr at the inconel surface forms a protective Cr2O3 scale between the metal surface and the glass, and alumina precipitates penetrate from the metal surface or formed in-situ. The corrosion depths of inconel 601 in MW waste glass melt are greater than those in the other two glass melts. In MW glass, the Cr2O3 layer between inconel and glass is fragmented because of the reaction between MgO and Cr2O3, which forms the crystal phase MgCr2O4. In MZMF and CZMF waste glasses the layers are continuous and a thin (Zn, Fe, Ni, B)-containing layer forms on the surface of the chromium oxide layer and prevents Cr2O3 from reacting with MgO or other constituents. MgCr2O4 was observed in the XRD analysis of the bulk MW waste glass after the corrosion test, and ZrSiO4 in the MZMF waste glass, and ZrSiO4 and CaMoO4 in the CZMF waste glass.

  8. The long-term acceleration of waste glass corrosion: A preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kielpinski, A.L.

    1995-07-01

    Whereas a prior conception of glass dissolution assumed a relatively rapid initial dissolution which then slowed to a smaller, fairly constant longer-term rate, some recent work suggests that these two stages are followed by a third phase of dissolution, in which the dissolution rate is accelerated with respect to what had previously been thought of as the final long-term rate. The goals of the present study are to compile experimental data which may have a bearing on this phenomena, and to provide an initial assessment of these data. The Savannah River Technology Center (SRTC) is contracted to develop glass formulationmore » models for vitrification of Hanford low-level waste (LLW), in support of the Hanford Tank Waste Remediation System Technology Development Program. The phenomenon of an increase in corrosion rate, following a period characterized by a low corrosion rate, has been observed by a number of researchers on a number of waste glass compositions. Despite inherent ambiguities arising from SA/V (glass surface area to solution volume ratio) and other effects, valid comparisons can be made in which accelerated corrosion was observed in one test, but not in another. Some glass compositions do not appear to attain a plateau region; it may be that the observation of continued, non-negligible corrosion in these glasses represents a passage from the initial rate to the accelerated rate. The long-term corrosion is a function of the interaction between the glass and its environment, including the leaching solution and the surrounding materials. Reaction path modeling and stability field considerations have been used with some success to predict the changes in corrosion rate over time, due to these interactions. The accelerated corrosion phenomenon highlights the need for such integrated corrosion modeling and the scenario-specific nature of a particular glass composition`s durability.« less

  9. Corrosion Behavior and Microstructure Influence of Glass-Ceramic Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Asmussen, R.; Neeway, James J.; Kaspar, Tiffany C.

    Glass ceramic waste forms present a potentially viable technology for the long term immobilization and disposal of liquid nuclear wastes. Through control of chemistry during fabrication, such waste forms can have designed secondary crystalline phases within a borosilicate glass matrix. In this work, a glass ceramic containing powellite and oxyapatite secondary phases was tested for its corrosion properties in dilute conditions using single pass flow through testing (SPFT). Three glass ceramic samples were prepared using different cooling rates to produce samples with varying microstructure sizes. In testing at 90 °C in buffered pH 7 and pH 9 solutions, it wasmore » found that increasing pH and decreasing microstructure size (resulting from rapid cooling during fabrication) both led to a reduction in overall corrosion rate. The phases of the glass ceramic were found, using a combination of solutions analysis, SEM and AFM, to corrode preferably in the order of powellite > bulk glass matrix > oxyapatite.« less

  10. Modelling aqueous corrosion of nuclear waste phosphate glass

    NASA Astrophysics Data System (ADS)

    Poluektov, Pavel P.; Schmidt, Olga V.; Kascheev, Vladimir A.; Ojovan, Michael I.

    2017-02-01

    A model is presented on nuclear sodium alumina phosphate (NAP) glass aqueous corrosion accounting for dissolution of radioactive glass and formation of corrosion products surface layer on the glass contacting ground water of a disposal environment. Modelling is used to process available experimental data demonstrating the generic inhibiting role of corrosion products on the NAP glass surface.

  11. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  12. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  13. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane

    2016-01-01

    Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.

  14. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  15. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and

  16. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  17. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  18. Letter report on PCT/Monolith glass ceramic corrosion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Charles L.

    2015-09-24

    The Savannah River National Laboratory (SRNL) is collaborating with personnel from Pacific Northwest National Laboratory (PNNL) to study advanced waste form glass ceramics for immobilization of waste from Used Nuclear Fuel (UNF) separations processes. The glass ceramic waste forms take advantage of both crystalline and glassy phases where ‘troublesome’ elements (e.g., low solubility in glass or very long-lived) partition to highly durable ceramic phases with the remainder of elements residing in the glassy phase. The ceramic phases are tailored to create certain minerals or unique crystalline structures that can host the radionuclides by binding them in their specific crystalline networkmore » while not adversely impacting the residual glass network (Crum et al., 2011). Glass ceramics have been demonstrated using a scaled melter test performed in a pilot scale (1/4 scale) cold crucible induction melter (CCIM) (Crum et al., 2014; Maio et al., 2015). This report summarizes recent results from both Phase I and Phase II bench scale tests involving crucible fabrication and corrosion testing of glass ceramics using the Product Consistency Test (PCT). Preliminary results from both Phase I and Phase II bench scale tests involving statistically designed matrices have previously been reported (Crawford, 2013; Crawford, 2014).« less

  19. Effects of various calcined ash and sludge waste loadings on the durability of a soda-lime-silica glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, D.P.; Lewis, E.L.; Armstrong, K.M.

    1982-01-01

    A commercially available joule-heated glass furnace system is currently being evaluated at Mound as a means of reducing the volume of low-level radioactive waste similar to that found in light water reactor facilities. The furnace utilizes molten soda-lime-silica to initiate and support combustion of the waste feed and to serve as an immobilization matrix. First, corrosion studies were performed to determine the result that various waste loadings of glass would have on the refractory lining the furnace. Second, the chemical durability of soda-lime-silica under various waste loadings was assessed to determine its resistance to leaching under conditions similar to thosemore » encountered at waste disposal sites. Results proved that, although corrosion was quite significant for pure soda-lime-silica and a 10% waste loading, by the time a waste loading of 40% was achieved, the effects of corrosion were virtually nil. The temperature dependence of the corrosion caused by a 0% waste loading of soda-lime-silica on the refractory was also investigated. With an increase in temperature to 2650/sup 0/F, corrosion more than tripled. As a result, incineration and idle temperature is being maintained at, or below, 2400/sup 0/F. In conclusion, from the fact that the higher waste loading of soda-lime glass produced both increased chemical durability and increased refractory life, waste loadings in excess of 40%, and as high as 80%, may be achieved without adverse effect to the glass furnace system or its effectiveness for immobilizing radioactive waste.« less

  20. Long-term modeling of glass waste in portland cement- and clay-based matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    A set of ``templates`` was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra,more » Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ``affinity effect`` cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity.« less

  1. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG),more » glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.« less

  2. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  3. Ampule tests to simulate glass corrosion in ambient temperature lithium batteries. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S.C.; Bunker, B.C.; Crafts, C.C.

    1984-06-01

    Glass corrosion in battery headers has been found to limit the shelf life of ambient temperature lithium batteries. Glass corrosion can lead to loss of battery electrolytes or to shorts across the conductive corrosion product. Tests have been conducted which simulate the corrosive environment in a battery by sealing headers attached to lithium metal into Pyrex ampules containing battery electrolyte. Using the ampule test, glass corrosion kinetics have been determined at 70/sup 0/C for the Li/SO/sub 2/, Li/SOCl/sub 2/, and Li/SOCl/sub 2/ + BrCl battery systems. Test results indicate that corrosion of commercial glass compositions is extensive in all electrolytesmore » tested, resulting in predicted battery failures after several months. Sandia's TA-23 glass corrodes at a much slower rate, indicating a projected battery lifetime of over five years in the Li/SO/sub 2/ system. Test results reveal that corrosion kinetics are sensitive to header polarization, stress, and configuration as well as glass composition.« less

  4. Corrosion resistant metallic glasses for biosensing applications

    NASA Astrophysics Data System (ADS)

    Sagasti, Ariane; Lopes, Ana Catarina; Lasheras, Andoni; Palomares, Verónica; Carrizo, Javier; Gutierrez, Jon; Barandiaran, J. Manuel

    2018-04-01

    We report the fabrication by melt spinning, the magnetic and magnetoelastic characterization and corrosion behaviour study (by potentiodynamic methods) of an Fe-based, Fe-Ni-Cr-Si-B metallic glass to be used as resonant platform for biological and chemical detection purposes. The same study has been performed in Fe-Co-Si-B (with excellent magnetoelastic properties) and Fe-Ni-B (with good corrosion properties due to the substitution of Co by Ni) composition amorphous alloys. The well-known, commercial metallic glass with high corrosion resistance Metglas 2826MB®(Fe40Ni38Mo4B18), widely used for such biological and chemical detection purposes, has been also fully characterized and used as reference. For our Fe-Ni-Cr-Si-B alloy, we have measured values of magnetization (1.22 T), magnetostriction (11.5 ppm) and ΔE effect (6.8 %) values, as well as corrosion potential (-0.25 V), current density (2.54 A/m2), and polarization resistance (56.22 Ω.cm2) that make this composition very promising for the desired biosensing applications. The obtained parameters from our exhaustive characterization are compared with the values obtained for the other different composition metallic glasses and discussed in terms of Ni and Cr content.

  5. Glass binder development for a glass-bonded sodalite ceramic waste form

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; Kroll, Jared O.; Peterson, Jacob A.; Canfield, Nathan L.; Zhu, Zihua; Zhang, Jiandong; Kruska, Karen; Schreiber, Daniel K.; Crum, Jarrod V.

    2017-06-01

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with ∼20 mass% Na2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.

  6. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  7. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.; ...

    2017-06-01

    This paper discusses work to develop Na 2O-B 2O 3-SiO 2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. In this paper, five new glasses with ~20 mass% Na 2O were designed to generate waste forms with high sodalite. The glasses were then used to produce ceramic waste forms with a surrogate salt waste. The waste forms made using these new glasses were formulated to generate more sodalite than those made with previous baseline glasses for this type of waste. The coefficients of thermal expansion formore » the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature than previous binder glasses used. Finally, these improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability.« less

  8. High metal reactivity and environmental risks at a site contaminated by glass waste.

    PubMed

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment. Copyright © 2016. Published by Elsevier Ltd.

  9. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solutionmore » of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, D Li, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D 6Li ≈ 4.0-8.0 × 10 -21 m 2/s) exhibiting faster exchange than the more complex SON68 glass (D Li ≈ 2.0-4.0 × 10 -21 m 2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.« less

  10. Glass binder development for a glass-bonded sodalite ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.; Frank, Steven M.

    This paper discusses work to develop Na2O-B2O3-SiO2 glass binders for immobilizing LiCl-KCl eutectic salt waste in a glass-bonded sodalite waste form following electrochemical reprocessing of used metallic nuclear fuel. Here, five new glasses with high Na2O contents were designed to generate waste forms having higher sodalite contents and fewer stress fractures. The structural, mechanical, and thermal properties of the new glasses were measured using variety of analytical techniques. The glasses were then used to produce ceramic waste forms with surrogate salt waste. The materials made using the glasses developed during this study were formulated to generate more sodalite than materialsmore » made with previous baseline glasses used. The coefficients of thermal expansion for the glass phase in the glass-bonded sodalite waste forms made with the new binder glasses were closer to the sodalite phase in the critical temperature region near and below the glass transition temperature. These improvements should result in lower probability of cracking in the full-scale monolithic ceramic waste form, leading to better long-term chemical durability. Additionally, a model generated during this study for predicting softening temperature of silicate binder glasses is presented.« less

  11. Vitrified hillforts as anthropogenic analogues for nuclear waste glasses - project planning and initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoblom, Rolf; Weaver, Jamie L.; Peeler, David K.

    Nuclear waste must be deposited in such a manner that it does not cause significant impact on the environment or human health. In some cases, the integrity of the repositories will need to sustain for tens to hundreds of thousands of years. In order to ensure such containment, nuclear waste is frequently converted into a very durable glass. It is fundamentally difficult, however, to assure the validity of such containment based on short-term tests alone. To date, some anthropogenic and natural volcanic glasses have been investigated for this purpose. However, glasses produced by ancient cultures for the purpose of joiningmore » rocks in stonewalls have not yet been utilized in spite of the fact that they might offer significant insight into the long-term durability of glasses in natural environments. Therefore, a project is being initiated with the scope of obtaining samples and characterizing their environment, as well as to investigate them using a suite of advanced materials characterization techniques. It will be analysed how the hillfort glasses may have been prepared, and to what extent they have altered under in-situ conditions. The ultimate goals are to obtain a better understanding of the alteration behaviour of nuclear waste glasses and its compositional dependence, and thus to improve and validate models for nuclear waste glass corrosion. The paper deals with project planning and initiation, and also presents some early findings on fusion of amphibolite and on the process for joining the granite stones in the hillfort walls.« less

  12. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less

  13. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    groundwater. Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.« less

  14. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Riley, Brian J.

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii)more » development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.« less

  15. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both

  16. Electrochemical Corrosion Studies for Modeling Metallic Waste Form Release Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poineau, Frederic; Tamalis, Dimitri

    The isotope 99Tc is an important fission product generated from nuclear power production. Because of its long half-life (t 1/2 = 2.13 ∙ 10 5 years) and beta-radiotoxicity (β⁻ = 292 keV), it is a major concern in the long-term management of spent nuclear fuel. In the spent nuclear fuel, Tc is present as an alloy with Mo, Ru, Rh, and Pd called the epsilon-phase, the relative amount of which increases with fuel burn-up. In some separation schemes for spent nuclear fuel, Tc would be separated from the spent fuel and disposed of in a durable waste form. Technetium wastemore » forms under consideration include metallic alloys, oxide ceramics and borosilicate glass. In the development of a metallic waste form, after separation from the spent fuel, Tc would be converted to the metal, incorporated into an alloy and the resulting waste form stored in a repository. Metallic alloys under consideration include Tc–Zr alloys, Tc–stainless steel alloys and Tc–Inconel alloys (Inconel is an alloy of Ni, Cr and iron which is resistant to corrosion). To predict the long-term behavior of the metallic Tc waste form, understanding the corrosion properties of Tc metal and Tc alloys in various chemical environments is needed, but efforts to model the behavior of Tc metallic alloys are limited. One parameter that should also be considered in predicting the long-term behavior of the Tc waste form is the ingrowth of stable Ru that occurs from the radioactive decay of 99Tc ( 99Tc → 99Ru + β⁻). After a geological period of time, significant amounts of Ru will be present in the Tc and may affect its corrosion properties. Studying the effect of Ru on the corrosion behavior of Tc is also of importance. In this context, we studied the electrochemical behavior of Tc metal, Tc-Ni alloys (to model Tc-Inconel alloy) and Tc-Ru alloys in acidic media. The study of Tc-U alloys has also been performed in order to better understand the nature of Tc in metallic spent fuel. Computational

  17. Inhibiting localized corrosion during storage of dilute SRP wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblath, S.B.; Congdon, J.W.

    1986-01-01

    High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less

  18. Crystallization In High Level Waste (HLW) Glass Melters: Operational Experience From The Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    2014-02-27

    processing strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal tolerant high level waste (HLW) glasses targeting higher waste loadings while still meeting process related limits and melter lifetime expectancies. This report provides amore » review of the scaled melter testing that was completed in support of the Defense Waste Processing Facility (DWPF) melter. Testing with scaled melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by K-3 refractory corrosion versus spinels that precipitated from the HLW glass melt pool. This report includes a review of the crystallization observed with the scaled melters and the full scale DWPF melters (DWPF Melter 1 and DWPF Melter 2). Examples of actual DWPF melter attainment with Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for WTP. Operation of the first and second (current) DWPF melters has demonstrated that the strategy of using a liquidus temperature predictive model combined with a 100 °C offset from the normal melter operating temperature of 1150 °C (i.e., the predicted liquidus temperature (TL) of the glass must be 1050 °C or less) has been successful in preventing any detrimental accumulation of spinel in the DWPF melt pool, and spinel has not

  19. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    PubMed Central

    Liu, Shuhua; Wang, Shu; Tang, Wan; Hu, Ningning; Wei, Jianpeng

    2015-01-01

    Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP) on alkali-silica reaction (ASR) expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk. PMID:28793603

  20. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  1. Accelerated Leach Testing of GLASS (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less

  2. Engineering Glass Passivation Layers -Model Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting thatmore » the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and

  3. Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses

    DOE PAGES

    Kerisit, Sebastien; Pierce, Eric M.; Ryan, Joseph V.

    2014-09-19

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, in this paper three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75 - x) mol% SiO 2 (12.5 + x/2) mol% B 2O 3 and (12.5 + x/2) mol% Na 2O, where 0 ≤ x ≤ 20%, andmore » corroded in static conditions at a surface-area-to-volume ratio of 1000 m -1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick's 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Finally, models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO 2 content.« less

  4. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less

  5. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO 4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic,more » thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.« less

  6. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the releasemore » rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do

  7. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 °C in a solution initially saturated with respect to amorphous 29SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  8. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscositymore » arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.« less

  9. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less

  10. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    NASA Astrophysics Data System (ADS)

    Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

    2012-10-01

    In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm-2 to 0.16 μA cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  11. Detection of stress corrosion cracking and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    NASA Astrophysics Data System (ADS)

    Edgemon, G. L.; Danielson, M. J.; Bell, G. E. C.

    1997-06-01

    Underground waste tanks fabricated from mild steel store more than 253 million liters of high level radioactive waste from 50 years of weapons production at the Hanford Site. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking and pitting. In an effort to develop a waste tank corrosion monitoring system, laboratory tests were conducted to characterize electrochemical noise data for both uniform and localized corrosion of mild steel and other materials in simulated waste environments. The simulated waste solutions were primarily composed of ammonium nitrate or sodium nitrate and were held at approximately 97°C. The electrochemical noise of freely corroding specimens was monitored, recorded and analyzed for periods ranging between 10 and 500 h. At the end of each test period, the specimens were examined to correlate electrochemical noise data with corrosion damage. Data characteristic of uniform corrosion and stress corrosion cracking are presented.

  12. Reuse of ground waste glass as aggregate for mortars.

    PubMed

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  13. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR CORROSIVE-CONTAINING WASTES. VOLUME 2

    EPA Science Inventory

    The Technical Resource Document (TRD) for wastes containing corrosives is one in a series of five documents which evaluate waste management alternatives to land disposal. In addition to this TRD for corrosive wastes, the other four TRDs in the series address land disposal alterna...

  14. The effect of clay on the dissolution of nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Lemmens, K.

    2001-09-01

    In a nuclear waste repository, the waste glass can interact with metals, backfill materials (if present) and natural host rock. Of the various host rocks considered, clays are often reported to delay the onset of the apparent glass saturation, where the glass dissolution rate becomes very small. This effect is ascribed to the sorption of silica or other glass components on the clay. This can have two consequences: (1) the decrease of the silica concentration in solution increases the driving force for further dissolution of glass silica, and (2) the transfer of relatively insoluble glass components (mainly silica) from the glass surface to the clay makes the alteration layer less protective. In recent literature, the latter explanation has gained credibility. The impact of the environmental materials on the glass surface layers is however not well understood. Although the glass dissolution can initially be enhanced by clay, there are arguments to assume that it will decrease to very low values after a long time. Whether this will indeed be the case, depends on the fate of the released glass components in the clay. If they are sorbed on specific sites, it is likely that saturation of the clay will occur. If however the released glass components are removed by precipitation (growth of pre-existing or new secondary phases), saturation of the clay is less likely, and the process can continue until exhaustion of one of the system components. There are indications that the latter mechanism can occur for varying glass compositions in Boom Clay and FoCa clay. If sorption or precipitation prevents the formation of protective surface layers, the glass dissolution can in principle proceed at a high rate. High silica concentrations are assumed to decrease the dissolution rate (by a solution saturation effect or by the impact on the properties of the glass alteration layer). In glass corrosion tests at high clay concentrations, silica concentrations are, however, often higher

  15. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Smith; GF Piepel; GW Veazey

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durablemore » (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).« less

  16. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying

  17. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  18. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 2. Waste Glass.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWD) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  19. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Hanford double shell waste tank corrosion studies - final report FY2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B. J.; Fuentes, R. E.; Hicks, K.

    2014-12-19

    SRNL tasks for FY14 included studies to evaluate the susceptibility of carbon steel to vapor space corrosion (VSC), liquid-air interface (LAI) corrosion, and pitting corrosion. Additionally, SRNL evaluated the susceptibility of carbon steel to pitting corrosion under buffered waste conditions, with the objective of determining the adequate amount of inhibitor (e.g., nitrite) necessary to mitigate pitting corrosion. Other CPP experiments were performed in historical waste simulants and the results were compared to previously gathered results. The results of these activities were utilized to assess the robustness of the standardized CPP protocol

  1. Thermodynamic model of natural, medieval and nuclear waste glass durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less

  2. Turning nuclear waste into glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  3. Accelerated Leach Testing of GLASS: ALTGLASS Version 3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Jantzen, Carol M.; Crawford, Charles L.

    The Accelerated Leach Testing of GLASS (ALTGLASS) database is a collection of data from short- and long-term product consistency tests (PCT, ASTM C1285 A and B) on high level waste (HLW) as well as low activity waste (LAW) glasses. The database provides both U.S. and international researchers with an archive of experimental data for the purpose of studying, modeling, or validating existing models of nuclear waste glass corrosion. The ALTGLASS database is maintained and updated by researchers at the Savannah River National Laboratory (SRNL). This newest version, ALTGLASS Version 3.0, has been updated with an additional 503 rows of datamore » representing PCT results from corrosion experiments conducted in the United States by the Savannah River National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and the Vitreous State Laboratory (SRNL, PNNL, ANL, VSL, respectively) as well as the National Nuclear Laboratory (NNL) in the United Kingdom.« less

  4. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Thermal Predictions of the Cooling of Waste Glass Canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to themore » surrounding air are reported.« less

  6. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at

  7. Direction of CRT waste glass processing: Electronics recycling industry communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass

  8. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    NASA Astrophysics Data System (ADS)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  9. Reference commercial high-level waste glass and canister definition

    NASA Astrophysics Data System (ADS)

    Slate, S. C.; Ross, W. A.; Partain, W. L.

    1981-09-01

    Technical data and performance characteristics of a high level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository are presented. The borosilicate glass contained in the stainless steel canister represents the probable type of high level waste product that is produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.

  10. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  11. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  12. Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Matzke, Hj.; Vernaz, E.

    High level nuclear waste from reprocessing of spent nuclear fuel has to be solidified in a stable matrix for safe long-time storage. Vitrification in borosilicate glasses is the technique accepted worldwide as the best combination of engineering constraints from fabrication and physicochemical properties of the matrix. A number of different glasses was developed in different national programs. The criteria and the reasons for selecting the final compositions are described briefly. Emphasis is placed on the French product R7T7 and on thermal and physicochemical properties though glasses developed in other national projects (e.g., the German product GP 98/12, etc.) are also treated. The basic physical and mechanical properties and the chemical durability of the glass in contact with water are described. The basic mechanisms of aqueous corrosion are discussed and the evolving modelling of the leaching process is dealt with, as well as effects of container material, backfill, etc. The thermal behavior has also been studied and extensive data exist on diffusion of glass constituents (Na) and of interesting elements of the waste such as the alkalis Rb and Cs or the actinides U and Pu, as well as on crystallization processes in the glass during storage at elevated temperatures. Emphasis is placed on the radiation stability of the glasses, based on extensive studies using short-lived actinides (e.g., 244Cm) or ion implantation to produce the damage expected during long storage at an accelerated rate. The radiation stability is shown to be very good, if realistic damage conditions are used. The knowledge accumulated in the past years is used to evaluate and predict the long-term evolution of the glass under storage conditions.

  13. Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.

    PubMed

    Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena

    2016-02-01

    This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.

  14. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-ignitable...

  15. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-ignitable...

  16. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-ignitable...

  17. 40 CFR 268.37 - Waste specific prohibitions-ignitable and corrosive characteristic wastes whose treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.37 Waste specific prohibitions—ignitable and corrosive... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-ignitable...

  18. Accelerated Weathering of Waste Glass at 90°C with the Pressurized Unsaturated Flow (PUF) Apparatus: Implications for Predicting Glass Corrosion with a Reactive Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.

    2009-09-21

    The interest in the long-term durability of waste glass stems from the need to predict radionuclide release rates from the corroding glass over geologic time-scales. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)]. Currently, the PUF test is the only method that can mimic the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitor the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior.more » One dimensional reactive chemical transport simulations of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases (STORM) code. Results show that parameterization of the computer model by combining direct laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over geologic-time scales.« less

  19. Degradation of partially immersed glass: A new perspective

    NASA Astrophysics Data System (ADS)

    Chinnam, R. K.; Fossati, P. C. M.; Lee, W. E.

