Sample records for waste handling equipment

  1. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance

  2. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR

  3. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  4. Airborne bacteria and fungi associated with waste-handling work.

    PubMed

    Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin

    2013-01-01

    Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.

  5. [Nursing workers' perceptions regarding the handling of hazardous chemical waste].

    PubMed

    Costa, Taiza Florêncio; Felli, Vanda Elisa Andres; Baptista, Patrícia Campos Pavan

    2012-12-01

    The objectives of this study were to identify the perceptions of nursing workers regarding the handling of hazardous chemical waste at the University of São Paulo University Hospital (HU-USP), and develop a proposal to improve safety measures. This study used a qualitative approach and a convenience sample consisting of eighteen nursing workers. Data collection was performed through focal groups. Thematic analysis revealed four categories that gave evidence of training deficiencies in terms of the stages of handling waste. Difficulties that emerged included a lack of knowledge regarding exposure and its impact, the utilization of personal protective equipment versus collective protection, and suggestions regarding measures to be taken by the institution and workers for the safe handling of hazardous chemical waste. The present data allowed for recommending proposals regarding the safe management of hazardous chemical waste by the nursing staff.

  6. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and

  7. The influence of residents' behaviour on waste electrical and electronic equipment collection effectiveness.

    PubMed

    Nowakowski, Piotr

    2016-11-01

    Government agencies have implemented regulations to reduce the volume of waste electrical and electronic equipment to protect the environment and encourage recycling. The effectiveness of systems through which waste electrical and electronic equipment is collected and recycled depends on (a) the development and operation of new programmes to process this material and (b) on information dissemination programmes aimed at manufacturers, retail sellers, and the consuming public. This study analyses these two elements. The main focus is to better understand household residents' behaviour in regards to the proper methods of handling waste electrical and electronic equipment and possible storage of the obsolete equipment that brings disturbances with collection of the waste equipment. The study explores these issues depending on size of municipality and the household residents' knowledge about legal methods of post-consumer management of waste electrical and electronic equipment in Poland, where the collection rate of that type of waste is about 40% of the total mass of waste electrical and electronic equipment appearing in the market.The research was informed by various sources of information, including non-government organisations, Inspectorate of Environmental Protection and Central Statistics Office in Poland, questionnaires, and interviews with the household residents. The questionnaires were distributed to daytime and vocational students from different universities and the customers of an electronic equipment superstore. The results show that a resident's behaviour in regards to the handling of obsolete waste electrical and electronic equipment can significantly reduce the collection rate, especially when the waste is discarded improperly - mixed with municipal waste or sold in scrapyards. It is possible to identify points that are necessary to be improved to achieve a higher collection rate. © The Author(s) 2016.

  8. HAND TRUCK FOR HANDLING EQUIPMENT

    DOEpatents

    King, D.W.

    1959-02-24

    A truck is described for the handling of large and relatively heavy pieces of equipment and particularly for the handling of ion source units for use in calutrons. The truck includes a chassis and a frame pivoted to the chassis so as to be operable to swing in the manner of a boom. The frame has spaced members so arranged that the device to be handled can be suspended between or passed between these spaced members and also rotated with respect to the frame when the device is secured to the spaced members.

  9. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  10. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  11. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  12. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  13. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  14. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  15. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-10-05

    This report summarizes existing analytical data gleaned from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shellmore » tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature. This report supercedes and replaces PNNL-14832.« less

  16. Standards for material handling and facilities equipment proofload testing

    NASA Technical Reports Server (NTRS)

    Bonn, S. P.

    1970-01-01

    Document provides information on verifying the safety of material handling and facilities equipment /MH/FE/, ranging from monorail systems to ladders and non-powered mobile equipment. Seven catagories of MH/FE equipment are defined.

  17. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanksmore » B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.« less

  18. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  19. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  20. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  1. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  2. 49 CFR 176.192 - Cargo handling equipment for freight containers carrying Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Cargo handling equipment for freight containers...) Materials Handling Class 1 (explosive) Materials in Port § 176.192 Cargo handling equipment for freight containers carrying Class 1 (explosive) materials. (a) Except in an emergency, only cargo handling equipment...

  3. Remote-handled/special case TRU waste characterization summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1984-03-30

    TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less

  4. Hazardous Waste Certification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance frommore » the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22.« less

  5. Waste-handling practices at red meat abattoirs in South Africa.

    PubMed

    Roberts, Hester; de Jager, Linda; Blight, Geoffrey

    2009-02-01

    Abattoir waste disposal must be carefully managed because the wastes can be a source of food-borne diseases (Nemerow & Dasgupta Industrial and Hazardous Waste Treatment, p. 284, Van Nostrand Reinhold, New York, 1991; Bradshaw et al. The Treatment and Handling of Wastes, p. 183, The Royal Society, Chapman & Hall, London, 1992). Disposal of food that has been condemned because it is known to be diseased is of particular concern, and this paper looks at current disposal methods for such waste in the light of new scientific developments and waste-management strategies. Questionnaires were presented to management and workers at low- and high-throughput red meat abattoirs in the Free State Province, South Africa to determine current waste-handling procedures for condemned products. The waste-handling practices, almost without exception, did not fully comply with the requirements of the South African Red Meat Regulations of 2004, framed under the Meat Safety Act (Act 40 of 2000). The survey highlighted the need to improve current waste-handling strategies to prevent condemned products from re-entering the food chain and contributing to environmental pollution.

  6. Hazardous Waste Handling Should be Defined

    ERIC Educational Resources Information Center

    Steigman, Harry

    1972-01-01

    An examination of the handling, storage and disposition of hazardous wastes from municipal and industrial sources, with a plea for the development of a uniform national hazardous waste code or listing that would be acceptable and useful to all state and federal agencies. (LK)

  7. Remote-handled/special case TRU waste characterization summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1984-02-27

    Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The following will be a site by site discussion of RH waste handling, placement, and container data. This will be followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that is the most up to date and accurate data available today. 2 figures, 10 tables.

  8. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... personal protective equipment capable of providing protection against shock hazard must be used to prevent... protective equipment must— (1) Have a voltage rating of at least Class 1 (7,500 volts) that meets or exceeds... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of insulated cable handling equipment. 75...

  9. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... personal protective equipment capable of providing protection against shock hazard must be used to prevent... protective equipment must— (1) Have a voltage rating of at least Class 1 (7,500 volts) that meets or exceeds... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of insulated cable handling equipment. 75...

  10. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  11. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  12. 40 CFR 63.748 - Standards: Handling and storage of waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Handling and storage of waste. Except as provided in § 63.741(e), the owner or operator of each facility subject to this subpart that produces a waste that contains HAP shall conduct the handling and transfer of... waste. 63.748 Section 63.748 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...

  13. WIPP Remote-Handled TRU Waste Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W.; Kehrman, B.

    2006-07-01

    There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH

  14. Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravarik, K.; Medved, J.; Pekar, A.

    The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementationmore » of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design

  15. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Materials handling equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of...

  16. DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan

    EPA Pesticide Factsheets

    Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.

  17. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubingmore » was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.« less

  18. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.45 Handling of wastes. Oilfield brine, and all other...), facilities, cultural resources, wildlife, and vegetation of or visitors of the unit. ...

  19. The presence and leachability of antimony in different wastes and waste handling facilities in Norway.

    PubMed

    Okkenhaug, G; Almås, Å R; Morin, N; Hale, S E; Arp, H P H

    2015-11-01

    The environmental behaviour of antimony (Sb) is gathering attention due to its increasingly extensive use in various products, particularly in plastics. Because of this it may be expected that plastic waste is an emission source for Sb in the environment. This study presents a comprehensive field investigation of Sb concentrations in diverse types of waste from waste handling facilities in Norway. The wastes included waste electrical and electronic equipment (WEEE), glass, vehicle fluff, combustibles, bottom ash, fly ash and digested sludge. The highest solid Sb concentrations were found in WEEE and vehicle plastic (from 1238 to 1715 mg kg(-1)) and vehicle fluff (from 34 to 4565 mg kg(-1)). The type of acid used to digest the diverse solid waste materials was also tested. It was found that HNO3:HCl extraction gave substantially lower, non-quantitative yields compared to HNO3:HF. The highest water-leachable concentration for wastes when mixed with water at a 1 : 10 ratio were observed for plastic (from 0.6 to 2.0 mg kg(-1)) and bottom ash (from 0.4 to 0.8 mg kg(-1)). For all of the considered waste fractions, Sb(v) was the dominant species in the leachates, even though Sb(iii) as Sb2O3 is mainly used in plastics and other products, indicating rapid oxidation in water. This study also presents for the first time a comparison of Sb concentrations in leachate at waste handling facilities using both active grab samples and DGT passive samples. Grab samples target the total suspended Sb, whereas DGT targets the sum of free- and other chemically labile species. The grab sample concentrations (from 0.5 to 50 μg L(-1)) were lower than the predicted no-effect concentration (PNEC) of 113 μg L(-1). The DGT concentrations were substantially lower (from 0.05 to 9.93 μg L(-1)) than the grab samples, indicating much of the Sb is present in a non-available colloidal form. In addition, air samples were taken from the chimney and areas within combustible waste incinerators, as

  20. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several

  1. Bisphenol A in Solid Waste Materials, Leachate Water, and Air Particles from Norwegian Waste-Handling Facilities: Presence and Partitioning Behavior.

    PubMed

    Morin, Nicolas; Arp, Hans Peter H; Hale, Sarah E

    2015-07-07

    The plastic additive bisphenol A (BPA) is commonly found in landfill leachate at levels exceeding acute toxicity benchmarks. To gain insight into the mechanisms controlling BPA emissions from waste and waste-handling facilities, a comprehensive field and laboratory campaign was conducted to quantify BPA in solid waste materials (glass, combustibles, vehicle fluff, waste electric and electronic equipment (WEEE), plastics, fly ash, bottom ash, and digestate), leachate water, and atmospheric dust from Norwegian sorting, incineration, and landfill facilities. Solid waste concentrations varied from below 0.002 mg/kg (fly ash) to 188 ± 125 mg/kg (plastics). A novel passive sampling method was developed to, for the first time, establish a set of waste-water partition coefficients, KD,waste, for BPA, and to quantify differences between total and freely dissolved concentrations in waste-facility leachate. Log-normalized KD,waste (L/kg) values were similar for all solid waste materials (from 2.4 to 3.1), excluding glass and metals, indicating BPA is readily leachable. Leachate concentrations were similar for landfills and WEEE/vehicle sorting facilities (from 0.7 to 200 μg/L) and dominated by the freely dissolved fraction, not bound to (plastic) colloids (agreeing with measured KD,waste values). Dust concentrations ranged from 2.3 to 50.7 mg/kgdust. Incineration appears to be an effective way to reduce BPA concentrations in solid waste, dust, and leachate.

  2. 76 FR 62062 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Sandia..., remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Sandia National Laboratory (SNL) in Albuquerque, New Mexico. This waste is...

  3. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  4. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Bettis... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Bettis Atomic Power Laboratory (BAPL) in West Mifflin, Pennsylvania. This waste...

  5. 77 FR 11112 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at the...-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization... Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an inspection on...

  6. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  7. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  8. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  9. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other material-handling equipment? 250.108 Section 250.108 Mineral Resources BUREAU OF SAFETY AND... material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance... Cranes, API RP 2D (as incorporated by reference in § 250.198). (b) All cranes installed on fixed...

  10. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs

  11. Management of waste electrical and electronic equipment in Romania: A mini-review.

    PubMed

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  12. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  13. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  14. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  15. Centralized processing of contact-handled TRU waste feasibility analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-12-01

    This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)

  16. Implications for patient safety in the use of safe patient handling equipment: a national survey.

    PubMed

    Elnitsky, Christine A; Lind, Jason D; Rugs, Deborah; Powell-Cope, Gail

    2014-12-01

    The prevalence of musculoskeletal injuries among nursing staff has been high due to patient handling and movement. Internationally, healthcare organizations are integrating technological equipment into patient handling and movement to improve safety. Although evidence shows that safe patient handling programs reduce work-related musculoskeletal injuries in nursing staff, it is not clear how safe these new programs are for patients. The objective of this study was to explore adverse patient events associated with safe patient handling programs and preventive approaches in US Veterans Affairs medical centers. The study surveyed a convenience sample of safe patient handling program managers from 51 US Department of Veterans Affairs medical centers to collect data on skin-related and fall-related adverse patient events. Both skin- and fall-related adverse patient events associated with safe patient handling occurred at VA Medical centers. Skin-related events included abrasions, contusions, pressure ulcers and lacerations. Fall-related events included sprains and strains, fractures, concussions and bleeding. Program managers described contextual factors in these adverse events and ways of preventing the events. The use of safe patient handling equipment can pose risks for patients. This study found that organizational factors, human factors and technology factors were associated with patient adverse events. The findings have implications for how nursing professionals can implement safe patient handling programs in ways that are safe for both staff and patients. Published by Elsevier Ltd.

  17. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-23

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS,more » as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for

  18. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    PubMed

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  19. A pilot survey of the U.S. medical waste industry to determine training needs for safely handling highly infectious waste.

    PubMed

    Le, Aurora B; Hoboy, Selin; Germain, Anne; Miller, Hal; Thompson, Richard; Herstein, Jocelyn J; Jelden, Katelyn C; Beam, Elizabeth L; Gibbs, Shawn G; Lowe, John J

    2018-02-01

    The recent Ebola outbreak led to the development of Ebola virus disease (EVD) best practices in clinical settings. However, after the care of EVD patients, proper medical waste management and disposal was identified as a crucial component to containing the virus. Category A waste-contaminated with EVD and other highly infectious pathogens-is strictly regulated by governmental agencies, and led to only several facilities willing to accept the waste. A pilot survey was administered to determine if U.S. medical waste facilities are prepared to handle or transport category A waste, and to determine waste workers' current extent of training to handle highly infectious waste. Sixty-eight percent of survey respondents indicated they had not determined if their facility would accept category A waste. Of those that had acquired a special permit, 67% had yet to modify their permit since the EVD outbreak. This pilot survey underscores gaps in the medical waste industry to handle and respond to category A waste. Furthermore, this study affirms reports a limited number of processing facilities are capable or willing to accept category A waste. Developing the proper management of infectious disease materials is essential to close the gaps identified so that states and governmental entities can act accordingly based on the regulations and guidance developed, and to ensure public safety. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a

  1. 77 FR 23117 - Rigging Equipment for Material Handling Construction Standard; Correction and Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ...OSHA is correcting its sling standard for construction titled ``Rigging Equipment for Material Handling'' by removing the rated capacity tables and making minor, nonsubstantive revisions to the regulatory text.

  2. Remote-Handled Low-Level Waste Disposal Project Code of Record

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austad, S. L.; Guillen, L. E.; McKnight, C. W.

    2015-04-01

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less

  3. [Medical wastes management: aspects of internal handling in the city of Marituba, Pará State, Brazil].

    PubMed

    Sales, Carla Cristina de Lima; Spolti, Gracieli Pâmela; Lopes, Maria do Socorro Bezerra; Lopes, David Franco

    2009-01-01

    Medical wastes offer a potential risk to public health and the environment before an inadequate management. This study aims to verify aspects of internal handling of medical wastes in the city of Marituba, Pará State. By means of questionnaires and field visits, a descriptive and observational study was performed in 13 health establishments in the city. The total volume of generated medical wastes was about 13,000 kg/week. There were deficiencies in many stages of the internal handling, for example the internal treatment that was performed in only one of the establishments, external storage made in 4 establishments and in precarious ways, among many others. Also, there were conformities as packing in adequate bags and containers as well as common waste separation. In general way, the federal norms were not accomplished and management of medical wastes in health establishments needs adequacy in every stage of the handling in order to control and reduce risks, decreasing the quantity of residues.

  4. Export of electronics equipment waste.

    PubMed

    LaDou, Joseph; Lovegrove, Sandra

    2008-01-01

    Electronics equipment waste ("e-waste") includes discarded computers, computer monitors, television sets, and cell phones. Less than 10% of e-waste is currently recycled. The United States and other developed countries export e-waste primarily to Asia, knowing it carries a real harm to the poor communities where it will be discarded. A 2006 directive bans the use of lead, mercury, cadmium, hexavalent chromium, and certain brominated flame retardants in most electronics products sold in the EU. A similar directive facilitates the development and design of clean electronics products with longer lifespans that are safe and easy to repair, upgrade, and recycle, and will not expose workers and the environment to hazardous chemicals. These useful approaches apply only regionally and cover only a fraction of the hazardous substances used in electronics manufacture, however. There is an urgent need for manufacturers of electronics products to take responsibility for their products from production to end-of-life, and for much tighter controls both on the transboundary movement of e-waste and on the manner in which it is recycled. Manufacturers must develop clean products with longer lifespans that are safe and easy to repair, upgrade, and recycle and will not expose workers and the environment to hazardous chemicals.

  5. Fluid handling equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Devices and techniques used in fluid-handling and vacuum systems are described. Section 1 presents several articles on fluid lines and tubing. Section 2 describes a number of components such as valves, filters, and regulators. The last section contains descriptions of a number of innovative fluid-handling systems.

  6. STS-57 MS4 Voss, wearing goggles, handles SCG equipment on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 4 (MS4) Janice E. Voss, wearing goggles, handles plastic-wrapped Support of Crystal Growth (SCG) experiment equipment on the middeck of Endeavour, Orbiter Vehicle (OV) 105. Holding the SCG equipment over a portable light fixture, Voss determines the proper autoclave mixing protocols for the zeolite crystal growth experiment. The lighting fixture bracket is attached to the open airlock hatch in the foreground.

  7. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran

    PubMed Central

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative. PMID:27766238

  8. Performance of on-site Medical waste disinfection equipment in hospitals of Tabriz, Iran.

    PubMed

    Taghipour, Hassan; Alizadeh, Mina; Dehghanzadeh, Reza; Farshchian, Mohammad Reza; Ganbari, Mohammad; Shakerkhatibi, Mohammad

    2016-01-01

    Background: The number of studies available on the performance of on-site medical waste treatment facilities is rare, to date. The aim of this study was to evaluate the performance of onsite medical waste treatment equipment in hospitals of Tabriz, Iran. Methods: A various range of the on-site medical waste disinfection equipment (autoclave, chemical disinfection, hydroclave, and dry thermal treatment) was considered to select 10 out of 22 hospitals in Tabriz to be included in the survey. The apparatus were monitored mechanically, chemically, and biologically for a six months period in all of the selected hospitals. Results: The results of the chemical monitoring (Bowie-Dick tests) indicated that 38.9% of the inspected autoclaves had operational problems in pre-vacuum, air leaks, inadequate steam penetration into the waste, and/or vacuum pump. The biological indicators revealed that about 55.55% of the samples were positive. The most of applied devices were not suitable for treating anatomical, pharmaceutical, cytotoxic, and chemical waste. Conclusion: Although on-site medical waste treating facilities have been installed in all the hospitals, the most of infectious-hazardous medical waste generated in the hospitals were deposited into a municipal solid waste landfill, without enough disinfection. The responsible authorities should stringently inspect and evaluate the operation of on-site medical waste treating equipment. An advanced off-site central facility with multi-treatment and disinfection equipment and enough capacity is recommended as an alternative.