    2018-05-01

    The International Simple Glass (ISG) is a six-component borosilicate glass which was developed as a reference for international collaborative studies on high level nuclear waste encapsulation. Its corrosion behaviour is typically examined when it is immersed in a leaching solution, or when it is exposed to water vapour. In this study, an alternative situation is considered in which the glass is only partially immersed for 7 weeks at a temperature of 90 °C. In this case, half of the glass sample is directly in the solution itself, and the other half is in contact with a water film formed by condensation of water vapour that evaporated from the solution. This results in a different degradation behaviour compared to standard tests in which the material is fully immersed. In particular, whilst in standard tests the system reaches a steady state with a very low alteration rate thanks to the formation of a protective gel layer, in partially-immersed tests this steady state could not be reached because of the continuous alteration from the condensate water film. The constant input of ions from the emerged part of the sample caused a supersaturation of the solution, which resulted in early precipitation of secondary crystalline phases. This setup mimics storage conditions once small amounts of water have entered a glass waste form containing canister. It offers a more realistic outlook of corrosion mechanisms happening in such situations than standard fully-immersed corrosion tests.

  20. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    NASA Astrophysics Data System (ADS)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  1. Corrosion Behavior of Nuclear Waste Storage Canister Materials

    NASA Astrophysics Data System (ADS)

    Grant, John

    The nature of interaction of mild steel nuclear waste storage containers with technetium ions is not fully known. Technetium is formed during nuclear processing and some of this technetium has leaked at the Hanford nuclear waste storage site in Washington State. It is often found as highly oxidized pertechnetate (TeO4-) anions at these storage sites which also happen to be highly alkaline and contain a significant amount of nitrate. Theoretically, pertechnetate anions can act as electron acceptors and interact with the mild steel containers and accelerate the oxidation (corrosion) of steel. It is of interest to identify if pertechnetate anions pose a corrosion hazard to the mild steel nuclear waste storage tanks, under the conditions of the storage sites, as that can accelerate the degradation of the tanks and lead to further contamination. In this thesis, the interaction of two relevant container materials, namely, steel alloys A285 and A537 with a technetium surrogate, rhenium was studied. Perrhenate was used as an analog for pertechnetate. As all isotopes of technetium are radioactive, rhenium was chosen as the experimental surrogate due to its chemical similarity to technetium. Electrochemical behavior was evaluated using potentiodynamic polarization tests, and the surface morphology was studied using optical microscopy and scanning electron microscopy. Potentiodynamic polarization tests were conducted in 1.0M NaNO3 + 0.1M NaOH and 1.0M NaNO3 + 0.1M NaOH + 0.02M NaReO4. Tests were performed at three different temperatures, namely, (i) room temperature, (ii) 50°C and (iii) 80°C to study the effect of higher temperatures found in the storage sites. Corrosion current, corrosion potential, anodic and cathodic Tafel slopes, polarization resistance and corrosion rates were obtained from electrochemical testing and evaluated. Increasing temperatures was found to lead to increasing corrosion rates for all samples. The data also revealed increased corrosion from

  2. Mineralogical textural and compositional data on the alteration of basaltic glass from Kilauea, Hawaii to 300 degrees C: Insights to the corrosion of a borosilicate glass waste-form. [Yucca Mountain Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.K.

    1990-01-01

    Mineralogical, textural and compositional data accompanying greenschist facies metamorphism (to 300{degrees}C) of basalts of the East Rift Zone (ERZ), Kilauea, Hawaii may be evaluated relative to published and experimental results for the surface corrosion of borosilicate glass. The ERZ alteration sequence is dominated by intermittent palagonite, interlayered smectite-chlorite, chlorite, and actinolite-epidote-anhydrite. Alteration is best developed in fractures and vesicles where surface reaction layers root on the glass matrix forming rinds in excess of 100 microns thick. Fractures control fluid circulation and the alteration sequence. Proximal to the glass surface, palagonite, Fe-Ti oxides and clays replace fresh glass as the surfacemore » reaction layer migrates inwards; away from the surface, amphibole, anhydrite, quartz and calcite crystallize from hydrothermal fluids in contact with the glass. The texture and composition of basaltic glass surfaces are similar to those of a SRL-165 glass leached statically for sixty days at 150 {degrees}C. While the ERZ reservoir is a complex open system, conservative comparisons between the alteration of ERZ and synthetic borosilicate glass are warranted. 31 refs., 2 figs.« less

  3. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuentes, R. E.; Wyrwas, R. B.

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less

  4. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-12-31

    The hydration of an outer layer on nuclear waste glasses in known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular watermore » was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with gel layers.« less

  5. Towards increased waste loading in high level waste glasses: Developing a better understanding of crystallization behavior

    DOE PAGES

    Marra, James C.; Kim, Dong -Sang

    2014-12-18

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less

  6. The dissolution behavior of borosilicate glasses in far-from equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; Ryan, Joseph V.; Asmussen, R. Matthew

    2018-04-01

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH (22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. The higher level of uncertainty analysis would provide

  7. Waste glass as eco-friendly replacement material in construction products

    NASA Astrophysics Data System (ADS)

    Sharma, Gayatri; Sharma, Anu

    2018-05-01

    Atpresent time the biggest issue is increasing urban population, industrialization and development all over the world. The quantity of the raw materials of construction products like cement, concrete etc is gradually depleting. This is important because if we don't find the alternative material to accomplish need of this industry, with every year it will put pressure on natural resources which are limited in quantity. This major issue can be solved by partial replacing with waste glass of different construction products. This paper gives an overview of the current growth and recycling situation of waste glass and point out the direction for the proper use of waste glass as replacement of construction material. These will not only help in the reuse of waste glass but also create eco-friendly environment.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  9. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Peeler, D.; Herman, C.

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e

  10. Methods of vitrifying waste with low melting high lithia glass compositions

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2001-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  11. Corrosion of 15th and early 16th century stained glass from the monastery of Batalha studied with external ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarigues, M., E-mail: mgv@fct.unl.pt; Redol, P.; Monastery of Batalha, P-2440

    2011-02-15

    This paper reports the study of corrosion in two stained glass panels from the south aisle of Sta. Maria da Vitoria monastery, at Batalha (Portugal), one depicting the Last Supper (dated from 1508), and the other one showing a saint (c. 1450). These panels exhibit extensive corrosion with darkening phenomena that are an impediment to their correct visualization, a source of major concern both to conservators and curators. By using external micro-beam Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma Emission (PIGE) spectrometry, the elemental compositions of large fragments were obtained, enabling the selection of representative corroded areas, frommore » which elemental distribution maps were produced by scanning. Calcium and potassium rich structures were found - at the surface and inside cavities in the glass - that were identified as oxalates and carbonates, by Raman microscopy and micro-FTIR. The dark spots present in the glass surfaces were found to be Zn and Pb rich. These findings indicate that the corrosion observed was due not only to reactions with atmospheric water and CO{sub 2} but also with the oxalic acid secreted by micro-organisms. Furthermore, it did not result from reactions with atmospheric SO{sub 2} or acid rain. The information obtained is relevant for a better understanding of the corrosion processes and products formed on the surface of these panels and therefore for the proper planning of much needed adequate conservation-restoration actions and appropriate display conditions. - Research Highlights: {yields} Corrosion and darkening of stained glasses is of concern to conservators and curators. {yields} A multi-technique approach is of relevance to study stained glass corrosion. {yields} External beam PIXE-PIGE provide valuable insight on stained glass corrosion.« less

  12. Thermodynamic and Microstructural Mechanisms in the Corrosion of Advanced Ceramic Tc-bearing Waste Forms and Thermophysical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Thomas

    Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less

  13. Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region.

    PubMed

    Huang, C H; Lai, J J; Wei, T Y; Chen, Y H; Wang, X; Kuan, S Y; Huang, J C

    2015-01-01

    The effects of the nanocrystalline phases on the bio-corrosion behavior of highly bio-friendly Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid were investigated, and the findings are compared with our previous observations from the Zr53Cu30Ni9Al8 metallic glasses. The Ti42Zr40Si15Ta3 metallic glasses were annealed at temperatures above the glass transition temperature, Tg, with different time periods to result in different degrees of α-Ti nano-phases in the amorphous matrix. The nanocrystallized Ti42Zr40Si15Ta3 metallic glasses containing corrosion resistant α-Ti phases exhibited more promising bio-corrosion resistance, due to the superior pitting resistance. This is distinctly different from the previous case of the Zr53Cu30Ni9Al8 metallic glasses with the reactive Zr2Cu phases inducing serious galvanic corrosion and lower bio-corrosion resistance. Thus, whether the fully amorphous or partially crystallized metallic glass would exhibit better bio-corrosion resistance, the answer would depend on the crystallized phase nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste.

    PubMed

    Ponsot, Inès M M M; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K; Detsch, Rainer; Boccaccini, Aldo R; Bernardo, Enrico

    2014-07-31

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900-1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  15. Glass former composition and method for immobilizing nuclear waste using the same

    DOEpatents

    Cadoff, Laurence H.; Smith-Magowan, David B.

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  16. Crystallization in high level waste (HLW) glass melters: Savannah River Site operational experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin M.; Peeler, David K.; Kruger, Albert A.

    2015-06-12

    This paper provides a review of the scaled melter testing that was completed for design input to the Defense Waste Processing Facility (DWPF) melter. Testing with prototype melters provided the data to define the DWPF operating limits to avoid bulk (volume) crystallization in the un-agitated DWPF melter and provided the data to distinguish between spinels generated by refractory corrosion versus spinels that precipitated from the HLW glass melt pool. A review of the crystallization observed with the prototype melters and the full-scale DWPF melters (DWPF Melter 1 and DWPF Melter 2) is included. Examples of actual DWPF melter attainment withmore » Melter 2 are given. The intent is to provide an overview of lessons learned, including some example data, that can be used to advance the development and implementation of an empirical model and operating limit for crystal accumulation for a waste treatment and immobilization plant.« less

  17. Effects of waste glass additions on quality of textile sludge-based bricks.

    PubMed

    Rahman, Ari; Urabe, Takeo; Kishimoto, Naoyuki; Mizuhara, Shinji

    2015-01-01

    This research investigated the utilization of textile sludge as a substitute for clay in brick production. The addition of textile sludge to a brick specimen enhanced its pores, thus reducing the quality of the product. However, the addition of waste glass to brick production materials improved the quality of the brick in terms of both compressive strength and water absorption. Maximum compressive strength was observed with the following composition of waste materials: 30% textile sludge, 60% clay and 10% waste glass. The melting of waste glass clogged up pores on the brick, which improved water absorption performance and compressive strength. Moreover, a leaching test on a sludge-based brick to which 10% waste glass did not detect significant heavy metal compounds in leachates, with the product being in conformance with standard regulations. The recycling of textile sludge for brick production, when combined with waste glass additions, may thus be promising in terms of both product quality and environmental aspects.

  18. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    2016-04-25

    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO 3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO 2 concentrations were notably low inmore » all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO 2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.« less

  19. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    PubMed Central

    Ponsot, Inès M. M. M.; Pontikes, Yiannis; Baldi, Giovanni; Chinnam, Rama K.; Detsch, Rainer; Boccaccini, Aldo R.; Bernardo, Enrico

    2014-01-01

    Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C), whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C). The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests. PMID:28788146

  20. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  1. Ensuring Longevity: Ancient Glasses Help Predict Durability of Vitrified Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jamie L.; McCloy, John S.; Ryan, Joseph V.

    How does glass alter with time? For the last hundred years this has been an important question to the fields of object conservation and archeology to ensure the preservation of glass artifacts. This same question is part of the development and assessment of durable glass waste forms for the immobilization of nuclear wastes. Researchers have developed experiments ranging from simple to highly sophisticated to answer this question, and, as a result, have gained significant insight into the mechanisms that drive glass alteration. However, the gathered data have been predominately applicable to only short-term alteration times, i.e. over the course ofmore » decades. What has remained elusive is the long-term mechanisms of glass alteration[1]. These mechanisms are of particular interest to the international nuclear waste glass community as they strive to ensure that vitrified products will be durable for thousands to tens of thousands of years. For the last thirty years this community has been working to fill this research gap by partnering with archeologists, museum curators, and geologists to identify hundred to million-year old glass analogues that have altered in environments representative of those expected at potential nuclear waste disposal sites. The process of identifying a waste glass relevant analogue is challenging as it requires scientists to relate data collected from short-term laboratory experiments to observations made from long-term analogues and extensive geochemical modeling.« less

  2. The quality study of recycled glass phosphor waste for LED

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  3. Glass Waste Forms for Oak Ridge Tank Wastes: Fiscal Year 1998 Report for Task Plan SR-16WT-31, Task B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.K.

    1999-05-10

    Using ORNL information on the characterization of the tank waste sludges, SRTC performed extensive bench-scale vitrification studies using simulants. Several glass systems were tested to ensure the optimum glass composition (based on the glass liquidus temperature, viscosity and durability) is determined. This optimum composition will balance waste loading, melt temperature, waste form performance and disposal requirements. By optimizing the glass composition, a cost savings can be realized during vitrification of the waste. The preferred glass formulation was selected from the bench-scale studies and recommended to ORNL for further testing with samples of actual OR waste tank sludges.

  4. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant

  5. Effect of Stress Corrosion and Cyclic Fatigue on Fluorapatite Glass-Ceramic

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav V.

    2011-12-01

    Objective: The objective of this study was to test the following hypotheses: 1. Both cyclic degradation and stress corrosion mechanisms result in subcritical crack growth in a fluorapatite glass-ceramic. 2. There is an interactive effect of stress corrosion and cyclic fatigue to cause subcritical crack growth (SCG) for this material. 3. The material that exhibits rising toughness curve (R-curve) behavior also exhibits a cyclic degradation mechanism. Materials and Methods: The material tested was a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). Rectangular beam specimens with dimensions of 25 mm x 4 mm x 1.2 mm were fabricated using the press-on technique. Two groups of specimens (N=30) with polished (15 mum) or air abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2 Hz (N=44) and 10 Hz (N=36), and at different stress amplitudes. All tests were performed using a fully articulating four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined by using a statistical approach by Munz and Fett (1999). The fatigue lifetime data were fit to a general log-linear model in ALTA PRO software (Reliasoft). Fractographic techniques were used to determine the critical flaw sizes to estimate fracture toughness. To determine the presence of R-curve behavior, non-linear regression was used. Results: Increasing the frequency of cycling did not cause a significant decrease in lifetime. The parameters of the general log-linear model showed that only stress corrosion has a significant effect on lifetime. The parameters are presented in the following table.* SCG parameters (n=19--21) were similar for both frequencies. The regression model showed that the fracture toughness was significantly dependent (p<0.05) on critical flaw size. Conclusions: 1. Cyclic fatigue does not have a significant effect on the SCG in the fluorapatite glass-ceramic IPS e

  6. Radiation and Thermal Ageing of Nuclear Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less

  7. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  9. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  10. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making itmore » difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3

  11. Microwave-specific heating of crystalline species in nuclear waste glass

    DOE PAGES

    Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.

    2016-08-03

    Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less

  12. The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions

    DOE PAGES

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; ...

    2018-02-10

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty

  13. The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.

    An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty

  14. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    PubMed Central

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-01-01

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed. PMID:28773823

  15. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials.

    PubMed

    Sikora, Pawel; Augustyniak, Adrian; Cendrowski, Krzysztof; Horszczaruk, Elzbieta; Rucinska, Teresa; Nawrotek, Pawel; Mijowska, Ewa

    2016-08-18

    The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide) were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100%) to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  16. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; Kruger, Albert A.

    2017-11-01

    The effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. The accumulation rate of ∼53.8 ± 3.7 μm/h determined for this glass will result in a ∼26 mm-thick layer after 20 days of melter idling.

  17. Glass composition and solution speciation effects on stage III dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  18. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, V.; Kim, D. S.; Vienna, J. D.

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less

  19. Effects of waste glass and waste foundry sand additions on reclaimed tiles containing sewage sludge ash.

    PubMed

    Lin, Deng-Fong; Luo, Huan-Lin; Lin, Kuo-Liang; Liu, Zhe-Kun

    2017-07-01

    Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.

  20. Localized chemistry of 99Tc in simulated low activity waste glass

    NASA Astrophysics Data System (ADS)

    Weaver, Jamie L.

    A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.

  1. Corrosion of radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1988-05-01

    At the US Department of Energy (DOE) Savannah River Plant, the corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Laboratory tests, conducted to determine minimum corrosion inhibitor levels, indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations were conducted to assess the validity of laboratory tests. The in situ results are compared to those of laboratory tests, with particular regard given to simulated solution composition. Transition metal hydroxide sludge contains strong passivating species formore » carbon steel. Washed precipitate contains organic species that lower solution pH and tend to reduce passivating films, requiring higher inhibitor concentrations than the 0.01 M nitrite required for reactor fuel reprocessing wastes.« less

  2. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  3. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE PAGES

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.; ...

    2017-08-30

    We present that the effectiveness of high-level waste vitrification at Hanford's Waste Treatment and Immobilization Plant may be limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layers, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/ormore » small-scale agglomerates, but excessive agglomeration observed in high-Ni-Fe glass resulted in an underprediction of accumulated layers, which gradually worsened over time as an increased number of agglomerates formed. In conclusion, the accumulation rate of ~53.8 ± 3.7 μm/h determined for this glass will result in a ~26 mm-thick layer after 20 days of melter idling.« less

  4. Thermal properties of simulated Hanford waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less

  5. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    PubMed

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  6. Production of glass-ceramics from sewage sludge and waste glass

    NASA Astrophysics Data System (ADS)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  7. NanoSIMS Imaging Alternation Layers of a Leached SON68 Glass Via A FIB-made Wedged Crater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Chung; Schreiber, Daniel K.; Neeway, James J.

    2014-11-01

    Currently, nuclear wastes are commonly immobilized into glasses because of their long-term durability. Exposure to water for long periods of time, however, will eventually corrode the waste form and is the leading potential avenue for radionuclide release into the environment. Because such slow processes cannot be experimentally tested, the prediction of release requires a thorough understanding the mechanisms governing glass corrosion. In addition, due to the exceptional durability of glass, much of the testing must be performed on high-surface-area powders. A technique that can provide accurate compositional profiles with very precise depth resolution for non-flat samples would be a majormore » benefit to the field. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling is an excellent tool that has long been used to examine corrosion layers of glass. The roughness of the buried corrosion layers, however, causes the corresponding SIMS depth profiles to exhibit erroneously wide interfaces. In this study, NanoSIMS was used to image the cross-section of the corrosion layers of a leached SON68 glass sample. A wedged crater was prepared by a focused ion beam (FIB) instrument to obtain a 5× improvement in depth resolution for NanoSIMS measurements. This increase in resolution allowed us to confirm that the breakdown of the silica glass network is further from the pristine glass than a second dissolution front for boron, another glass former. The existence of these two distinct interfaces, separated by only ~20 nm distance in depth, was not apparent by traditional ToF-SIMS depth profiling but has been confirmed also by atom probe tomography. This novel sample geometry will be a major benefit to efficient NanoSIMS sampling of irregular interfaces at the nanometer scale that would otherwise be obscured within ToF-SIMS depth profiles.« less

  8. Hydrogen speciation in hydrated layers on nuclear waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-15

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was foundmore » in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.« less

  9. Use of waste glass in highway construction (update--1992).

    DOT National Transportation Integrated Search

    1993-01-01

    Increasing pressures to recycle more wastes and minimize the amount of materials placed in landfills are forcing reconsideration of potential uses of waste glass in highway construction and maintenance operations. The federal government and many stat...

  10. Proceedings of Symposium on Utilization of Waste Glass in Secondary Products

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Papers are reported which were presented at the conference on waste glass recovery and re-use in secondary products. The uses considered include: road surfacing, asphaltic concretes, road construction, terrazzo, cement concrete, pozzolan, glass wool, glass-polymer composites, and tiles. Problems of recycling glass in remote areas, and the economics and markets for secondary glass products are discussed.

  11. Using of borosilicate glass waste as a cement additive

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  12. FY2017 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Cordova, Elsa

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various conditions. To accomplish this, an IDF PA glass dissolution model basedmore » on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon solution concentrations, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the ion exchange process. The effect of temperature, pH, H4SiO4 activity, and the rate of ion exchange can be parameterized and implemented directly into the PA rate model. The rate model parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. The provided data can be used by glass researchers to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate model parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  13. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    NASA Astrophysics Data System (ADS)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.

    2015-10-01

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  14. A Review of Iron Phosphate Glasses and Recommendations for Vitrifying Hanford Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delbert E. Ray; Chandra S. Ray

    2013-11-01

    This report contains a comprehensive review of the research conducted, world-wide, on iron phosphate glass over the past ~30 years. Special attention is devoted to those iron phosphate glass compositions which have been formulated for the purpose of vitrifying numerous types of nuclear waste, with special emphasis on the wastes stored in the underground tanks at Hanford WA. Data for the structural, chemical, and physical properties of iron phosphate waste forms are reviewed for the purpose of understanding their (a) outstanding chemical durability which meets all current DOE requirements, (b) high waste loadings which can exceed 40 wt% (up tomore » 75 wt%) for several Hanford wastes, (c) low melting temperatures, can be as low as 900°C for certain wastes, and (d) high tolerance for “problem” waste components such as sulfates, halides, and heavy metals (chromium, actinides, noble metals, etc.). Several recommendations are given for actions that are necessary to smoothly integrate iron phosphate glass technology into the present waste treatment plans and vitrification facilities at Hanford.« less

  15. Prediction of stress corrosion of carbon steel by nuclear process liquid wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrejcin, R.S.

    1978-08-01

    Radioactive liquid wastes are produced as a consequence of processing fuel from Savannah River Plant (SRP) production reactors. These wastes are stored in mild steel waste tanks, some of which have developed cracks from stress corrosion. A laboratory test was developed to determine the relative agressiveness of the wastes for stress corrosion cracking of mild steel. Tensile samples were strained to fracture in synthetic waste solutions in an electrochemical cell with the sample as the anode. Crack initiation is expected if total elongation of the steel in the test is less than its uniform elongation in air. Cracking would bemore » anticipated in a plant waste tank if solution conditions were equivalent to test conditions that cause a total elongation that is less than uniform elongation. The electrochemical tensile tests showed that the supernates in salt receiver tanks at SRP have the least aggressive compositions, and wastes newly generated during fuel repocessing have the most aggressive ones. Test data also verified that ASTM A 516-70 steel used in the fabrication of the later design waste tanks is less susceptible to cracking than the ASTM A 285-B steel used in earlier designs.« less

  16. Road Map for Development of Crystal-Tolerant High Level Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Vienna, John D.; Peeler, David

    This road map guides the research and development for formulation and processing of crystal-tolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objective is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) is also addressed in this road map.

  17. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Kim, Dong-Sang; Vienna, John D.

    2015-11-01

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule. The purpose of this advanced LAW glass research and development plan is to identify the near-term, mid-term, and longer-term research and development activities required to develop and validate advanced LAW glasses, property-composition models and their uncertainties, and an advanced glass algorithm to support WTP facility operations, including both Direct Feed LAW and full pretreatment flowsheets. Data are needed to develop, validate, and implement 1) new glass property-composition models and 2) a new glass formulation algorithm. Hence, this plan integrates specific studies associated with increasing the Na2O and SO3/halide concentrations in glass, because these components will ultimately dictate waste loadings for LAW vitrification. Of equal importance is the development of an efficient and economic strategy for 99Tc management. Specific and detailed studies are being implemented to understand the fate of Tc

  18. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation). Final Report. Volume 3. Waste Tires.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  19. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  20. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs inmore » waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.« less

  1. Nano-lead particle synthesis from waste cathode ray-tube funnel glass.

    PubMed

    Xing, Mingfei; Zhang, Fu-Shen

    2011-10-30

    Waste cathode ray-tube (CRT) funnel glass is classified as hazardous waste since it contains high amount of lead. In the present study, a novel process for lead nanopowder synthesis from this type of glass was developed by combining vacuum carbon-thermal reduction and inert-gas consolidation procedures. The key trait of the process was to evaporate lead out of the glass to obtain harmless glass powder and synchronously produce lead nanoparticles. In the synthesis process, lead oxide in the funnel glass was firstly reduced to elemental lead, and evaporated rapidly in vacuum circumstance, then quenched and formed nano-size particles on the surface of the cooling device. Experimental results showed that temperature, pressure and argon gas flow rate were the major parameters controlling lead evaporation ratio and the morphology of lead nanoparticles. The maximum lead evaporation ratio was 96.8% and particles of 4-34 nm were successfully obtained by controlling the temperature, holding time, process pressure, argon gas flow rate at 1000°C, 2-4h, 500-2000 Pa, 50-200 ml/min, respectively. Toxicity characteristic leaching procedure (TCLP) results showed that lead leaching from the residue glass met the USEPA threshold. Accordingly, this study developed a practical and environmental-friendly process for detoxification and reclamation of waste lead-containing glass. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Effects of B Addition on Glass Formation, Mechanical Properties and Corrosion Resistance of the Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Niu, Jiazheng; Zhang, Zitang; Ge, Wenjuan; Shang, Caiyun; Wang, Yan

    2016-02-01

    The effects of B addition on glass formation, mechanical properties and electrochemical corrosion of Zr66.7- x Ni33.3B x ( x = 0, 1, 3, and 5 at.%) glassy ribbons have been investigated. The results reveal that the B addition can improve the glass forming ability and obviously raise the thermal stability of the Zr-Ni-B metallic glasses. The 1 at.% B addition exhibits the most positive effect on enhancing the microhardness of Vickers-type (HV) by 13.83%. In addition, Zr63.7Ni33.3B3 possesses the best plasticity in the nanoindentation test. The electrochemical test and microstructural observation show that the moderate B addition effectively enhances the corrosion resistance of the Zr-Ni-B metallic glasses in different solutions. The 3 at.% B addition is beneficial to improve the corrosion resistance in the 0.5 M NaCl solution. But in the 1 M HCl and 2 M NaOH solutions, the better effect is induced by the 1 and 5 at.% B addition. Moreover, the Zr-Ni-B metallic glasses exhibit active dissolution behavior in the chloride- and hydrogen-containing solutions, but passivation occurs in the 2 M NaOH solution.