  9. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, J.; Sprik, S.; Ramsden, T.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  10. Optimising waste from electric and electronic equipment collection systems: a comparison of approaches in European countries.

    PubMed

    Friege, Henning; Oberdörfer, Michael; Günther, Marko

    2015-03-01

    The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection. © The Author(s) 2015.

  11. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  12. Status of electronic waste recycling techniques: a review.

    PubMed

    Abdelbasir, Sabah M; Hassan, Saad S M; Kamel, Ayman H; El-Nasr, Rania Seif

    2018-05-08

    The increasing use of electrical and electronic equipment leads to a huge generation of electronic waste (e-waste). It is the fastest growing waste stream in the world. Almost all electrical and electronic equipment contain printed circuit boards as an essential part. Improper handling of these electronic wastes could bring serious risk to human health and the environment. On the other hand, proper handling of this waste requires a sound management strategy for awareness, collection, recycling, and reuse. Nowadays, the effective recycling of this type of waste has been considered as a main challenge for any society. Printed circuit boards (PCBs), which are the base of many electronic industries, are rich in valuable heavy metals and toxic halogenated organic substances. In this review, the composition of different PCBs and their harmful effects are discussed. Various techniques in common use for recycling the most important metals from the metallic fractions of e-waste are illustrated. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical, or biohydrometallurgical routes is also discussed, along with alternative uses of non-metallic fraction. The data are explained and compared with the current e-waste management efforts done in Egypt. Future perspectives and challenges facing Egypt for proper e-waste recycling are also discussed.

  13. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    PubMed

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.

  14. 78 FR 70326 - Rigging Equipment for Material Handling; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ...OSHA solicits public comments concerning its proposal to extend the OMB approval of the information collection requirements contained in paragraphs (b)(1), (b)(6)(i), (b)(6)(ii), (c)(15)(ii), (e)(1)(i), (ii), and (iii) and (f)(2) of the Standard on Rigging Equipment for Material Handling (29 CFR 1926.251). These paragraphs require affixing identification tags or markings on rigging equipment, developing and maintaining inspection records, and retaining proof- testing certificates.

  15. Waste electrical and electronic equipment (WEEE) estimation: A case study of Ahvaz City, Iran.

    PubMed

    Alavi, Nadali; Shirmardi, Mohammad; Babaei, Aliakbar; Takdastan, Afshin; Bagheri, Nastaran

    2015-03-01

    The development of new technologies and the increasing consumption of electronic and electrical equipment have led to increased generation of e-waste in the municipal waste streams. This waste due to the presence of hazardous substances in its composition needs specific attention and management. The present study was carried out in Ahvaz metropolis using a survey method in 2011. For estimating the amount of waste electrical and electronic equipment (WEEE) generated, the "use and consumption" method was used. In order to determine the amounts of the electrical and electronic equipment that were used and their lifetime, and for investigating the current status of e-waste management in Ahvaz, an appropriate questionnaire was devised. In 2011, the total number of discarded electronic items was 2,157,742 units. According to the average weight of the equipment, the total generation of e-waste was 9952.25 metric tons per year and was 9.95 kg per capita per year. The highest e-waste generated was related to air conditioners, with 3125.36 metric tons per year, followed by the wastes from refrigerators and freezers, washing machines, and televisions. The wastes from desktop computers and laptops were 418 and 63 metric tons/year, respectively, and the corresponding values per capita were 0.42 and 0.063 kg, respectively. These results also showed that 10 tons fixed phones, 25 tons mobile phones, and by considering an average lifetime of 3 years for each lamp about 320 tons lamps were generated as e-waste in Ahvaz in the year 2011. Based on this study, currently there is not an integrated system for proper management of WEEE in Ahvaz, and this waste stream is collected and disposed of with other municipal waste. Some measures, including a specific collection system, recycling of valuable substances, and proper treatment and disposal, should be done about such waste. Ahvaz is one of the most important economic centers of Iran, and to the best of our knowledge, no study has been

  16. Oncology pharmacy units: a safety policy for handling hazardous drugs and related waste in low- and middle-income African countries-Angolan experience.

    PubMed

    da Conceição, Ana Vaz; Bernardo, Dora; Lopes, Lygia Vieira; Miguel, Fernando; Bessa, Fernanda; Monteiro, Fernando; Santos, Cristina; Oliveira, Blasques; Santos, Lúcio Lara

    2015-01-01

    In African countries, higher rates of late-stage cancers at the time of first diagnosis are a reality. In this context, hazardous drugs (HDs), such as chemotherapy, play an important role and have immense benefits for patients' treatment. HDs should be handled under specific conditions. At least a class 5 environment primary engineering control (PEC), physically located in an appropriate buffer area, is mandatory for sterile HDs compounding, as well as administrative control, personal protective equipment, work practices and other engineering and environmental controls, in order to protect the environment, patient, and worker. The aim of this study is to describe the Angolan experience regarding the development of oncology pharmacy units and discuss international evidence-based guidelines on handling HDs and related waste. Measures to incorporate modern and economical solutions to upgrade or build adequate and safe facilities and staff training, in order to comply with international guidelines in this area, are crucial tasks for African countries of low and middle income.

  17. E-waste management and sustainability: a case study in Brazil.

    PubMed

    Azevedo, Luís Peres; da Silva Araújo, Fernando Gabriel; Lagarinhos, Carlos Alberto Ferreira; Tenório, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2017-11-01

    The advancement of technology and development of new electronic and electrical equipment with a reduced life cycle has increased the need for the disposal of them (called Waste of Electric and Electronic Equipment or simply e-waste) due to defects presented during use, replacement of obsolete equipment, and ease of acquisition of new equipment. There is a lack of consumer awareness regarding the use, handling storage, and disposal of this equipment. In Brazil, the disposal of post-consumer waste is regulated by the National Solid Waste Policy, established by Law No. 12305 and regulated on the 23rd December 2010. Under this legislation, manufacturers and importers are required to perform a project for the Reverse Logistics of e-waste, though its implementation is not well defined. This work focuses on the verification of the sustainability of reverse logistics suggested by the legislation and the mandatory points, evaluating its costs and the possible financial gain with recycling of the waste. The management of reverse logistics and recycling of waste electrical and electronic equipment, or simply recycling of e-waste, as suggested by the government, will be the responsibility of the managing organization to be formed by the manufacturers/importers in Brazil.

  18. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I follow for cranes and... Performance Standards § 250.108 What requirements must I follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must be operated in accordance with American...

  19. DOE's Notification of Planned Change to the EPA 40 CFR Part 194 Certification of the Waste Isolation Pilot Plant: Remote-Handled Transuranic Waste Characterization Plan

    EPA Pesticide Factsheets

    The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

  20. The market of electrical and electronic equipment waste in Portugal: Analysis of take-back consumers' decisions.

    PubMed

    Botelho, Anabela; Ferreira Dias, Marta; Ferreira, Carla; Pinto, Lígia M Costa

    2016-10-01

    This paper aims to ascertain the efficacy and acceptability of five incentive schemes for the take-back of waste electrical and electronic equipment in Portugal, focusing in consumers' perspectives. It assesses users' perception of these items, evaluating the motivations and interests they have concerning the market of waste electrical and electronic equipment. Results indicate, on one hand, a lack of awareness by consumers about the process of take-back of their equipment. On the other hand, results show that information conditions and socio-demographic factors affect consumers' motivations for returning the electrical and electronic equipment at the end of life. In this context, it can be concluded that, in Portugal, the market for the recovery of waste electrical and electronic equipment is still in its infancy. © The Author(s) 2016.

  1. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low

  2. Comparison of Customer Preference for Bulk Material Handling Equipment through Fuzzy-AHP Approach

    NASA Astrophysics Data System (ADS)

    Sen, Kingshuk; Ghosh, Surojit; Sarkar, Bijan

    2017-06-01

    In the present study, customer's perception has played one of the important roles for selection of the exact equipment out of available alternatives. The present study is dealt with the method of optimization of selection criteria of a material handling equipment, based on the technical specifications considered to be available at the user end. In this work, the needs of customers have been identified and prioritized, that lead to the selection of number of criteria, which have direct effect upon the performance of the equipment. To check the consistency of selection criteria, first of all an AHP based methodology is adopted with the identified criteria and available product categories, based upon which, the judgments of the users are defined to derive the priority scales. Such judgments expressed the relative strength or intensity of the impact of the elements of the hierarchy. Subsequently, all the alternatives have ranked for each identified criteria with subsequent constitution of weighted matrices. The same has been compared with the normalized values of approximate selling prices of the equipments to determine individual cost-benefit ratio. Based on the cost-benefit ratio, the equipment is ranked. With same conditions, the study is obtained again with a Fuzzy AHP concept, where a fuzzy linguistic approach has reduced the amount of uncertainty in decision making, caused by conventional AHP due to lack of deterministic approach. The priority vectors of category and criteria are determined separately and multiplied to obtain composite score. Subsequently, the average of fuzzy weights was determined and the preferences of equipment are ranked.

  3. 30 CFR 250.108 - What requirements must I follow for cranes and other material-handling equipment?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What requirements must I follow for cranes and... follow for cranes and other material-handling equipment? (a) All cranes installed on fixed platforms must... Maintenance of Offshore Cranes (API RP 2D), incorporated by reference as specified in 30 CFR 250.198. (b) All...

  4. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.

    2000-02-07

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloadingmore » on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into

  5. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.

  6. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  7. CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.F. Loros

    2000-06-28

    The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installingmore » the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations

  8. Sampling and analyses plan for tank 103 at the 219-S waste handling facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOWLER, K.D.

    1999-06-23

    This document describes the sampling and analysis activities associated with taking a Resource Conservation and Recovery Act (RCRA) protocol sample of the waste from Tank 103 at the 21 9-S Waste Handling Facility treatment storage, andlor disposal (TSD) unit at the 2224 Laboratory complex. This sampling and analyses is required based on negotiations between the State of Washington Department of Ecology (Ecology) and the Department of Energy, Richland Operations, (RL) in letters concerning the TPA Change Form M-32-98-01. In a letter from George H. Sanders, RL to Moses N. Jaraysi, Ecology, dated January 28,1999, it was noted that ''Prior tomore » the Tank 103 waste inventory transfer, a RCRA protocol sample of the waste will be obtained and tested for the constituents contained on the Part A, Form 3 Permit Application for the 219-S Waste Handling Facility.'' In the April 2, 1999 letter, from Brenda L. Becher-Khaleel, Ecology to James, E. Rasmussen, RL, and William O. Adair, FDH, Ecology states that the purpose of these analyses is to provide information and justification for leaving Tank 103 in an isolated condition in the 2194 TSD unit until facility closure. The data may also be used at some future date in making decisions regarding closure methodology for Tank 103. Ecology also notes that As Low As Reasonably Achievable (ALARA) concerns may force deviations from some SW-846 protocol. Every effort will be made to accommodate requirements as specified. Deviations from SW-846 will be documented in accordance with HASQARD.« less

  9. Farmers' use of personal protective equipment during handling of plant protection products: Determinants of implementation.

    PubMed

    Damalas, Christos A; Abdollahzadeh, Gholamhossein

    2016-11-15

    Understanding factors affecting the use of personal protective equipment (PPE) during handling of plant protection products (PPPs) is of major importance for the design of tailored interventions to minimize exposure among farmers. However, data regarding this issue are highly limited. Factors related to the use of PPE during handling of PPPs were explored in a survey of cotton farmers in northern Greece. Data were collected through face-to-face interviews with the farmers based on a questionnaire with structured items on the frequency of use of various personal protective devices during handling of PPPs. New evidence on patterns of PPE use and potential exposure of farmers to PPPs is provided. Most farmers (49.3%) showed potentially unsafe behaviour with respect to PPE use. Hat and boots were the most commonly used protective items during PPPs use, but most of the farmers surveyed reported low frequency of use for gloves, goggles, face mask, coveralls, and respirator. Especially the respirator was reported to be the least used PPE item amongst farmers. Farmers who perceived PPPs as harmful substances or those who had an episode of intoxication in the past reported more frequent use of several PPE items. Stepwise multiple regression analysis revealed that the variable episode of intoxication in the past exerted the strongest positive influence on PPE use, followed by the perception of PPPs being hazardous substances, upper secondary education, previous training on PPPs (i.e., spraying equipment, application parameters, risks to human health and environment, safety issues) and farm size under cultivation. Old age exerted a significant negative influence on PPE use, namely, elderly farmers tended not to use PPE. Strategies to maximize the protection of applicators of PPPs from hazardous exposures still require innovation to achieve increased effectiveness. Emphasis on lifelong training and education of farmers about hazards and risks of PPPs is crucial for changing

  10. Occupational health hazards related to informal recycling of E-waste in India: An overview.

    PubMed

    Annamalai, Jayapradha

    2015-01-01

    The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste.

  11. Chemical hazards associated with treatment of waste electrical and electronic equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsydenova, Oyuna; Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp

    2011-01-15

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associatedmore » with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.« less

  12. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  13. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Marcelo Guimaraes, E-mail: marcel_g@uol.com.br; Magrini, Alessandra; Mahler, Claudio Fernando

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste mustmore » be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.« less

  14. Handling e-waste in developed and developing countries: initiatives, practices, and consequences.

    PubMed

    Sthiannopkao, Suthipong; Wong, Ming Hung

    2013-10-01

    Discarded electronic goods contain a range of toxic materials requiring special handling. Developed countries have conventions, directives, and laws to regulate their disposal, most based on extended producer responsibility. Manufacturers take back items collected by retailers and local governments for safe destruction or recovery of materials. Compliance, however, is difficult to assure, and frequently runs against economic incentives. The expense of proper disposal leads to the shipment of large amounts of e-waste to China, India, Pakistan, Nigeria, and other developing countries. Shipment is often through middlemen, and under tariff classifications that make quantities difficult to assess. There, despite the intents of national regulations and hazardous waste laws, most e-waste is treated as general refuse, or crudely processed, often by burning or acid baths, with recovery of only a few materials of value. As dioxins, furans, and heavy metals are released, harm to the environment, workers, and area residents is inevitable. The faster growth of e-waste generated in the developing than in the developed world presages continued expansion of a pervasive and inexpensive informal processing sector, efficient in its own way, but inherently hazard-ridden. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. 9 CFR 381.201 - Means of conveyance and equipment used in handling poultry products offered for entry to be...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Imported Poultry Products § 381.201... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Means of conveyance and equipment used in handling poultry products offered for entry to be maintained in sanitary condition. 381.201...

  16. Occupational health hazards related to informal recycling of E-waste in India: An overview

    PubMed Central

    Annamalai, Jayapradha

    2015-01-01

    The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste. PMID:26023273

  17. IET control building (TAN620). equipment removed. Lube oil and waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET control building (TAN-620). equipment removed. Lube oil and waste piping at upper right. Fire door on right. Rebar exposed in concrete of ceiling. INEEL negative no. HD-21-5-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  18. Assessment of work-related accidents associated with waste handling in Belo Horizonte (Brazil).

    PubMed

    Mol, Marcos Pg; Pereira, Amanda F; Greco, Dirceu B; Cairncross, Sandy; Heller, Leo

    2017-10-01

    As more urban solid waste is generated, managing it becomes ever more challenging and the potential impacts on the environment and human health also become greater. Handling waste - including collection, treatment and final disposal - entails risks of work accidents. This article assesses the perception of waste management workers regarding work-related accidents in domestic and health service contexts in Belo Horizonte, Brazil. These perceptions are compared with national data from the Ministry of Social Security on accidents involving workers in solid waste management. A high proportion of accidents involves cuts and puncture injuries; 53.9% among workers exposed to domestic waste and 75% among those exposed to health service waste. Muscular lesions and fractures accounted for 25.7% and 12.5% of accidents, respectively. Data from the Ministry of Social Security diverge from the local survey results, presumably owing to under-reporting, which is frequent in this sector. Greater commitment is needed from managers and supervisory entities to ensure that effective measures are taken to protect workers' health and quality of life. Moreover, workers should defend their right to demand an accurate registry of accidents to complement monitoring performed by health professionals trained in risk identification. This would contribute to the improved recovery of injured workers and would require managers in waste management to prepare effective preventive action.

  19. Property-close source separation of hazardous waste and waste electrical and electronic equipment--a Swedish case study.

    PubMed

    Bernstad, Anna; la Cour Jansen, Jes; Aspegren, Henrik

    2011-03-01

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Storage and handling of aviation fuels at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This standard covers the basic principles for the design of fuel handling facilities and equipment at airports. It provides a reference for the planning and operation of aviation fuel handling facilities and associated equipment.

  1. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  2. Environmental issues and management strategies for waste electronic and electrical equipment.

    PubMed

    Townsend, Timothy G

    2011-06-01

    Issues surrounding the impact and management of discarded or waste electronic and electrical equipment (WEEE) have received increasing attention in recent years. This attention stems from the growing quantity and diversity of electronic and electrical equipment (EEE) used by modern society, the increasingly rapid turnover of EEE with the accompanying burden on the waste stream, and the occurrence of toxic chemicals in many EEE components that can pose a risk to human and environmental health if improperly managed. In addition, public awareness of the WEEE or "e-waste" dilemma has grown in light of popular press features on events such as the transition to digital television and the exportation of WEEE from the United States and other developed countries to Africa, China, and India, where WEEE has often not been managed in a safe manner (e.g., processed with proper safety precautions, disposed of in a sanitary landfill, combusted with proper air quality procedures). This paper critically reviews current published information on the subject of WEEE. The definition, magnitude, and characteristics of this waste stream are summarized, including a detailed review of the chemicals of concern associated with different components and how this has changed and continues to evolve over time. Current and evolving management practices are described (e.g., reuse, recycling, incineration, landfilling). This review discusses the role of regulation and policies developed by governments, institutions, and product manufacturers and how these initiatives are shaping current and future management practices.

  3. Mooring and ground handling rigid airships

    NASA Technical Reports Server (NTRS)

    Walker, H., Jr.

    1975-01-01

    The problems of mooring and ground handling rigid airships are discussed. A brief history of Mooring and Ground Handling Rigid Airships from July 2, 1900 through September 1, 1939 is included. Also a brief history of ground handling developments with large U. S. Navy nonrigid airships between September 1, 1939 and August 31, 1962 is included wherein developed equipment and techniques appear applicable to future large rigid airships. Finally recommendations are made pertaining to equipment and procedures which appear desirable and feasible for future rigid airship programs.

  4. Radioactive waste handling and disposal at King Faisal Specialist Hospital and Research Centre.

    PubMed

    Al-Haj, Abdalla N; Lobriguito, Aida M; Al Anazi, Ibrahim

    2012-08-01

    King Faisal Specialist Hospital & Research Centre (KFSHRC) is the largest specialized medical center in Saudi Arabia. It performs highly specialized diagnostic imaging procedures with the use of various radionuclides required by sophisticated dual imaging systems. As a leading institution in cancer research, KFSHRC uses both long-lived and short-lived radionuclides. KFSHRC established the first cyclotron facility in the Middle East, which solved the in-house high demand for radionuclides and the difficulty in importing them. As both user and producer of high standard radiopharmaceuticals, KFSHRC generates large volumes of low and high level radioactive wastes. An old and small radioactive facility that was used for storage of radioactive waste was replaced with a bigger warehouse provided with facilities that will reduce radiation exposure of the staff, members of the public, and of the environment in the framework of "as low as reasonably achievable." The experiences and the effectiveness of the radiation protection program on handling and storage of radioactive wastes are presented.

  5. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as

  6. A primer for health care managers: data sanitization, equipment disposal, and electronic waste.

    PubMed

    Andersen, Cathy M

    2011-01-01

    In this article, security regulations under the Health Insurance Portability and Accountability Act concerning data sanitization and the disposal of media containing stored electronic protected health information are discussed, and methods for effective sanitization and media disposal are presented. When disposing of electronic media, electronic waste-or e-waste-is produced. Electronic waste can harm human health and the environment. Responsible equipment disposal methods can minimize the impact of e-waste. Examples of how health care organizations can meet the Health Insurance Portability and Accountability Act regulations while also behaving responsibly toward the environment are provided. Examples include the environmental stewardship activities of reduce, reuse, reeducate, recover, and recycle.

  7. Ergonomics and patient handling.

    PubMed

    McCoskey, Kelsey L

    2007-11-01

    This study aimed to describe patient-handling demands in inpatient units during a 24-hour period at a military health care facility. A 1-day total population survey described the diverse nature and impact of patient-handling tasks relative to a variety of nursing care units, patient characteristics, and transfer equipment. Productivity baselines were established based on patient dependency, physical exertion, type of transfer, and time spent performing the transfer. Descriptions of the physiological effect of transfers on staff based on patient, transfer, and staff characteristics were developed. Nursing staff response to surveys demonstrated how patient-handling demands are impacted by the staff's physical exertion and level of patient dependency. The findings of this study describe the types of transfers occurring in these inpatient units and the physical exertion and time requirements for these transfers. This description may guide selection of the most appropriate and cost-effective patient-handling equipment required for specific units and patients.

  8. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Brake systems for self-propelled rubber-tired off-highway equipment manufactured after January 1, 1972... Engineers Recommended Practices: Self-Propelled Scrapers SAE J319b-1971. Self-Propelled Graders SAE J236... condition. (ii) No employer shall permit earthmoving or compacting equipment which has an obstructed view to...

  9. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Brake systems for self-propelled rubber-tired off-highway equipment manufactured after January 1, 1972... Engineers Recommended Practices: Self-Propelled Scrapers SAE J319b-1971. Self-Propelled Graders SAE J236... condition. (ii) No employer shall permit earthmoving or compacting equipment which has an obstructed view to...

  10. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Brake systems for self-propelled rubber-tired off-highway equipment manufactured after January 1, 1972... Engineers Recommended Practices: Self-Propelled Scrapers SAE J319b-1971. Self-Propelled Graders SAE J236... condition. (ii) No employer shall permit earthmoving or compacting equipment which has an obstructed view to...

  11. Waste electrical and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations.

    PubMed

    Ghosh, Sadhan Kumar; Debnath, Biswajit; Baidya, Rahul; De, Debashree; Li, Jinhui; Ghosh, Sannidhya Kumar; Zheng, Lixia; Awasthi, Abhishek Kumar; Liubarskaia, Maria A; Ogola, Jason S; Tavares, André Neiva

    2016-08-01

    Brazil, Russia, India, China and South Africa (BRICS) nations account for one-quarter of the world's land area, having more than 40% of the world's population, and only one-quarter of the world gross national income. Hence the study and review of waste electrical and electronic equipment management systems in BRICS nations is of relevance. It has been observed from the literature that there are studies available comparing two or three country's waste electrical and electronic equipment status, while the study encompassing the BRICS nations considering in a single framework is scant. The purpose of this study is to analyse the existing waste electrical and electronic equipment management systems and status of compliance to Basel convention in the BRICS nations, noting possible lessons from matured systems, such as those in the European Union EU) and USA. The study introduced a novel framework for a waste electrical and electronic equipment management system that may be adopted in BRICS nations and revealed that BRICS countries have many similar types of challenges. The study also identified some significant gaps with respect to the management systems and trans-boundary movement of waste electrical and electronic equipment, which may attract researchers for further research. © The Author(s) 2016.

  12. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  13. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  14. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    PubMed

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Principles of commercially available pretreatment and feeding equipment for baled biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, T.; Hummelshoej, R.M.

    1993-12-31

    During the last 15 years, there has been a growing interest in utilizing waste biomass for energy production in Denmark. Since 1990, it has been unlawful to burn surplus straw on open land. Before the year 2000, it is intended to utilize most of the 2--3 million tons of surplus straw as an energy resource. The type of plants that were built in the beginning were combustion plants for district heating. The feeding equipment for these plants has been developed to an acceptable standard. Later, combustion plants for combined heat and power production based on a steam turbine were introduced.more » This type of plant demands a much greater continuity in the fuel flow, and the consequences of minor discontinuities are to be dropped from the grid. Gasification and pyrolysis demands a high sealing ability of the feeding equipment, because of the explosive and poisonous gas in the plant and a need for a very high continuity in the fuel feed. The first plants were built with the equipment and experiences from the farming industries, which have a long tradition in working with biomass-handling. The experiences gained with this type of equipment were not very promising, and in the early eighties, a more industrial type of biomass-handling equipment was developed. This paper presents the principles of the heavy-duty biomass pretreatment and feeding equipment that was commercially available in Denmark in May, 1993.« less

  16. Technology and equipment based on induction melters with ``cold'' crucible for reprocessing active metal waste

    NASA Astrophysics Data System (ADS)

    Pastushkov, V. G.; Molchanov, A. V.; Serebryakov, V. P.; Smelova, T. V.; Shestoperov, I. N.

    2000-07-01

    The paper discusses specific features of technology, equipment and control of a single stage RAMW decontamination and melting process in an induction furnace equipped with a "cold" crucible. The calculated and experimental data are given on melting high activity level stainless steel and Zr simulating high activity level metal waste. The work is under way in SSC RF VNIINM.

  17. Comparative analysis of numerical models of pipe handling equipment used in offshore drilling applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlus, Witold, E-mail: witold.p.pawlus@ieee.org; Ebbesen, Morten K.; Hansen, Michael R.

    Design of offshore drilling equipment is a task that involves not only analysis of strict machine specifications and safety requirements but also consideration of changeable weather conditions and harsh environment. These challenges call for a multidisciplinary approach and make the design process complex. Various modeling software products are currently available to aid design engineers in their effort to test and redesign equipment before it is manufactured. However, given the number of available modeling tools and methods, the choice of the proper modeling methodology becomes not obvious and – in some cases – troublesome. Therefore, we present a comparative analysis ofmore » two popular approaches used in modeling and simulation of mechanical systems: multibody and analytical modeling. A gripper arm of the offshore vertical pipe handling machine is selected as a case study for which both models are created. In contrast to some other works, the current paper shows verification of both systems by benchmarking their simulation results against each other. Such criteria as modeling effort and results accuracy are evaluated to assess which modeling strategy is the most suitable given its eventual application.« less

  18. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    PubMed

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  19. [Waste management in hospitals. Current situation in the state of North Rhine-Westphalia].

    PubMed

    Popp, W; Hansen, D; Hilgenhöner, M; Grandek, M; Heinemann, A; Blättler, T

    2009-07-01

    In 20 hospitals in North Rhine-Westphalia in-plant handling wastes and the delivery of the waste to the disposer were examined. Deficits were seen regarding risk assessment and operating instructions, support by company doctors, personal protection equipment, and break areas for the waste collecting personnel. Also the qualification of the waste management officer and his/her time contingent, correct declaration of the wastes, the training of the waste collecting personnel, the cleaning of multi-use containers and transportation vehicles, storage of the wastes at the collecting points, and the use of sharp collecting boxes were to be partly criticized. Consequences and recommendations are given, concerning the company's obligations (e.g., provide risk assessment, operating instructions), waste management officer (e.g., qualification, enough time contingent, regular inspections), waste collecting personnel (e.g., training courses), industrial safety (e.g., protection equipment, break area wash places), company doctors, transportation vehicles in the house (e.g., regular cleaning), one-way collectors (e.g., labelling at the site of the collection), multi-use collectors (e.g., cleaning), and compressing containers (e.g., larger maintenance openings).

  20. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  1. A multi-component patient-handling intervention improves attitudes and behaviors for safe patient handling and reduces aggression experienced by nursing staff: A controlled before-after study.

    PubMed

    Risør, Bettina Wulff; Casper, Sven Dalgas; Andersen, Lars Louis; Sørensen, Jan

    2017-04-01

    This study evaluated an intervention for patient-handling equipment aimed to improve nursing staffs' use of patient handling equipment and improve their general health, reduce musculoskeletal problems, aggressive episodes, days of absence and work-related accidents. As a controlled before-after study, questionnaire data were collected at baseline and 12-month follow-up among nursing staff at intervention and control wards at two hospitals. At 12-month follow-up, the intervention group had more positive attitudes towards patient-handling equipment and increased use of specific patient-handling equipment. In addition, a lower proportion of nursing staff in the intervention group had experienced physically aggressive episodes. No significant change was observed in general health status, musculoskeletal problems, days of absence or work-related accidents. The intervention resulted in more positive attitudes and behaviours for safe patient-handling and less physically aggressive episodes. However, this did not translate into improved health of the staff during the 12-month study period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpenau, Evan M.

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan formore » Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.« less

  3. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  4. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ergonomic material-handling device

    DOEpatents

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  6. E-waste: the growing global problem and next steps.

    PubMed

    Heacock, Michelle; Kelly, Carol Bain; Suk, William A

    2016-03-01

    In many low- and middle-income countries, handling and disposal of discarded electrical or electronic equipment (EEE) is frequently unregulated. e-Waste contains hazardous constituents such as lead, mercury, and chromium, certain chemicals in plastics, and flame retardants. There is increasing concern about health effects related to contamination in air, soil, and water for people working and living at or near informal e-waste processing sites, especially to the most vulnerable populations, pregnant women and children. The observed adverse health effects and increasing number of e-waste sites make protecting human health and the environment from e-waste contamination an expanding challenge. Through international cooperation, awareness can be elevated about the harm that e-waste processing poses to human health. Here we discuss how international researchers, public health practitioners, and policymakers can employ solutions to reduce e-waste exposures.

  7. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    PubMed

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. One project`s waste is another project`s resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, J.

    1997-02-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on thismore » plan. Summaries of examples are presented in tables.« less

  9. Heavy equipment maintenance wastes and environmental management in the mining industry.

    PubMed

    Guerin, Turlough F

    2002-10-01

    Maintenance wastes, if not managed properly, represent significant environmental issues for mining operations. Petroleum hydrocarbon liquid wastes were studied at an Australian site and a review of the literature and technology vendors was carried out to identify oil/water separation technologies. Treatment technologies and practices for managing oily wastewater, used across the broader mining industry in the Asia-Pacific region, were also identified. Key findings from the study were: (1) primary treatment is required to remove grease oil contamination and to protect secondary oily wastewater treatment systems from being overloaded; (2) selection of an effective secondary treatment system is dependent on influent oil droplet size and concentration, suspended solids concentration, flow rates (and their variability), environmental conditions, maintenance schedules and effectiveness, treatment targets and costs; and (3) oily wastewater treatment systems, based on mechanical separation, are favoured over those that are chemically based, as they simplify operational requirements. Source reduction, through housekeeping, equipment and reagent modifications, and segregation and/or consolidation of hydrocarbon waste streams, minimizes treatment costs, safety and environmental impact.

  10. IMPROVED WELL PLUGGING EQUIPMENT AND WASTE MANGEMENT TECHNIQUES EXCEED ALARA GOALS AT THE OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteside, R.; Pawlowicz, R.; Whitehead, L.

    2002-02-25

    In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is consideredmore » by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.« less

  11. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This

  12. Safe patient handling perceptions and practices: a survey of acute care physical therapists.

    PubMed

    Olkowski, Brian F; Stolfi, Angela M

    2014-05-01

    Acute care physical therapists are at risk for developing work-related musculoskeletal disorders (WMSDs) due to manual patient handling. Safe patient handling (SPH) reduces WMSDs caused by manual handling. The purpose of this study was to describe the patient handling practices of acute care physical therapists and their perceptions regarding SPH. Additionally, this study determined whether an SPH program influences the patient handling practices and perceptions regarding SPH of acute care physical therapists. Subscribers to the electronic discussion board of American Physical Therapy Association's Acute Care Section were invited to complete a survey questionnaire. The majority of respondents used SPH equipment and practices (91.1%), were confident using SPH equipment and practices (93.8%), agreed that evidence supports the use of SPH equipment and practices (87.0%), and reported the use of SPH equipment and practices is feasible (92.2%). Respondents at a facility with an SPH program were more likely to use SPH equipment and practices, have received training in the use of SPH equipment and practices, agree that the use of SPH equipment and practices is feasible, and feel confident using SPH equipment and practices. The study might not reflect the perceptions and practices of the population of acute care physical therapists. Acute care physical therapists are trained to use SPH equipment and practices, use SPH equipment and practices, and have positive perceptions regarding SPH. Acute care physical therapists in a facility with an SPH program are more likely to use SPH equipment and practices, receive training in SPH equipment and practices, and have positive perceptions regarding SPH. Quasi-regulatory organizations should incorporate SPH programs into their evaluative standards.

  13. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  14. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  15. Llama handling and training.

    PubMed

    McGee, M

    1994-07-01

    This article offers insights into the relationship of llama owners to their animals and the role of veterinarians as part of the animal care team. The effect of human behavior and handling techniques on llama behavior and marketability are discussed. Progressive ideas for nonforceful llama handling equipment, procedures, and training ideas are outlined in detail. Included are specific training plans for routine herd management chores such as injections and toenail trimming. This article is useful for both veterinarians and llama owners.

  16. Marshall Space Flight Center solid waste characterization and recycling improvement study

    NASA Technical Reports Server (NTRS)

    Eley, Michael H.; Crews, Lavonne; Johnston, Ben; Lee, David; Colebaugh, James

    1995-01-01

    The MSFC Facilities Office, which is responsible for disposing of all waste generated by MSFC, issued a delivery order to the University of Alabama in Huntsville (UAH) to characterize current MSFC waste streams and to evaluate their existing recycling program. The purpose of the study was to define the nature, quantity, and types of waste produced and to generate ideas for improving the present recycling program. Specifically, the following tasks were to be performed: Identify various surplus and waste materials--as identified by the Contracting Officer's Technical Representative (COTR)--by source, location, and type; Analyze MSFC's current methods for handling, storage, transport, and disposition of waste and surplussed materials; Determine the composition of various surplus and waste materials as to type and quantities from various sources and locations; Analyze different methods for the disposition of various surplus and waste materials, including quality, quantity, preparation, transport cost, and value; Study possible alternatives to current methods of handling, storage, transport, and disposition of surplus and waste materials to improve the quality and quantities recycled or sold and to reduce and minimize the quantities of surplus and waste material currently being disposed of or stored; Provide recommendations for source and centralized segregation and aggregation of materials for recycling and/or disposition; and The analysis could include identification and laboratory level evaluation of methods and/or equipment, including capital costs, operating costs, maintenance requirements, life cycle and return on investment for systems to support the waste reduction program mission.

  17. US Department of Energy's Efforts in Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    Peavy, Richard D.; Mcfarland, Janet C.

    1992-01-01

    The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.

  18. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  19. EPA Examines Schools' Handling of Toxic Waste.

    ERIC Educational Resources Information Center

    Hanson, David

    1989-01-01

    Estimates that about 30,000 universities, colleges, and high schools produce a total of 4000 metric tons of hazardous waste annually. Discusses the difficulties that academic institutions have in disposing of small amounts of waste. Lists college courses with the potentially hazardous wastes usually produced. (MVL)

  20. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Engineers J333a-1970, Operator Protection for Agricultural and Light Industrial Tractors. (ii) Seat belts... wheel tractors, bulldozers, off-highway trucks, graders, agricultural and industrial tractors, and... Society of Automotive Engineers, J386-1969, Seat Belts for Construction Equipment. Seat belts for...

  1. 29 CFR 1926.602 - Material handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Engineers J333a-1970, Operator Protection for Agricultural and Light Industrial Tractors. (ii) Seat belts... wheel tractors, bulldozers, off-highway trucks, graders, agricultural and industrial tractors, and... Society of Automotive Engineers, J386-1969, Seat Belts for Construction Equipment. Seat belts for...

  2. Dazomet Fumigant Safe Handling Guide

    EPA Pesticide Factsheets

    Dazomet is the active ingredient in Basamid G soil fumigant pesticide. Wear personal protective equipment such as respirators when handling Basamid granules or making an application, mitigate exposures, and recognize signs of vapor inhalation.

  3. 49 CFR 232.111 - Train handling information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... train crew taking charge of a train be informed of: (1) The total weight and length of the train, based... 49 Transportation 4 2010-10-01 2010-10-01 false Train handling information. 232.111 Section 232... TRAINS AND EQUIPMENT; END-OF-TRAIN DEVICES General Requirements § 232.111 Train handling information. (a...