  3. Deformation behavior, corrosion resistance, and cytotoxicity of Ni-free Zr-based bulk metallic glasses.

    PubMed

    Liu, L; Qiu, C L; Chen, Q; Chan, K C; Zhang, S M

    2008-07-01

    Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications. (c) 2007 Wiley Periodicals, Inc.

  4. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    NASA Astrophysics Data System (ADS)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  5. Research on the Properties of the Waste Glass Concrete Composite Foundation

    NASA Astrophysics Data System (ADS)

    Jia, Shilong; Chen, Kaihui; Chen, Zhongliang

    2018-02-01

    The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.

  6. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  7. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  8. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  9. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  10. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Parruzot, Benjamin PG

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based onmore » Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  11. U-based metallic glasses with superior glass forming ability

    NASA Astrophysics Data System (ADS)

    Xu, Hongyang; Ke, Haibo; Huang, Huogen; Zhang, Pengguo; Pu, Zhen; Zhang, Pei; Liu, Tianwei

    2018-02-01

    By using Al as the third and B as the fourth but minor alloying elements for the U66.7Co33.3 basic metallic glass, a series of U-Co-Al(-B) alloys were designed. The quaternary U-Co-Al-B alloys exhibit significantly improved glass-forming ability (GFA) than previously reported U-based metallic glasses. Low fragility (∼24) is found for these new U-based metallic glasses. The improvement in GFA would result from denser atomic packing in the undercooled liquids due to the presence of small B atoms. Some U-Co-Al(-B) glasses showed corrosion resistance comparable to that of U64Co34Al2 glass, known for premium anti-corrosive performance among the unveiled U-based glasses.

  12. Chemical composition analysis and product consistency tests to support Enhanced Hanford Waste Glass Models. Results for the Augusta and October 2014 LAW Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.; Edwards, T. B.; Best, D. R.

    2015-07-07

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for several simulated low activity waste (LAW) glasses (designated as the August and October 2014 LAW glasses) fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation regions of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions.

  13. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  14. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, P. A.; Vaishnav, S.; Forder, S. D.

    2017-02-01

    The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2), with a highmore » goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less

  15. Mix proportions and properties of CLSC made from thin film transition liquid crystal display optical waste glass.

    PubMed

    Wang, Her-Yung; Chen, Jyun-Sheng

    2010-01-01

    In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management. 2009 Elsevier Ltd. All rights reserved.

  16. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.

    Technetium retention during Hanford waste vitrification can be increased by inhibiting technetium volatility from the waste glass melter. Incorporating technetium into a mineral phase, such as sodalite, is one way to achieve this. Rhenium-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glasses. After melting feeds of these two glasses, the retention of rhenium was measured and compared with the rhenium retention in glass prepared from a feed containing Re2O7 as a standard. The rhenium retention was 21% higher for HLW glass and 85% highermore » for LAW glass when added to samples in the form of sodalite as opposed to when it was added as Re2O7, demonstrating the efficacy of this type of an approach.« less

  17. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 1. Municipal Waste Combustor Ash.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evlauate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  18. Corrosion susceptibility of steel drums to be used as containers for intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Farina, S.; Schulz Rodriguez, F.; Duffó, G.

    2013-07-01

    The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.

  19. Glass-bonded iodosodalite waste form for immobilization of 129I

    NASA Astrophysics Data System (ADS)

    Chong, Saehwa; Peterson, Jacob A.; Riley, Brian J.; Tabada, Diana; Wall, Donald; Corkhill, Claire L.; McCloy, John S.

    2018-06-01

    Immobilization of radioiodine is an important requirement for current and future nuclear fuel cycles. Iodosodalite [Na8(AlSiO4)6I2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Dried unwashed sodalite powders were used to synthesize glass-bonded iodosodalite waste forms (glass composite materials) by heating pressed pellets at 650, 750, or 850 °C with two types of sodium borosilicate glass binders. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. For the best waste form produced (pellets mixed with 10 mass% of glass binder and heat-treated at 750 °C), the maximum possible elemental iodine loading was 19.8 mass%, but only ∼8-9 mass% waste loading of iodine was retained in the waste form after thermal processing. Other pellets with higher iodine retention either contained higher porosity or were incompletely sintered. ASTM C1308 and C1285 (product consistency test, PCT) experiments were performed to understand chemical durability under diffusive and static conditions. The C1308 test resulted in significantly higher normalized loss compared to the C1285 test, most likely because of the strong effect of neutral pH solution renewal and prevention of ion saturation in solution. Both experiments indicated that release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix or from initial sodalite synthesis; however the C1308 test result indicated that congruent dissolution of iodosodalite occurred. The average release rates of iodine obtained from C1308 were 0.17 and 1.29 g m-2 d-1 for 80 or 8 m-1, respectively, and the C1285 analysis gave a value of 2 × 10-5 g m-2 d-1, which is comparable to or better than the durability of

  20. Leaves Waste Composite with Glass Fiber Reinforcement

    NASA Astrophysics Data System (ADS)

    Khoiri, N.; Jannah, W. N.; Huda, C.; Maulana, RM; Marwoto, P.; Masturi

    2018-03-01

    A research has been made to fabricate leave waste composites and Polyvinyl Acetate (PvAc) polymers reinforced with glass fibers. The method used was a simple mixing of leaves powders, PvAc, and glass fibers varied from 0 g to 1 g. Mass of 16 g leaves powder and mass of PvAc 4 g. The mixing result is suppressed by 5 metric-tons for 15 minutes. The composite is dried at room temperature for 1 day then in the oven at 100°C for 1 hour. The compressive strength is measured bu a hydraulic press. The result show that the compressive strength increased to the highest point of 0.8 g and will decrease significantly when the addition of glass fiber mass of 1 g. The highest compressive strength reaches 52.6 MPa when the glass fiber mass is 0.8 g. The result of this research showed that leaves composites with Polyvinyl Acetate polymer reinforced with fiber glass can be used as alternative material of wood substitute.

  1. Use of thin film transistor liquid crystal display (TFT-LCD) waste glass in the production of ceramic tiles.

    PubMed

    Lin, Kae-Long

    2007-09-05

    In this study, we employ the following operating conditions: varied pressure (25 kgf/cm(2)), sintering temperature (900-1200 degrees C), sintering time (6h), percentage of thin film transistor liquid crystal display (TFT-LCD) waste glass by weight (0-50%) and temperature rising at a rate of 5 degrees C/min, to fabricate clay tiles. The sintering characteristics of the clay blended with TFT-LCD waste glass tiles are examined to evaluate the feasibility of the reuse of TFT-LCD waste glass. TFT-LCD waste glass contains large amounts of glass. The TCLP leaching concentrations all met the ROC EPAs current regulatory thresholds. The addition of TFT-LCD waste glass to the mixture, increased the apparent weight loss. The incorporation of 50% TFT-LCD waste glass resulted in a significant increase in the porosity ratio of the specimens compared to the porosity ratio of the ceramic tile containing TFT-LCD waste glass. The main constituent in both the clay tile and the clay with TFT-LCD waste glass samples is quartz. Increasing the temperature resulted in an increase in the flexural strength and resistance to abrasion in the tiles. The porosity ratio decreases as shrinkage increases. The relation between the porosity ratio and the hardness of the tiles used in the study is also shown.

  2. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  3. Leaching assessments of toxic metals in waste plasma display panel glass.

    PubMed

    Chen, Mengjun; Jiang, Pengfei; Chen, Haiyan; Ogunseitan, Oladele A; Li, Yungui

    2015-06-01

    The plasma display panel (PDP) is rapidly becoming obsolete, contributing in large amounts to the electronic waste stream. In order to assess the potential for environmental pollution due to hazardous metals leached from PDP glass, standardized leaching procedures, chemical speciation assessments, and bioavailability tests were conducted. According to the Toxicity Characteristic Leaching Procedure (TCLP), arsenic in back glass was present at 4.46 ± 0.22 mg/L, close to its regulation limit of 5 mg/L. Zn is not available in the TCLP, but its TCLP leaching concentration in back glass is 102.96 ± 5.34 mg/L. This is because more than 90% of Zn is in the soluble and exchangeable and carbonate fraction. We did not detect significant levels of Ag, Ba, or Cu in the TCLP leachate, and the main fraction of Ag and Ba is residual, more than 95%, while the fraction distribution of Cu changes SEP by SEP. Ethylenediamine tetraacetic acid (EDTA)- and diethylenetriamine pentaacetic acid (DTPA)-extractable Ag, As, Ba, Cu, Zn, and Ni indicate a lower biohazards potential. These results show that, according to the EPA regulations, PDP glass may not be classified as hazardous waste because none of the metals exceeded their thresholds in PDP leachate. However, the concentrations of As and Zn should be lowered in the manufacturing process and finished product to avoid potential pollution problems. The plasma display panel is rapidly becoming obsolete because of the liquid crystal display. In this study, the leachability of heavy metals contained in the waste plasma display panel glass was first examined by standardized leaching tests, typical chemical speciation assessments, and bioavailability tests, providing fundamental data for waste PDP glass recovery, recycling, and reuse.

  4. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    DOE PAGES

    Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; ...

    2016-11-10

    In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO 4 2-) and total cation field strength index of the glass, Σ(z/a 2),more » with a high goodness-of-fit (R 2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λ th (R 2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R 2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a 2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less

  5. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  6. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.

    PubMed

    Lin, Kae-Long; Huang, Long-Sheng; Shie, Je-Lueng; Cheng, Ching-Jung; Lee, Ching-Hwa; Chang, Tien-Chin

    2013-01-01

    This study deals with the effect of solar panel waste glass on fired clay bricks. Brick samples were heated to temperatures which varied from 700-1000 degrees C for 6 h, with a heating rate of 10 degrees C min(-1). The material properties of the resultant material were then determined, including speciation variation, loss on ignition, shrinkage, bulk density, 24-h absorption rate, compressive strength and salt crystallization. The results indicate that increasing the amount of solar panel waste glass resulted in a decrease in the water absorption rate and an increase in the compressive strength of the solar panel waste glass bricks. The 24-h absorption rate and compressive strength of the solar panel waste glass brick made from samples containing 30% solar panel waste glass sintered at 1000 degrees C all met the Chinese National Standard (CNS) building requirements for first-class brick (compressive strengths and water absorption of the bricks were 300 kg cm(-2) and 10% of the brick, respectively). The addition of solar panel waste glass to the mixture reduced the degree of firing shrinkage. The salt crystallization test and wet-dry tests showed that the addition of solar panel waste glass had highly beneficial effects in that it increased the durability of the bricks. This indicates that solar panel waste glass is indeed suitable for the partial replacement of clay in bricks.

  7. Acid-Alkali Resistance of New Reclaimed Tiles Containing Sewage Sludge Ash and Waste Glass

    PubMed Central

    Lin, Deng-Fong; Lin, Kuo-Liang; Luo, Huan-Lin; Xu, Jia-Qin

    2016-01-01

    In this study, properties of newly developed reclaimed tiles in a harmful environment were investigated. A portion of clay used to manufacture tiles was replaced with sewage sludge ash (SSA) and waste glass to produce the new reclaimed tiles. To investigate the effects of SSA and waste glass on the properties of the tiles, different specimens were blended and placed in acid-alkali solutions. The reclaimed tile specimens were manufactured by clay, 10% SSA, and five different mixes of waste glass replacement, namely, 0%, 10%, 20%, 40%, and 60%. These specimens were calcined at 1000 °C and subsequently underwent a series of tests, including TGA/DTA (thermogravimetric analysis/differential thermal analysis), SEM (scanning electron microscopy), XRD (X-ray diffraction), bending strength, weight loss, and porosity. Test results show that shortcomings associated with the introduction of the sludge ash were improved by the admixture of waste glass, especially in the aspects of shrinkage and bending strength. The study showed that the new reclaimed tiles performed relatively well in acid-alkali resistance tests but appeared to have better alkali resistance than acid resistance. It was also found that the optimal mix of such reclaimed tiles was 10% SSA, 10% waste glass, and 80% clay. PMID:28773668

  8. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  10. Leaching of plutonium from a radioactive waste glass by eight groundwaters from the western United States

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Nash, K.L.

    1985-01-01

    The leachability of a radioactive waste glass formulated to Battelle Pacific Northwest Laboratory specification 80-270 has been studied using eight actual groundwaters with a range of chemical compositions as leachants. Waters collected from the Grande Ronde Basalt (Washington State) and from alluvial deposits in the Hualapai Valley (Arizona) were the most effective at removing plutonium from this glass. Leaching was shown to be incongruent; plutonium was removed from the glass more slowly than the overall glass matrix. The results of these experiments indicate the need to study the leachability of actual waste forms using the actual projected groundwaters that are most likely to come into contact with the waste should a radioactive waste repository be breached.

  11. Feasibility study on cross-linked biopolymeric concrete encapsulating selenium glass wastes.

    PubMed

    Kim, Daeik; Park, Joon-Seok; Yen, Teh Fu

    2012-08-01

    Feasibility study was conducted to encapsulate the selenium (Se) contained in glass waste, using the biopolymer-modified concrete. Biopolymer has unique characteristics to provide the chemical sites to metals or toxic compounds through the three-dimensional cross-linked structure. Very minute amount of biopolymer enhanced the characteristics of cementitious material. The resulting biopolymeric composite with selenium glass waste showed 20% higher compressive strength than ordinary concrete and the lower leaching concentration than the equipment detection limit. For a qualitative measurement, X-ray diffraction (XRD; X-ray powder diffractogram) was used to characterize the biopolymeric concrete. The optimum waste content percentage with appropriate biopolymer concrete mixture ratio was identified for its possible commercial use.

  12. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less

  13. The Swedish nuclear waste program and the long-term corrosion behaviour of copper

    NASA Astrophysics Data System (ADS)

    Rosborg, B.; Werme, L.

    2008-09-01

    The principal strategy for high-level radioactive waste disposal in Sweden is to enclose the spent fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bedrock. Besides rock movements, the biggest threat to the canister in the repository is corrosion. 'Nature' has proven that copper can last many million of years under proper conditions, bentonite clay has existed for many million years, and the Fennoscandia bedrock shield is stable. The groundwater may not stay the very same over very long periods considering glaciations, but this will not have dramatic consequences for the canister performance. While nature has shown the way, research refines and verifies. The most important task from a corrosion perspective is to ascertain a proper near-field environment. The background and status of the Swedish nuclear waste program are presented together with information about the long-term corrosion behaviour of copper with focus on the oxic period.

  14. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less

  15. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  16. Development of corrosion resistant heat exchangers for flue gas desulfurization

    NASA Astrophysics Data System (ADS)

    Ernst, E.; Lorentz, R.

    1984-12-01

    A glass lining as protection against corrosion in flue gas desulfurization plants was developed. Glasses were evaluated under corrosive attack of fluoride-containing acids. The corrosion properties of one-layer and two-layer glass enamels are optimized. Two-layer systems always show better resistance and longer life. The optimized glass linings were tested in a power plant. Manufacturing principles for glass-lined heat exchanger elements are derived. The optimized glasses may be used as protective lining design for heat exchangers or parts of them.

  17. Effect of Silica Particle Size of Nuclear Waste-to-Glass Conversion - 17319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Derek R.; Cutforth, Derek A.; Vanderveer, Bradley J.

    The process for converting nuclear waste-to-glass in an electric melter occurs in the cold cap, a crust of reacting solids floating on the glass pool. As the melter feed (a mixture of the nuclear waste and glass forming and modifying additives) heats up in the cold cap, glass-forming reactions ensue, causing the feed matrix to connect, trapping reaction gases to create a foam layer. The foam layer reduces the rate of melting by separating the reacting feed from the melt pool. The size of the silica particle additives in the melter feed affects melt viscosity and, hence, foam stability. Tomore » investigate this effect, seven nuclear waste simulant feeds of a high-level waste were batched as slurries and prepared with dissimilar ranges of silica particle size. Each slurry feed was charged into a laboratory-scale melter (LSM) to produce a cold cap and the propensity of feeds to foam was determined by pressing dried feeds into pellets and monitoring the change of pellet volume in response to heating. Two of these slurries were designed to have dissimilar glass viscosities at 1150°C. In the low temperature region of the cold cap, before the melter feed connects, the feeds without fine silica particles behaved similar to the high viscosity feed as their volume contracted while the feed with silica particles no larger than 5 µm reacted like the low viscosity feed. However, the feed volume similarities reversed as the feed connected and expanded through the foam region of the cold cap.« less

  18. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  19. FY2016 Update on ILAW Glass Testing for Disposal at IDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. E.; Swanberg, D. J.; Muller, Isabelle S.

    2017-04-12

    This status report provides a FY2016 update on work performed to collect information on the corrosion behavior of LAW glasses to support the IDF PA. In addition to the development of the baseline operating envelope for the WTP, since 2003, VSL has developed a wide range of LAW formulations that achieve considerably higher waste loadings than the WTP baseline formulations.

  20. Extraction of heavy metal (Ba, Sr) and high silica glass powder synthesis from waste CRT panel glasses by phase separation.

    PubMed

    Xing, Mingfei; Wang, Jingyu; Fu, Zegang; Zhang, Donghui; Wang, Yaping; Zhang, Zhiyuan

    2018-04-05

    In this study, a novel process for the extraction of heavy metal Ba and Sr from waste CRT panel glass and synchronous preparation of high silica glass powder was developed by glass phase separation. CRT panel glass was first remelted with B 2 O 3 under air atmosphere to produce alkali borosilicate glass. During the phase separation process, the glass separated into two interconnected phases which were B 2 O 3 -rich phase and SiO 2 -rich phase. Most of BaO, SrO and other metal oxides including Na 2 O, K 2 O, Al 2 O 3 and CaO were mainly concentrated in the B 2 O 3 -rich phase. The interconnected B 2 O 3 -rich phase can be completely leached out by 5mol/L HNO 3 at 90 ℃. The remaining SiO 2 -rich phase was porous glasses consisting almost entirely of silica. The maximum Ba and Sr removal rates were 98.84% and 99.38% and high silica glass powder (SiO 2 purity > 90 wt%) was obtained by setting the temperature, B 2 O 3 added amount and holding time at 1000-1100 ℃, 20-30% and 30 min, respectively. Thus this study developed an potential economical process for detoxification and reclamation of waste heavy metal glasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  2. Durability of waste glass flax fiber reinforced mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less

  3. Examining the role of canister cooling conditions on the formation of nepheline from nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-09-01

    Nepheline (NaAlSiO₄) crystals can form during slow cooling of high-level waste (HLW) glass after it has been poured into a waste canister. Formation of these crystals can adversely affect the chemical durability of the glass. The tendency for nepheline crystallization to form in a HLW glass increases with increasing concentrations of Al₂O₃ and Na₂O.

  4. Attenuation of Glass Dissolution in the Presence of Natural Additives

    NASA Technical Reports Server (NTRS)

    Sang, Jing C.; Barkatt, Aaron; OKeefe, John A.

    1993-01-01

    The study described here explored the dissolution kinetics of glasses in aqueous environments in systems which included a variety of natural crystalline solids in addition to the glass itself and the aqueous phase. The results demonstrated the possibility of a dramatic decrease in the rate of dissolution of silicate glass in the presence of certain varieties of olivine-based materials. This decrease in dissolution rate was shown to be due to the fact that these additives consist mostly of Mg-based material but also contain minor amounts of Al and Ca. The combined presence of Mg with these minor species affected the corrosion rate of the glass as a whole, including its most soluble components such as boron. The study has potentially important implications to the durability of glasses exposed to natural environments. The results may be relevant to the use of active backfill materials in burial sites for nuclear waste glasses as well as to better understanding of the environmental degradation of natural and ancient glasses.

  5. Redox-dependent solubility of technetium in low activity waste glass

    NASA Astrophysics Data System (ADS)

    Soderquist, Chuck Z.; Schweiger, Michael J.; Kim, Dong-Sang; Lukens, Wayne W.; McCloy, John S.

    2014-06-01

    The solubility of technetium was measured in a Hanford low activity waste (LAW) glass simulant, to investigate the extent that technetium solubility controls the incorporation of technetium into LAW glass. A series of LAW glass samples, spiked with 500-6000 ppm of Tc as potassium pertechnetate, were melted at 1000 °C in sealed fused quartz ampoules. Technetium solubility was determined in the quenched bulk glass to be 2000-2800 ppm, with slightly reducing conditions due to choice of milling media resulting in reductant contamination and higher solubility. The chemical form of technetium obtained by X-ray absorption near edge spectroscopy is mainly isolated, octahedrally-coordinated Tc(IV), with a minority of Tc(VII) in some glasses and TcO2 in two glasses. The concentration and speciation of technetium depends on glass redox and amount of technetium added. Salts formed at the top of higher technetium loaded glasses during the melt. The results of this study show that technetium solubility should not be a factor in technetium retention during melting of Hanford LAW glass.

  6. FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes

    NASA Astrophysics Data System (ADS)

    Liao, Qilong; Wang, Fu; Chen, Kuiru; Pan, Sheqi; Zhu, Hanzhen; Lu, Mingwei; Qin, Jianfa

    2015-07-01

    30 wt.% simulated nuclear wastes were successfully immobilized by B2O3-doped iron phosphate base glasses. The structure and thermal stability of the prepared wasteforms were characterized by Fourier transform infrared spectroscopy and differential thermal analysis, respectively. The subtle structural variations attributed to different B2O3 doping modes have been discussed in detail. The results show that the thermal stability and glass forming tendency of the iron borophosphate glass wasteforms are faintly affected by different B2O3 doping modes. The main structural networks of iron borophosphate glass wasteforms are PO43-, P2O74-, [BO4] groups. Furthermore, for the wasteform prepared by using 10B2O3-36Fe2O3-54P2O5 as base glass, the distributions of Fe-O-P bonds, [BO4], PO43- and P2O74- groups are optimal. In general, the dissolution rate (DR) values of the studied iron borophosphate wasteforms are about 10-8 g cm-2 min-1. The obtained conclusions can offer some useful information for the disposal of high-level radioactive wastes using boron contained phosphate glasses.

  7. Effect of Technetium-99 sources on its retention in low activity waste glass

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; Wang, Guohui; Schweiger, Michael J.; Soderquist, Chuck Z.; Lukens, Wayne; Kruger, Albert A.

    2018-05-01

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2•2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.

  8. GlassForm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  9. Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Cooley, Scott K.; Vienna, John D.

    This report discusses the development of an experimental design for the initial phase of the Hanford low-activity waste (LAW) enhanced glass study. This report is based on a manuscript written for an applied statistics journal. Appendices A, B, and E include additional information relevant to the LAW enhanced glass experimental design that is not included in the journal manuscript. The glass composition experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC involving 15 LAW glass components. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directlymore » applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this report. One of the glass components, SO 3, has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO 3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO 3 solubility limit had previously been modeled by a partial quadratic mixture model expressed in the relative proportions of the 14 other components. The partial quadratic mixture model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This report describes how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study. A layered design consists of points on an outer layer, and inner layer, and a center point. There were 18 outer-layer glasses chosen using optimal experimental design software to augment 147 existing glass compositions that were within the LAW glass composition experimental region. Then 13 inner-layer glasses were chosen with the software to augment the existing and outer-layer glasses. The

  10. Bio-corrosion and cytotoxicity studies on novel Zr 55Co 30Ti 15 and Cu 60Zr 20Ti 20 metallic glasses

    DOE PAGES

    Vincent, S.; Daiwile, A.; Devi, S. S.; ...

    2014-09-26

    Metallic glasses are a potential and compatible implant candidate for biomedical applications. In the present investigation, a comparative study between novel Zr 55Co 30Ti 15 and Cu 60Zr 20Ti 20 metallic glasses is carried out to evaluate in vitro biocompatibility using simulated body fluids. The bio-corrosion behavior of Zr- and Cu-based metallic glasses in different types of artificial body fluids such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution is evaluated using potentiodynamic polarization studies at a constant body temperature of 310.15 K (37 °C). Surface morphology of samples after bio-corrosion experimentsmore » was observed by scanning electron microscopy. In vitro cytotoxicity test on glassy alloys were performed using human osteosarcoma cell line as per 10993-5 guidelines from International Organization for Standardization. As a result, the comparative study between Zr- and Cu-based glassy alloys provides vital information about the effect of elemental composition on biocompatibility of metallic glasses.« less

  11. Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes

    DOEpatents

    Boatner, L.A.; Sales, B.C.

    1984-04-11

    Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste

  12. X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W. C.; Demchenko, I. N.

    2011-01-01

    Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2, where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2, indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na distances; Cl sbnd Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na correlations, where Cl sbnd O and Cl sbnd Na distances decrease by approximately 0.16 Å as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl sbnd Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.

  13. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-07-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  14. Interactions of silicate glasses with aqueous environments under conditions of prolonged contact and flow

    NASA Technical Reports Server (NTRS)

    Barkatt, Aaron; Saad, E. E.; Adiga, R. B.; Sousanpour, W.; Barkatt, AL.; Feng, X.; O'Keefe, J. A.; Alterescu, S.

    1988-01-01

    This paper discusses mechanisms involving saturation and reactions that lead to the formation of altered phases in silicate glasses considered for use in geologic repositories for nuclear waste. It is shown that the rate of dissolution of silicate glasses exposed to a broad range of contact times, leachant compositions, and surface-to-volume ratios is strongly affected by the presence of reactive species such as Al, Mg, and Fe. The reactive materials may originate in the leachant or, under conditions of high surface-to-volume ratio, in the glass itself. The effects of glass composition on the course of the corrosion process can be viewed in terms of the formation of a surface layer on the leached glass; the type, composition, and structure of this layer control the dissolution behavior of the glass.

  15. The chemical durability of tektites - A laboratory study and correlation with long-term corrosion behavior

    NASA Technical Reports Server (NTRS)

    Barkatt, A.; Boulos, M. S.; Barkatt, A.; Sousanpour, W.; Boroomand, M. A.; Macedo, P. B.; Okeefe, J. A.

    1984-01-01

    Leach tests carried out on tektite specimens (indochinites and australites) under high-dilution conditions show a common behavior characterized by low leach rates (0.00018 g/sq m per d, or 7.2 x 10 to the -12th m/d at 23 C) and an activation energy of (79,600 + or - 700 J/mol). The extent of selective leaching is very small, of the order of 10 to the -8th m. Extrapolation of test results over the lifetime of the tektites gives an excellent agreement with field observations on the extent of corrosion, and this is an important step in establishing the validity of laboratory tests as a basis for the development of models and predictions concerning long-term durabilities at least in the limiting case of high dilution or rapid flow. The results are also shown to be in agreement with various previous observations on the corrosion resistance of tektites. The chemical durability of tektites is observed to be consistent with their composition, highlighting requirements of high corrosion resistance in glasses; these requirements include a silica content in excess of 67 mol percent, an extremely low water content, and an alkali content which is low both absolutely and relative to the di- and poly-valent metal oxide levels. It is shown that artificial glasses which fulfil these criteria are no less corrosion-resistant than the corresponding natural glasses. These conclusions have bearing on the development, as well as on the evaluation, of glasses intended for very long service, such as radioactive waste vitrification media.

  16. Final Report. LAW Glass Formulation to Support AP-101 Actual Waste Testing, VSL-03R3470-2, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, I. S.; Pegg, I. L.; Rielley, Elizabeth

    2015-06-22

    The main objective of the work was to develop and select a glass formulation for vitrification testing of the actual waste sample of LAW AP-101 at Battelle - Pacific Northwest Division (PNWD). Other objectives of the work included preparation and characterization of glasses to demonstrate compliance with contract and processing requirements, evaluation of the ability to achieve waste loading requirements, testing to demonstrate compatibility of the glass melts with melter materials of construction, comparison of the properties of simulant and actual waste glasses, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  17. Glass corrosion in natural environment

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.

    1989-01-01

    A series of studies of the effects of solutes which appear in natural aqueous environments, specifically Mg and Al, under controlled conditions, permit characterization of the retardation of silicate glass leaching in water containing such solutes. In the case of Mg the interaction with the glass appears to consist of exchange with alkali ions present in the glass to a depth of several microns. The effect of Al can be observed at much lower levels, indicating that the mechanism in the case of Al involves irreversible formation of aluminosilicate species at the glass surface.

  18. Effect of Technetium-99 sources on its retention in low activity waste glass

    DOE PAGES

    Luksic, Steven A.; Kim, Dong Sang; Um, Wooyong; ...

    2018-03-02

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO 2∙2H 2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. Here, we postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Finally,more » additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.« less

  19. Effect of Technetium-99 sources on its retention in low activity waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO2∙2H2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with hexavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Additional studies are neededmore » to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from glass melt.« less

  20. Effect of Technetium-99 sources on its retention in low activity waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Kim, Dong Sang; Um, Wooyong

    Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO 2∙2H 2O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. Here, we postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generally accepted idea. Finally,more » additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.« less

  1. Effect of Technetium-99 sources on its retention in low activity waste glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong

    © 2018 Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO 2 ∙2H 2 O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generallymore » accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.« less

  2. Effect of Technetium-99 sources on its retention in low activity waste glass

    DOE PAGES

    Luksic, Steven A.; Kim, Dong-Sang; Um, Wooyong; ...

    2018-05-01

    © 2018 Small-scale crucible melting tests on simulated waste glass were performed with technetium-99 (Tc-99) introduced as different species in a representative low activity waste simulant. The glass saw an increase in Tc-99 retention when TcO 2 ∙2H 2 O and various Tc-minerals containing reduced tetravalent Tc were used compared to tests in which pertechnetate with heptavalent Tc was used. We postulate that the increase of Tc retention is likely caused by different reaction paths for Tc incorporation into glass during early stages of melting, rather than the low volatility of reduced tetravalent Tc compounds, which has been a generallymore » accepted idea. Additional studies are needed to clarify the exact mechanisms relevant to the effect of reduced Tc compounds on Tc incorporation into or volatilization from the glass melt.« less

  3. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    PubMed

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sodalite as a vehicle to increase Re retention in waste glass simulant during vitrification

    NASA Astrophysics Data System (ADS)

    Luksic, Steven A.; Riley, Brian J.; Parker, Kent E.; Hrma, Pavel

    2016-10-01

    Technetium (Tc) retention during Hanford waste vitrification can be increased if the volatility can be controlled. Incorporating Tc into a thermally stable mineral phase, such as sodalite, is one way to achieve increased retention. Here, rhenium (Re)-bearing sodalite was tested as a vehicle to transport perrhenate (ReO4-), a nonradioactive surrogate for pertechnetate (TcO4-), into high-level (HLW) and low-activity waste (LAW) glass simulants. After melting HLW and LAW simulant feeds, the retention of Re in the glass was measured and compared with the Re retention in glass prepared from a feed containing Re2O7. Phase analysis of sodalite in both these glasses across a profile of temperatures describes the durability of Re-sodalite during the feed-to-glass transition. The use of Re sodalite improved the Re retention by 21% for HLW glass and 85% for LAW glass, demonstrating the potential improvement in Tc-retention if TcO4- were to be encapsulated in a Tc-sodalite prior to vitrification.

  5. ECLSS Universal Waste Management System (UWMS) Metal Materials Compatibility Study- Electrochemical and Crevice Corrosion Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, R. E.

    2017-01-01

    Electrochemical and crevice corrosion laboratory test results are presented for three noble metal candidates with possible application on the Universal Waste Management System (UWMS) in support of the Environmental Control and Life Support System (ECLSS) aboard the International Space Station (ISS). The three metal candidates, which included Inconel 625, Hastelloy C276 and Titanium 6Al-4V, were evaluated in two solutions representative of the acidic pretreatment formulations utilized during processing of waste liquids within the ECLSS. Final test results and data analysis indicated that the passive layer on all three metals provides excellent corrosion protection in both solutions under standard test conditions.

  6. Lead recovery from waste CRT funnel glass by high-temperature melting process.

    PubMed

    Hu, Biao; Hui, Wenlong

    2018-02-05

    In this research, a novel and effective process for waste CRT funnel glass treatment was developed. The key to this process is removal of lead from the CRT funnel glass by high-temperature melting process. Sodium carbonate powder was used as a fusion agent, sodium sulfide serves as a catalytic agent and carbon powder acts as reducing agent. Experimental results showed that lead recovery rate increased with an increase in the amount of added sodium carbonate, sodium sulfide, carbonate, temperature and holding time initially, and then reached a stable value. The maximum lead recovery rate was approximately 94%, when the optimum adding amount of sodium carbonate, sodium sulfide, carbonate, temperature and holding time were 25%, 8%, 3.6%, 1200°C and 120min, respectively. In the high-temperature melting process, lead silicate in the funnel glass was firstly reduced, and then removed. The glass slag can be made into sodium and potassium silicate by hydrolysis process. This study proposed a practical and economical process for recovery of lead and utilization of waste glass slag. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    PubMed

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  8. Candidate Low-Temperature Glass Waste Forms for Technetium-99 Recovered from Hanford Effluent Management Facility Evaporator Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Mei; Tang, Ming; Rim, Jung Ho

    Alternative treatment and disposition options may exist for technetium-99 (99Tc) in secondary liquid waste from the Hanford Direct-Feed Low-Activity Waste (DFLAW) process. One approach includes development of an alternate glass waste form that is suitable for on-site disposition of technetium, including salts and other species recovered by ion exchange or precipitation from the EMF evaporator concentrate. By recovering the Tc content from the stream, and not recycling the treated concentrate, the DFLAW process can potentially be operated in a more efficient manner that lowers the cost to the Department of Energy. This report provides a survey of candidate glass formulationsmore » and glass-making processes that can potentially incorporate technetium at temperatures <700 °C to avoid volatilization. Three candidate technetium feed streams are considered: (1) dilute sodium pertechnetate loaded on a non-elutable ion exchange resin; (2) dilute sodium-bearing aqueous eluent from ion exchange recovery of pertechnetate, or (3) technetium(IV) oxide precipitate containing Sn and Cr solids in an aqueous slurry. From the technical literature, promising candidate glasses are identified based on their processing temperatures and chemical durability data. The suitability and technical risk of three low-temperature glass processing routes (vitrification, encapsulation by sintering into a glass composite material, and sol-gel chemical condensation) for the three waste streams was assessed, based on available low-temperature glass data. For a subset of candidate glasses, their long-term thermodynamic behavior with exposure to water and oxygen was modeled using Geochemist’s Workbench, with and without addition of reducing stannous ion. For further evaluation and development, encapsulation of precipitated TcO2/Sn/Cr in a glass composite material based on lead-free sealing glasses is recommended as a high priority. Vitrification of pertechnetate in aqueous anion exchange eluent

  9. Evaluation of lead recovery efficiency from waste CRT funnel glass by chlorinating volatilization process.

    PubMed

    Erzat, Aris; Zhang, Fu-Shen

    2014-01-01

    The current study was carried out to develop a novel process, namely chloride volatilization procedure for lead recovery from waste cathode ray tube (CRT) funnel glass. In the recovery system, the glass powder was first compressed into cylindrical pellet homogeneously with chlorinating agents, and then subjected to thermal treatment for solid-phase reaction. In this case, lead could be easily released from the silicon oxide network of the glass and it was recovered in the form of PbCl₂. It was found that CaCl2 was the most effective chlorinating agent, and the optimum operation temperature, holding time and system pressure were 1000 °C, 2 h, 600 ± 50 Pa, respectively. The evaporated PbCl₂could be easily recovered by a cooling device. The evaporation ratio of lead from waste CRT was 99.1% and the purity of the recovered PbCl₂product was 97.0%. The reaction routes and lead recovery mechanisms of the process were identified. This study provides an efficient and practical process for waste CRT funnel glass detoxification and recycling.

  10. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    NASA Astrophysics Data System (ADS)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  11. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE PAGES

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; ...

    2017-07-01

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  12. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  13. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE PAGES

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; ...

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. Here, to investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700°C before the emerging glass-forming melt was completely connected. Above 700°C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Finally, knowledge of the chemistry and physics of feed-to-glass conversion willmore » help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  14. Corrosion performance of Cr3C2-NiCr+0.2%Zr coated super alloys under actual medical waste incinerator environment

    NASA Astrophysics Data System (ADS)

    Ahuja, Lalit; Mudgal, Deepa; Singh, Surendra; Prakash, Satya

    2018-03-01

    Incineration techniques are widely used to dispose of various types of waste which lead to formation of very corrosive environment. Such corrosive environment leads to the degradation of the alloys used in these areas. To obviate this problem, zirconium modified Cr3C2-(NiCr) coating powder has been deposited on three superalloys namely Superni 718, Superni 600 and Superco 605 using Detonation gun technique. Corrosion test was conducted in actual medical waste incinerator environment. The samples were hung inside the secondary chamber operated at 1050°C for 1000h under cyclic condition. Corrosion kinetics was monitored using the weight gain measurements and thickness loss. Corrosion products were characterized using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction technique. It was observed that coating is found to be successful in impeding the corrosion problem in superalloys.

  15. Extraction of lead from waste CRT funnel glass by generating lead sulfide - An approach for electronic waste management.

    PubMed

    Hu, Biao; Hui, Wenlong

    2017-09-01

    Waste cathode ray tube (CRT) funnel glass is the key and difficult points in waste electrical and electronic equipment (WEEE) disposal. In this paper, a novel and effective process for the detoxification and reutilization of waste CRT funnel glass was developed by generating lead sulfide precipitate via a high-temperature melting process. The central function in this process was the generation of lead sulfide, which gathered at the bottom of the crucible and was then separated from the slag. Sodium carbonate was used as a flux and reaction agent, and sodium sulfide was used as a precipitating agent. The experimental results revealed that the lead sulfide recovery rate initially increased with an increase in the amount of added sodium carbonate, the amount of sodium sulfide, the temperature, and the holding time and then reached an equilibrium value. The maximum lead sulfide recovery rate was approximately 93%, at the optimum sodium carbonate level, sodium sulfide level, temperature, and holding time of 25%, 8%, 1200°C, and 2h, respectively. The glass slag can be made into sodium and potassium silicate by hydrolysis in an environmental and economical process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kai; Hrma, Pavel; Rice, Jarrett A.

    2016-05-23

    The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold-cap zone during nuclear waste vitrification. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis – wavelength dispersive X-ray spectroscopy, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 °C before the emerging glass-forming melt wasmore » completely connected. Above 800 °C, intermediate aluminosilicate phases and quartz particles were gradually dissolving in the continuous borosilicate melt, which expanded into transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate.« less

  17. Ancient Glass: A Literature Search and its Role in Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Pierce, Eric M.

    2010-07-01

    When developing a performance assessment model for the long-term disposal of immobilized low-activity waste (ILAW) glass, it is desirable to determine the durability of glass forms over very long periods of time. However, testing is limited to short time spans, so experiments are performed under conditions that accelerate the key geochemical processes that control weathering. Verification that models currently being used can reliably calculate the long term behavior ILAW glass is a key component of the overall PA strategy. Therefore, Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to evaluate alternative strategies that can be usedmore » for PA source term model validation. One viable alternative strategy is the use of independent experimental data from archaeological studies of ancient or natural glass contained in the literature. These results represent a potential independent experiment that date back to approximately 3600 years ago or 1600 before the current era (bce) in the case of ancient glass and 106 years or older in the case of natural glass. The results of this literature review suggest that additional experimental data may be needed before the result from archaeological studies can be used as a tool for model validation of glass weathering and more specifically disposal facility performance. This is largely because none of the existing data set contains all of the information required to conduct PA source term calculations. For example, in many cases the sediments surrounding the glass was not collected and analyzed; therefore having the data required to compare computer simulations of concentration flux is not possible. This type of information is important to understanding the element release profile from the glass to the surrounding environment and provides a metric that can be used to calibrate source term models. Although useful, the available literature sources do not contain the required

  18. An investigation of waste glass-based geopolymers supplemented with alumina

    NASA Astrophysics Data System (ADS)

    Christiansen, Mary U.

    An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. 39 Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical

  19. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99.

    PubMed

    McCloy, John S; Riley, Brian J; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J; Rodriguez, Carmen P; Hrma, Pavel; Kim, Dong-Sang; Lukens, Wayne W; Kruger, Albert A

    2012-11-20

    The immobilization of technetium-99 ((99)Tc) in a suitable host matrix has proven to be a challenging task for researchers in the nuclear waste community around the world. In this context, the present work reports on the solubility and retention of rhenium, a nonradioactive surrogate for (99)Tc, in a sodium borosilicate glass. Glasses containing target Re concentrations from 0 to 10,000 ppm [by mass, added as KReO(4) (Re(7+))] were synthesized in vacuum-sealed quartz ampules to minimize the loss of Re from volatilization during melting at 1000 °C. The rhenium was found as Re(7+) in all of the glasses as observed by X-ray absorption near-edge structure. The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) using inductively coupled plasma optical emission spectroscopy. At higher rhenium concentrations, additional rhenium was retained in the glasses as crystalline inclusions of alkali perrhenates detected with X-ray diffraction. Since (99)Tc concentrations in a glass waste form are predicted to be <10 ppm (by mass), these Re results implied that the solubility should not be a limiting factor in processing radioactive wastes, assuming Tc as Tc(7+) and similarities between Re(7+) and Tc(7+) behavior in this glass system.

  20. Synthesis of silica gel from waste glass bottles and its application for the reduction of free fatty acid (FFA) on waste cooking oil

    NASA Astrophysics Data System (ADS)

    Sudjarwo, Wisnu Arfian A.; Bee, Mei Magdayanti F.

    2017-06-01

    Synthesis of silica gel from waste glass bottles was conducted with aims to characterize the product and to analyze its application forthe reduction of free fatty acid (FFA) on waste cooking oil. Silica source taken from waste glass bottles was synthesized into silica gel by using the sol-gel method. Several types of silica gel were produced with three different weight ratios of waste glass and sodium hydroxide as an extractor. They were: 1:1, 1:2, and 1:3. The results indicated that synthesized silica possessed morphology innano-sizedranging from 85 nm to 459 nm. Adsorption performance was investigated by a batch system atthe temperature between 70°C and 110°C by a range of 10°C in an hour. Analysis of the adsorption characteristic showed that the highest efficiency value of FFA reduction of 91% was obtained by silica gel with ratiosof 1:1 (SG 1) and 1:3 (SG 3). Their performances were also followed by the decline of the refractive index and the density of waste cooking oil.

  1. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Choi, A.; Marra, J.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting themore » melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  2. Calcium titanium silicate based glass-ceramic for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Srivastav, A. P.; Goswami, M.; Krishnan, Madangopal

    2018-04-01

    Titanate based ceramics (synroc) have been studied for immobilisation of nuclear wastes due to their high radiation and thermal stability. The aim of this study is to synthesis glass-ceramic with stable phases from alumino silicate glass composition and study the loading behavior of actinides in glass-ceramics. The effects of CaO and TiO2 addition on phase evolution and structural properties of alumino silicate based glasses with nominal composition x(10CaO-9TiO2)-y(10Na2O-5 Al2O3-56SiO2-10B2O3); where z = x/y = 1.4-1.8 are reported. The glasses are prepared by melt-quench technique and characterized for thermal and structural properties using DTA and Raman Spectroscopy. Glass transition and peak crystallization temperatures decrease with increase of CaO and TiO2 content, which implies the weakening of glass network and increased tendency of glasses towards crystallization. Sphene (CaTiSiO5) and perovskite (CaTiO3) crystalline phases are confirmed from XRD which are well known stable phase for conditioning of actinides. The microsturcture and elemental analysis indicate the presence of actinide in stable crystalline phases.

  3. Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Muller, Isabelle S.

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO3 on a calcined oxide basis). If the amount of sulfur exceeds its tolerance level a molten salt will accumulate and upset melter operations and potentially shorten melter useful life. Therefore relatively conservative limits have been placed on sulfur loading in melter feed which in-turn significantly impacts the amount of glass that will be produced, in particular at the Hanford site. Crucible-scale sulfur solubilitymore » data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO3 in glass based on 312 individual glass compositions. This model was shown to well represent the data, accounting for over 80% of the variation in data and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed based on 19 scaled melter tests. The model is appropriate for control of waste glass processing which includes uncertainty quantification. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li2O > V2O5 ≈ TiO2 < CaO < P2O5 ≈ ZnO. The components that most decrease sulfur solubility are Cl > Cr2O3 > SiO2 ≈ ZrO2 > Al2O3.« less

  4. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility.more » Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte

  5. The recycling of comminuted glass-fiber-reinforced resin from electronic waste.

    PubMed

    Duan, Huabo; Jia, Weifeng; Li, Jinhui

    2010-05-01

    The reuse of comminuted glass-fiber-reinforced resin with various granularities gathered from printed circuit manufacturing residues was investigated. As fillers, these residues were converted into polymeric composite board by an extrusion and injection process using polypropylene as a bonding agent. The mechanical properties of the reproduced composite board were examined by considering the effects of mass fraction and glass-fiber distribution. Interfacial-layer micrograph analysis of the composite material fracture surface was used to study the fiber reinforcement mechanism. Results showed that using comminuted glass-fiber-reinforced resin as a filler material greatly enhanced the performance properties of the composite board. Although the length and diameter of filler varied, these variations had no appreciable effect on the mechanical properties of the processed board. Maximum values of 48.30 MPa for flexural strength, 31.34 MPa for tensile strength, and 31.34 J/m for impact strength were achieved from a composite board containing mass fractions of 30, 10, and 20% glass-fiber-reinforced resin waste, respectively. It was found that the maximum amount of recyclate that could be added to a composite board was 30% of weight. Beyond these percentages, the materials blend became unmanageable and the mixture less amenable to impregnation with fiber. Presented studies indicated that comminuted glass-fiber-reinforced resin waste-filled polypropylene composites are promising candidates for structural applications where high stiffness and fracture resistance are required.

  6. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Amoroso, J.; Mcclane, D.

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanningmore » calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  7. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.

  8. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  9. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  10. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less

  11. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Ryang Park, Jae; Yoon Shin, Dong

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonancemore » spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30 vol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1 h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). - Highlights: • Waste automotive laminated glass and polyvinyl butyral mechanochemically separated. • An economical total recovery and environment-friendly process has been developed. • It is a global problem rather than regional environmental issue has been addressed. • Without using hazardous chemical wastes are being converted to a wealth.« less

  12. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  13. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica; Deng, Lu

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less

  14. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    NASA Astrophysics Data System (ADS)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  15. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T. B.

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targetedmore » and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.« less

  16. Toward understanding the effect of low-activity waste glass composition on sulfur solubility

    DOE PAGES

    Vienna, John D.; Kim, Dong -Sang; Muller, Isabelle S.; ...

    2014-07-24

    The concentration of sulfur in nuclear waste glass melter feed must be maintained below the point where salt accumulates on the melt surface. The allowable concentrations may range from 0.37 to over 2.05 weight percent (of SO 3 on a calcined oxide basis) depending on the composition of the melter feed and processing conditions. If the amount of sulfur exceeds the melt tolerance level, a molten salt will accumulate, which may upset melter operations and potentially shorten the useful life of the melter. At the Hanford site, relatively conservative limits have been placed on sulfur loading in melter feed, whichmore » in turn significantly increases the amount of glass that will be produced. Crucible-scale sulfur solubility data and scaled melter sulfur tolerance data have been collected on simulated Hanford waste glasses over the last 15 years. These data were compiled and analyzed. A model was developed to predict the solubility of SO 3 in glass based on 252 simulated Hanford low-activity waste (LAW) glass compositions. This model represents the data well, accounting for over 85% of the variation in data, and was well validated. The model was also found to accurately predict the tolerance for sulfur in melter feed for 13 scaled melter tests of simulated LAW glasses. The model can be used to help estimate glass volumes and make informed decisions on process options. The model also gives quantitative estimates of component concentration effects on sulfur solubility. The components that most increase sulfur solubility are Li 2O > V 2O 5> CaO ≈ P 2O 5 > Na 2O ≈ B 2O 3 > K 2O. The components that most decrease sulfur solubility are Cl > Cr 2O 3 > Al 2O 3 > ZrO 2 ≈ SnO 2 > Others ≈ SiO 2. As a result, the order of component effects is similar to previous literature data, in most cases.« less

  17. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    DOE PAGES

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...

    2017-08-30

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  18. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel

    PubMed Central

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso; Pellegrini, Simone; Burattini, Mauro; Miglio, Roberta

    2017-01-01

    The paper deals with the corrosion behavior of stainless steels as candidate materials for biofuel production plants by liquefaction process of the sorted organic fraction of municipal solid waste. Corrosion tests were carried out on AISI 316L and AISI 304L stainless steels at 250 °C in a batch reactor during conversion of raw material to bio-oil (biofuel precursor), by exposing specimens either to water/oil phase or humid gas phase. General corrosion rate was measured by weight loss tests. The susceptibility to stress corrosion cracking was evaluated by means of U-bend specimens and slow stress rate tests at 10−6 or 10−5 s−1 strain rate. After tests, scanning electron microscope analysis was carried out to detect cracks and localized attacks. The results are discussed in relation with exposure conditions. They show very low corrosion rates strictly dependent upon time and temperature. No stress corrosion cracking was observed on U-bend specimens, under constant loading. Small cracks confined in the necking cone of specimens prove that stress corrosion cracking only occurred during slow strain rate tests at stresses exceeding the yield strength. PMID:28772682

  19. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to developmore » a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the

  20. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    PubMed Central

    Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta

    2017-01-01

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates. PMID:29186854

  1. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    PubMed

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  2. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    PubMed

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    PubMed Central

    Qin, Chunling; Zhao, Weimin; Inoue, Akihisa

    2011-01-01

    This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni) and Cu–Zr–Ag–Al–(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance. PMID:21731441

  4. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  5. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludgemore » in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.« less

  6. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  7. 40 CFR 261.22 - Characteristic of corrosivity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 261.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Characteristic of corrosivity. (a) A solid waste exhibits the characteristic of corrosivity if a representative... Methods for Evaluating Solid Waste, Physical/Chemical Methods,” EPA Publication SW-846, as incorporated by...