  4. Additional Equipment for Soil Biodegradation

    NASA Astrophysics Data System (ADS)

    Vondráčková, Terezie; Kraus, Michal; Šál, Jiří

    2017-12-01

    Intensification of industrial production, increasing citizens’ living standards, expanding the consumer assortment mean in the production - consumption cycle a constantly increasing occurrence of waste material, which by its very nature must be considered as a source of useful raw materials in all branches of human activity. In addition to strict legislative requirements, a number of circumstances characterize waste management. It is mainly extensive transport associated with the handling and storage of large volumes of substances with a large assortment of materials (substances of all possible physical and chemical properties) and high demands on reliability and time coordination of follow-up processes. Considerable differences in transport distances, a large number of sources, processors and customers, and not least seasonal fluctuations in waste and strong price pressures cannot be overlooked. This highlights the importance of logistics in waste management. Soils that are contaminated with oil and petroleum products are hazardous industrial waste. Methods of industrial waste disposal are landfilling, biological processes, thermal processes and physical and chemical methods. The paper focuses on the possibilities of degradation of oil pollution, in particular biodegradation by bacteria, which is relatively low-cost among technologies. It is necessary to win the fight with time so that no ground water is contaminated. We have developed two additional devices to help reduce oil accident of smaller ranges. In the case of such an oil accident, it is necessary to carry out the permeability test of contaminated soil in time and, on this basis, to choose the technology appropriate to the accident - either in-sit biodegradation - at the site of the accident, or on-sit - to remove the soil and biodegrade it on the designated deposits. A special injection drill was developed for in-sit biodegradation, tossing and aeration equipment of the extracted soil was developed for

  5. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  6. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  7. Manipulation and handling processes off-line programming and optimization with use of K-Roset

    NASA Astrophysics Data System (ADS)

    Gołda, G.; Kampa, A.

    2017-08-01

    Contemporary trends in development of efficient, flexible manufacturing systems require practical implementation of modern “Lean production” concepts for maximizing customer value through minimizing all wastes in manufacturing and logistics processes. Every FMS is built on the basis of automated and robotized production cells. Except flexible CNC machine tools and other equipments, the industrial robots are primary elements of the system. In the studies, authors look for wastes of time and cost in real tasks of robots, during manipulation processes. According to aspiration for optimization of handling and manipulation processes with use of the robots, the application of modern off-line programming methods and computer simulation, is the best solution and it is only way to minimize unnecessary movements and other instructions. The modelling process of robotized production cell and offline programming of Kawasaki robots in AS-Language will be described. The simulation of robotized workstation will be realized with use of virtual reality software K-Roset. Authors show the process of industrial robot’s programs improvement and optimization in terms of minimizing the number of useless manipulator movements and unnecessary instructions. This is realized in order to shorten the time of production cycles. This will also reduce costs of handling, manipulations and technological process.

  8. A description of factors affecting hazardous waste workers' use of respiratory protective equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salazar, M.K.; Takaro, T.K.; Connon, C.

    1999-07-01

    This article describes the first phase of a study that was designed to gain an understanding of hazardous waste workers' attitudes and beliefs about the use of respiratory protective equipment. Exploratory, open-ended interviews were conducted among 28 respirator users at a US Department of Energy facility. Subjects were asked to describe their knowledge, attitudes, and beliefs about their risks to hazards at their worksites and to discuss their use of respiratory protective equipment. A detailed content analysis of the interviews resulted in the generation of a taxonomy of issues and concerns which fell into three general categories: (1) Knowledge, Beliefs,more » and Attitudes, (2) Physical and Psychological Effects, and (3) External Influences. Knowledge, Beliefs, and Attitudes included Training, Fit Testing, Medical Clearance, Work Exposures, Respirator Use, and Vulnerability to Disease. Physical and Psychological Effects included Somatic/Health Effects, Personal Comfort, Visual Effects, Fatigue, Communication, and Anxiety. External Influences included Structural Environment, Quality and Availability of Equipment, Other PPEs, Co-Worker Influence, Supervisor Influence, and Organizational Culture. The findings from this study have important implications to training and education programs. Effective respiratory protection programs depend on a knowledge of the factors that affect workers' use of equipment. This study suggests that efforts to assure equipment comfort and fit, to assist workers who see and hear less well as a result of their equipment, and to develop strategies to allay worker anxiety when wearing equipment should all be components of a program. An organizational culture that supports and abets the appropriate use of equipment is also a critical element in a successful program.« less

  9. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Employee and customer handling of nicotine-containing e-liquids in vape shops.

    PubMed

    Garcia, Robert; Allem, Jon Patrick; Baezconde-Garbanati, Lourdes; Unger, Jennifer Beth; Sussman, Steve

    2016-01-01

    Vape shops sell electronic cigarettes and related products such as e-liquids, which may contain nicotine. Direct contact with nicotine can lead to adverse health effects, and few regulations exist on how nicotine is handled in vape shops. This study examined how customers and employees come into contact with, and handle, nicotine-containing e-liquids in vape shops with the goal of informing potential future regulation of nicotine handling in vape shops. Data were collected from 77 vape shops in the Los Angeles basin. Characteristics of the shops were documented by employee interviews and in store observations. Data collection was focused on shops located in areas with high concentrations of communities of interest; 20 shops from African-American communities, 17 from Hispanic communities, 18 from Korean communities, and 22 from non-Hispanic White communities. Half of the vape shops allowed customers to sample e-liquids with nicotine. Most of the shops (83%) provided self-service sampling stations for customers. A majority of shop employees (72%) reported that spills of e-liquids containing nicotine had occurred in the past. While 64% of the shops provided safety equipment, only 34% provided equipment for proper nicotine handling. Furthermore, 62% of shop employees reported handling nicotine without gloves or other safety equipment. Regulation on the handling of nicotine by customers and vape shop employees is important to prevent unsafe practices and subsequent injury. The frequent occurrence of spills and limited availability of safety equipment in vape shops highlights the need for the creation and enforcement of regulations to protect employees and customers. Appropriate safety training and equipment should be provided to employees to prevent accidental exposure to nicotine. Information on ways to safely handle nicotine should be communicated to vape shop employees and customers.

  11. Employee and customer handling of nicotine-containing e-liquids in vape shops

    PubMed Central

    Garcia, Robert; Allem, Jon Patrick; Baezconde-Garbanati, Lourdes; Unger, Jennifer Beth; Sussman, Steve

    2017-01-01

    INTRODUCTION Vape shops sell electronic cigarettes and related products such as e-liquids, which may contain nicotine. Direct contact with nicotine can lead to adverse health effects, and few regulations exist on how nicotine is handled in vape shops. This study examined how customers and employees come into contact with, and handle, nicotine-containing e-liquids in vape shops with the goal of informing potential future regulation of nicotine handling in vape shops. METHODS Data were collected from 77 vape shops in the Los Angeles basin. Characteristics of the shops were documented by employee interviews and in store observations. Data collection was focused on shops located in areas with high concentrations of communities of interest; 20 shops from African-American communities, 17 from Hispanic communities, 18 from Korean communities, and 22 from non-Hispanic White communities. RESULTS Half of the vape shops allowed customers to sample e-liquids with nicotine. Most of the shops (83%) provided self-service sampling stations for customers. A majority of shop employees (72%) reported that spills of e-liquids containing nicotine had occurred in the past. While 64% of the shops provided safety equipment, only 34% provided equipment for proper nicotine handling. Furthermore, 62% of shop employees reported handling nicotine without gloves or other safety equipment. CONCLUSIONS Regulation on the handling of nicotine by customers and vape shop employees is important to prevent unsafe practices and subsequent injury. The frequent occurrence of spills and limited availability of safety equipment in vape shops highlights the need for the creation and enforcement of regulations to protect employees and customers. Appropriate safety training and equipment should be provided to employees to prevent accidental exposure to nicotine. Information on ways to safely handle nicotine should be communicated to vape shop employees and customers. PMID:28660255

  12. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment. 273.4 Section 273.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury...-containing components have been removed. (c) Generation of waste mercury-containing equipment. (1) Used...

  13. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  14. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  15. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  16. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  17. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to.... This does not prohibit pulling or dragging of cable by the equipment it powers when the cable is...

  18. Waste Handeling Building Conceptual Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less

  19. Spent fuel cask handling at an operating nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices atmore » all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant.« less

  20. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    PubMed

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  2. 33 CFR 127.601 - Fire equipment: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Firefighting § 127.601 Fire equipment: General. (a) Fire... Laboratories, Inc., the Factory Mutual Research Corp., or the Coast Guard. ...

  3. Effects of the European Community directive on lifting and handling practice.

    PubMed

    Docker, S M

    1993-07-01

    The new legislation on lifting and handling requires the application of ergonomic principles to manual handling operations. A written assessment is required for all unavoidable manual handling operations which involve the risk of injury to employees. Employers are now expected to provide equipment to enable staff to avoid lifting heavy loads.

  4. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  5. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  6. 29 CFR 1926.605 - Marine operations and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Marine operations and equipment. 1926.605 Section 1926.605 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Equipment, and Marine Operations § 1926.605 Marine operations and equipment. (a) Material handling...

  7. 29 CFR 1926.605 - Marine operations and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Marine operations and equipment. 1926.605 Section 1926.605 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Equipment, and Marine Operations § 1926.605 Marine operations and equipment. (a) Material handling...

  8. 29 CFR 1926.605 - Marine operations and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Marine operations and equipment. 1926.605 Section 1926.605 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Equipment, and Marine Operations § 1926.605 Marine operations and equipment. (a) Material handling...

  9. 29 CFR 1926.605 - Marine operations and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Marine operations and equipment. 1926.605 Section 1926.605 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Equipment, and Marine Operations § 1926.605 Marine operations and equipment. (a) Material handling...

  10. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  11. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gasmore » blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into

  12. Liquid class predictor for liquid handling of complex mixtures

    DOEpatents

    Seglke, Brent W [San Ramon, CA; Lekin, Timothy P [Livermore, CA

    2008-12-09

    A method of establishing liquid classes of complex mixtures for liquid handling equipment. The mixtures are composed of components and the equipment has equipment parameters. The first step comprises preparing a response curve for the components. The next step comprises using the response curve to prepare a response indicator for the mixtures. The next step comprises deriving a model that relates the components and the mixtures to establish the liquid classes.

  13. Musculoskeletal injuries resulting from patient handling tasks among hospital workers.

    PubMed

    Pompeii, Lisa A; Lipscomb, Hester J; Schoenfisch, Ashley L; Dement, John M

    2009-07-01

    The purpose of this study was to evaluate musculoskeletal injuries and disorders resulting from patient handling prior to the implementation of a "minimal manual lift" policy at a large tertiary care medical center. We sought to define the circumstances surrounding patient handling injuries and to identify potential preventive measures. Human resources data were used to define the cohort and their time at work. Workers' compensation records (1997-2003) were utilized to identify work-related musculoskeletal claims, while the workers' description of injury was used to identify those that resulted from patient handling. Adjusted rate ratios were generated using Poisson regression. One-third (n = 876) of all musculoskeletal injuries resulted from patient handling activities. Most (83%) of the injury burden was incurred by inpatient nurses, nurses' aides and radiology technicians, while injury rates were highest for nurses' aides (8.8/100 full-time equivalent, FTEs) and smaller workgroups including emergency medical technicians (10.3/100 FTEs), patient transporters (4.3/100 FTEs), operating room technicians (3.1/100 FTEs), and morgue technicians (2.2/100 FTEs). Forty percent of injuries due to lifting/transferring patients may have been prevented through the use of mechanical lift equipment, while 32% of injuries resulting from repositioning/turning patients, pulling patients up in bed, or catching falling patients may not have been prevented by the use of lift equipment. The use of mechanical lift equipment could significantly reduce the risk of some patient handling injuries but additional interventions need to be considered that address other patient handling tasks. Smaller high-risk workgroups should not be neglected in prevention efforts.

  14. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  15. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  16. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  17. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  18. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  19. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  20. An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution.

    PubMed

    Pérez-Belis, V; Bovea, M D; Ibáñez-Forés, V

    2015-01-01

    The consumption of electrical and electronic equipment (EEE) is continuously increasing worldwide and, consequently, so is the amount of waste electrical and electronic equipment (WEEE) it generates at its end-of-life. In parallel to this growth, legislation related to this issue has been passed in different countries with the aim of improving the management of WEEE. In order to raise awareness about the situation in which the generation, composition, management or final treatment of this kind of waste currently finds itself, an extensive number of articles have been published around the world. The aim of this paper is to define and analyse the main areas of research on WEEE by offering a broader analysis of the relevant literature in this field published between 1992 and August 2014. The literature researched comprises 307 articles, which are analysed according to the topic they focus on (WEEE management, WEEE generation, WEEE characterisation, social aspects of WEEE, re-use of EEE or economic aspects of WEEE). In addition, a deeper analysis is also presented, which takes into account the temporal evolution (globally and by topic), location of the study, categories and subcategories analysed, etc. © The Author(s) 2014.

  1. Communications techniques and equipment: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This Compilation is devoted to equipment and techniques in the field of communications. It contains three sections. One section is on telemetry, including articles on radar and antennas. The second section describes techniques and equipment for coding and handling data. The third and final section includes descriptions of amplifiers, receivers, and other communications subsystems.

  2. 30 CFR 57.16017 - Hoisting heavy equipment or material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Hoisting heavy equipment or material. 57.16017... Storage and Handling § 57.16017 Hoisting heavy equipment or material. Where the stretching or contraction... conveyances at shaft landings before heavy equipment or material is loaded or unloaded. ...

  3. Wireless "Jump" Starts for Partly Disabled Equipment

    NASA Technical Reports Server (NTRS)

    Castle, K. D.

    1986-01-01

    Equipment activated when normal remote starting does not work Beam from nearby station first carries raw energy and then subsystemactivating signals to equipment crippled by discharged storage batteries. Operators start up equipment without approaching it under hazardous conditions. Potential terrestrial applications for scheme include starting of robots on such remotely-controlled hazardous tasks as handling of explosives or retrieval or deposition of objects in hostile environments.

  4. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  5. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  6. 29 CFR 1926.953 - Material handling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Material handling. (a) Unloading. Prior to unloading steel, poles, cross arms and similar material, the.... During framing operations, employees shall not work under a pole or a structure suspended by a crane, A-frame or similar equipment unless the pole or structure is adequately supported. (g) Attaching the load...

  7. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  8. Analysis of Material Handling Safety in Construction Sites and Countermeasures for Effective Enhancement

    PubMed Central

    Anil Kumar, C. N.; Sakthivel, M.; Elangovan, R. K.; Arularasu, M.

    2015-01-01

    One of many hazardous workplaces includes the construction sites as they involve several dangerous tasks. Many studies have revealed that material handling equipment is a major cause of accidents at these sites. Though safety measures are being followed and monitored continuously, accident rates are still high as either workers are unaware of hazards or the safety regulations are not being strictly followed. This paper analyses the safety management systems at construction sites through means of questionnaire surveys with employees, specifically referring to safety of material handling equipment. Based on results of the questionnaire surveys, two construction sites were selected for a safety education program targeting worker safety related to material handling equipment. Knowledge levels of the workers were gathered before and after the program and results obtained were subjected to a t-test analysis to mark significance level of the conducted safety education program. PMID:26446572

  9. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  10. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...

  11. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...

  12. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...

  13. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... stored eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...

  14. 7 CFR 1436.6 - Eligible storage or handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... eligible facility loan commodity, such as cleaners, moisture testers, and heat detectors; (4) Electrical... moisture testers, and heat detectors; (vii) Electrical equipment, including labor and materials for..., but are not limited to, the following: An insulated cement slab floor, insulation for walls and...

  15. 9 CFR 354.242 - Cleaning of equipment and utensils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... room and equipment and utensils used therein shall be maintained in a clean and sanitary condition. (c... utensils. Equipment and utensils used for preparing or otherwise handling any product shall be kept clean... removed from the plant daily. (b) All equipment and utensils used in the killing and skinning rooms shall...

  16. Metam Sodium and Metam Potassium Fumigant Safe Handling Guide

    EPA Pesticide Factsheets

    Safety training is required for certified pesticide applicators and handlers to handle soil fumigants. Measures to mitigate exposure include personal protective equipment, air monitoring, respiratory protection, and emergency preparedness.

  17. Household Hazardous Waste and Demolition

    EPA Pesticide Factsheets

    Household wastes that are toxic, corrosive, ignitable, or reactive are known as Household Hazardous Waste (HHW). Household Hazardous Waste may be found during residential demolitions, and thus require special handling for disposal.

  18. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueth, Joachim

    accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less

  19. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  20. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigo, H.G.; Chandler, A.J.

    1996-04-01

    Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  1. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  2. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dianliang; Zhu Hongmin; Shanghai Key Laboratory of Advance Manufacturing Environment

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools andmore » equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.« less

  3. How to Handle the Avalanche of Online Documentation.

    ERIC Educational Resources Information Center

    Nolan, Maureen P.

    1981-01-01

    The method of handling the printed documentation associated with online information retrieval, which is described, involves the use of a series of separate but related files: database files, system files, network files, index sheets, and equipment files. (FM)

  4. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.

  5. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study.

    PubMed

    Bovea, María D; Ibáñez-Forés, Valeria; Pérez-Belis, Victoria; Quemades-Beltrán, Pilar

    2016-07-01

    This study proposes a general methodology for assessing and estimating the potential reuse of small waste electrical and electronic equipment (sWEEE), focusing on devices classified as domestic appliances. Specific tests for visual inspection, function and safety have been defined for ten different types of household appliances (vacuum cleaner, iron, microwave, toaster, sandwich maker, hand blender, juicer, boiler, heater and hair dryer). After applying the tests, reuse protocols have been defined in the form of easy-to-apply checklists for each of the ten types of appliance evaluated. This methodology could be useful for reuse enterprises, since there is a lack of specific protocols, adapted to each type of appliance, to test its potential of reuse. After applying the methodology, electrical and electronic appliances (used or waste) can be segregated into three categories: the appliance works properly and can be classified as direct reuse (items can be used by a second consumer without prior repair operations), the appliance requires a later evaluation of its potential refurbishment and repair (restoration of products to working order, although with possible loss of quality) or the appliance needs to be finally discarded from the reuse process and goes directly to a recycling process. Results after applying the methodology to a sample of 87.7kg (96 units) show that 30.2% of the appliances have no potential for reuse and should be diverted for recycling, while 67.7% require a subsequent evaluation of their potential refurbishment and repair, and only 2.1% of them could be directly reused with minor cleaning operations. This study represents a first approach to the "preparation for reuse" strategy that the European Directive related to Waste Electrical and Electronic Equipment encourages to be applied. However, more research needs to be done as an extension of this study, mainly related to the identification of the feasibility of repair or refurbishment operations

  6. Environmental and health impacts of household solid waste handling and disposal practices in third world cities: the case of the Accra Metropolitan Area, Ghana.

    PubMed

    Boadi, Kwasi Owusu; Kuitunen, Markku

    2005-11-01

    Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.

  7. Supply Support of Air Force 463L Equipment: An Analysis of the 463L equipment Spare Parts Pipeline

    DTIC Science & Technology

    1989-09-01

    service; and 4) the order processing system created inherent delays in the pipeline because of outdated and indirect information systems and technology. Keywords: Materials handling equipment, Theses. (AW)

  8. View from southwest to northeast of warhead handling building. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from southwest to northeast of warhead handling building. Note earth embankment. The personnel entrance (left) and equipment entrance can clearly be seen in center of photograph. To the right is the emergency exit tunnel constructed of corrugated metal pipe. This building was salvaged and sealed after site inactivation - Stanley R. Mickelsen Safeguard Complex, Warhead Handling Building, Within Exclusion Area, Nekoma, Cavalier County, ND

  9. Satellite services system analysis study. Volume 4: Service equipment concepts

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Payload deployment equipment is discussed, including payload separation, retention structures, the remote manipulator system, tilt tables, the payload installation and deployment aid, the handling and positioning aid, and spin tables. Close proximity retrieval, and on-orbit servicing equipment is discussed. Backup and contingency equipment is also discussed. Delivery and retrieval of high-energy payloads are considered. Earth return equipment, the aft flight deck, optional, and advanced equipment are also discussed.

  10. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    PubMed

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  11. Heavy metals in soil at a waste electrical and electronic equipment processing area in China.

    PubMed

    Gu, Weihua; Bai, Jianfeng; Yao, Haiyan; Zhao, Jing; Zhuang, Xuning; Huang, Qing; Zhang, Chenglong; Wang, JingWei

    2017-11-01

    For the objective of evaluating the contamination degree of heavy metals and analysing its variation trend in soil at a waste electrical and electronic equipment processing area in Shanghai, China, evaluation methods, which include single factor index method, geo-accumulation index method, comprehensive pollution index method, and potential ecological risk index method, were adopted in this study. The results revealed that the soil at a waste electrical and electronic equipment processing area was polluted by arsenic, cadmium, copper, lead, zinc, and chromium. It also demonstrated that the concentrations of heavy metals were increased over time. Exceptionally, the average value of the metalloid (arsenic) was 73.31 mg kg -1 in 2014, while it was 58.31 mg kg -1 in the first half of 2015, and it was 2.93 times and 2.33 times higher than that of the Chinese Environmental Quality Standard for Soil in 2014 and the first half of 2015, respectively. The sequences of the contamination degree of heavy metals in 2014 and the first half of 2015 were cadmium > lead > copper > chromium > zinc and cadmium > lead > chromium > zinc > copper. From the analysis of the potential ecological risk index method, arsenic and cadmium had higher ecological risk than other heavy metals. The integrated ecological risk index of heavy metals (cadmium, copper, lead, zinc, and chromium) and metalloid (arsenic) was 394.10 in 2014, while it was 656.16 in the first half of 2015, thus documenting a strong ecological risk.

  12. Lack of genotoxicity in medical oncology nurses handling antineoplastic drugs: effect of work environment and protective equipment.

    PubMed

    Gulten, Tuna; Evke, Elif; Ercan, Ilker; Evrensel, Turkkan; Kurt, Ender; Manavoglu, Osman

    2011-01-01

    In this study we aimed to investigate the genotoxic effects of antineoplastic agents in occupationally exposed oncology nurses. Genotoxic effects mean the disruptive effects in the integrity of DNA and they are associated with cancer development. Biomonitoring of health care workers handling antineoplastic agents is helpful for the evaluation of exposure to cytostatics. The study included an exposed and two control groups. The exposed group (n=9) was comprised of oncology nurses. The first (n=9) and second (n=10) control groups were comprised of subjects who did not come into contact with antineoplastic drugs working respectively in the same department with oncology nurses and in different departments. Genotoxicity evaluation was performed using SCE analysis. After applying culture, harvest and chromosome staining procedures, a total of 25 metaphases were analyzed per person. Kruskal Wallis test was used to perform statistical analysis. A statistically significant difference of sister chromatid exchange frequencies was not observed between the exposed and control groups. Lack of genotoxicity in medical oncology nurses might be due to good working conditions with high standards of technical equipment and improved personal protection.

  13. Infectious Waste in Camp.

    ERIC Educational Resources Information Center

    Erceg, Linda Ebner

    1993-01-01

    As a result of new federal regulations, camps are revising procedures for waste disposal from their health centers. Discusses the importance of properly handling infectious material and developing written policies; determining how infectious waste can be incorporated safely into the general waste stream; and arranging for disposal. (LP)

  14. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  15. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  16. Treatment options for tank farms long-length contaminated equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  17. Effect of training and lifting equipment for preventing back pain in lifting and handling: systematic review

    PubMed Central

    2008-01-01

    Objectives To determine whether advice and training on working techniques and lifting equipment prevent back pain in jobs that involve heavy lifting. Data sources Medline, Embase, CENTRAL, Cochrane Back Group’s specialised register, CINAHL, Nioshtic, CISdoc, Science Citation Index, and PsychLIT were searched up to September-November 2005. Review methods The primary search focused on randomised controlled trials and the secondary search on cohort studies with a concurrent control group. Interventions aimed to modify techniques for lifting and handling heavy objects or patients and including measurements for back pain, consequent disability, or sick leave as the main outcome were considered for the review. Two authors independently assessed eligibility of the studies and methodological quality of those included. For data synthesis, we summarised the results of studies comparing similar interventions. We used odds ratios and effect sizes to combine the results in a meta-analysis. Finally, we compared the conclusions of the primary and secondary analyses. Results Six randomised trials and five cohort studies met the inclusion criteria. Two randomised trials and all cohort studies were labelled as high quality. Eight studies looked at lifting and moving patients, and three studies were conducted among baggage handlers or postal workers. Those in control groups received no intervention or minimal training, physical exercise, or use of back belts. None of the comparisons in randomised trials (17 720 participants) yielded significant differences. In the secondary analysis, none of the cohort studies (772 participants) had significant results, which supports the results of the randomised trials. Conclusions There is no evidence to support use of advice or training in working techniques with or without lifting equipment for preventing back pain or consequent disability. The findings challenge current widespread practice of advising workers on correct lifting technique

  18. Management of waste electrical and electronic equipment in two EU countries: A comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it; Ragazzi, Marco; Istrate, Irina Aura

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Review on data regarding WEEE management in Italy and in Romania. Black-Right-Pointing-Pointer Problems that countries that will enter in the EU will have to solve facing with the WEEE management. Black-Right-Pointing-Pointer Pilot experiences useful for the awareness campaign of the population. - Abstract: The paper presents some data regarding waste electrical and electronic (WEEE) management in one of the founding countries of the EU, Italy, and in a recent entry into the EU, Romania. The aim of this research was to analyze some problems that countries entering the EU will have to solve with respect to WEEE management.more » The experiences of Italy and Romania could provide an interesting reference point. The strengths and weaknesses that the two EU countries have encountered can be used in order to give a more rational plan for other countries. In Italy the increase of WEEE collection was achieved in parallel with the increase of the efficiency of selective Municipal Solid Waste collection. In Romania, pilot experiences were useful to increase the awareness of the population. The different interests of the two populations towards recyclable waste led to a different scenario: in Romania all types of WEEE have been collected since its entrance into the EU; in Italy the 'interest' in recycling is typically related to large household appliances, with a secondary role of lighting equipment.« less

  19. Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.

    PubMed

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem

    2009-02-01

    Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state

  20. AN INTRODUCTION TO ESSENTIALS OF BIO-MEDICAL WASTE MANAGEMENT.

    PubMed

    Singh, Z; Bhalwar, R; Jayaram, J; Tilak, V W

    2001-04-01

    The issue of biomedical waste management has assumed great significance in recent times particularly in view of the rapid upsurge of HIV infection. Government of India has made proper handling and disposal of this category of waste a statutory requirement with the publication of gazette notification no 460 dated 27 July 1998. The provisions are equally applicable to our service hospitals and hence there is a need for all the service medical, dental, nursing officers, other paramedical staff and safaiwalas to be well aware of the basic principles of handling, treatment and disposal of biomedical waste. The present article deals with such basic issues as definition, categories and principles of handling and disposal of biomedical waste.

  1. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  2. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  3. 21 CFR 1250.67 - Watering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... permanent signs warning that the water is unfit for drinking. (c) Ice. If bulk ice is used for the cooling..., washing, handling, and delivery to conveyances of such bulk ice, and such equipment shall be used for no...

  4. 21 CFR 1250.67 - Watering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... permanent signs warning that the water is unfit for drinking. (c) Ice. If bulk ice is used for the cooling..., washing, handling, and delivery to conveyances of such bulk ice, and such equipment shall be used for no...

  5. 21 CFR 1250.67 - Watering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... permanent signs warning that the water is unfit for drinking. (c) Ice. If bulk ice is used for the cooling..., washing, handling, and delivery to conveyances of such bulk ice, and such equipment shall be used for no...

  6. 21 CFR 1250.67 - Watering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... permanent signs warning that the water is unfit for drinking. (c) Ice. If bulk ice is used for the cooling..., washing, handling, and delivery to conveyances of such bulk ice, and such equipment shall be used for no...

  7. 29 CFR 1926.600 - Equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the vicinity of power lines or energized transmitters, except where electrical distribution and... an energized line unless and until the person owning such line or the electrical utility authorities... transmitter towers where an electrical charge can be induced in the equipment or materials being handled, the...

  8. 29 CFR 1926.600 - Equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the vicinity of power lines or energized transmitters, except where electrical distribution and... an energized line unless and until the person owning such line or the electrical utility authorities... transmitter towers where an electrical charge can be induced in the equipment or materials being handled, the...

  9. 29 CFR 1926.600 - Equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the vicinity of power lines or energized transmitters, except where electrical distribution and... an energized line unless and until the person owning such line or the electrical utility authorities... transmitter towers where an electrical charge can be induced in the equipment or materials being handled, the...

  10. 29 CFR 1926.600 - Equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the vicinity of power lines or energized transmitters, except where electrical distribution and... an energized line unless and until the person owning such line or the electrical utility authorities... transmitter towers where an electrical charge can be induced in the equipment or materials being handled, the...

  11. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE.

    PubMed

    Nurrokhmah, Laila; Mezher, Toufic; Abu-Zahra, Mohammad R M

    2013-01-01

    A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.

  12. 76 FR 37118 - Manual Materials Handling (MMH) Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... generating new ideas for manual assist equipment that meets the needs of the business community identified as... Handling (MMH) Workshop. The Workshop is a National Occupational Research Agenda (NORA) activity organized...: [email protected] . Dated: June 15, 2011. Tanya Popovic, Deputy Associate Director for Science, Centers for...

  13. Application of Minicomputers and Microcomputers to Information Handling.

    ERIC Educational Resources Information Center

    Griffiths, Jose-Marie

    This study assesses the application of both minicomputers and microcomputers to information-handling procedures and makes recommendations for automating such procedures, particularly in developing nations. The report is based on a survey of existing uses of small computing equipment in libraries, archives, and information centers which was…

  14. Apollo experience report: Crew provisions and equipment subsystem

    NASA Technical Reports Server (NTRS)

    Mcallister, F.

    1972-01-01

    A description of the construction and use of crew provisions and equipment subsystem items for the Apollo Program is presented. The subsystem is composed principally of survival equipment, bioinstrumentation devices, medical components and accessories, water- and waste-management equipment, personal-hygiene articles, docking aids, flight garments (excluding the pressure garment assembly), and various other crew-related accessories. Particular attention is given to items and assemblies that presented design, development, or performance problems: the crew optical alinement sight system, the metering water dispenser, and the waste-management system. Changes made in design and materials to improve the fire safety of the hardware are discussed.

  15. Safe handling practices of cytotoxic drugs: the results of a chapter survey.

    PubMed

    Mahon, S M; Casperson, D S; Yackzan, S; Goodner, S; Hasse, B; Hawkins, J; Parham, J; Rimkus, C; Schlomer, M; Witcher, V

    1994-08-01

    To describe how nurses from a local Oncology Nursing Society (ONS) Chapter Implement Occupational Safety and Health Administration (OSHA) guidelines for handling cytotoxic drugs (CDs) in their individual practices and to identify barriers to implementing these guidelines. Mailed survey. ONS chapter in a large midwestern city. 103 nurses, 83 of whom handle CDs. Mean years in oncology nursing was 7.5. Mailed survey consisting of 48 questions on seven topics, as well as demographic questions. Roles in preparation and administration of CDs, management spills, patient care, and use of protective equipment in patient and family education practices; barriers to use of protective practices. Subjects used some protective equipment when preparing and administering CDs, but the type of equipment and its frequency of use did not specifically meet OSHA Guidelines. Rates of compliance with guidelines were better for management of spills and disposal of equipment. Verbal instructions for patients and families were employed but very few provided written instructions or explanations. Barriers to using protective equipment included a lack of time, problems with availability, and concerns about patient reactions. Barriers must be overcome and better safe-handling practices incorporated into practice to ensure the safety of nurses. More education is needed for family members who come into contact with patients receiving CDs. Future research to document the extent of the problem, including stratification of responses according to the quantity and frequency with which a nurse administers CDs. Better, and perhaps more frequent, staff and family education efforts are needed.

  16. Waste in Place Elementary Curriculum Guide.

    ERIC Educational Resources Information Center

    Keep America Beautiful, Inc., Stamford, CT.

    This curriculum guide is a behavioral-based, systematic approach to changing attitudes and practices related to waste handling. Activities included are on litter prevention, waste reduction, reuse, recycling, composting, waste-to-energy, and landfill. These activities are used to assist students in making informed decisions about waste disposal…

  17. 40 CFR 270.25 - Specific part B information requirements for equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for equipment. 270.25 Section 270.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... subpart BB of part 264 applies: (1) Equipment identification number and hazardous waste management unit identification. (2) Approximate locations within the facility (e.g., identify the hazardous waste management unit...

  18. A new process and equipment for waste minimization: Conversion of NO(x) scrubber liquor to fertilizer

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Barile, Ronald G.; Gamble, Paul H.; Lueck, Dale E.; Young, Rebecca C.

    1995-01-01

    A new emissions control system for the oxidizer scrubbers that eliminates the current oxidizer liquor waste and lowers the NO(x) emissions is described. Since fueling and deservicing spacecraft constitute the primary operations in which environmental emissions occur, this will eliminate the second largest waste stream at KSC. This effort is in accord with Executive Order No. 12856 (Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements, data 6 Aug. 1993) and Executive Order No. 12873 (Federal Acquisition, Recycling, and Waste Prevention, dated 20 Oct. 1993). A recent study found that the efficiencies of the oxidizer scrubbers during normal operations ranged from 70 percent to 99 percent. The new scrubber liquor starts with 1% hydrogen peroxide at a pH of 7 and the process control system adds hydrogen peroxide and potassium hydroxide to the scrubber liquor to maintain those initial conditions. The result is the formation of a solution of potassium nitrate, which is sold as a fertilizer. This report describes the equipment and procedures used to monitor and control the conversion of the scrubber liquor to fertilizer, while reducing the scrubber emissions.

  19. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  20. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...

  1. Converting environmental wastes into valuable resources

    NASA Technical Reports Server (NTRS)

    Duval, Leonard A.

    1993-01-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  2. Converting environmental wastes into valuable resources

    NASA Astrophysics Data System (ADS)

    Duval, Leonard A.

    1993-02-01

    This concept employs a viable energy saving method that uses a solvent to separate oil from particle matter; it can be used in metal forming industries to deoil sludges, oxides, and particle matter that is presently committed to landfill. If oily particles are used in their oily state, severe consequences to environmental control systems such as explosions or filter blinding, occur in the air handling equipment. This is due to the presence of hydrocarbons in the stack gasses resulting from the oily particles. After deoiling, the particles can be recycled and the separated oil can be used as a fuel. The process does not produce a waste of it's own and does not harm air or water. It demonstrates the dual benefits of it being commercially viable and in the national interest of conserving resources.

  3. 36 CFR 9.45 - Handling of wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste and contaminating substances must be kept in the smallest practicable area, must be confined so as... be stored and disposed of or removed from the area as quickly as practicable in such a manner as to...), facilities, cultural resources, wildlife, and vegetation of or visitors of the unit. ...

  4. 30 CFR 75.817 - Cable handling and support systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be... the possibility of miners contacting the cables and to protect the high-voltage cables from damage. ...

  5. Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, J.; Gonzales, W.

    2007-07-01

    The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less

  6. Hazardous Waste Minimization Assessment: Fort Campbell, Kentucky

    DTIC Science & Technology

    1991-03-01

    Used Oii - Better Operating Practices . Selective Segregation 97 Used Oil - Process Change - Fast Lube Oil Change System (FLOCS) 98 Caustic Wastes...Product Substitution 98 Caustic Wastes - Process Change - Hot Tank (Equipment) Modifications 98 Aqueous or Caustic Wastes - Process Change - Dry Ovens...Aqueous or Caustic Wastes - Equipment Leasiag 102 Dirty Rags/Uniforms • Onsite/Offsite Recycling - Laundry Service 103 Treatment 103 Used Oil - Onsite

  7. 20. MACHINE SHOP, LOOKING SOUTH. SHOP IS EQUIPPED WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. MACHINE SHOP, LOOKING SOUTH. SHOP IS EQUIPPED WITH A 25-TON SHAW CRANE TO HANDLE PARTS FROM RAIL CARS INTO THE SHOP. MACHINE SHOP HANDLES ALL NECESSARY REPAIR WORK ON THE DOCK MACHINERY. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. Safe handling of antineoplastic drugs.

    PubMed

    Harrison, B R

    1994-07-01

    Managers should be aware of the hazardous properties of antineoplastic drugs and of the procedures and equipment commonly recommended to provide a safe working environment for employees, patients, and visitors. Compliance with the many published guidelines should help ensure passage of the inevitable Occupational Safety and Health Administration (OSHA) or Joint Commission inspection. Acute and chronic toxicities of the antineoplastic drugs, the potential for exposure in the workplace, and the basic guidelines for safe handling of these agents are reviewed.