  8. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and

  9. Determination of chemical speciations of cerium in nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Meiling; Li, Hong

    1996-12-31

    Cerium oxides have been widely used as a surrogate for plutonium in the investigation of the melt and durability behavior of simulated nuclear waste glasses. It is well known that there is a cerous-ceric equilibrium in silicate glasses under normal melting conditions. The position of this equilibrium depends on glass composition, melting temperature, furnace atmosphere, and possibly the total amounts of cerium in glass. The oxidation state of cerium affects total solubility of cerium in glass, solubilities of other components in glass, viscosities and liquidus temperatures of the melts, and the chemical durability of the glasses. A procedure was developedmore » for the determination of the ceric and cerous distribution. The glass was ground to small particles of less than 300 meshes and was dissolved in mixture of HF and H{sub 2}SO{sub 4}. The ceric oxide was graduately reduced to cerous species in the presence of HF acid during the dissolution. To compensate the change of the equilibrium during the dissolution, a calibration curve is made with a mixture of standard solution of ceric sulphate and one gram of glass of the same composition containing no cerium. Boric acid was added to complex the fluoride ions, and the resultant solution was titrated potentiometrically with 0.01 N ferrous ammonium sulphate solution. The corrected ceric concentration was obtained on the calibration curve. The total cerium content in the above solution was analyzed using ICP-AES and the cerous content was the difference between the total Ce and Ce(+4).« less

  10. Examination of pulverized waste recycled glass as filter media in slow sand filtration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccirillo, J.B.; Letterman, R.D.

    1997-10-01

    The purpose of this study was to investigate the pulverization of waste recycled glass to produce glass sand for slow sand filters. Pulverization experiments were performed using a fail mill pulverizer. The glass sand product from the pulverizer meets the size distribution requirements of ASTM-C-33 without size distribution adjustment. The size distribution must be adjusted to meet the grain size distribution requirements of the Ten States Standards and the USEPA for filter media used in slow sand filters. Pulverized glass that meet slow sand filter media specifications is an effective alternative to silica sand as a filter media for slowmore » sand filtration. Three pilot plant slow sand filters with glass sand filter media were compared to a fourth filter containing silica sand filter media. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good or better than the silica sands, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; 99.92% and 99.97% for cryptosporidium oocysts. Based on a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.« less

  11. Rhenium Solubility in Borosilicate Nuclear Waste Glass: Implications for the Processing and Immobilization of Technetium-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Riley, Brian J.; Goel, Ashutosh

    2012-10-26

    The immobilization of 99Tc in a suitable host matrix has proved to be an arduous task for the researchers in nuclear waste community around the world. At the Hanford site in Washington State, the total amount of 99Tc in low-activity waste (LAW) is ~1300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility/retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant because of the similarity between theirmore » ionic radii and other chemical aspects. The glasses containing Re (0 – 10,000 ppm by mass) were synthesized in vacuum-sealed quartz ampoules in order to minimize the loss of Re by volatilization during melting at 1000 °C. The rhenium was found to predominantly exist as Re (VII) in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be ~3000 ppm (by mass) with inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of crystalline inclusions that were detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). The implications of these results on the immobilization of 99Tc from radioactive wastes in borosilicate glasses have been discussed.« less

  12. Viscoplasticity of simulated high-level radioactive waste glass containing platinum group metal particles

    NASA Astrophysics Data System (ADS)

    Uruga, Kazuyoshi; Usami, Tsuyoshi; Tsukada, Takeshi; Komamine, Satoshi; Ochi, Eiji

    2014-09-01

    The shear rate dependency of the viscosity of three simulated high-level radioactive waste glasses containing 0, 1.2 and 4.5 wt% platinum group metals (PGMs) was examined at a temperature range of 1173-1473 K by a rotating viscometer. Shear stress when the shear rate equals zero, i.e. yield stress, was also measured by capillary method. The viscosity of the glass containing no PGM was shear rate-independent Newtonian fluid. On the other hand, the apparent viscosity of the glasses containing PGMs increased with decreasing shear rate, and nonzero amount of yield stresses were detected from both glasses. The viscosity and yield stress of the glass containing 4.5 wt% PGMs was roughly one to two orders of magnitude greater than the glass containing 1.2 wt% PGMs. These viscoplastic properties were numerically expressed by Casson equation.

  13. Evaluation of final waste forms and recommendations for baseline alternatives to group and glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleier, A.

    1997-09-01

    An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidatemore » alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining

  14. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  15. Long-term product consistency test of simulated 90-19/Nd HLW glass

    NASA Astrophysics Data System (ADS)

    Gan, X. Y.; Zhang, Z. T.; Yuan, W. Y.; Wang, L.; Bai, Y.; Ma, H.

    2011-01-01

    Chemical durability of 90-19/Nd glass, a simulated high-level waste (HLW) glass in contact with the groundwater was investigated with a long-term product consistency test (PCT). Generally, it is difficult to observe the long term property of HLW glass due to the slow corrosion rate in a mild condition. In order to overcome this problem, increased contacting surface ( S/ V = 6000 m -1) and elevated temperature (150 °C) were employed to accelerate the glass corrosion evolution. The micro-morphological characteristics of the glass surface and the secondary minerals formed after the glass alteration were analyzed by SEM-EDS and XRD, and concentrations of elements in the leaching solution were determined by ICP-AES. In our experiments, two types of minerals, which have great impact on glass dissolution, were found to form on 90-19/Nd HLW glass surface when it was subjected to a long-term leaching in the groundwater. One is Mg-Fe-rich phyllosilicates with honeycomb structure; the other is aluminosilicates (zeolites). Mg and Fe in the leaching solution participated in the formation of phyllosilicates. The main components of phyllosilicates in alteration products of 90-19/Nd HLW glass are nontronite (Na 0.3Fe 2Si 4O 10(OH) 2·4H 2O) and montmorillonite (Ca 0.2(Al,Mg) 2Si 4O 10(OH) 2·4H 2O), and those of aluminosilicates are mordenite ((Na 2,K 2,Ca)Al 2Si 10O 24·7H 2O)) and clinoptilolite ((Na,K,Ca) 5Al 6Si 30O 72·18H 2O). Minerals like Ca(Mg)SO 4 and CaCO 3 with low solubility limits are prone to form precipitant on the glass surface. Appearance of the phyllosilicates and aluminosilicates result in the dissolution rate of 90-19/Nd HLW glass resumed, which is increased by several times over the stable rate. As further dissolution of the glass, both B and Na in the glass were found to leach out in borax form.

  16. Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development

    NASA Astrophysics Data System (ADS)

    Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou

    2009-06-01

    An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear

  17. For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J. Clyde

    1964-01-01

    Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…

  18. Compositional Models of Glass/Melt Properties and their Use for Glass Formulation

    DOE PAGES

    Vienna, John D.; USA, Richland Washington

    2014-12-18

    Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less

  19. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE PAGES

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...

    2017-05-10

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  20. X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav

    The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less

  1. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  2. Glass ceramic obtained by tailings and tin mine waste reprocessing from Llallagua, Bolivia

    NASA Astrophysics Data System (ADS)

    Arancibia, Jony Roger Hans; Villarino, Cecilia; Alfonso, Pura; Garcia-Valles, Maite; Martinez, Salvador; Parcerisa, David

    2014-05-01

    In Bolivia Sn mining activity produces large tailings of SiO2-rich residues. These tailings contain potentially toxic elements that can be removed into the surface water and produce a high environmental pollution. This study determines the thermal behaviour and the viability of the manufacture of glass-ceramics from glass. The glass has been obtained from raw materials representative of the Sn mining activities from Llallagua (Bolivia). Temperatures of maximum nucleation rate (Tn) and crystallization (Tcr) were calculated from the differential thermal analyses. The final mineral phases were determined by X-ray diffraction and textures were observed by scanning electron microscopy. Crystalline phases are nefeline occurring with wollastonite or plagioclase. Tn for nepheline is between 680 ºC and 700 ºC, for wollastonite, 730 ºC and for plagioclase, 740 ºC. Tcr for nefeline is between 837 and 965 ºC; for wollastonite, 807 ºC and for plagioclase, 977 ºC. In order to establish the mechanical characteristics and efficiency of the vitrification process in the fixation of potentially toxic elements the resistance to leaching and micro-hardness were determined. The obtained contents of the elements leached from the glass ceramic are well below the limits established by the European legislation. So, these analyses confirm that potentially toxic elements remain fixed in the structure of mineral phases formed in the glass-ceramic process. Regarding the values of micro-hardness results show that they are above those of a commercial glass. The manufacture of glass-ceramics from mining waste reduces the volume of tailings produced for the mining industry and, in turn enhances the waste, transforming it into a product with industrial application. Acknowledgements: This work was partly financed by the project AECID: A3/042750/11, and the SGR 2009SGR-00444.

  3. Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.

    2017-04-01

    In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.

  4. Studies concerning the durability of concrete vaults for intermediate level radioactive waste disposal: Electrochemical monitoring and corrosion aspects

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.

    2006-11-01

    The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.

  5. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  6. Contributions of stress corrosion and cyclic fatigue to subcritical crack growth in a dental glass-ceramic.

    PubMed

    Joshi, Gaurav V; Duan, Yuanyuan; Della Bona, Alvaro; Hill, Thomas J; St John, Kenneth; Griggs, Jason A

    2014-08-01

    The objective of this study was to test the following hypotheses: (1) both cyclic degradation and stress-corrosion mechanisms result in subcritical crack growth (SCG) in a fluorapatite glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent) and (2) there is an interactive effect of stress corrosion and cyclic fatigue to accelerate subcritical crack growth. Rectangular beam specimens were fabricated using the lost-wax process. Two groups of specimens (N=30/group) with polished (15μm) or air-abraded surface were tested under rapid monotonic loading. Additional polished specimens were subjected to cyclic loading at two frequencies, 2Hz (N=44) and 10Hz (N=36), and at various stress amplitudes. All tests were performed using a fully articulated four-point flexure fixture in deionized water at 37°C. The SCG parameters were determined using the ratio of inert strength Weibull modulus to lifetime Weibull modulus. A general log-linear model was fit to the fatigue lifetime data including time to failure, frequency, peak stress, and the product of frequency and logarithm of stress in ALTA PRO software. SCG parameters determined were n=21.7 and A=4.99×10(-5) for 2Hz, and n=19.1 and A=7.39×10(-6) for 10Hz. After fitting the general log-linear model to cyclic fatigue data, the coefficients of the frequency term (α1), the stress term (α2), and the interaction term (α3) had estimates and 95% confidence intervals of α1=-3.16 (-15.1, 6.30), α2=-21.2 (-34.9, -9.73), and α3=0.820 (-1.59, 4.02). Only α2 was significantly different from zero. (1) Cyclic fatigue does not have a significant effect on SCG in the fluorapatite glass-ceramic evaluated and (2) there was no interactive effect between cyclic degradation and stress corrosion for this material. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. P2O5-doping in waste glasses: evolution of viscosity and crystallization processes

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Espuñes, Alex; Garcia-Valles, Maite; Martinez, Salvador

    2015-04-01

    Current concern for environmental preservation is the main motive for the study of new, more sustainable materials. Increasing amounts of sewage sludge are produced in wastewater treatment plants over the world every day. This fact represents a major problem for the municipalities and industries due to the volume of waste and also to the contaminant elements it may bear, which require expensive conditions for disposal in landfills. Vitrification is an established technique in the inertization of different types of toxic wastes (such as nuclear wastes and contaminated soils) that has been used successfully for sewage sludge. Glasses of basaltic composition (43.48SiO2-14.00Al2O3-12.86Fe2O3-10.00CaO-9.94MgO-3.27Na2O-1.96K2O-0.17MnO-0.55P2O5-2.48TiO2) are used as a laboratory analogous of wastes such as sewage sludge and galvanic sludge to study the properties of the inertization matrix. This basaltic matrix is doped by adding 1%, 2%, 3%, 4% and 20% of P5O5 in order to cover the compositional range of phosphate in sewage sludge encountered in the literature. In this study, the focus has been placed in the effect of the concentration of phosphate (P2O5) in glass stability, thermal properties and evolution of viscosity with temperature. The dependence of viscosity on temperature and the thermal behaviour of these glasses are critical parameters in the design of their production process. Regarding the compositional limits of the mixture, it has been observed that melt reactivity is much increased when P2O5 content is over 4%, hindering the glass conformation process. Moreover, stanfieldite (calcium and magnesium phosphate) crystallized during glass making when phosphate concentration approached 20%, hence establishing the upper limit for glass stability. Viscosity is also dramatically increased in this range, hence requiring production amends. Differential thermal analysis has provided nucleation and crystallization temperatures of the glasses around 915°C and 1050

  8. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  9. The liquidus temperature of nuclear waste glasses: an international Round-Robin Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Hrma, Pavel R.; Vienna, John D.

    2012-12-01

    Ten institutions from five countries participated in a Round Robin study to contribute to the Precision and Bias section of an American Society for Testing and Materials standard procedure that Pacific Northwest National Laboratory (PNNL) is developing for measuring the liquidus temperature (TL) of radioactive and simulated waste glasses. In this study, three separate TL measurement methods were a gradient temperature (GT) method, a uniform temperature (UT) method, and a crystal fraction extrapolation (CF) method. Three different glasses were measured with a combination of these three methods. The TL values reported by different institutions are generally consistent and vary withinmore » a narrow range. The precision of a TL measurement was evaluated as ±10°C regardless of the method used for making the measurement. The Round Robin glasses were all previously studied at PNNL and included ARG-1 (Glass A), Zr-9 (Glass B), and AmCm2-19 (Glass C), with measured TL values spanning the temperature range ~960-1240°C. The three methods discussed here in more detail are the GT, UT, and CF methods. A best-case precision for TL has been obtained from the data, even though the data were not acquired for all three glasses using all three methods from each participating organization.« less

  10. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated

  11. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  12. Hydrothermal transformations in an aluminophosphate glass matrix containing simulators of high-level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.

    2016-05-01

    The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.

  13. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  14. Full-scale experimental investigation of deposition and corrosion of pre-protector and 3rd superheater in a waste incineration plant.

    PubMed

    Ma, Wenchao; Wenga, Terrence; Zhang, Nan; Chen, Guanyi; Yan, Beibei; Zhou, Zhihua; Wu, Xiao

    2017-12-13

    Municipal solid waste (MSW) incineration is widely adopted as a waste management strategy and for the energy production. However, this technology experience grave deposition and corrosion of the boiler tubes due to high chlorine (~1.09wt.%) and alkali metal (Na, K) content in MSW. Little is known about the concentration profile of these corrosive elements in the deposits at different boiler locations. Therefore, a full-scale experimental investigation was conducted to determine the concentration profile of Cl, K, Na, S, and Ca in the deposits at pre-protector and compare with those at 3 rd superheater during MSW combustion at a 36 MWe waste incineration plant (WIP) in Chengdu, China. The deposit samples were analyzed using wet chemical techniques, scanning electron microscope coupled with energy dispersive spectroscopy (SEM/EDS), and X-ray diffraction (XRD). The concentrations of Na, K, and Cl were high in the deposits at pre-protector while S and Ca concentrations were high on the 3 rd superheater. The pre-protector was severely corroded than the 3 rd superheater. The governing mechanisms for the deposition and corrosion on these boiler locations were elucidated.

  15. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan tomore » conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2

  16. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  17. Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution

    NASA Astrophysics Data System (ADS)

    Morais, Alline Sardinha Cordeiro; Vieira, Carlos Maurício Fontes; Rodriguez, Rubén Jesus Sanchez; Monteiro, Sergio Neves; Candido, Veronica Scarpini; Ferreira, Carlos Luiz

    2016-09-01

    The mandatory use of fluorescent lamps as part of a Brazilian energy-saving program generates a huge number of spent fluorescent lamps (SFLs). After operational life, SFLs cannot be disposed as common garbage owing to mercury and lead contamination. Recycling methods separate contaminated glass tubes and promote cleaning for reuse. In this work, glass from decontaminated SFLs was incorporated into clay ceramics, not only as an environmental solution for such glass wastes and clay mining reduction but also due to technical and economical advantages. Up to 30 wt.% of incorporation, a significant improvement in fired ceramic flexural strength and a decrease in water absorption was observed. A prospective analysis showed clay ceramic incorporation as an environmentally correct and technical alternative for recycling the enormous amount of SFLs disposed of in Brazil. This could also be a solution for other world clay ceramic producers, such as US, China and some European countries.

  18. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  19. Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Vivianaluxa; Vienna, John D.; Kim, Dong-Sang

    Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimatedmore » glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less

  20. Y-Si-Al-O-N Glass Fibers.

    DTIC Science & Technology

    The excellent mechanical properties and outstanding water corrosion resistance of Y -Si-Al-O- N glasses indicate that they are attractive candidate...materials for forming into high performance glass fibers. Fibers of glasses containing, respectively,3.2 and 6.6 wt% N were drawn freehand in air, and

  1. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  2. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  3. Effects of soda-lime-silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics.

    PubMed

    Marinoni, Nicoletta; D'Alessio, Daniela; Diella, Valeria; Pavese, Alessandro; Francescon, Ferdinando

    2013-07-30

    The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of

  5. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    NASA Technical Reports Server (NTRS)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  6. Structure, crystallization and dielectric resonances in 2-13 GHz of waste-derived glass-ceramic

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Liao, SongYi; Chen, XiaoYu; Wang, GuangRong; Zheng, Feng

    2016-12-01

    Structure, kinetics of crystallization, and dielectric resonances of waste-derived glass-ceramic prepared via quench-heating route were studied as a function of dosage of iron ore tailing (IOT) within 20-40 wt% using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and vector network analyzer (VNA) measurements. The glass-ceramic mainly consisted of ferrite crystals embedded in borosilicate glass matrix. Crystallization kinetics and morphologies of ferrite crystals as well as coordination transformation of boron between [BO4] and [BO3] in glass network were adjustable by changing the amount of IOT. Dielectric resonances in 6-13 GHz were found to be dominated by oscillations of Ca2+ cations in glass network with [SiO4] units on their neighboring sites. Ni2+ ions made a small contribution to those resonances. Diopside formed when IOT exceeded 35 wt%, which led to weakening of the resonances.

  7. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  8. Baseline LAW Glass Formulation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  9. Recycling of waste automotive laminated glass and valorization of polyvinyl butyral through mechanochemical separation.

    PubMed

    Swain, Basudev; Ryang Park, Jae; Yoon Shin, Dong; Park, Kyung-Soo; Hwan Hong, Myung; Gi Lee, Chan

    2015-10-01

    Due to strong binding, optical clarity, adhesion to many surfaces, toughness and flexibility polyvinyl butyral (PVB) resin films are commonly used in the automotive and architectural application as a protective interlayer in the laminated glass. Worldwide million tons of PVB waste generated from end-of-life automotive associated with various environmental issues. Stringent environmental directive, higher land cost eliminates land filling option, needs a study, we have developed a mechanochemical separation process to separate PVB resins from glass and characterized the separated PVB through various techniques, i.e., scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), infrared spectroscopy (IR) and nuclear magnetic resonance spectroscopy (NMR). Commercial nonionic surfactants D201 used for the mechanochemical separation purpose. Through parameter optimization following conditions are considered to be the optimum condition; 30v ol% D201, stirring speed of 400 rpm, 35 °C temperature, operation time 1h, and dilute D201 volume to waste automotive laminated glass weight ratio of ≈25. The technology developed in our laboratory is sustainable, environmentally friendly, techno-economical feasible process, capable of mass production (recycling). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Comprehensive Isotopic and Elemental Analysis of a Multi-Oxide Glass By Multicollector ICP-MS in Isotope Substitution Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    v, Mitroshkov; JV, Ryan

    2016-04-07

    Multicollector ICP-MS was used to comprehensively analyze different types of isotopically-modified glass created in order to investigate the processes of glass corrosion in the water. The analytical methods were developed for the analyses of synthesized, isotopically-modified solid glass and the release of glass constituents upon contact with deionized water. To validate the methods, results from an acid digestion sample of the Analytical Reference Glass (ARG) showed good agreement when compared to data from multiple prior analyses on the same glass [Smith-1]. In this paper, we present the results of this comprehensive analysis from the acid digestion of six types ofmore » isotopically-modified glass and the release of glass constituents into water corrosion after one year of aqueous corrosion.« less

  11. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    NASA Astrophysics Data System (ADS)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  12. Materials for Tc Capture to Increase Tc Retention in Glass Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luksic, Steven A.; Hrma, Pavel R.; Kruger, Albert A.

    99Technetium is a long-lived fission product found in the tank waste at the Hanford site in Washington State. In its heptavalent species, it is volatile at the temperatures used in Hanford Tank Waste Treatment and Immobilization Plant vitrification melters, and thus is challenging to incorporate into waste glass. In order to decrease volatility and thereby increase retention, technetium can be converted into more thermally stable species. Several mineral phases, such as spinel, are able to incorporate tetravalent technetium in a chemically durable and thermally stable lattice, and these hosts may promote the decreased volatility that is desired. In order tomore » be usefully implemented, there must be a synthetic rout to these phases that is compatible with both technetium chemistry and current Hanford Tank Waste Treatment and Immobilization Plant design. Synthetic routes for spinel and other potential host phases are examined.« less

  13. Matt waste from glass separated collection: an eco-sustainable addition for new building materials.

    PubMed

    Bignozzi, M C; Saccani, A; Sandrolini, F

    2009-01-01

    Matt waste (MW), a by-product of purification processes of cullet derived from separated glass waste collection, has been studied as filler for self-compacting concrete and as an addition for newly blended cement. Properties of self-compacting concrete compared to reference samples are reported. They include characteristics at the fresh and hardened states, and the compressive strength and porosity of mortar samples that were formulated with increasing amounts of MW to be used as cement replacement (up to 50wt.%). The effects of matt waste are discussed with respect to the mechanical and microstructural characteristics of the resulting new materials.

  14. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without themore » formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.« less

  15. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; McCloy, John S.; Goel, Ashutosh

    2013-04-01

    This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility ofmore » rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.« less

  16. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Kim, Dong-Sang; Skorski, Daniel C.

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminarymore » in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.« less

  17. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluate if this stream is compatible with the evaporator and the other wastes in the tank farm. It should be noted that prior experience in evaporation of another melter off-gas stream, the Recycle Stream at the SRS Defense Waste Processing Facility, unexpectedly caused deleterious impacts on evaporator scaling and formation of aluminosilicate solids before controls were implemented. The compatibility of this stream with other wastes and components in the tank farms has not been fully investigated, whether it is sent for storage in AW-102 in preparation for evaporation in 242-A evaporator, or if it is pre-concentrated in an auxiliary evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion, precipitation, flammable gases, and scale in the tank farm system. Testing is needed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. Alternate disposition of this LAW Recycle stream could beneficially impact WTP, and may also remove a sizeable fraction of the 99Tc from the source term at the IDF. The alternative radionuclide removal process envisioned for this stream parallels the Actinide Removal Process that has been successfully used at SRS for several years. In that process, Monosodium Titanate (MST) is added to the tank waste to adsorb 90Sr and actinides, and then the MST and radionuclides are removed by filtration. The process proposed for investigation for the Hanford WTP LAW Recycle stream would similarly add MST to remove 90Sr and actinides, along with other absorbents or precipitating agents for the remaining radionuclides. These include inorganic reducing agents for Tc, and zeolites

  18. Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product

    NASA Astrophysics Data System (ADS)

    Sanni, O.; Popoola, A. P. I.; Fayomi, O. S. I.

    2018-06-01

    Literature has shown that different organic compounds are effective corrosion inhibitors for metal in acidic environments. Such compounds usually contain oxygen, nitrogen or sulphur and function through adsorption on the metal surface, thereby creating a barrier for corrosion attack. Unfortunately, these organic compounds are toxic, scarce and expensive. Therefore, plants, natural product and natural oils have been posed as cheap, environmentally acceptable, abundant, readily available and effective molecules having low environmental impact. The corrosion resistance of austenitic stainless steel Type 316 in the presence of eco-friendly waste product was studied using weight loss and potentiodynamic polarization techniques in 0.5 M H2SO4. The corrosion rate and corrosion potential of the steel was significantly altered by the studied inhibitor. Results show that increase in concentration of the inhibitor hinders the formation of the passive film. Experimental observation shows that its pitting potential depends on the concentration of the inhibitor in the acid solution due to adsorption of anions at the metal film interface. The presence of egg shell powder had a strong influence on the corrosion resistance of stainless steel Type 316 with highest inhibition efficiency of 94.74% from weight loss analysis, this is as a result of electrochemical action and inhibition of the steel by the ionized molecules of the inhibiting compound which influenced the mechanism of the redox reactions responsible for corrosion and surface deterioration. Inhibitor adsorption fits the Langmuir isotherm model. The two methods employed for the corrosion assessment were in good agreement.

  19. Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering

    DOE PAGES

    Li, Jinyang; Gittleson, Forrest S.; Liu, Yanhui; ...

    2017-06-30

    In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. Finally, these results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.

  20. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers,more » classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.« less

  1. High expansion, lithium corrosion resistant sealing glasses

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1991-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  2. High expansion, lithium corrosion resistant sealing glasses

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1991-06-04

    Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  3. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to

  4. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE PAGES

    Jantzen, Carol M.

    2017-03-27

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to

  5. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, Donald G.; Davis, Mary S.

    1990-01-01

    A corrosion resistant long-term storage container for isolating radioactive waste material in a repository. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between judxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  6. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent massmore » loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.« less

  7. Ceramic Coatings for Corrosion Resistant Nuclear Waste Container Evaluated in Simulated Ground Water at 90?C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslam, J J; Farmer, J C

    2004-03-31

    Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plainmore » carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.« less

  8. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  9. Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry

    DOE PAGES

    Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...

    2017-11-03

    Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less

  10. Corrosion mechanisms for metal alloy waste forms: experiment and theory Level 4 Milestone M4FT-14LA0804024 Fuel Cycle Research & Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-Yang; Taylor, Christopher D.; Kim, Eunja

    2014-07-31

    This document meets Level 4 Milestone: Corrosion mechanisms for metal alloy waste forms - experiment and theory. A multiphysics model is introduces that will provide the framework for the quantitative prediction of corrosion rates of metallic waste forms incorporating the fission product Tc. The model requires a knowledge of the properties of not only the metallic waste form, but also the passive oxide films that will be generated on the waste form, and the chemistry of the metal/oxide and oxide/environment interfaces. in collaboration with experimental work, the focus of this work is on obtaining these properties from fundamental atomistic models.more » herein we describe the overall multiphysics model, which is based on MacDonald's point-defect model for passivity. We then present the results of detailed electronic-structure calculations for the determination of the compatibility and properties of Tc when incorporated into intermetallic oxide phases. This work is relevant to the formation of multi-component oxides on metal surfaces that will incorporate Tc, and provide a kinetic barrier to corrosion (i.e. the release of Tc to the environment). Atomistic models that build upon the electronic structure calculations are then described using the modified embedded atom method to simulate metallic dissolution, and Buckingham potentials to perform classical molecular dynamics and statics simulations of the technetium (and, later, iron-technetium) oxide phases. Electrochemical methods were then applied to provide some benchmark information of the corrosion and electrochemical properties of Technetium metal. The results indicate that published information on Tc passivity is not complete and that further investigation is warranted.« less

  11. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted atmore » a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.« less

  12. Strain corrosion cracking in rpm sewer piping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, S.W.; Wachob, H.F.; Duffner, D.H.

    1993-12-31

    Long term, aggressive environmental exposure can result in localized failure of large diameter, glass reinforced plastic mortar (RPM) piping. In order to evaluate the performance of the liner and glass reinforced matrix polyester resin, accelerated strain corrosion tests were performed on samples of RPM piping that had already experienced almost 15 years of service. To assess the sensitivity of RPM pipe to acidic environments and to correlate the fractography of the laboratory produced failures with the excavated crack, short segments of 8-inch and 48-inch diameter piping were statically loaded to produce various known surface strains. After preloading the specimens tomore » fixed strain levels, these samples were then exposed to sulfuric acid solutions having pH values of 2.7 and 4.7 and monitored as a function of time until failure. The resulting lifetimes were related to initial surface strains and showed a decreasing logarithmic relationship. Fractographic examination of the excavated crack revealed the typical strain corrosion fractography of glass fibers after almost a 1000 hour exposure at 1.3 % strain; similar fractographic observations were obtained from failed laboratory samples. At shorter times, failure appeared to be overload in nature and exhibited little, if any, timedependent fracture features. Fractographic examination of the excavated crack strongly indicated that the crack had been present for a significant time. The extremely aggressive environment had totally dissolved the exposed glass reinforcement. Based on the laboratory strain corrosion performance, the nature of the contained cracking, and fractography of the failed surface, cracking of the excavated RPM pipe was believed to be the result of an early overload failure that subsequently propagated slowly via strain corrosion in an extremely aggressive environment.« less

  13. Enhanced 99 Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui

    Technetium (99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals. Two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 – 1,000 oC. After being cooled, the solid glass specimens prepared at different temperatures were analyzed for Tc oxidation state using Tc K-edge XANES. In most samples, Tc wasmore » partially oxidized from Tc(IV) to Tc(VII) as the melt temperature increased. However, Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were moderately higher than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less

  14. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-07

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and themore » character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel.« less

  15. Monitoring and analyzing waste glass compositions

    DOEpatents

    Schumacher, R.F.

    1994-03-01

    A device and method are described for determining the viscosity of a fluid, preferably molten glass. The apparatus and method use the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality. 2 figures.

  16. Monitoring and analyzing waste glass compositions

    DOEpatents

    Schumacher, Ray F.

    1994-01-01

    A device and method for determining the viscosity of a fluid, preferably molten glass. The apparatus and method uses the velocity of rising bubbles, preferably helium bubbles, within the molten glass to determine the viscosity of the molten glass. The bubbles are released from a tube positioned below the surface of the molten glass so that the bubbles pass successively between two sets of electrodes, one above the other, that are continuously monitoring the conductivity of the molten glass. The measured conductivity will change as a bubble passes between the electrodes enabling an accurate determination of when a bubble has passed between the electrodes. The velocity of rising bubbles can be determined from the time interval between a change in conductivity of the first electrode pair and the second, upper electrode pair. The velocity of the rise of the bubbles in the glass melt is used in conjunction with other physical characteristics, obtained by known methods, to determine the viscosity of the glass melt fluid and, hence, glass quality.

  17. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    NASA Astrophysics Data System (ADS)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  18. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.

    PubMed

    Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M

    2016-09-21

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.

  19. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal

    NASA Astrophysics Data System (ADS)

    Nishida, Tetsuaki; Morimoto, Akane; Yamamoto, Yoshito; Kubuki, Shiro

    2017-12-01

    New porous ceramics (PC) prepared by recycling waste glass bottle of soft drinks (80 mass%) and bamboo charcoal (20 mass%) without any binder was applied to the waste water purification under aeration at 25 °C. Artificial waste water (15 L) containing 10 mL of milk was examined by combining 15 mL of activated sludge and 750 g of PC. Biochemical oxygen demand (BOD) showed a marked decrease from 178 to 4.0 (±0.1) mg L-1 in 5 days and to 2.0 (±0.1) mg L-1 in 7 days, which was equal to the Environmental Standard for the river water (class A) in Japan. Similarly, chemical oxygen demand (COD) decreased from 158 to 3.6 (±0.1) mg L-1 in 5 days and to 2.2 (±0.1) mg L-1 in 9 days, which was less than the Environmental Standard for the Seawater (class B) in Japan: 3.0 mg L-1. These results prove the high water purification ability of the PC, which will be effectively utilized for the purification of drinking water, fish preserve water, fish farm water, etc.

  20. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  1. Repair of through thickness corrosion/leaking defects in corroded pipelines using Fiber Reinforced Polymer overwrap

    NASA Astrophysics Data System (ADS)

    Nitheesh Kumar, P.; Khan, Vishwas Chandra; Balaganesan, G.; Pradhan, A. K.; Sivakumar, M. S.

    2018-04-01

    The present study is concerned with the repair of through thickness corrosion or leaking defects in metallic pipelines using a commercially available metallic seal and glass/epoxy composite. Pipe specimens are made with three different types of most commonly occurring through thickness corrosion/leaking defects. The metallic seal is applied over the through thickness corrosion/leaking defect and it is reinforced with glass/epoxy composite overwrap. The main objective of the metallic seal is to arrest the leak at live pressure. After reinforcing the metallic seal with glass/epoxy composite overwrap, the repaired composite wrap is able to sustain high pressures. Burst test is performed for different configurations of metallic seal and optimum configuration of metallic seal is determined. The optimum configurations of metallic seal for three different types of through thickness corrosion/leaking defects are further reinforced with glass/epoxy composite wrap and experimental failure pressure is determined by performing the burst test. An analytical model as per ISO 24817 has been developed to validate experimental results.

  2. Biocorrosion Evaluation on a Zr-Cu-Ag-Ti Metallic Glass

    NASA Astrophysics Data System (ADS)

    Kumar, Shresh; Anwar, Rebin; Ryu, Wookha; Park, E. S.; Vincent, S.

    2018-04-01

    Metallic glasses are in high demand for fabrication of variety of innovative products, in particular surgical and biomedical tools and devices owing to its excellent biocompatible properties. In the present investigation, a novel Zr39.5Cu50.5Ag4Ti6 metallic glass composition was synthesized using melt spinning technique. Potentiodynamic polarization studies were conducted to investigate bio-corrosion behaviour of Zr39.5Cu50.5Ag4Ti6 metallic glass. The test were conducted in various simulated artificial body conditions such as artificial saliva solution, phosphate-buffered saline solution, artificial blood plasma solution, and Hank’s balanced saline solution. The bio-corrosion results of metallic glass were compared with traditional biomaterials. The study aims to provide bio-compatible properties of Zr39.5Cu50.5Ag4Ti6 metallic glass.

  3. Preparation of Some Eco-friendly Corrosion Inhibitors Having Antibacterial Activity from Sea Food Waste.

    PubMed

    Hussein, Mohamed H M; El-Hady, Mohamed F; Shehata, Hassan A H; Hegazy, Mohammad A; Hefni, Hassan H H

    2013-03-01

    Chitosan is one of the important biopolymers and it is extracted from exoskeletons of crustaceans in sea food waste. It is a suitable eco-friendly carbon steel corrosion inhibitor in acid media; the deacetylation degree of prepared chitosan is more than 85.16 %, and the molecular weight average is 109 kDa. Chitosan was modified to 2-N,N-diethylbenzene ammonium chloride N-oxoethyl chitosan (compound I), and 12-ammonium chloride N-oxododecan chitosan (compound II) as soluble water derivatives. The corrosion inhibition efficiency for carbon steel of compound (I) in 1 M HCl at varying temperature is higher than for chitosan and compound (II). However, the antibacterial activity of chitosan for Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, and Candida albicans is higher than for its derivatives, and the minimum inhibition concentration and minimum bacterial concentration of chitosan and its derivatives were carried out with the same strain.

  4. Corrosion behavior and pitting susceptibility of in-situ Ti-based metallic glass matrix composites in 3.5 wt.% NaCl solutions

    NASA Astrophysics Data System (ADS)

    Xu, K. K.; Lan, A. D.; Yang, H. J.; Han, P. D.; Qiao, J. W.

    2017-11-01

    The Ti62Zr12V13Cu4Be9, Ti58Zr16V10Cu4Be12, Ti46Zr20V12Cu5Be17, and Ti40Zr24V12Cu5Be19 metallic glass matrix composites (MGMCs) were prepared by copper mould casting. The corrosion resistance and the pitting susceptibility of Ti-based MGMCs were tested on their cross-sectional areas in 3.5 wt.% NaCl solutions by potentiodynamic polarization measurements. The composites with lower Ti contents (Ti40Zr24V12Cu5Be19 and Ti46Zr20V12Cu5Be17) exhibit a low resistance to the chloride induced pitting and local corrosion. The preferential dissolution of amorphous matrix is explained by the high chemical reactivity of beryllium element compared to that of stable dendrites and by the detected lower Ti and V contents. However, fairly good passivity was found in the composite with higher Ti contents (Ti62Zr12V13Cu4Be9). XPS measurements revealed that protective Ti-enriched oxide film was formed on the composite surface, additionally, lower content of beryllium element in amorphous matrix hinder the selective corrosion of amorphous matrix. The assessment of experimental observation leads to a proposed corrosion mechanism involving selective dissolution of amorphous matrix and chloride induced pitting process.

  5. Corrosion resistant storage container for radioactive material

    DOEpatents

    Schweitzer, D.G.; Davis, M.S.

    1984-08-30

    A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

  6. Corrosion Evaluation of Stellite Alloys 12 and 712

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.I.

    2000-10-30

    The High Level Waste Division requested the Materials Technology Section (MTS) to evaluate the use of Waukesha Metal 88 (WM88) and Stellite alloys 12 (S12) and 712 (S712) as materials of construction for slurry pumps. As candidate materials, WM88 was chosen for the tilt pad column bearings and S12 and S712 were selected for the impeller bearings. The Stellite alloys are cobalt-based alloys typically used for their resistance to both corrosion and wear. WM88 is noted for resistance to galling and seizing. These materials, however, had not been evaluated for use in high level radioactive waste, which have a highmore » pH. A series of electrochemical corrosion tests were performed in support of this evaluation to determine the general corrosion rate and corrosion characteristics of these alloys. The tests were conducted at room temperature in simulated three waste tank environments. For WM88, the test solution was inhibited water, which is commonly used in the tank farm. For S12 and S712, the test solutions were a simulated Tank 8 waste solution and a 3 M sodium hydroxide solution. The general corrosion rates of all alloys in these solutions were less than 0.1 mils per year (mpy). The alloys displayed passive behavior in these solutions due to the protective nature of their oxides.« less

  7. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M.; Jantzen, C.; Burket, P.

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less

  8. Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability

    NASA Astrophysics Data System (ADS)

    Hopf, J.; Kerisit, S. N.; Angeli, F.; Charpentier, T.; Icenhower, J. P.; McGrail, B. P.; Windisch, C. F.; Burton, S. D.; Pierce, E. M.

    2016-05-01

    Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high-valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), with the addition of the HVC element hafnium in the Na2O-Al2O3-B2O3-HfO2-SiO2 system (e.g., Na/[Al + B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si-O-Hf moieties in the glass. Results from flow-through experiments conducted under dilute and near-saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered layers with higher Si

  9. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang

    2014-04-30

    The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoule was heated at 1000 °C for 2 h and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixturesmore » of KI, NaI, and Na2SO4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na8(AlSiO4)6I2, were observed in the 24000 ppm specimen and were verified with micro-XRD and wavelength dispersive spectroscopy.« less

  10. Chemical Composition Measurements of LAWA44 Glass Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T.; Riley, W.

    2016-11-15

    DOE is building the Hanford Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is temporarily stored in 177 underground tanks. Both low-activity and high-level wastes will then be vitrified into borosilicate glass using Joule-heated ceramic melters. Efforts are being made to increase the loading of Hanford tank wastes in the glass. One area of work is enhancing waste glass composition/property models and broadening the compositional regions over which those models are applicable. In this report, the Savannah River National Laboratory provides chemical analysis results for severalmore » samples of a simulated low-activity waste glass, LAWA44, provided by the Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 97.9 to 102.6 wt %, indicating acceptable recovery of the glass components. Comparisons of the targeted and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %. It was noted that the measured B 2O 3 concentrations are somewhat above the targeted values for the study glasses. No obvious trends were observed with regard to the multiple melting steps used to prepare the study glasses, indicating that any potential effects of volatility were below measurable thresholds.« less

  11. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  12. Compositional threshold for Nuclear Waste Glass Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  13. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  14. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  15. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  16. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  17. Formation and corrosion of a 410 SS/ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    This study evaluates the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel in a single waste form. A representative composite material AOC410 was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the Zr reacted with lanthanide oxides to form lanthanide zirconate, which combined with the remaining lanthanide oxides to form a porous ceramic network encapsulated by alloy as a composite puck. Excess alloy formed amore » metal bead on top of the composite. The alloys in the composite and bead were both mixture of martensite grains and ferrite grains with carbide precipitates. FeCrMo intermetallic phases also precipitated in the ferrite grains in the composite part. Ferrite surrounding carbides was sensitized and the least corrosion resistant in electrochemical corrosion tests conducted in an acidic brine electrolyte; ferrite neighboring martensite grains and intermetallics corroded galvanically. The lanthanide oxide domains dissolved chemically, but lanthanide zirconate domains did not dissolve. The presence of oxide phases did not affect corrosion of the neighboring alloy phases. These results suggest the longterm corrosion of a composite waste form can be evaluated by using separate material degradation models for the alloy and ceramic phases.« less

  18. Plutonium immobilization in glass and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.; Murphy, W.M.

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposiummore » papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.« less

  19. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  20. RHENIUM SOLUBILITY IN BOROSILICATE NUCLEAR WASTE GLASS IMPLICATIONS FOR THE PROCESSING AND IMMOBILIZATION OF TECHNETIUM-99 (AND SUPPORTING INFORMATION WITH GRAPHICAL ABSTRACT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AA KRUGER; A GOEL; CP RODRIGUEZ

    2012-08-13

    The immobilization of 99Tc in a suitable host matrix has proved a challenging task for researchers in the nuclear waste community around the world. At the Hanford site in Washington State in the U.S., the total amount of 99Tc in low-activity waste (LAW) is {approx} 1,300 kg and the current strategy is to immobilize the 99Tc in borosilicate glass with vitrification. In this context, the present article reports on the solubility and retention of rhenium, a nonradioactive surrogate for 99Tc, in a LAW sodium borosilicate glass. Due to the radioactive nature of technetium, rhenium was chosen as a simulant becausemore » of previously established similarities in ionic radii and other chemical aspects. The glasses containing target Re concentrations varying from 0 to10,000 ppm by mass were synthesized in vacuum-sealed quartz ampoules to minimize the loss of Re by volatilization during melting at 1000 DC. The rhenium was found to be present predominantly as Re7 + in all the glasses as observed by X-ray absorption near-edge structure (XANES). The solubility of Re in borosilicate glasses was determined to be {approx}3,000 ppm (by mass) using inductively coupled plasma-optical emission spectroscopy (ICP-OES). At higher rhenium concentrations, some additional material was retained in the glasses in the form of alkali perrhenate crystalline inclusions detected by X-ray diffraction (XRD) and laser ablation-ICP mass spectrometry (LA-ICP-MS). Assuming justifiably substantial similarities between Re7 + and Tc 7+ behavior in this glass system, these results implied that the processing and immobilization of 99Tc from radioactive wastes should not be limited by the solubility of 99Tc in borosilicate LAW glasses.« less

  1. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    NASA Astrophysics Data System (ADS)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita; Kamachi Mudali, U.; Raj, Baldev

    2011-11-01

    Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO 3, 3 M HNO 3 containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO 3 and 3 M HNO 3 with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  2. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  3. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  4. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  5. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes.more » The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ~ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ~ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ~ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron

  6. Iodine solubility in a low-activity waste borosilicate glass at 1000°C

    DOE PAGES

    Riley, Brian J.; Schweiger, Michael J.; Kim, Dong-Sang; ...

    2014-04-30

    The purpose of this study was to determine the solubility of iodine in a low-activity waste borosilicate glass when heated inside an evacuated and sealed fused quartz ampoule. The iodine was added to glass frit as KI in quantities of 100–24000 ppm iodine (by mass), each mixture was added to an ampoule, the ampoules were heated at 1000 °C for 2h, and then air quenched. In samples with ≥12000 ppm iodine, low viscosity salt phases were observed on the surface of the melts during cooling that solidified into a white coating upon cooling. These salts were identified as mixtures ofmore » KI, NaI, and Na 2SO 4 with X-ray diffraction (XRD). The iodine concentrations in glass specimens were analyzed with inductively-coupled plasma mass spectrometry and the overall iodine solubility was determined to be 10000 ppm by mass. Several crystalline inclusions of iodine sodalite, Na 8(AlSiO 4) 6I 2, were observed in the 24000 ppm specimen as determined by micro-XRD and wavelength dispersive spectroscopy.« less

  7. Property/composition relationships for Hanford high-level waste glasses melting at 115{degrees}C volume 1: Chapters 1-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrma, P.R.; Piepel, G.F.

    1994-12-01

    A Composition Variation study (CVS) is being performed within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) project in support of a future high-level nuclear waste vitrification plant at the Hanford site in Washington. From 1989 to 1994, over 120 nonradioactive glasses were melted and properties measured in five statistically-designed experimental phases. Glass composition is represented by the 10 components SiO{sub 2}, B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O, Li{sub 2}O, CaO, MgO, and Others (all remaining components). The properties measured include viscosity ({eta}), electrical conductivity ({epsilon}), glass transition temperature (T{sub g} ), thermalmore » expansion of solid glass ({alpha}{sub s}) and molten glass ({alpha}{sub m}), crystallinity (quenched and canister centerline cooled glasses), liquidus temperature (T{sub L}), durability based on normalized elemental releases from the Materials Characterization Center-1 28-day dissolution test (MCC-1, r{sub mi}) and the 7-day Product Consistency Test (PCT, r{sub pi}), and solution pHs from MCC-1 and PCT. Amorphous phase separation was also evaluated. Empirical first- and second-order mixture models were fit using the CVS data to relate the various properties to glass composition. Equations for calculating the uncertainty associated with property values predicted by the models were also developed. The models were validated using both internal and external data. Other modeling approaches (e.g., non-bridging oxygen, free energy of hydration, phase-equilibria T{sub L}) were investigated for specific properties. A preliminary Qualified Composition Region was developed to identify glass compositions with high confidence of being processable in a melter and meeting waste form acceptance criteria.« less

  8. Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    DOE PAGES

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui; ...

    2017-09-07

    We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less

  9. Enhanced 99Tc retention in glass waste form using Tc(IV)-incorporated Fe minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui

    We present that technetium ( 99Tc) immobilization by doping into iron oxide mineral phases may alleviate the problems with Tc volatility during vitrification of nuclear waste. Because reduced Tc, Tc(IV), substitutes for Fe(III) in the crystal structure by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation of Fe oxide minerals, two Tc-incorporated Fe minerals (Tc-goethite and Tc-magnetite/maghemite) were prepared and tested for Tc retention in glass melt samples at temperatures between 600 and 1000 °C. After being cooled, the solid glass specimens prepared at different temperatures at 600, 800, and 1000 °C were analyzed for Tcmore » oxidation state using Tc K-edge XANES. In most samples, Tc was partially (<60%) oxidized from Tc(IV) to Tc(VII) as the melt temperature increased up to 600 °C. However, most of Tc(IV) was completely (>95%) oxidized to Tc(VII) at temperature above 800 °C. Tc retention in glass melt samples prepared using Tc-incorporated Fe minerals were slightly higher (~10%) than in glass prepared using KTcO4 because of limited and delayed Tc volatilization.« less

  10. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  11. Use of crushed recycled glass in the construction of local roadways current status of recycled glass collection and processing in the State of Ohio.

    DOT National Transportation Integrated Search

    2017-05-01

    Junliang (Julian) Tao, ORCiD: 0000-0002-3772-3099 : Glass cullet is produced from crushing waste glass collected in municipal and industrial waste streams to a specific size. In Ohio, it is primarily used in new glass container manufacturing. One pos...

  12. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  13. Computational Fluid Dynamics Modeling of Bubbling in a Viscous Fluid for Validation of Waste Glass Melter Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abboud, Alexander William; Guillen, Donna Post

    2016-01-01

    At the Hanford site, radioactive waste stored in underground tanks is slated for vitrification for final disposal. A comprehensive knowledge of the glass batch melting process will be useful in optimizing the process, which could potentially reduce the cost and duration of this multi-billion dollar cleanup effort. We are developing a high-fidelity heat transfer model of a Joule-heated ceramic lined melter to improve the understanding of the complex, inter-related processes occurring with the melter. The glass conversion rates in the cold cap layer are dependent on promoting efficient heat transfer. In practice, heat transfer is augmented by inserting air bubblersmore » into the molten glass. However, the computational simulations must be validated to provide confidence in the solutions. As part of a larger validation procedure, it is beneficial to split the physics of the melter into smaller systems to validate individually. The substitution of molten glass for a simulant liquid with similar density and viscosity at room temperature provides a way to study mixing through bubbling as an isolated effect without considering the heat transfer dynamics. The simulation results are compared to experimental data obtained by the Vitreous State Laboratory at the Catholic University of America using bubblers placed within a large acrylic tank that is similar in scale to a pilot glass waste melter. Comparisons are made for surface area of the rising air bubbles between experiments and CFD simulations for a variety of air flow rates and bubble injection depths. Also, computed bubble rise velocity is compared to a well-accepted expression for bubble terminal velocity.« less

  14. Recycling of glass: accounting of greenhouse gases and global warming contributions.

    PubMed

    Larsen, Anna W; Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    Greenhouse gas (GHG) emissions related to recycling of glass waste were assessed from a waste management perspective. Focus was on the material recovery facility (MRF) where the initial sorting of glass waste takes place. The MRF delivers products like cullet and whole bottles to other industries. Two possible uses of reprocessed glass waste were considered: (i) remelting of cullet added to glass production; and (ii) re-use of whole bottles. The GHG emission accounting included indirect upstream emissions (provision of energy, fuels and auxiliaries), direct activities at the MRF and bottle-wash facility (combustion of fuels) as well as indirect downstream activities in terms of using the recovered glass waste in other industries and, thereby, avoiding emissions from conventional production. The GHG accounting was presented as aggregated global warming factors (GWFs) for the direct and indirect upstream and downstream processes, respectively. The range of GWFs was estimated to 0-70 kg CO(2)eq. tonne( -1) of glass waste for the upstream activities and the direct emissions from the waste management system. The GWF for the downstream effect showed some significant variation between the two cases. It was estimated to approximately -500 kg CO(2)-eq. tonne(- 1) of glass waste for the remelting technology and -1500 to -600 kg CO(2)-eq. tonne(-1) of glass waste for bottle re-use. Including the downstream process, large savings of GHG emissions can be attributed to the waste management system. The results showed that, in GHG emission accounting, attention should be drawn to thorough analysis of energy sources, especially electricity, and the downstream savings caused by material substitution.