  9. STS-107 crew members check out equipment at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KENNEDY SPACE CENTER, FLA. -- At SPACEHAB, STS-107 crew members check out equipment for their mission. At the far left are Mission Specialists Kalpana Chawla and Ilan Ramon, who is from Israel. At center, handling the equipment, are Mission Specialists David Brown and Michael Anderson. Identified as a research mission, STS-107 is scheduled for launch July 19, 2001

  10. Global challenges for e-waste management: the societal implications.

    PubMed

    Magalini, Federico

    2016-03-01

    Over the last decades the electronics industry and ICT Industry in particular has revolutionized the world: electrical and electronic products have become ubiquitous in today's life around the planet. After use, those products are discarded, sometimes after re-use cycles in countries different from those where they were initially sold; becoming what is commonly called e-waste. Compared to other traditional waste streams, e-waste handling poses unique and complex challenges. e-Waste is usually regarded as a waste problem, which can cause environmental damage and severe human health consequences if not safely managed. e-Waste contains significant amounts of toxic and environmentally sensitive materials and is, thus, extremely hazardous to humans and the environment if not properly disposed of or recycled. On the other hand, e-waste is often seen as a potential source of income for individuals and entrepreneurs who aim to recover the valuable materials (metals in particular) contained in discarded equipment. Recently, for a growing number of people, in developing countries in particular, recycling and separation of e-waste has become their main source of income. In most cases, this is done informally, with no or hardly any health and safety standards, exposing workers and the surrounding neighborhoods to extensive health dangers as well as leading to substantial environmental pollution. Treatment processes of e-waste aim to remove the hazardous components and recover as much reusable material (e.g. metals, glass and plastics) as possible; achieving both objectives is most desired. The paper discuss societal implications of proper e-waste management and key elements to be considered in the policy design at country level.

  11. Rules and management of biomedical waste at Vivekananda Polyclinic: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai

    Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state

  12. American Nurses Association position statement on elimination of manual patient handling to prevent work-related musculoskeletal disorders.

    PubMed

    In order to establish a safe environment for nurses and patients, the American Nurses Association (ANA) supports actions and policies that result in the elimination of manual patient handling. Patient handling, such as lifting, repositioning, and transferring, has conventionally been performed by nurses. The performance of these tasks exposes nurses to increased risk for work-related musculoskeletal disorders. With the development of assistive equipment, such as lift and transfer devices, the risk of musculoskeletal injury can be significantly reduced. Effective use of assistive equipment and devices for patient handling creates a safe healthcare environment by separating the physical burden from the nurse and ensuring the safety, comfort, and dignity of the patient.

  13. Up from the beach: medical waste disposal rules!

    PubMed

    Francisco, C J

    1989-07-01

    The recent incidents of floating debris, garbage, wood, and medical waste on our nation's beaches have focused public attention on waste management problems. The handling and disposal of solid waste remains a major unresolved national dilemma. Increased use of disposables by all consumers, including the medical profession, and the increasing costs of solid waste disposal options have aggravated the solid waste situation. Medical waste found on beaches in the summer of 1988 could have been generated by a number of sources, including illegal dumping; sewer overflow; storm water runoff; illegal drug users; and inadequate handling of solid waste at landfills and coastal transfer facilities, which receive waste from doctors' offices, laboratories, and even legitimate home users of syringes. As officials from New Jersey have determined, the beach garbage is no mystery. It's coming from you and me. In response to the perceived medical waste disposal problem, various state and federal agencies have adopted rules to regulate and control the disposal of medical waste. This article outlines the more significant rules that apply to medical waste.

  14. Solid Waste Reduction--A Hands-on Study.

    ERIC Educational Resources Information Center

    Wiessinger, Diane

    1991-01-01

    This lesson plan uses grocery shopping to demonstrate the importance of source reduction in the handling of solid waste problems. Students consider different priorities in shopping (convenience, packaging, and waste reduction) and draw conclusions about the relationship between packaging techniques and solid waste problems. (MCO)

  15. 21 CFR 500.45 - Use of polychlorinated biphenyls (PCB's) in the production, handling, and storage of animal feed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Food and Drug Administration have revealed that heat exchange fluids for certain pasteurization equipment used in processing animal feed contain PCB's. Although heat exchange fluids in such equipment are... animal feed shall: (i) Have the heat exchange fluid used in existing equipment or machinery for handling...

  16. 21 CFR 500.45 - Use of polychlorinated biphenyls (PCB's) in the production, handling, and storage of animal feed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Food and Drug Administration have revealed that heat exchange fluids for certain pasteurization equipment used in processing animal feed contain PCB's. Although heat exchange fluids in such equipment are... animal feed shall: (i) Have the heat exchange fluid used in existing equipment or machinery for handling...

  17. Waste Controls at Base Metal Mines

    ERIC Educational Resources Information Center

    Bell, Alan V.

    1976-01-01

    Mining and milling of copper, lead, zinc and nickel in Canada involves an accumulation of a half-million tons of waste material each day and requires 250 million gallons of process water daily. Waste management considerations for handling large volumes of wastes in an economically and environmentally safe manner are discussed. (BT)

  18. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less

  19. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review.

    PubMed

    He, Yunxia; Xu, Zhenming

    2014-04-01

    A large quantity of waste electrical and electronic equipment (WEEE) is being generated because technical innovation promotes the unceasing renewal of products. China's household appliances and electronic products have entered the peak of obsolescence. Due to lack of technology and equipment, recycling of WEEE is causing serious environment pollution. In order to achieve the harmless disposal and resource utilization of WEEE, researchers have performed large quantities of work, and some demonstration projects have been built recently. In this paper, the treatment techniques of typical WEEE components, including printed circuit boards, refrigerator cabinets, toner cartridges, cathode ray tubes, liquid crystal display panels, batteries (Ni-Cd and Li-ion), hard disk drives, and wires are reviewed. An integrated recycling system with environmentally friendly and highly efficient techniques for processing WEEE is proposed. The orientation of further development for WEEE recycling is also proposed.

  20. Practical Tips for the Safe Handling of Micro-organisms in Schools

    ERIC Educational Resources Information Center

    Holt, G.

    1974-01-01

    Outlines safe laboratory procedures for the handling of micro-organisms including aseptic technique, manipulation of cultures, and treatment of contaminated equipment. Identifies the principal hazard as the microbial aerosol, explains its possible effects, and describes the appropriate precautions. (GS)

  1. Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis.

    PubMed

    Ángel Aguirre, Miguel; Hidalgo, Montserrat; Canals, Antonio; Nóbrega, Joaquim A; Pereira-Filho, Edenir R

    2013-12-15

    This study shows the application of laser induced breakdown spectroscopy (LIBS) for waste electrical and electronic equipment (WEEE) investigation. Several emission spectra were obtained for 7 different mobiles from 4 different manufacturers. Using the emission spectra of the black components it was possible to see some differences among the manufacturers and some emission lines from organic elements and molecules (N, O, CN and C2) led to the highest contribution for this differentiation. Some polymeric internal parts in contact with the inner pieces of the mobiles and covered with a special paint presented a strong emission signal for Cr. The white pieces presented mainly Al, Ba and Ti in their composition. Finally, this study developed a procedure for LIBS emission spectra using chemometric strategies and suitable information can be obtained for identification of manufacturer and counterfeit products. In addition, the results obtained can improve the classification for establishing recycling strategies of e-waste. © 2013 Elsevier B.V. All rights reserved.

  2. Occupational health and safety aspects of animal handling in dairy production.

    PubMed

    Lindahl, Cecilia; Lundqvist, Peter; Hagevoort, G Robert; Lunner Kolstrup, Christina; Douphrate, David I; Pinzke, Stefan; Grandin, Temple

    2013-01-01

    Livestock handling in dairy production is associated with a number of health and safety issues. A large number of fatal and nonfatal injuries still occur when handling livestock. The many animal handling tasks on a dairy farm include moving cattle between different locations, vaccination, administration of medication, hoof care, artificial insemination, ear tagging, milking, and loading onto trucks. There are particular problems with bulls, which continue to cause considerable numbers of injuries and fatalities in dairy production. In order to reduce the number of injuries during animal handling on dairy farms, it is important to understand the key factors in human-animal interactions. These include handler attitudes and behavior, animal behavior, and fear in cows. Care when in close proximity to the animal is the key for safe handling, including knowledge of the flight zone, and use of the right types of tools and suitable restraint equipment. Thus, in order to create safe working conditions during livestock handling, it is important to provide handlers with adequate training and to establish sound safety management procedures on the farm.

  3. New characterisation method of electrical and electronic equipment wastes (WEEE).

    PubMed

    Menad, N; Guignot, S; van Houwelingen, J A

    2013-03-01

    Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink-float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC-ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC-ABS and PS are close to 100%. Sink-float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global

  4. RH-TRU Waste Inventory Characterization by AK and Proposed WIPP RH-TRU Waste Characterization Objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Most, W. A.; Kehrman, R.; Gist, C.

    2002-02-26

    The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay

  5. Infectious Risk Assessment of Unsafe Handling Practices and Management of Clinical Solid Waste

    PubMed Central

    Hossain, Md. Sohrab; Rahman, Nik Norulaini Nik Ab; Balakrishnan, Venugopal; Puvanesuaran, Vignesh R.; Sarker, Md. Zaidul Islam; Kadir, Mohd Omar Ab

    2013-01-01

    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes. PMID:23435587

  6. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  7. Toxic-Waste Disposal by Combustion in Containers

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Stephens, J. B.; Moynihan, P. I.; Compton, L. E.; Kalvinskas, J. J.

    1986-01-01

    Chemical wastes burned with minimal handling in storage containers. Technique for disposing of chemical munitions by burning them inside shells applies to disposal of toxic materials stored in drums. Fast, economical procedure overcomes heat-transfer limitations of conventional furnace designs by providing direct contact of oxygenrich combustion gases with toxic agent. No need to handle waste material, and container also decontaminated in process. Oxygen-rich torch flame cuts burster well and causes vaporization and combustion of toxic agent contained in shell.

  8. Exploring the Awareness Regarding E-waste and its Health Hazards among the Informal Handlers in Musheerabad Area of Hyderabad.

    PubMed

    Mishra, Sapna; Shamanna, B R; Kannan, Srinivasan

    2017-01-01

    Occupational Health hazards of handling and management of electronic waste is a nascent subject. Improper and unscientific handling of e-waste can invite significant human and environmental health risks. To study the level of awareness about electronic waste and its health hazards amongst informal handlers in Musheerabad, Hyderabad. Ethical approval and informed consents were obtained from Institutional Ethical Committee, University of Hyderabad and from the participants respectively before the commencement of study. This was a descriptive cross-sectional study conducted in randomly selected twenty-six waste handling centers from sixty of them in the locality. From each of the centers four handlers agedbetween 18 and 45 were randomly selected. Total of 104 handlers were interviewed using semi-structured schedule. Interviews were also conducted among 10 owners of such centres on the waste management practices. About 72% of the handlers did not know the meaning of electronic waste and 71% were not aware of associated health risks, 85% did not use any protective gears, while 16% acknowledged health issues attributed to improper handling of e-waste, 77% felt their handling of e-waste was appropriate. Majority of center owners felt that informal e-waste handling does not pose any health risks, and reported that there was no awareness campaign by any agency as of then. This study highlights the need for awareness campaigns on proper e-waste management practices to ensure occupational safety among the waste handlers who belong to lower socio-economic strata.

  9. Electronic waste (e-waste): material flows and management practices in Nigeria.

    PubMed

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    2008-01-01

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT) in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.

  10. Electronic waste (e-waste): Material flows and management practices in Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nnorom, Innocent Chidi; Osibanjo, Oladele

    The growth in electrical and electronic equipment (EEE) production and consumption has been exponential in the last two decades. This has been as a result of the rapid changes in equipment features and capabilities, decrease in prices, and the growth in internet use. This creates a large volume of waste stream of obsolete electrical and electronic devices (e-waste) in developed countries. There is high level of trans-boundary movement of these devices as secondhand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. The past decade has witnessed a phenomenal advancement in information and communication technology (ICT)more » in Nigeria, most of which rely on imported secondhand devices. This paper attempts to review the material flow of secondhand/scrap electronic devices into Nigeria, the current management practices for e-waste and the environmental and health implications of such low-end management practices. Establishment of formal recycling facilities, introduction of legislation dealing specifically with e-waste and the confirmation of the functionality of secondhand EEE prior to importation are some of the options available to the government in dealing with this difficult issue.« less

  11. ENGINEERING BULLETIN: CONTROL OF AIR EMISSIONS FROM MATERIALS HANDLING DURING REMEDIATION

    EPA Science Inventory

    This bulletin presents an overview discussion on the importance of and methods for controlling emissions into the air from materials handling processes at Superfund or other hazardous waste sites. It also describes several techniques used for dust and vapor suppress ion that have...

  12. Equipment and Supplies For Collecting, Processing, Storing, and Testing Forest Tree Seed

    Treesearch

    F.T. Bonner

    1977-01-01

    This publication is a directory of information on equipment and supplies used in handling and treating tree seed. The use of each device is briefly described. Specifications such as size, capacity, or model number are given. Manufacturers' or suppliers' names are listed, and users of the equipment are identified.

  13. 77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...

  14. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  15. Electronic wastes

    NASA Astrophysics Data System (ADS)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  16. Exploring the Awareness Regarding E-waste and its Health Hazards among the Informal Handlers in Musheerabad Area of Hyderabad

    PubMed Central

    Mishra, Sapna; Shamanna, B. R.; Kannan, Srinivasan

    2017-01-01

    Introduction: Occupational Health hazards of handling and management of electronic waste is a nascent subject. Improper and unscientific handling of e-waste can invite significant human and environmental health risks. Objective: To study the level of awareness about electronic waste and its health hazards amongst informal handlers in Musheerabad, Hyderabad. Methodology: Ethical approval and informed consents were obtained from Institutional Ethical Committee, University of Hyderabad and from the participants respectively before the commencement of study. This was a descriptive cross-sectional study conducted in randomly selected twenty-six waste handling centers from sixty of them in the locality. From each of the centers four handlers agedbetween 18 and 45 were randomly selected. Total of 104 handlers were interviewed using semi-structured schedule. Interviews were also conducted among 10 owners of such centres on the waste management practices. Results: About 72% of the handlers did not know the meaning of electronic waste and 71% were not aware of associated health risks, 85% did not use any protective gears, while 16% acknowledged health issues attributed to improper handling of e-waste, 77% felt their handling of e-waste was appropriate. Majority of center owners felt that informal e-waste handling does not pose any health risks, and reported that there was no awareness campaign by any agency as of then. Conclusion: This study highlights the need for awareness campaigns on proper e-waste management practices to ensure occupational safety among the waste handlers who belong to lower socio-economic strata. PMID:29618915

  17. Is Industry Managing Its Wastes Properly?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Industry is faced with handling, disposing and recovering vast amounts of waste, much of it as a result of present pollution control technology. Industry has found the technology available, expensive and, without regulation, easy to ignore. Many industries are therefore improperly managing their wastes. (BT)

  18. 29 CFR 1918.67 - Notifying the ship's officers before using certain equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Notifying the ship's officers before using certain equipment. 1918.67 Section 1918.67 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Cargo Handling Gear and Equipment Other Than...

  19. Recovery of gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate.

    PubMed

    Alzate, Andrea; López, Maria Esperanza; Serna, Claudia

    2016-11-01

    This paper presents a novel methodology to recover gold from waste electrical and electronic equipment (WEEE) using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ). Gold was recovered as a fine coating using substrate oxidation without shredding or grinding process. The WEEE sample was characterized giving values of Au: 1.05g/kg, Fe: 86.00g/kg, Ni: 73.64g/kg, Cu: 26.65g/kg. The effect of (NH 4 ) 2 S 2 O 8 concentration (0.22-1.10M), oxygen (0.0-1.4L/min) and L/S ratio (10-30mL/g) on the main responses (substrate oxidation and Au recovery) was investigated implementing response surface methodology with numerical optimization. A quadratic model was developed and quantities greater than 98% of Au were recovered. The findings presented suggest that, optimized quantities of ammonium persulfate in aqueous highly oxygenated media could be used to extract superficial gold from WEEE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. [Environmental and occupational problems in the utilization of industrial and home waste].

    PubMed

    Rusakov, N V; Rakhmanin, Iu A

    2002-01-01

    One of the acute hygienic problems of today is handling industrial and consumer wastes stored in Russia in the amount of 30 milliard tons; 30 million of solid garbage and 120 million tons of industrial wastes being formed. There are 4 garbage-handling and 10 garbage disposal plants built in the country. A third of them don't operate now. An absence of the initial selection in garbage collection causes the situation when only 3% of solid garbage is being processed. There is no state unified wastes recycling and utilizing system, no training of personnel to work out special technologies and do this work. Special attention should be given to medical wastes dangerous for the epidemiological situation, since they contain pathogenic microorganisms and helminth eggs; they may as well be contaminated by toxic and radioactive chemicals. A complex solution of the problems of industrial and consumer wastes handling is of vital importance for human health protection and protection of environment.

  1. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive

  2. Systems for harvesting and handling cotton plant residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, W.

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at themore » University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.« less

  3. Individual Information-Centered Approach for Handling Physical Activity Missing Data

    ERIC Educational Resources Information Center

    Kang, Minsoo; Rowe, David A.; Barreira, Tiago V.; Robinson, Terrance S.; Mahar, Matthew T.

    2009-01-01

    The purpose of this study was to validate individual information (II)-centered methods for handling missing data, using data samples of 118 middle-aged adults and 91 older adults equipped with Yamax SW-200 pedometers and Actigraph accelerometers for 7 days. We used a semisimulation approach to create six data sets: three physical activity outcome…

  4. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  5. Complications Associated with Long-Term Disposition of Newly-Generated Transuranic Waste: A National Laboratory Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.J. Orchard; L.A. Harvego; T.L. Carlson

    The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not

  6. Waste Information Management System v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bustamante, David G.; Schade, A. Carl

    WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.

  7. Notification: Audit of Security Categorization for EPA Systems That Handle Hazardous Material Information

    EPA Pesticide Factsheets

    Project #OA-FY18-0089, January 8, 2018. The OIG plans to begin preliminary research to determine whether the EPA classified the sensitivity of data for systems that handle hazardous waste material information as prescribed by NIST.

  8. Eye-in-Hand Manipulation for Remote Handling: Experimental Setup

    NASA Astrophysics Data System (ADS)

    Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador

    2018-03-01

    A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.

  9. 40 CFR 243.201-2 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste handling techniques, and in the proper operation of collection equipment, such as those presented in Operation Responsible: Safe Refuse Collection. (b) Personal protective equipment such as gloves... Standards for Subpart I—Personal Protective Equipment (29 CFR 1910.132 through 1910.137). (c) Scavenging...

  10. 40 CFR 243.201-2 - Recommended procedures: Operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste handling techniques, and in the proper operation of collection equipment, such as those presented in Operation Responsible: Safe Refuse Collection. (b) Personal protective equipment such as gloves... Standards for Subpart I—Personal Protective Equipment (29 CFR 1910.132 through 1910.137). (c) Scavenging...

  11. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  12. Chemical Handling and Waste Disposal Issues at Liberal Arts.

    ERIC Educational Resources Information Center

    Gannaway, Susan P.