  15. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  16. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  17. Vitrification of waste

    DOEpatents

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  18. Vitrification of waste

    DOEpatents

    Wicks, George G.

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  19. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.

    PubMed

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.

  20. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    PubMed Central

    Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka

    2015-01-01

    Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304

  1. Leaching behavior of microtektite glass compositions in sea water and the effect of precipitation on glass leaching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The present study attempts to account for the slow corrosion rates of microtektite glass in nature by comparing the leach rates of synthetic microtektite glass samples in deionized water and in sea-water, respectively. In order to obtain systematic data about leachant composition effects, leach tests were also carried out with synthetic leachant compositions enriched with respect to silica or depleted with respect to certain major components of sea-water (Mg, Ca).

  2. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.

    2014-01-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrificationmore » mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the

  3. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, R. B.

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less

  4. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  5. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  6. Prediction of glass durability as a function of environmental conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less

  7. Ceramics in nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T D; Mendel, J E

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  8. A U-bearing composite waste form for electrochemical processing wastes

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2018-04-01

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phases that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases.

  9. Gaseous Sulfate Solubility in Glass: Experimental Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature tomore » guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.« less

  10. Effect of clayey groundwater on the dissolution rate of SON68 simulated nuclear waste glass at 70 °C

    NASA Astrophysics Data System (ADS)

    De Echave, T.; Tribet, M.; Jollivet, P.; Marques, C.; Gin, S.; Jégou, C.

    2018-05-01

    To predict the long-term behavior of high-level radioactive waste glass, it is necessary to study aqueous dissolution of the glass matrix under geological repository conditions. The present article focuses on SON68 (an inactive surrogate of the R7T7 glass) glass alteration in synthetic clayey groundwater at 70 °C. Experiments in deionized water as reference were also performed in the same conditions. Results are in agreement with those of previous studies showing that magnesium present in the solution is responsible for higher glass alteration. This effect is transient and pH-dependent: Once all the magnesium is consumed, the glass alteration rate diminishes. Precipitation of magnesium silicate of the smectite group seems to be the main factor for the increased glass alteration. A pH threshold of 7.5-7.8 was found, above which precipitation of these magnesium silicates at 70 °C is possible. TEM observations reveal that magnesium silicates grow at the expense of the passivating gel, which partly dissolves, forming large pores which increase mass transfer between the reacting glass surface and the bulk solution.

  11. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    NASA Astrophysics Data System (ADS)

    Almasri, Karima Amer; Sidek, Hj. Ab Aziz; Matori, Khamirul Amin; Zaid, Mohd Hafiz Mohd

    The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3) based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF) and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM), Fourier transforms infrared reflection spectroscopy (FTIR), and X-ray diffraction (XRD). The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature.

  12. LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.; Kaplan, D.

    2012-02-29

    The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have netmore » positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the

  13. The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid.

    PubMed

    Qiu, C L; Liu, L; Sun, M; Zhang, S M

    2005-12-15

    Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.

  14. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    NASA Astrophysics Data System (ADS)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  15. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid

  16. A U-bearing composite waste form for electrochemical processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    Metallic/ceramic composite waste forms are being developed to immobilize combined metallic and oxide waste streams generated during electrochemical recycling of used nuclear fuel. Composites were made for corrosion testing by reacting HT9 steel to represent fuel cladding, Zr and Mo to simulate metallic fuel waste, and a mixture of ZrO2, Nd2O3, and UO2 to represent oxide wastes. More than half of the added UO2 was reduced to metal and formed Fe-Zr-U intermetallics and most of the remaining UO2 and all of the Nd2O3 reacted to form zirconates. Fe-Cr-Mo intermetallics were also formed. Microstructure characterization of the intermetallic and ceramic phasesmore » that were generated and tests conducted to evaluate their corrosion behaviors indicate composite waste forms can accommodate both metallic and oxidized waste streams in durable host phases. (c) 2018 Elsevier B.V. All rights reserved.« less

  17. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  18. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%.

  19. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  20. Corrosion behaviour of high copper dental amalgams.

    PubMed

    Yap, A U J; Ng, B L; Blackwood, D J

    2004-06-01

    This study evaluated the corrosion behaviour of two high copper dental amalgam alloys [Dispersalloy (Dentsply-Caulk) and Tytin (Kerr)] in different electrolytes. Amalgam specimens were prepared, coupled to a copper wire, cemented into glass tubes and polished to a 600-grit finish. A corrosion cell was prepared using a carbon counter-electrode, a standard calomel electrode as the reference and amalgam as the working electrode. The alloys were tested in the following mediums at 37 degrees C: (i) artificial saliva based on Fusayama's solution (FS), (ii) artificial saliva with citric acid adjusted to pH 4.0 (FC) and (iii) 1% sodium chloride solution (SC). Corrosion potentials (E(corr)) and corrosion rates (I(corr)) were determined using potentiostatic and impedance spectroscopy methods. Data was subjected to anova/Scheffe's post hoc test at 0.05 significance level. For both alloys, the corrosion potential in FS was significantly greater than in SC. Corrosion potential of Tytin in FS and SC was also significantly greater than in FC. The corrosion rate of Dispersalloy in FC was significantly greater than in FS and SC. For Tytin, corrosion rate in SC was significantly greater than in FS and FC. Although no significant difference in corrosion potential/rate was observed between the alloys when tested in FS, significant differences were observed when electrochemical testing was carried out in FC and SC. The corrosion behaviour of high copper amalgam alloys are both material and environment dependent. Certain food substances may increase the corrosion of high copper amalgams.

  1. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.

    1975-01-01

    Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.

  2. Effect of Annealing on the Passive Film Stability and Corrosion Resistance of New Families of Iron-Based Amorphous Metals

    DTIC Science & Technology

    2011-06-01

    metallic glass easier to create and more stable once formed, thus improving the corrosion resistance. Adding titanium will enable the formation of...glass easier to create and more stable once formed, thus improving the corrosion resistance. Adding titanium will enable the formation of an extremely...research, it was hypothesized that additions of titanium could enable the formation of a protective titanium oxide film on the surface of the alloy

  3. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  4. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Howe, A.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to themore » LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from

  5. Glass-bonded iodosodalite waste form for immobilization of 129 I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, Saehwa; Peterson, Jacob A.; Riley, Brian J.

    Immobilization of radioiodine (e.g., 129I, 131I) is an important need for current and future nuclear fuel cycles. For the current work, iodosodalite [Na8(AlSiO4)6I2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Following hydrothermal treatment, dried unwashed powders were used to make glass-bonded iodosodalite waste forms by heating pressed pellets at 650, 750, or 850 °C with two different types of sodium borosilicate glass binders, i.e., NBS-4 and SA-800. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. Themore » pellets mixed with 10 mass% of NBS-4 or SA-800 and heat-treated at 750 °C contained relatively high percentage iodine retention (~44-47 % of the maximum iodine loading) with relatively low porosities, while other pellets with higher percentages iodine retention either contained higher porosity or were not completely sintered. ASTM C1308 chemical durability tests of monolithic specimens showed a large initial release of Na, Al, Si, and I on the first day, possibly from water-soluble salt crystals or non-durable amorphous phases. Release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix. The cumulative normalized release of iodine was 12.5 g m-2 for the first 10 1-d exchanges, suggestive of coherent dissolution. The average release rate from 10-24 days during the 7-d exchange intervals was 0.2336 g m-2 d-1.« less

  6. Environmental stress-corrosion cracking of fiberglass: lessons learned from failures in the chemical industry.

    PubMed

    Myers, T J; Kytömaa, H K; Smith, T R

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  7. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater.

    PubMed

    Rajala, Pauliina; Bomberg, Malin; Vepsäläinen, Mikko; Carpén, Leena

    2017-02-01

    Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete-groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.

  8. Study of development and utilization of a multipurpose atmospheric corrosion sensor

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.; Raman, A.; Bhattacharya, P. K.

    1994-01-01

    There has been a critical need for analyzing various aspects of atmospheric corrosion and for the development of atmospheric corrosion microsensors. The project work has involved the following activities: (1) making of multielectrode corrosion monitors on dielectric substrates; (2) testing them in the laboratory for functional characteristics; (3) preparing a report on the state of the art of atmospheric corrosion sensor development around the world; and (4) corrosion testing of electrochemical changes of sensor specimens and related fog testing. The study included work on the subject of development and utilization of a multipurpose atmospheric corrosion sensor and this report is the annual report on work carried out on this research project. This has included studies on the development of sensors of two designs, stage 1 and stage 2, and with glass and alumina substrate, experimentation and development and characterization of the coating uniformity, aspects of corrosion monitoring, literature search on the corrosion sensors and their development. A state of the art report on atmospheric corrosion sensor development was prepared and submitted.

  9. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-01

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO2)57.5 – (B2O3)10 – (Na2O)15 – (CaO)15 – (MoO3)2.5 and (SiO2)57.3 – (B2O3)20 – (Na2O)6.8 – (Li2O)13.4 – (MoO3)2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na2MoO4 and CaMoO4). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shellmore » reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations. K.K. was supported through the Impact Studentship scheme at UCL co-funded by the IHI Corporation and UCL. P.V.S. thanks the Royal Society, which supported preliminary work on this project, and the Laboratory Directed Research and Development program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Via our membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).« less

  10. Optical Basicity and Nepheline Crystallization in High Alumina Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.

    2011-02-25

    The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimentalmore » basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.« less

  11. Using Natural Cementation Systems to Control Corrosion Dust on Un-surfaced Roads

    DTIC Science & Technology

    2010-02-01

    metallurgical slags ), volcanic glass , fly ash and low-fired clays • Can use waste alkali from manufacturing operations • No Portland cement is involved Soil...solidified with alkali- activated glass slag US Army Corps of Engineers 4 Pohakuloa Training Area (PTA) as a Test Site • Serious dust problem at site...Conventional Cement? • Glass can be both the aggregate and form the cementing phase • Waste glass ( slag , fly ash) can be used • More alkaline solution is

  12. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems.

    PubMed

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-01

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.

  13. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-15

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent.more » Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.« less

  14. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  15. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  16. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch modemore » frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.« less

  17. Memo, "Incorporation of HLW Glass Shell V2.0 into the Flowsheets," to ED Lee, CCN: 184905, October 20, 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gimpel, Rodney F.; Kruger, Albert A.

    2013-12-18

    Efforts are being made to increase the efficiency and decrease the cost of vitrifying radioactive waste stored in tanks at the U.S. Department of Energy Hanford Site. The compositions of acceptable and processable high-level waste (HL W) glasses need to be optimized to minimize the waste-form volume and, hence, to reduce cost. A database of glass properties of waste glass and associated simulated waste glasses was collected and documented in PNNL 18501, Glass Property Data and Models for Estimating High-Level Waste Glass Volume and glass property models were curve-fitted to the glass compositions. A routine was developed that estimates HLmore » W glass volumes using the following glass property models: II Nepheline, II One-Percent Crystal Temperature (T1%), II Viscosity (11) II Product Consistency Tests (PCT) for boron, sodium, and lithium, and II Liquidus Temperature (TL). The routine, commonly called the HL W Glass Shell, is presented in this document. In addition to the use of the glass property models, glass composition constraints and rules, as recommend in PNNL 18501 and in other documents (as referenced in this report) were incorporated. This new version of the HL W Glass Shell should generally estimate higher waste loading in the HL W glass than previous versions.« less

  18. Dissolution of lanthanide alumino-silicate oxynitride glasses

    NASA Astrophysics Data System (ADS)

    Bois, L.; Barré, N.; Guillopé, S.; Guittet, M. J.; Gautier-Soyer, M.; Duraud, J. P.; Trocellier, P.; Verdier, P.; Laurent, Y.

    2000-01-01

    The aqueous corrosion behavior of lanthanide aluminosilicate glasses has been studied under static conditions ( T=96°C, duration=1 and 3 months, glass surface area/leachate volume, S/ V=0.3 cm -1) by means of solution and solid analyses. It was found that these glasses exhibit a high chemical durability. The influence of yttrium, magnesium and nitrogen, which are supposed to improve the mechanical properties, on the chemical durability, has been investigated. After a one-month experiment, lanthanum and yttrium releases were found to be about 10 -7 mol l -1, while silicon and aluminum releases were about 10 -5 mol l -1. Yttrium seems to improve the chemical durability. The presence of nitrogen does not seem to modify the glass constituents releases, but seems to improve the surface state of the altered glass. XPS experiments reveal that lanthanum and yttrium are more concentrated near the surface (20-30 Å) of the glass after the leaching test.

  19. Novel method for early investigation of bioactivity in different borate bio-glasses

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  20. Novel method for early investigation of bioactivity in different borate bio-glasses.

    PubMed

    Abdelghany, A M

    2013-01-01

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm(-1) after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less

  2. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  3. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  4. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, D.C.; Brill, U.; Klower, J.

    1998-12-31

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containingmore » both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.« less

  5. Vitrification of organics-containing wastes

    DOEpatents

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  6. Effect of Sulfate on Rhenium Partitioning during Melting of Low-Activity Waste Glass Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Schweiger, Michael J.

    2015-10-01

    The volatile loss of technetium-99 (99Tc) is a major concern of the low-activity waste (LAW) vitrification at Hanford. We investigated the incorporation and volatile loss of Re (a nonradioactive surrogate for 99Tc) during batch-to-glass conversion up to 1100°C. The AN-102 feed, which is one of the representative Hanford LAW feeds, containing 0.59 wt% of SO3 (in glass if 100% retained) was used. The modified sulfate-free AN-102_0S feed was also tested to investigate the effect of sulfate on Re partitioning and retention during melting. After heating of the dried melter feed (mixture of LAW simulant and glass forming/modifying additives) to differentmore » temperatures, the heat-treated samples were quenched. For each heat-treated sample, the salts (soluble components in room temperature leaching), early glass forming melt (soluble components in 80°C leaching), and insoluble solids were separated by a two-step leaching and the chemical compositions of each phase were quantitatively analyzed. The final retention ratio of AN-102 and AN-102_0S in glass (insoluble solids) are 32% and 63% respectively. The presence of sulfate in the salt phase between 600 and 800°C leads to a significantly higher Re loss via volatilization from the salt layer. At ≥800°C, for both samples, there is no more incorporation of Re into the insoluble phase because: for AN-102_0S there is no salt left i.e., the split into the insoluble and gas phases is complete by 800°C and for AN-102 all the Re contained in the remaining salt phase is lost through volatilization. The present results on the effect of sulfate, although not directly applicable to LAW vitrification in the melter, will be used to understand the mechanism of Re incorporation into glass to eventually develop the methods that can increase the 99Tc retention during LAW vitrification at Hanford.« less

  7. Structure of rhenium-containing sodium borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.

    2013-03-01

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al wasmore » 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.« less

  8. Proceedings of the Triservice Corrosion of Military Equipment Conference (1974) Held at Dayton, Ohio on 29-31 Oct 1974. Volume 1. Sessions 1 through 3

    DTIC Science & Technology

    1975-09-01

    percent by weight). This is in close agreement with values given in the literature.3 During the ex- periments, the line air was passed through a glass ...separated by glass spacers as illustrated in Figure 1. 308 , ■■ ■■ ■- - KMHMHP i in w^wwrw ii. ii« r" The metal specimens were selected from...nstals to minimise galvanic corrosion. However, the specimens with ths glass Inter- face showed s marked Increase In corrosion as Is drsmatlcslly seen

  9. Alkali-resistant calcium iron phosphate glass fibers for concrete reinforcement

    DOT National Transportation Integrated Search

    2008-02-01

    The physical properties and alkaline corrosion resistant properties of calcium-ironphosphate glasses were studied. Iron addition decreases the thermal expansion coefficient and increases the Youngs modulus in comparison with the addition of calciu...

  10. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region

  11. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was

  12. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2013-07-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  13. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    NASA Technical Reports Server (NTRS)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  14. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  15. Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.

    PubMed

    Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong

    2016-03-01

    In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS

  17. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papathanassiu, Adonia; Muller, Isabelle S.; Brandys, Marek

    2011-04-11

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  18. Dynamic fatigue of a machinable glass-ceramic

    NASA Technical Reports Server (NTRS)

    Smyth, K. K.; Magida, M. B.

    1983-01-01

    To assess the stress-corrosion susceptibility of a machinable glass-ceramic, its dynamic fatigue behavior was investigated by measuring its strength as a function of stress rate. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for components of this material. This material was concluded to have only moderate resistance (N = 30) to stress corrosion in ambient conditions. The effects of specimen size on strength were assessed for the material used in this study; it was concluded that the Weibull edge-flaw scaling law adequately describes the observed strength-size relation.

  19. Technical Status Report: Preliminary Glass Formulation Report for INEEL HAW. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, D.; Reamer, I.; Vienna, J.

    1998-03-01

    Preliminary glass formulation work has been initiated at Pacific Northwest National Laboratory (PNNL) and the Savannah River Technology Center (SRTC) to support immobilization efforts of Idaho National Engineering and Environmental Laboratory (INEEL) high activity waste (HAW). Based on current pretreatment flow sheet assumptions, several glasses were fabricated and tested using an average `All Blend` waste stream composition which is dominated by the presence of ZrO{sub 2} (i.e., approximately 80 wt percent). The results of this initial work show that immobilization via vitrification is a viable option for a specific INEEL HAW waste stream. Waste loadings of at least 19 wtmore » percent can be achieved for the `All Blend` stream while maintaining targeted processing and product performance criteria. This waste loading translates into a ZrO{sub 2} content in excess of 15 wt percent in the final glass waste form. Frits developed for this work are based in the alkali borosilicate system. Although the results indicate that vitrification can be used to immobilize the `All Blend` waste stream, the glass compositions are by no means optimized.« less

  20. Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study

    NASA Astrophysics Data System (ADS)

    Cassingham, N. J.; Corkhill, C. L.; Stennett, M. C.; Hand, R. J.; Hyatt, N. C.

    2016-10-01

    The UK high level nuclear waste glass modified with CaO/ZnO was investigated using the vapour phase hydration test, performed at 200 °C, with the aim of understanding the impact of the modification on the chemical composition and microstructure of the alteration layer. Experiments were undertaken on non-modified and CaO/ZnO-modified base glass, with or without 25 wt% of simulant Magnox waste calcine. The modification resulted in a dramatic reduction in gel layer thickness and also a reduction in the reaction rate, from 3.4 ± 0.3 g m-2 d-1 without CaO/ZnO modification to 0.9 ± 0.1 g m-2 d-1 with CaO/ZnO. The precipitated phase assemblage for the CaO/ZnO-modified compositions was identified as hydrated Ca- and Zn-bearing silicate phases, which were absent from the non-modified counterpart. These results are in agreement with other recent studies showing the beneficial effects of ZnO additions on glass durability.

  1. Use of PIXE-PIGE under variable incident angle for ancient glass corrosion measurements

    NASA Astrophysics Data System (ADS)

    Weber, G.; Strivay, D.; Martinot, L.; Garnir, H. P.

    2002-04-01

    Although glass is usually considered as a very stable archaeological material, it can undergo severe degradation. Soda-lime glass, the most common glass throughout ancient times, is particularly sensitive to this problem. The glass surface absorbs moisture from its environment and the contact with CO 2 causes Na 2O and NaOH to convert to Na 2CO 3, which is extremely hygroscopic. The subsequent unstable glass layer can be leached out and causes decomposition of the glass. The non-destructive PIGE-PIXE method of investigation allows detection of this phenomenon even if no visible effect appears. The variable incident angle method is able to discern the depth of the degradation. One aim of such studies is the possible dating or at least fake detecting of archaeological materials. Furthermore, even objects of large size can be investigated with the atmospheric PIGE-PIXE set-up. Some examples of measurements on ancient glass are given.

  2. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE PAGES

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan; ...

    2017-02-24

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. Here, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, we observed inhomogeneous or nomore » alteration layers, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10 µm) alteration layers were inhomogeneously distributed at a small portion of surfaces.Interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  3. Nanoscale imaging of alteration layers of corroded international simple glass particles using ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiandong; Neeway, James J.; Zhang, Yanyan

    Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ~100 nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or nomore » alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1-10 microns) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.« less

  4. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  5. Stress Corrosion of Ceramic Materials.

    DTIC Science & Technology

    1986-08-01

    rupture directly, or are hydrolyzed by the water in the environment. This type of reaction is known to be important to the corrosion of glass in basic...covered .ith silanol groups so that the surface is virtually uncharged. As the pH is increased, the surface gradually hydrolyzes forming silanolate...is plotted assuming a decay distance of 0.3 nm. The data on lecithin is obtained by a non-fracture technique in which the layer spacing is determined

  6. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  7. Predictive modeling of crystal accumulation in high-level waste glass melters processing radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyáš, Josef; Gervasio, Vivianaluxa; Sannoh, Sulaiman E.

    The effectiveness of HLW vitrification is limited by precipitation/accumulation of spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr)2O4] in the glass discharge riser of Joule-heated ceramic melters during idling. These crystals do not affect glass durability; however, if accumulated in thick layer, they can clog the melter and prevent discharge of molten glass into canisters. To address this problem, an empirical model was developed that can predict thicknesses of accumulated layers as a function of glass composition. This model predicts well the accumulation of single crystals and/or small-scale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction ofmore » accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ~53.8 ± 3.7 µm/h determined for this glass will result in ~26 mm thick layer in 20 days of melter idling.« less

  8. Final Report. Baseline LAW Glass Formulation Testing, VSL-03R3460-1, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Pegg, Ian L.; Gan, Hao

    2015-06-18

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  9. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    NASA Astrophysics Data System (ADS)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a

  10. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been

  11. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  12. Corrosion Control through a Better Understanding of the Metallic Substrate/Organic Coating/Interface.

    DTIC Science & Technology

    1982-12-01

    run to run. A Karl Fischer automatic titrimeter has been ordered to enable routine analysis of water in both the inlet and exit streams to determine...Block-Styrene)," M.S. Thesis, Chemical Engineering, June 1982, by D. E. Zurawski. "Electron Optical Methods and the Study of Corrosion," M.S. Thesis...interface as viewed through a thin transparent metal deposited onto glass. The latter method will permit quantitative studies of the corrosion and

  13. Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-12-15

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable tomore » SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.« less

  14. Silicon isotope ratio measurements by inductively coupled plasma tandem mass spectrometry for alteration studies of nuclear waste glasses.

    PubMed

    Gourgiotis, Alkiviadis; Ducasse, Thomas; Barker, Evelyne; Jollivet, Patrick; Gin, Stéphane; Bassot, Sylvain; Cazala, Charlotte

    2017-02-15

    High-level, long-lived nuclear waste arising from spent fuel reprocessing is vitrified in silicate glasses for final disposal in deep geologic formations. In order to better understand the mechanisms driving glass dissolution, glass alteration studies, based on silicon isotope ratio monitoring of 29 Si-doped aqueous solutions, were carried out in laboratories. This work explores the capabilities of the new type of quadrupole-based ICP-MS, the Agilent 8800 tandem quadrupole ICP-MS/MS, for accurate silicon isotope ratio determination for alteration studies of nuclear waste glasses. In order to avoid silicon polyatomic interferences, a new analytical method was developed using O 2 as the reaction gas in the Octopole Reaction System (ORS), and silicon isotopes were measured in mass-shift mode. A careful analysis of the potential polyatomic interferences on SiO + and SiO 2 + ion species was performed, and we found that SiO + ion species suffer from important polyatomic interferences coming from the matrix of sample and standard solutions (0.5M HNO 3 ). For SiO 2 + , no interferences were detected, and thus, these ion species were chosen for silicon isotope ratio determination. A number of key settings for accurate isotope ratio analysis like, detector dead time, integration time, number of sweeps, wait time offset, memory blank and instrumental mass fractionation, were considered and optimized. Particular attention was paid to the optimization of abundance sensitivity of the quadrupole mass filter before the ORS. We showed that poor abundance sensitivity leads to a significant shift of the data away from the Exponential Mass Fractionation Law (EMFL) due to the spectral overlaps of silicon isotopes combined with different oxygen isotopes (i.e. 28 Si 16 O 18 O + , 30 Si 16 O 16 O + ). The developed method was validated by measuring a series of reference solutions with different 29 Si enrichment. Isotope ratio trueness, uncertainty and repeatability were found to be <0

  15. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  16. Fabrication of artificial gemstones from glasses: From waste to jewelry

    NASA Astrophysics Data System (ADS)

    Srisittipokakun, N.; Ruangtaweep, Y.; Horprathum, M.; Kaewkhao, J.

    2014-09-01

    In this review, several aspects of artificial gemstones from glasses have been addressed from the advantages, the fabrication process, the coloration, their properties and finally the use of RHA as the glass former for the simulant gemstones. The silica sources for preparation of glasses were locally obtained from sand and biomass ashes in Thailand. The refractive index, density and hardness values of the glass gemstones reported in these researches had been meet the standard of EU-regulation for crystal. The glass gemstones were fabricated in a variety of colors with some special features such as color changing when exposed under different light sources. Barium was used instead of lead to increase the density and refractive index of the glasses. The developments of high refractive index lead-free glasses are also leave non-toxically impact to our environment.