    1990-01-01

    Findings from a survey of 20 liberal arts colleges which did not have graduate programs in chemistry are presented. Discussed are regulations, actions taken and costs of academic laboratories regarding the disposal of hazardous waste. (CW)

  13. Measuring treatment costs of typical waste electrical and electronic equipment: A pre-research for Chinese policy making.

    PubMed

    Li, Jinhui; Dong, Qingyin; Liu, Lili; Song, Qingbin

    2016-11-01

    Waste Electrical and Electronic Equipment (WEEE) volume is increasing, worldwide. In 2011, the Chinese government issued new regulations on WEEE recycling and disposal, establishing a WEEE treatment subsidy funded by a levy on producers of electrical and electronic equipment. In order to evaluate WEEE recycling treatment costs and revenue possibilities under the new regulations, and to propose suggestions for cost-effective WEEE management, a comprehensive revenue-expenditure model (REM), were established for this study, including 7 types of costs, 4 types of fees, and one type of revenue. Since TV sets dominated the volume of WEEE treated from 2013 to 2014, with a contribution rate of 87.3%, TV sets were taken as a representative case. Results showed that the treatment cost varied from 46.4RMB/unit to 82.5RMB/unit, with a treatment quantity of 130,000 units to 1,200,000 units per year in China. Collection cost accounted for the largest portion (about 70.0%), while taxes and fees (about 11.0 %) and labor cost (about 7.0 %) contributed less. The average costs for disposal, sales, and taxes had no influence on treatment quantity (TQ). TQ might have an adverse effect on average labor and management costs; while average collection and purchase fees, and financing costs, would vary with purchase price, and the average sales fees and taxes would vary with the sales of dismantled materials and other recycled products. Recycling enterprises could reduce their costs by setting up online and offline collection platforms, cooperating with individual collectors, creating door-to-door collection channels, improving production efficiency and reducing administrative expenditures. The government could provide economic incentives-such as subsidies, low-cost loans, tax cuts and credits-and could also raise public awareness of waste management and environmental protection, in order to capture some of the WEEE currently discarded into the general waste stream. Foreign companies with

  14. Fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors

    NASA Astrophysics Data System (ADS)

    Mizukami, Masato; Makihara, Mitsuhiro

    2013-07-01

    Conventionally, in intelligent buildings in a metropolitan area network and in small-scale facilities in the optical access network, optical connectors are joined manually using an optical connection board and a patch panel. In this manual connection approach, mistakes occur due to discrepancies between the actual physical settings of the connections and their management because these processes are independent. Moreover, manual cross-connection is time-consuming and expensive because maintenance personnel must be dispatched to remote places to correct mistakes. We have developed a fiber-handling robot and optical connection mechanisms for automatic cross-connection of multiple optical connectors, which are the key elements of automatic optical fiber cross-connect equipment. We evaluate the performance of the equipment, such as its optical characteristics and environmental specifications. We also devise new optical connection mechanisms that enable the automated optical fiber cross-connect module to handle and connect angled physical contact (APC) optical connector plugs. We evaluate the performance of the equipment, such as its optical characteristics. The evaluation results confirm that the automated optical fiber cross-connect equipment can connect APC connectors with low loss and high return loss, indicating that the automated optical fiber cross-connect equipment is suitable for practical use in intelligent buildings and optical access networks.

  15. Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less

  16. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known culturalmore » resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.« less

  17. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less

  18. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  19. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  20. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  2. Queuing theory models used for port equipment sizing

    NASA Astrophysics Data System (ADS)

    Dragu, V.; Dinu, O.; Ruscă, A.; Burciu, Ş.; Roman, E. A.

    2017-08-01

    The significant growth of volumes and distances on road transportation led to the necessity of finding solutions to increase water transportation market share together with the handling and transfer technologies within its terminals. It is widely known that the biggest times are consumed within the transport terminals (loading/unloading/transfer) and so the necessity of constantly developing handling techniques and technologies in concordance with the goods flows size so that the total waiting time of ships within ports is reduced. Port development should be achieved by harmonizing the contradictory interests of port administration and users. Port administrators aim profit increase opposite to users that want savings by increasing consumers’ surplus. The difficulty consists in the fact that the transport demand - supply equilibrium must be realised at costs and goods quantities transiting the port in order to satisfy the interests of both parties involved. This paper presents a port equipment sizing model by using queueing theory so that the sum of costs for ships waiting operations and equipment usage would be minimum. Ship operation within the port is assimilated to a mass service waiting system in which parameters are later used to determine the main costs for ships and port equipment.

  3. 10 CFR 850.32 - Waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal...-contaminated equipment and other items that are disposed of as waste, through the application of waste...

  4. Effective solutions for monitoring the electrostatic separation of metal and plastic granular waste from electric and electronic equipment.

    PubMed

    Senouci, Khouira; Medles, Karim; Dascalescu, Lucian

    2013-02-01

    The variability of the quantity and purity of the recovered materials is a serious drawback for the application of electrostatic separation technologies to the recycling of granular wastes. In a series of previous articles we have pointed out how capability and classic control chart concepts could be employed for better mastering the outcome of such processes. In the present work, the multiple exponentially weighted moving average (MEWMA) control chart is introduced and shown to be more effective than the Hotelling T2 chart for monitoring slow varying changes in the electrostatic separation of granular mixtures originating from electric and electronic equipment waste. The operation of the industrial process was simulated by using a laboratory roll-type electrostatic separator and granular samples resulting from shredded electric cable wastes. The 25 tests carried out during the observation phase enabled the calculation of the upper and lower control limits for the two control charts considered in the present study. The 11 additional tests that simulated the monitoring phase pointed out that the MEWMA chart is more effective than Hotelling's T(2) chart in detecting slow varying changes in the outcome of a process. As the reverse is true in the case of abrupt alterations of monitored process performances, simultaneous usage of the two control charts is strongly recommended. While this study focused on a specific electrostatic separation process, using the MEWMA chart together with the well known Hotelling's T(2) chart should be applicable to the statistical control of other complex processes in the field of waste processing.

  5. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and appropriate operating and inspection personnel; and (3) An electronic or written record of the... operating freight cars equipped with ECP brake systems shall adopt and comply with specific procedures... this subpart. These procedures shall be made available to FRA upon request. (2) Each railroad operating...

  6. TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgin, Jillian Elizabeth

    The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.

  7. Solid Waste Treatment Technology

    ERIC Educational Resources Information Center

    Hershaft, Alex

    1972-01-01

    Advances in research and commercial solid waste handling are offering many more processing choices. This survey discusses techniques of storage and removal, fragmentation and sorting, bulk reduction, conversion, reclamation, mining and mineral processing, and disposal. (BL)

  8. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  9. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  10. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study.

    PubMed

    Gu, Fu; Ma, Buqing; Guo, Jianfeng; Summers, Peter A; Hall, Philip

    2017-10-01

    Management of Waste Electrical and Electronic Equipment (WEEE) is a vital part in solid waste management, there are still some difficult issues require attentionss. This paper investigates the potential of applying Internet of Things (IoT) and Big Data as the solutions to the WEEE management problems. The massive data generated during the production, consumption and disposal of Electrical and Electronic Equipment (EEE) fits the characteristics of Big Data. Through using the state-of-the-art communication technologies, the IoT derives the WEEE "Big Data" from the life cycle of EEE, and the Big Data technologies process the WEEE "Big Data" for supporting decision making in WEEE management. The framework of implementing the IoT and the Big Data technologies is proposed, with its multiple layers are illustrated. Case studies with the potential application scenarios of the framework are presented and discussed. As an unprecedented exploration, the combined application of the IoT and the Big Data technologies in WEEE management brings a series of opportunities as well as new challenges. This study provides insights and visions for stakeholders in solving the WEEE management problems under the context of IoT and Big Data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Proposed space shuttle cargo handling criteria at the operational site (preliminary)

    NASA Technical Reports Server (NTRS)

    Beck, P. E.

    1972-01-01

    The criteria for cargo handling at the operational site of space shuttles are presented, based on assumed program requirements. The concepts for the following functions are described: maintenance and checkout facility, transfer to launch pad, and launch pad. The requirements for the ground equipment are given along with the general sequences for cargo loading.

  12. Waste treatment in silicon production operations

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor); Tambo, William (Inventor)

    1985-01-01

    A battery of special burners, each adapted for the treatment of a particular range of waste material formed during the conversion of metallurgical grade silicon to high purity silane and silicon, is accompanied by a series arrangement of filters to recover fumed silica by-product and a scrubber to recover muriatic acid as another by-product. All of the wastes are processed, during normal and plant upset waste load conditions, to produce useful by-products in an environmentally acceptable manner rather than waste materials having associated handling and disposal problems.

  13. Disposal of Chemotherapeutic Agent -- Contaminated Waste

    DTIC Science & Technology

    1989-03-01

    RESTRICTIVE MARKINGS 2a SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for Public...AIR .............. 22 INCINERATION SYSTEM 2 CHEMOTHERAPEUTIC WASTE THERMAL ...... 32 DESTRUCTION DISPOSAL SYSTEM 3 FRONT VIEW OF INCINERATION...The Environmental Protection Agency has published a manual (Reference 1) which provides guidelines on handling and 3 disposal of infectious waste from

  14. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  15. Port of Los Angeles: Off-Road Heavy Duty Equipment and Infrastructure Enhancements

    EPA Pesticide Factsheets

    Description of a project at the Port of Los Angeles to replace a diesel crane with an electric crane. Additionally includes information on shore power installation, and cargo handling equipment upgrades.

  16. Collection of domestic waste. Review of occupational health problems and their possible causes.

    PubMed

    Poulsen, O M; Breum, N O; Ebbehøj, N; Hansen, A M; Ivens, U I; van Lelieveld, D; Malmros, P; Matthiasen, L; Nielsen, B H; Nielsen, E M

    1995-08-18

    During the last decade, a growing interest in recycling of domestic waste has emerged, and action plans to increase the recycling of domestic waste have been agreed by many governments. A common feature of these plans is the implementation of new systems and equipment for the collection of domestic waste which has been separated at source. However, only limited information exists on possible occupational health problems related to such new systems. Occupational accidents are very frequent among waste collectors. Based on current knowledge, it appears that the risk factors should be considered as an integrated entity, i.e. technical factors (poor accessibility to the waste, design of equipment) may act in concert with high working rate, visual fatigue due to poor illumination and perhaps muscle fatigue due to high work load. Musculoskeletal problems are also common among waste collectors. A good deal of knowledge has accumulated on mechanical load on the spine and energetic load on the cardio-pulmonary system in relation to the handling of waste bags, bins, domestic containers and large containers. However, epidemiologic studies with exposure classification based on field measurement are needed, both to further identify high risk work conditions and to provide a detailed basis for the establishment of occupational exposure limits for mechanical and energetic load particularly in relation to pulling, pushing and tilting of containers. In 1975, an excess risk for chronic bronchitis was reported for waste collectors in Geneva (Rufèner-Press et al., 1975) and data from the Danish Registry of Occupational Accidents and Diseases also indicate an excess risk for pulmonary problems among waste collectors compared with the total work force. Surprisingly few measurements of potentially hazardous airborne exposures have been performed, and the causality of work-related pulmonary problems among waste collectors is unknown. Recent studies have indicated that implementation of

  17. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SPEED REDUCTION EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  18. The detection of blood on dental surgery surfaces and equipment following dental hygiene treatment.

    PubMed

    McColl, E; Bagg, J; Winning, S

    1994-01-22

    The Kastle-Meyer technique, a forensic test for blood, has been employed to assess the frequency and potential routes of contamination by blood between patients, staff and equipment during routine dental hygiene treatment. Fifty treatment sessions were studied and units were cleaned between patients according to the current hospital protocol. The surfaces most frequently contaminated after treatment were the 3-in-1 syringe buttons (40%), protective bibs (22%), tap handles (20%), light handles (18%) and operating cart handles (16%). Following cleaning of the units, the surfaces remaining contaminated were the 3-in-1 syringes (10%), tap handles (4%) and cart handles (2%). Modifications to the cross-infection control protocol have been made to eliminate these sources of contamination.

  19. Estimating the impact of the "digital switchover" on disposal of WEEE at household waste recycling centres in England.

    PubMed

    Ongondo, F O; Williams, I D; Keynes, S

    2011-04-01

    Using Hampshire County Council (HCC) as a case study, this paper evaluates and discusses the estimated impacts of the so-called digital switchover (DSO) (scheduled for 2012 in Hampshire) on Household Waste Recycling Centres (HWRCs) in England and the UK. Two public surveys of Hampshire residents were used to collect data on their preparedness for and awareness of the switchover and its implications. The survey also sought to establish the quantities of televisions (TVs) and TV related devices that are ready for the DSO. The quantities of TV and related devices that are likely to be disposed via HCC's collection network have been established and compared to the County's current handling capacities for waste electronic and electrical equipment (WEEE). Best and worst case potential net disposal scenarios have been established and the latter compared to Government projections. In addition, the potential environmental, logistical, financial and legal impacts of the WEEE arising as a consequence of the switchover have been identified and discussed. The results indicate that the majority of TVs both in Hampshire and the UK are digital ready and that awareness of the switchover is high. In contrast, most recording devices in Hampshire are not ready for the DSO. Awareness of the timeframe of the event remains modest however and about half of Hampshire households were not aware that TV recording devices will be affected by the switchover. A significant proportion of waste TVs and related equipment would be taken to HWRCs in contrast to smaller items such as remote controls that would more likely be disposed with normal household waste. Projected figures for the DSO year show that if Hampshire maintained its current collection capacity for WEEE it would experience a handling shortfall of around ∼100K for TVs and recording devices, respectively. The most important finding of the study is that the UK Government may have substantially underestimated the quantities of TV and

  20. Estimating the impact of the 'digital switchover' on disposal of WEEE at household waste recycling centres in England

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongondo, F.O.; Williams, I.D., E-mail: idw@soton.ac.uk; Keynes, S.

    2011-04-15

    Using Hampshire County Council (HCC) as a case study, this paper evaluates and discusses the estimated impacts of the so-called digital switchover (DSO) (scheduled for 2012 in Hampshire) on Household Waste Recycling Centres (HWRCs) in England and the UK. Two public surveys of Hampshire residents were used to collect data on their preparedness for and awareness of the switchover and its implications. The survey also sought to establish the quantities of televisions (TVs) and TV related devices that are ready for the DSO. The quantities of TV and related devices that are likely to be disposed via HCC's collection networkmore » have been established and compared to the County's current handling capacities for waste electronic and electrical equipment (WEEE). Best and worst case potential net disposal scenarios have been established and the latter compared to Government projections. In addition, the potential environmental, logistical, financial and legal impacts of the WEEE arising as a consequence of the switchover have been identified and discussed. The results indicate that the majority of TVs both in Hampshire and the UK are digital ready and that awareness of the switchover is high. In contrast, most recording devices in Hampshire are not ready for the DSO. Awareness of the timeframe of the event remains modest however and about half of Hampshire households were not aware that TV recording devices will be affected by the switchover. A significant proportion of waste TVs and related equipment would be taken to HWRCs in contrast to smaller items such as remote controls that would more likely be disposed with normal household waste. Projected figures for the DSO year show that if Hampshire maintained its current collection capacity for WEEE it would experience a handling shortfall of around {approx}100 K for TVs and recording devices, respectively. The most important finding of the study is that the UK Government may have substantially underestimated the

  1. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets

  2. Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less

  3. 10 CFR 72.164 - Control of measuring and test equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., instruments, and other measuring and testing devices used in activities affecting quality are properly... WASTE Quality Assurance § 72.164 Control of measuring and test equipment. The licensee, applicant for a... 10 Energy 2 2010-01-01 2010-01-01 false Control of measuring and test equipment. 72.164 Section 72...

  4. Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIMMONS, F.M.

    2000-03-29

    This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cellsmore » 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.« less

  5. Touch Temperature Coating for Off-the-Shelf Electrical Equipment Used on Spacecraft

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Brady, Timothy K.

    2010-01-01

    Off-the-shelf electrical equipment is frequently used in space-based applications to control costs. However, the reduced heat transfer in the spacecraft microgravity environment causes the equipment to operate at significantly higher temperatures than it would in terrestrial applications. This creates touch temperature issues where items particularly metallic ones become too hot for the crew to handle safely. A touch temperature coating layup has been developed that can be added to spacebased electrically powered hardware. The coating allows the crew to safely handle the hardware, but only slightly impedes the heat transfer from the component during normal operation. In the present work, the coating generic requirements are developed and a layup is described that meets these specifications. Analytical and experimental results are presented that demonstrate the ability of the coating layup to increase the allowable limits of touch temperature while only marginally degrading heat transfer to the environment. This allows the spacecraft crew to handle objects that, if not coated, would be hot enough to cause pain or skin damage.

  6. Self Audits of Hazardous Waste Operations in Laboratories.

    ERIC Educational Resources Information Center

    Fischer, Kenneth E.

    1987-01-01

    Discusses the need for compliance with state and federal regulations regarding the handling of hazardous wastes in college chemistry laboratories. Addresses: (1) waste determination; (2) facility requirements; (3) use of the manifest, vendor, transporter, site selection requirements, and training; (4) contingency planning; and (5) documentation.…

  7. Underground Architecture and Layout for the Belgian High-Level and Long-Lived Intermediate-Level Radioactive Waste Disposal Facility- 12116

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique

    The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less

  8. Handling of quarry waste from schist production at Oppdal, Norway

    NASA Astrophysics Data System (ADS)

    Willy Danielsen, Svein; Alnæs, Lisbeth; Azrague, Kamal; Suleng, Jon

    2017-04-01

    Handling of quarry waste from schist production at Oppdal, Norway Svein Willy Danielsen1), Lisbeth Alnæs2), Kamal Azrague2), Jon Suleng3) 1) Geomaterials Consultant, Trondheim Norway, 2) SINTEF, Trondheim, Norway, 3) AF Gruppen AS, Oppdal, Norway A significant amount of aggregate research in Norway has been focused on the recovery and use of surplus sizes from hard rock aggregate quarries. The use of sand sized quarry waste (QW) from crushing/processing has been motivated by the rapid depletion of traditional sand/gravel resources, increasing land-use conflicts, and the need to minimise QW deposits which for some quarries are becoming a critical factor for economy as well as for environmental reasons. With an annual aggregate production of 77 million tons, out of which approximately 83 % comes from hard rock, the annual volume of size < 4 mm will be of the order of 19 million tons. Converting this into construction aggregates is a major challenge in order to obtain satisfactory mass balance. This challenge is even bigger for quarries producing decorative stones. E.g. the quarrying and production of schist products for building purpose normally utilises as little as 10-15 % of the excavated rock. Oppdal in central Norway is a main supplier of schist products for flooring, roofing and decorative purpose. The high percentage of QW is due to strict requirements to the finished products, both regarding processing and the character of the parent rock. The need to deposit large amounts of QW is a serious setback for the quarry economy. Within a limited time horizon the volumes of QW can threaten the further exploitation by merely choking the quarry. On the opposite side - any process that can convert the QW into sellable products will give a tremendous added value for the producer. Besides, the area in question is about to drain out its available aggregate resources, having to rely on long-transported sand and gravel. This has consequences not only for the economy, but

  9. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Science.gov Websites

    dots. Waste Feedstocks We inventory WTE feedstocks-waste fat, oil, and greases; municipal solid wastes " and points right to an icon of an Excel spreadsheet labeled "Equipment and Raw Material

  10. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall; Monk, Thomas H

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less

  11. 21 CFR 600.11 - Physical establishment, equipment, animals, and care.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Physical establishment, equipment, animals, and... designed and constructed to permit thorough cleaning and, where possible, inspection for cleanliness. All... each culture is designed to withstand handling without breaking. (3) Work with spore-forming...