  17. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  18. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: characterization of the corrosion interface.

    PubMed

    Schlegel, Michel L; Bataillon, Christian; Blanc, Cécile; Prêt, Dimitri; Foy, Eddy

    2010-02-15

    To understand the process governing iron corrosion in clay over centuries, the chemical and mineralogical properties of solids formed by free or anodically activated corrosion of iron in water-saturated clay at 90 degrees C over 4 months were probed using microscopic and spectroscopic techniques. Free corrosion led to the formation of an internal discontinuous thin (<3 microm thick) magnetite layer, an external layer of Fe-rich phyllosilicate, and a clay transformation layer containing Ca-doped siderite (Ca(0.2)Fe(0.8)CO(3)). The thickness of corroded iron equaled approximately 5-7 microm, consistent with previous studies. Anodic polarization resulted in unequally distributed corrosion, with some areas corrosion-free and others heavily corroded. Activated corrosion led to the formation of an inner magnetite layer, an intermediate Fe(2)CO(3)(OH)(2) (chukanovite) layer, an outer layer of Fe-rich 7 A-phyllosilicate, and a transformed matrix layer containing siderite (FeCO(3)). The corroded thickness was estimated to 85 microm, less than 30% of the value expected from the supplied anodic charge. The difference was accounted for by reoxidation at the anodically polarized surface of cathodically produced H(2)(g). Thus, free or anodically activated corroding conditions led to structurally similar interfaces, indicating that anodic polarization can be used to probe the long-term corrosion of iron in clay. Finally, corrosion products retained only half of Fe oxidized by anodic activation. Missing Fe probably migrated in the clay, where it could interact with radionuclides released by alteration of nuclear glass.

  19. Waste canister for storage of nuclear wastes

    DOEpatents

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  20. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  1. Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications

    NASA Astrophysics Data System (ADS)

    Lai, J. J.; Lin, Y. S.; Chang, C. H.; Wei, T. Y.; Huang, J. C.; Liao, Z. X.; Lin, C. H.; Chen, C. H.

    2018-01-01

    Tantalum (Ta) is considered as one of the most promising metal due to its high corrosion resistance, excellent biocompatibility and cell adhesion/in-growth capabilities. Although there are some researches exploring the biomedical aspects of Ta and Ta based alloys, systematic characterizations of newly developed Ta-based metallic glasses in bio-implant applications is still lacking. This study employs sputtering approach to produced thin-film Ti-based metallic glasses due to the high melting temperature of Ta (3020 °C). Two fully amorphous Ta-based metallic glasses composed of Ta57Ti17Zr15Si11 and Ta75Ti10Zr8Si7 are produced and experimentally characterized in terms of their mechanical properties, bio-corrosion properties, surface hydrophilic characteristics, and in-vitro cell viability and cells attachment tests. Compare to conventional pure Ti and Ta metals, the developed Ta-based metallic glasses exhibit higher hardness and lower modulus which are better match to the mechanical properties of bone. MTS assay results show that Ta-based metallic glasses show comparable cell viability and cell attachment rate compared to that of pure Ti and Ta surface in a 72 h in-vitro test.

  2. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3-2 and NO-3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10-4 M 93% efficiency was exhibited at this concentration.

  3. Solvent Effects of Model Polymeric Corrosion Control Coatings on Water Transport and Corrosion Rate

    NASA Astrophysics Data System (ADS)

    Konecki, Christina

    (removal of water) as an attempt to decrease the number of water transport pathways during exposure. Results found that samples rejuvenated at temperatures above the glass transition temperature of the samples achieved lower moisture content and consequently, lower corrosion growth rates. In commercial systems, rejuvenation lowered the corrosion rate up to 60% indicating better coating formulations and maintenance cycles would control the corrosion rate.

  4. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    PubMed

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  6. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  7. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  8. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  9. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  10. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  11. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  12. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.

    2013-01-16

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  13. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol; Herman, Connie; Crawford, Charles

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less

  14. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day basedmore » upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.« less

  15. Tellurite glasses for vitrification of technetium-99 from pyrochemical processing

    NASA Astrophysics Data System (ADS)

    Pyo, Jae-Young; Lee, Cheong Won; Park, Hwan-Seo; Yang, Jae Hwan; Um, Wooyong; Heo, Jong

    2017-09-01

    A new alkali-alumino tellurite glass composition was developed to immobilize highly-volatile technetium (Tc) wastes generated from the pyrochemical processing technology. Tellurite glass can incorporate up to 7 mass% of rhenium (Re, used as a surrogate for Tc) with an average retention of 86%. Normalized elemental releases evaluated by seven-day product consistency test (PCT) satisfied the immobilized low activity waste requirements of United States when concentration of Ca(ReO4)2 in the glass was <12 mass%. Re ions form Re7+ and are coordinated with four oxygens to form ReO4- tetrahedra. These tetrahedra bond to modifiers such as Ca2+ or Na+ that are further connected to the tellurite glass network by Ca2+ (or Na+) - non-bridging oxygen bonds.

  16. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  17. Predicting the Lifetimes of Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    King, Fraser

    2014-03-01

    As for many aspects of the disposal of nuclear waste, the greatest challenge we have in the study of container materials is the prediction of the long-term performance over periods of tens to hundreds of thousands of years. Various methods have been used for predicting the lifetime of containers for the disposal of high-level waste or spent fuel in deep geological repositories. Both mechanical and corrosion-related failure mechanisms need to be considered, although until recently the interactions of mechanical and corrosion degradation modes have not been considered in detail. Failure from mechanical degradation modes has tended to be treated through suitable container design. In comparison, the inevitable loss of container integrity due to corrosion has been treated by developing specific corrosion models. The most important aspect, however, is to be able to justify the long-term predictions by demonstrating a mechanistic understanding of the various degradation modes.

  18. Process for solidifying high-level nuclear waste

    DOEpatents

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  19. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    NASA Astrophysics Data System (ADS)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  20. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  1. ARRHENIUS MODEL FOR HIGH-TEMPERATURE GLASS VISCOSITY WITH A CONSTANT PRE-EXPONENTIAL FACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrma, Pavel R.

    2008-04-15

    A simplified form of the Arrhenius equation, ln η = A + B(x)/T, where η is the viscosity, T the temperature, x the composition vector, and A and B the Arrhenius coefficients, was fitted to glass-viscosity data for the processing temperature range (the range at which the viscosity is within 1 to 103 Pa.s) while setting A = constant and treating B(x) as a linear function of mass fractions of major components. Fitting the Arrhenius equation to over 550 viscosity data of commercial glasses and approximately 1000 viscosity data of glasses for nuclear-waste glasses resulted in the A values ofmore » -11.35 and -11.48, respectively. The R2 value ranged from 0.92 to 0.99 for commercial glasses and was 0.98 for waste glasses. The Arrhenius models estimate viscosities for melts of commercial glasses containing 42 to 84 mass% SiO2 within the temperature range of 1100 to 1550°C and viscosity range of 5 to 400 Pa.s and for waste glasses containing 32 to 60 mass% SiO2 within the temperature range of 850 to 1450°C and viscosity range of 0.4 to 250 Pa.s.« less

  2. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachinger, Johannes; Muller, Walter; Marsat, Eric

    2013-07-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. Themore » most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero

  3. Li corrosion resistant glasses for headers in ambient temperature Li batteries

    DOEpatents

    Hellstrom, E.E.; Watkins, R.D.

    1985-10-11

    Glass compositions containing 10 to 50 mol% CaO, 10 to 50 mol% Al/sub 2/O/sub 3/, 30 to 60 mol% B/sub 2/O/sub 3/, and 0 to 30 mol% MgO are provided. These compositions are capable of forming a stable glass-to-metal seal possessing electrical insulating properties for use in a lithium battery. Also provided are lithium cells containing a stainless steel body and molybdenum center pin electrically insulated by means of a seal produced according to the invention.

  4. Measurements of alkali concentrations in an oxygen-natural gas-fired soda-lime-silica glass furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. G. Buckley; P. M. Walsh; D. w. Hahn

    1999-10-18

    Sodium species vaporized from melting batch and molten glass in tank furnaces are the principal agents of corrosion of superstructure refractory and main contributors to emissions of particulate matter from glass melting. The use of oxygen in place of air for combustion of natural gas reduces particulate emissions, but is thought to accelerate corrosion in some melting tanks. Methods for measuring sodium are under investigation as means for identifying the volatilization, transport, and deposition mechanisms and developing strategies for control. Three separate methods were used to measure the concentrations of sodium species at various locations in an oxygen-natural gas-fired soda-lime-silicamore » glass melting tank. Measurements were made inside the furnace using the absorption of visible light and in the flue duct using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements in both the furnace and flue were also made by withdrawing and analyzing samples of the furnace gas.« less

  5. Combined Experimental and Computational Approach to Predict the Glass-Water Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.

    2011-10-01

    The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducingmore » the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic

  6. Corrosion impact of reductant on DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.

    2014-12-01

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most

  7. Plasma vitrification and re-use of non-combustible fiber reinforced plastic, gill net and waste glass.

    PubMed

    Chu, J P; Chen, Y T; Mahalingam, T; Tzeng, C C; Cheng, T W

    2006-12-01

    Fiber reinforced plastic (FRP) composite material has widespread use in general tank, special chemical tank and body of yacht, etc. The purpose of this study is directed towards the volume reduction of non-combustible FRP by thermal plasma and recycling of vitrified slag with specific procedures. In this study, we have employed three main wastes such as, FRP, gill net and waste glass. The thermal molten process was applied to treat vitrified slag at high temperatures whereas in the post-heat treatment vitrified slags were mixed with specific additive and ground into powder form and then heat treated at high temperatures. With a two-stage heat treatment, the treated sample was generated into four crystalline phases, cristobalite, albite, anorthite and wollastonite. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the two-stage heating treatment. Good physical and mechanical properties were achieved after heat treatment, and this study reveals that our results could be comparable with the commercial products.

  8. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  9. The formation of crystals in glasses containing rare earth oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{submore » 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for

  10. ICP Materials Trends in Corrosion, Soiling and Air Pollution (1987-2014).

    PubMed

    Tidblad, Johan; Kreislová, Kateřina; Faller, Markus; de la Fuente, Daniel; Yates, Tim; Verney-Carron, Aurélie; Grøntoft, Terje; Gordon, Andrew; Hans, Ulrik

    2017-08-19

    Results from the international cooperative programme on effects on materials including historic and cultural monuments are presented from the period 1987-2014 and include pollution data (SO₂, NO₂, O₃, HNO₃ and PM 10 ), corrosion data (carbon steel, weathering steel, zinc, copper, aluminium and limestone) and data on the soiling of modern glass for nineteen industrial, urban and rural test sites in Europe. Both one-year and four-year corrosion data are presented. Corrosion and pollution have decreased significantly and a shift in the magnitude is generally observed around 1997: from a sharp decrease to a more modest decrease or to a constant level without any decrease. SO₂ levels, carbon steel and copper corrosion have decreased even after 1997, which is more pronounced in urban areas, while corrosion of the other materials shows no decrease after 1997, when looking at one-year values. When looking at four-year values, however, there is a significant decrease after 1997 for zinc, which is not evident when looking at the one-year values. This paper also presents results on corrosion kinetics by comparison of one- and four-year values. For carbon steel and copper, kinetics is relatively independent of sites while other materials, especially zinc, show substantial variation in kinetics for the first four years, which needs to be considered when producing new and possibly improved models for corrosion.

  11. Application of Argonne's Glass Furnace Model to longhorn glass corporation oxy-fuel furnace for the production of amber glass.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golchert, B.; Shell, J.; Jones, S.

    2006-09-06

    The objective of this project is to apply the Argonne National Laboratory's Glass Furnace Model (GFM) to the Longhorn oxy-fuel furnace to improve energy efficiency and to investigate the transport of gases released from the batch/melt into the exhaust. The model will make preliminary estimates of the local concentrations of water, carbon dioxide, elemental oxygen, and other subspecies in the entire combustion space as well as the concentration of these species in the furnace exhaust gas. This information, along with the computed temperature distribution in the combustion space may give indications on possible locations of crown corrosion. An investigation intomore » the optimization of the furnace will be performed by varying several key parameters such as the burner firing pattern, exhaust number/size, and the boost usage (amount and distribution). Results from these parametric studies will be analyzed to determine more efficient methods of operating the furnace that reduce crown corrosion. Finally, computed results from the GFM will be qualitatively correlated to measured values, thus augmenting the validation of the GFM.« less

  12. Degradation of glass artifacts: application of modern surface analytical techniques.

    PubMed

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  13. Glass–water interaction: Effect of high-valence cations on glass structure and chemical durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopf, J.; Kerisit, Sebastien N.; Angeli, F.

    2016-05-15

    Borosilicate glass is a durable solid, but it dissolves when in contact with aqueous fluids. The dissolution mechanism, which involves a variety of sequential reactions that occur at the solid-fluid interface, has important implications for the corrosion resistance of industrial and nuclear waste glasses. In this study, spectroscopic measurements, dissolution experiments, and Monte Carlo simulations were performed to investigate the effect of high–valence cations (HVC) on the mechanisms of glass dissolution under dilute and near-saturated conditions. Raman and NMR spectroscopy were used to determine the structural changes that occur in glass, specifically network formers (e.g., Al, Si, and B), withmore » the addition of the HVC element hafnium in the Na2O–Al2O3–B2O3–HfO2–SiO2 system (e.g., Na/[Al+B] = 1.0 and HfO2/SiO2 from 0.0 to 0.42). Spectroscopic measurements revealed that increasing hafnium content decreases N4 (tetrahedral boron/total boron) and increases the amount of Si—O—Hf moieties in the glass. Results from flow–through experiments conducted under dilute and near–saturated conditions show a decrease of approximately 100× or more in the dissolution rate over the series from 0 to 20 mol% HfO2. Comparing the average steady-state rates obtained under dilute conditions to the rates obtained for near-saturated conditions reveals a divergence in the magnitude between the average steady state rates measured in these different conditions. The reason for this divergence was investigated more thoroughly using Monte Carlo simulations. Simulations indicate that the divergence in glass dissolution behavior under dilute and near-saturated conditions result from the stronger binding of Si sites that deposit on the surface from the influent when Hf is present in the glass. As a result, the residence time at the glass surface of these newly-formed Si sites is longer in the presence of Hf, which increases the density of anchor sites from which altered

  14. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.

    PubMed

    Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  15. Development of Tc(IV)-Incorporated Fe Minerals to Enhance 99Tc Retention in Glass Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Luksic, Steven A.; Wang, Guohui

    Iron minerals have been considered to be good hosts for Tc immobilization because the Tc(IV) ion substitutes for Fe(III) in the crystal structure of the Fe oxide due to similarities in (1) cation size [Tc(IV) = 78.5 pm ; Fe(III) = 69 or 78.5 pm], (2) metal-oxygen interatomic distance (Tc—O = 0.199 nm, Fe—O = 0.203 nm), (3) number of coordinating oxygen atoms (both 6-fold coordinated), and (4) the redox potential (Eh=ca. +20 mV at pH = 7) for a redox couple between Tc(VII)/Tc(IV) and Fe(III)/Fe(II). Magnetite, maghemite, and trevorite are iron oxide minerals and all belong to spinel mineralmore » group. Laboratory testing shows that Tc can be removed from aqueous waste solutions by a process of Tc reduction from Tc(VII) to Tc(IV) followed by co-precipitation with iron oxide minerals during recrystallization of Fe(OH)2(s) used as an initial solid precursor. X-ray absorption near edge structure (XANES) spectroscopy confirmed that Tc was in the +4 oxidation state in final Tc-Fe minerals. The Tc-incorporated Fe minerals were also tested for Tc retention in glass melts at different temperatures between 600 – 1,000 oC in a furnace. After being cooled in air, the solid glass specimens collected at different temperatures were analyzed for Tc oxidation state using XANES and Tc retention using liquid scintillation counting (LSC). Even though Tc(IV) started to reoxidize at 600 oC, Tc retention in the final glass specimen prepared with Tc-incorporated Fe mineral even at high temperatures was at least two times higher than glass prepared with KTcO4 salt. Higher Tc retention in glass is considered to result from limited and delayed Tc volatilization process due to Fe mineral encapsulation for Tc. Therefore, the results showing the presence of Tc(IV) in the Fe mineral structure indicate strong possibility to enhance Tc retention in borosilicate glass as well as to reduce the remediation costs at the Hanford Site.« less

  16. SUMMARY REPORT ON CORROSIVITY STUDIES IN COINCINERATION OF SEWAGE SLUDGE AND SOLID WASTE

    EPA Science Inventory

    Corrosion probe exposures were conducted in the Harrisburg, Pennsylvania Incinerator to determine the effects of burning low-chloride sewage sludge with municipal refuse. Probes having controlled temperature gradients were used to measure corrosion rates for exposure times up to ...

  17. Superheater Corrosion In Biomass Boilers: Today's Science and Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharp, William

    2011-12-01

    This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, andmore » creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures

  18. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  19. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  20. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less

  1. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less

  2. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeown,D.; Buechele, A.; Gan, H.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinkedmore » Sn4+O6 units.« less

  3. Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayadi, A.; Stiti, N.; Benhaoua, F.

    2011-01-17

    The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products (leftarrow) waste products (leftarrow) finished products). The investigations have shown that grinding waste glass to particle size less than 0.1more » mm and adding 1% of Ca CO{sub 3} content provide production of material with the following properties: particle density 0,5 g/cm{sup 3}, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850 deg. C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal ({lambda} = 0,031 W/m deg. C) and acoustic (R = 15 dB).« less

  4. Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Stiti, N.; Benhaoua, F.; Boumchedda, K.; Lerari, Y.

    2011-01-01

    The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products ← waste products← finished products). The investigations have shown that grinding waste glass to particle size less than 0.1 mm and adding 1% of Ca CO3 content provide production of material with the following properties: particle density 0,5 g/cm3, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850° C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal (λ = 0,031 W/m° C) and acoustic (R = 15 dB).

  5. Subcritical crack growth behavior of Al2O3-glass dental composites.

    PubMed

    Zhu, Qingshan; de With, Gijsbertus; Dortmans, Leonardus J M G; Feenstra, Frits

    2003-05-15

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with stressing rates ranging from 0.01 MPa/s to 2 MPa/s. The SCG parameter n was determined to be 22.1 for the composite, which is substantially lower than those of high-purity dense alumina. Investigations showed that glass phases are responsible for the low n value as cracks propagate preferentially within glass phases or along the interface between glass phases and alumina phases, due to the fact that glasses are more vulnerable to chemical attacks by water molecules under stress corrosion conditions. The SCG behavior of the infiltration glass was also investigated and the SCG parameter n was determined to be 18.7. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 233-238, 2003

  6. Processing and characterization of Zr-based metallic glass by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Bae, Heehun

    Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.

  7. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and

  8. Determining optical and radiation characteristics of cathode ray tubes' glass to be reused as radiation shielding glass

    NASA Astrophysics Data System (ADS)

    Zughbi, A.; Kharita, M. H.; Shehada, A. M.

    2017-07-01

    A new method of recycling glass of Cathode Ray Tubes (CRTs) has been presented in this paper. The glass from CRTs suggested being used as raw materials for the production of radiation shielding glass. Cathode ray tubes glass contains considerable amounts of environmentally hazardous toxic wastes, namely heavy metal oxides such as lead oxide (PbO). This method makes CRTs glass a favorable choice to be used as raw material for Radiation Shielding Glass and concrete. The heavy metal oxides increase its density, which make this type of glass nearly equivalent to commercially available shielding glass. CRTs glass have been characterized to determine heavy oxides content, density, refractive index, and radiation shielding properties for different Gamma-Ray energies. Empirical methods have been used by using the Gamma-Ray source cobalt-60 and computational method by using the code XCOM. Measured and calculated values were in a good compatibility. The effects of irradiation by gamma rays of cobalt-60 on the optical transparency for each part of the CRTs glass have been studied. The Results had shown that some parts of CRTs glass have more resistant to Gamma radiation than others. The study had shown that the glass of cathode ray tubes could be recycled to be used as radiation shielding glass. This proposed use of CRT glass is only limited to the available quantity of CRT world-wide.

  9. Meier associates and Pacific Northwest Laboratory staff exchange: Transfer of corrosion monitoring expertise to assess and develop in-line inspection tools for corrosion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, N.J.; Meier, T.E.

    1995-04-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at DOE laboratories, in US industry, and academia. During the past 5 years, PNL has developed prototype instrumentation to automate the data collection required for electrochemical determination of corrosion rates and behavior of materials in various electrically conductive environments. The last version is labeled the Sentry 100 prototype corrosion data scanner. Applications include these in the pulp and paper industry and at hazardous waste sites.

  10. Permeability and elastic properties of cracked glass under pressure

    NASA Astrophysics Data System (ADS)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  11. Paleoarchean trace fossils in altered volcanic glass.

    PubMed

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-06-02

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.

  12. Paleoarchean trace fossils in altered volcanic glass

    PubMed Central

    Staudigel, Hubert; Furnes, Harald; DeWit, Maarten

    2015-01-01

    Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543

  13. Synthesizing optimal waste blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make thismore » problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.« less

  14. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of thismore » project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.« less

  15. Observations in Fracture Toughness Testing of Glasses and Optical Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2017-01-01

    Fracture toughness is a critical structural design parameter and an excellent metrics to rank materials. Itdetermines fracture strength by way of the flaws, both inherent and induced, and defines the endpoint of the slow crackgrowth curve. The fracture toughness of structural and optical ceramics, and glasses as measured by several techniques is compared. When good metrology is employed, the results are very comparable with two exceptions: materials exhibiting crack growth resistance and those with a low SCG exponents. For materials with R-curves, the result is a function of extension and can be minimized with short cracks. For materials with low SCG exponents, such as glasses, elimination of the corrosive media andor increasing the stress intensity rate minimizes effects. A summary of values is given, and it appears that highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  16. Dissimilar behavior of technetium and rhenium in borosilicatewaste glass as determined by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Wayne W.; McKeown, David A.; Buechele, Andrew C.

    2006-11-09

    Technetium-99 is an abundant, long-lived (t1/2 = 213,000 yr)fission product that creates challenges for the safe, long-term disposalof nuclear waste. While 99Tc receives attention largely due to its highenvironmental mobility, it also causes problems during its incorporationinto nuclear waste glass due to the volatility of Tc(VII) compounds. Thisvolatility decreases the amount of 99Tc stabilized in the waste glass andcauses contamination of the waste glass melter and off-gas system. Theapproach to decrease the volatility of 99Tc that has received the mostattention is reduction of the volatile Tc(VII) species to less volatileTc(IV) species in the glass melt. On engineering scale experiments,rhenium ismore » often used as a non-radioactive surrogate for 99Tc to avoidthe radioactive contamination problems caused by volatile 99Tc compounds.However, Re(VII) is more stable towards reduction than Tc(VII), so morereducing conditions would be required in the glass melt to produceRe(IV). To better understand the redox behavior of Tc and Re in nuclearwaste glass, a series of glasses were prepared under different redoxconditions. The speciation of Tc and Re in the resulting glasses wasdetermined by X-ray absorption fine structure spectroscopy. Surprisingly,Re and Tc do not behave similarly in the glass melt. Although Tc(0),Tc(IV), and Tc(VII) were observed in these samples, only Re(0) andRe(VII) were found. In no case was Re(IV) (or Re(VI))observed.« less

  17. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insightsmore » into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.« less

  18. Overview of Corrosion, Erosion, and Synergistic Effects of Erosion and Corrosion in the WTP Pre-treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imrich, K. J.

    2015-03-27

    Corrosion is an extremely complex process that is affected by numerous factors. Addition of a flowing multi-phase solution further complicates the analysis. The synergistic effects of the multiple corrosive species as well as the flow-induced synergistic effects from erosion and corrosion must be thoroughly evaluated in order to predict material degradation responses. Public domain data can help guide the analysis, but cannot reliably provide the design basis especially when the process is one-of-a-kind, designed for 40 plus years of service, and has no viable means for repair or replacement. Testing in representative simulants and environmental conditions with prototypic components willmore » provide a stronger technical basis for design. This philosophy was exemplified by the Defense Waste Processing Facility (DWPF) at the Savannah River Site and only after 15 plus years of successful operation has it been validated. There have been “hiccups”, some identified during the cold commissioning phase and some during radioactive operations, but they were minor and overcome. In addition, the system is robust enough to tolerate most flowsheet changes and the DWPF design allows minor modifications and replacements – approaches not available with the Hanford Waste Treatment Plant (WTP) “Black Cell” design methodology. Based on the available data, the synergistic effect between erosion and corrosion is a credible – virtually certain – degradation mechanism and must be considered for the design of the WTP process systems. Testing is recommended due to the number of variables (e.g., material properties, process parameters, and component design) that can affect synergy between erosion and corrosion and because the available literature is of limited applicability for the complex process chemistries anticipated in the WTP. Applicable testing will provide a reasonable and defensible path forward for design of the WTP Black Cell and Hard-to-Reach process equipment

  19. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  20. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less