  12. International E-Waste Management Network (IEMN)

    EPA Pesticide Factsheets

    EPA and the Environmental Protection Administration Taiwan (EPAT) have collaborated since 2011 to build global capacity for the environmentally sound management of waste electrical and electronic equipment (WEEE), which is commonly called e-waste.

  13. Adverse risk: a 'dynamic interaction model of patient moving and handling'.

    PubMed

    Griffiths, Howard

    2012-09-01

    The aim of the present study was to examine patient adverse events associated with sub-optimal patient moving and handling. Few studies have examined the patient's perspective on adverse risk during manual handling episodes. A narrative review was undertaken to develop the 'Dynamic Interaction Model of Patient Moving and Handling' in an orthopaedic rehabilitation setting, using peer-reviewed publications published in English between 1992 and 2010. Five predominant themes emerged from the narrative review: 'patient's need to know about analgesics prior to movement/ambulation'; 'comfort care'; 'mastery of and acceptance of mobility aids/equipment'; 'psychological adjustment to fear of falling'; and 'the need for movement to prevent tissue pressure damage'. Prevalence of discomfort, pain, falls, pressure sores together with a specific Direct Instrument Nursing Observation (DINO) tool enable back care advisers to measure quality of patient manual handling. Evaluation of patients' use of mobility aids together with fear of falling may be important in determining patients' recovery trajectory. Clinical governance places a responsibility on nurse managers to consider quality of care for their service users. 'Dynamic Interaction Model of Nurse-Patient Moving and Handling' provides back care advisers, clinical risk managers and occupational health managers with an alternative perspective to clinical risk and occupational risk. © 2011 Blackwell Publishing Ltd.

  14. System for Odorless Disposal of Human Waste

    NASA Technical Reports Server (NTRS)

    Jennings, Dave; Lewis, Tod

    1987-01-01

    Conceptual system provides clean, hygienic storage. Disposal system stores human wastes compactly. Releases no odor or bacteria and requires no dangerous chemicals or unpleasant handling. Stabilizes waste by natural process of biodegradation in which microbial activity eventually ceases and ordors and bacteria reduced to easily contained levels. Simple and reliable and needs little maintenance.

  15. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  16. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day basedmore » upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.« less

  17. [Nationwide survey on radioactive waste management related to positron emission tomography in Japan].

    PubMed

    Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji

    2009-12-20

    A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.

  18. UK report on waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J.

    1995-09-01

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise frommore » the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.« less

  19. Design and simulation of integration system between automated material handling system and manufacturing layout in the automotive assembly line

    NASA Astrophysics Data System (ADS)

    Seha, S.; Zamberi, J.; Fairu, A. J.

    2017-10-01

    Material handling system (MHS) is an important part for the productivity plant and has recognized as an integral part of today’s manufacturing system. Currently, MHS has growth tremendously with its technology and equipment type. Based on the case study observation, the issue involving material handling system contribute to the reduction of production efficiency. This paper aims to propose a new design of integration between material handling and manufacturing layout by investigating the influences of layout and material handling system. A method approach tool using Delmia Quest software is introduced and the simulation result is used to assess the influences of the integration between material handling system and manufacturing layout in the performance of automotive assembly line. The result show, the production of assembly line output increases more than 31% from the current system. The source throughput rate average value went up to 252 units per working hour in model 3 and show the effectiveness of the pick-to-light system as efficient storage equipment. Thus, overall result shows, the application of AGV and the pick-to-light system gave a large significant effect in the automotive assembly line. Moreover, the change of layout also shows a large significant improvement to the performance.

  20. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded

  1. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  2. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  3. 109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751): TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. 92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Planet Patrol. An Educational Unit on Solid Waste Solutions for Grades 4-6.

    ERIC Educational Resources Information Center

    Shively, Patti J.; And Others

    This educational unit on solid waste solutions is intended to convey to students an understanding of the four methods of solid waste handling, in priority order, as recommended by the Environmental Protection Agency: (1) reduction in the volume of waste produced; (2) recycling and composting; (3) waste combustion, i.e., incineration of waste; and…

  6. Phase Stability Determinations of DWPF Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, S.L.

    1999-10-22

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. To fulfill this requirement, glass samples were heat treated at various times and temperatures. These results will provide guidance to the repository program about conditions to be avoided during shipping, handling and storage of DWPF canistered waste forms.

  7. Do Technical Aids for Patient Handling Prevent Musculoskeletal Complaints in Health Care Workers?-A Systematic Review of Intervention Studies.

    PubMed

    Hegewald, Janice; Berge, Wera; Heinrich, Philipp; Staudte, Ronny; Freiberg, Alice; Scharfe, Julia; Girbig, Maria; Nienhaus, Albert; Seidler, Andreas

    2018-03-09

    The physical load ensuing from the repositioning and moving of patients puts health care workers at risk of musculoskeletal complaints. Technical equipment developed to aid with patient handling should reduce physical strain and workload; however, the efficacy of these aids in preventing musculoskeletal disorders and complaints is still unclear. A systematic review of controlled intervention studies was conducted to examine if the risk of musculoskeletal complaints and disorders is reduced by technical patient handling equipment. MEDLINE ® /PubMed ® , EMBASE ® , Allied and Complementary Medicine Database (AMED), and Cumulative Index of Nursing and Allied Health Literature (CINAHL ® ) were searched using terms for nursing, caregiving, technical aids, musculoskeletal injuries, and complaints. Randomized controlled trials and controlled before-after studies of interventions including technical patient handling equipment were included. The titles and abstracts of 9554 publications and 97 full-texts were screened by two reviewers. The qualitative synthesis included one randomized controlled trial (RCT) and ten controlled before-after studies. A meta-analysis of four studies resulted in a pooled risk ratio for musculoskeletal injury claims (post-intervention) of 0.78 (95% confidence interval 0.68-0.90). Overall, the methodological quality of the studies was poor and the results often based on administrative injury claim data, introducing potential selection bias. Interventions with technical patient handling aids appear to prevent musculoskeletal complaints, but the certainty of the evidence according to GRADE approach ranged from low to very low.

  8. Final Inventory Work-Off Plan for ORNL transuranic wastes (1986 version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, L.S.

    1988-05-01

    The Final Inventory Work-Off Plan (IWOP) for ORNL Transuranic Wastes addresses ORNL's strategy for retrieval, certification, and shipment of its stored and newly generated contact-handled (CH) and remote-handled (RH) transuranic (TRU) wastes to the Waste Isolation Pilot Plant (WIPP), the proposed geologic repository near Carlsbad, New Mexico. This document considers certification compliance with the WIPP waste acceptance criteria (WAC) and is consistent with the US Department of Energy's Long-Range Master Plan for Defense Transuranic Waste Management. This document characterizes Oak Ridge National Laboratory's (ORNL's) TRU waste by type and estimates the number of shipments required to dispose of it; describesmore » the methods, facilities, and systems required for its certification and shipment; presents work-off strategies and schedules for retrieval, certification, and transportation; discusses the resource needs and additions that will be required for the effort and forecasts costs for the long-term TRU waste management program; and lists public documentation required to support certification facilities and strategies. 22 refs., 6 figs., 10 tabs.« less

  9. E-waste hazard: The impending challenge

    PubMed Central

    Pinto, Violet N.

    2008-01-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action. PMID:20040981

  10. E-waste hazard: The impending challenge.

    PubMed

    Pinto, Violet N

    2008-08-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action.

  11. Waste Minimization Program. Air Force Plant 4.

    DTIC Science & Technology

    1986-02-01

    incinerator equipped with a secondary combustion chamber and venturi scrubber could serve AFP 4’s needs. As the wastes listed in Table 3-6 contain negligible... scrubber water treatment in the AFP 4eatment. waste treatment system. 2.3 ECONOMICS -Table 2-3 summarizes the projected economics of the recommendations for...control devices. These paint booths are equipped with water curtain air scrubbers which remove solids from the booth exhaust by providing - intimate

  12. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  13. Thermodynamic processes associated with frostbite in the handling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Cook, C. R.

    2014-01-01

    It is often taught that exposure to liquid nitrogen will cause frostbite or more severe damage to exposed skin tissue. However, it is also demonstrated that a full hand can be briefly immersed in liquid nitrogen without damage. To better understand and possibly visualize the effects of human tissue exposure to liquid nitrogen, a series of tests were conducted using simulated hands and arms composed of molded gelatin forms. The simulated hands and arms were immersed, sprayed, or splashed with liquid nitrogen both with and without state of the art personal protective equipment. Thermocouples were located within the test articles to allow for thermal mapping during the freezing process. The study is aimed to help understand frostbite hazards and the time constants involved with the handling of liquid nitrogen to improve future safety protocols for the safe handling of cryogenic fluids. Results of the testing also show the limits to handling liquid nitrogen while using various means of protection.

  14. Quantifying capital goods for collection and transport of waste.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2012-12-01

    The capital goods for collection and transport of waste were quantified for different types of containers (plastic containers, cubes and steel containers) and an 18-tonnes compacting collection truck. The data were collected from producers and vendors of the bins and the truck. The service lifetime and the capacity of the goods were also assessed. Environmental impact assessment of the production of the capital goods revealed that, per tonne of waste handled, the truck had the largest contribution followed by the steel container. Large high density polyethylene (HDPE) containers had the lowest impact per tonne of waste handled. The impact of producing the capital goods for waste collection and transport cannot be neglected as the capital goods dominate (>85%) the categories human-toxicity (non-cancer and cancer), ecotoxicity, resource depletion and aquatic eutrophication, but also play a role (>13%) within the other impact categories when compared with the impacts from combustion of fuels for the collection and transport of the waste, when a transport distance of 25 km was assumed.

  15. Development of new materials from waste electrical and electronic equipment: Characterization and catalytic application.

    PubMed

    Souza, J P; Freitas, P E; Almeida, L D; Rosmaninho, M G

    2017-07-01

    Wastes of electrical and electronic equipment (WEEE) represent an important environmental problem, since its composition includes heavy metals and organic compounds used as flame-retardants. Thermal treatments have been considered efficient processes on removal of these compounds, producing carbonaceous structures, which, together with the ceramic components of the WEEE (i.e. silica and alumina), works as support material for the metals. This mixture, associated with the metals present in WEEE, represents promising systems with potential for catalytic application. In this work, WEEE was thermally modified to generate materials that were extensively characterized. Raman spectrum for WEEE after thermal treatment showed two carbon associated bands. SEM images showed a metal nanoparticles distribution over a polymeric and ceramic support. After characterization, WEEE materials were applied in ethanol steam reforming reaction. The system obtained at higher temperature (800°C) exhibited the best activity, since it leads to high conversions (85%), hydrogen yield (30%) and H 2 /CO ratio (3,6) at 750°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solid Waste from the Operation and Decommissioning of Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.

  17. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    1997-06-30

    7-2 7-1 Excavation of Contaminated Soils . . . . . . . . 7-3 7-1 Excavation of Contaminated Sediments...becomes only as radioactive as natural soil . By comparison, many other potential y hazardous, but nonradioactive, chemical wastes like lead, silver...solutions and cleanup materials, engine oils and grease, epoxies and resins, laser dyes, paint residues, photo- graphic materials, soils , asphalts

  18. AUTOMATED IDENTIFICATION AND SORTING OF RARE EARTH ELEMENTS IN AN E-WASTE RECYCLING STREAM - PHASE I

    EPA Science Inventory

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to these concerns, e-waste recycling is a rapidly gro...

  19. AORN ergonomic tool 7: pushing, pulling, and moving equipment on wheels.

    PubMed

    Waters, Thomas; Lloyd, John D; Hernandez, Edward; Nelson, Audrey

    2011-09-01

    Pushing and pulling equipment in and around the OR can place high shear force demands on perioperative team members' shoulder and back muscles and joints. These high forces may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 7: Pushing, Pulling, and Moving Equipment on Wheels can help perioperative team members assess the risk of pushing and pulling tasks in the perioperative setting. The tool provides evidence-based suggestions about when assistive devices should be used for these tasks and is based on current ergonomic safety concepts, scientific evidence, and knowledge of effective technology and procedures, including equipment and devices for safe patient handling. Published by Elsevier Inc.

  20. Hazardous-waste analysis plan for LLNL operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R.S.

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less

  1. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  2. Electrical and electronic waste: a global environmental problem.

    PubMed

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  3. Do Technical Aids for Patient Handling Prevent Musculoskeletal Complaints in Health Care Workers?—A Systematic Review of Intervention Studies

    PubMed Central

    Hegewald, Janice; Berge, Wera; Heinrich, Philipp; Staudte, Ronny; Freiberg, Alice; Scharfe, Julia; Girbig, Maria; Nienhaus, Albert; Seidler, Andreas

    2018-01-01

    The physical load ensuing from the repositioning and moving of patients puts health care workers at risk of musculoskeletal complaints. Technical equipment developed to aid with patient handling should reduce physical strain and workload; however, the efficacy of these aids in preventing musculoskeletal disorders and complaints is still unclear. A systematic review of controlled intervention studies was conducted to examine if the risk of musculoskeletal complaints and disorders is reduced by technical patient handling equipment. MEDLINE®/PubMed®, EMBASE®, Allied and Complementary Medicine Database (AMED), and Cumulative Index of Nursing and Allied Health Literature (CINAHL®) were searched using terms for nursing, caregiving, technical aids, musculoskeletal injuries, and complaints. Randomized controlled trials and controlled before-after studies of interventions including technical patient handling equipment were included. The titles and abstracts of 9554 publications and 97 full-texts were screened by two reviewers. The qualitative synthesis included one randomized controlled trial (RCT) and ten controlled before-after studies. A meta-analysis of four studies resulted in a pooled risk ratio for musculoskeletal injury claims (post-intervention) of 0.78 (95% confidence interval 0.68–0.90). Overall, the methodological quality of the studies was poor and the results often based on administrative injury claim data, introducing potential selection bias. Interventions with technical patient handling aids appear to prevent musculoskeletal complaints, but the certainty of the evidence according to GRADE approach ranged from low to very low. PMID:29522440

  4. Medical waste management in Jordan: A study at the King Hussein Medical Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oweis, Rami; Al-Widyan, Mohamad; Al-Limoon, Ohood

    2005-07-01

    As in many other developing countries, the generation of regulated medical waste (RMW) in Jordan has increased significantly over the last few decades. Despite the serious impacts of RMW on humans and the environment, only minor attention has been directed to its proper handling and disposal. This study was conducted in the form of a case study at one of Jordan's leading medical centers, namely, the King Hussein Medical Center (KHMC). Its purpose was to report on the current status of medical waste management at KHMC and propose possible measures to improve it. In general, it was found that themore » center's administration was reasonably aware of the importance of medical waste management and practiced some of the measures to adequately handle waste generated at the center. However, it was also found that significant voids were present that need to be addressed in the future including efficient segregation, the use of coded and colored bags, better handling and transfer means, and better monitoring and tracking techniques, as well as the need for training and awareness programs for the personnel.« less

  5. The Heroes' Problems: Exploring the Potentials of Google Glass for Biohazard Handling Professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jack Shen-Kuen; Henry, Michael J.; Burtner, Edwin R.

    2015-06-23

    In “white powder incidents” or other suspicious and risky situations relating to deadly diseases or chemicals (e.g., Ebola investigation), those who handle the potentially hazardous materials are the heroes who spearhead the first responder’s operations. Although well trained, these heroes need to manage complex problems and make life-or-death decisions while handling the unknown and dangerous. We are motivated to explore how Google Glass can facilitate those heroes’ missions. To this end, we conducted contextual inquiry on six biohazard-handling, Personal Protective Equipment (PPE)-wearing professionals. With an inductive thematic analysis, we summarized the heroes’ workflow and four groups of “Heroes’ Problems”. Amore » unique “A3 Model” (Awareness, Analysis, Action) was generated to encapsulate our qualitative findings and proposed Glass features. The findings serve as the groundwork for our future development.« less

  6. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  7. Reducing Mouse Anxiety during Handling: Effect of Experience with Handling Tunnels

    PubMed Central

    Gouveia, Kelly; Hurst, Jane L.

    2013-01-01

    Handling stress is a well-recognised source of variation in animal studies that can also compromise the welfare of research animals. To reduce background variation and maximise welfare, methods that minimise handling stress should be developed and used wherever possible. Recent evidence has shown that handling mice by a familiar tunnel that is present in their home cage can minimise anxiety compared with standard tail handling. As yet, it is unclear whether a tunnel is required in each home cage to improve response to handling. We investigated the influence of prior experience with home tunnels among two common strains of laboratory mice: ICR(CD-1) and C57BL/6. We compared willingness to approach the handler and anxiety in an elevated plus maze test among mice picked up by the tail, by a home cage tunnel or by an external tunnel shared between cages. Willingness to interact with the handler was much greater for mice handled by a tunnel, even when this was unfamiliar, compared to mice picked up by the tail. Once habituated to handling, C57BL/6 mice were most interactive towards a familiar home tunnel, whereas the ICR strain showed strong interaction with all tunnel handling regardless of any experience of a home cage tunnel. Mice handled by a home cage or external tunnel showed less anxiety in an elevated plus maze than those picked up by the tail. This study shows that using a tunnel for routine handling reduces anxiety among mice compared to tail handling regardless of prior familiarity with tunnels. However, as home cage tunnels can further improve response to handling in some mice, we recommend that mice are handled with a tunnel provided in their home cage where possible as a simple practical method to minimise handling stress. PMID:23840458

  8. Reducing mouse anxiety during handling: effect of experience with handling tunnels.

    PubMed

    Gouveia, Kelly; Hurst, Jane L

    2013-01-01

    Handling stress is a well-recognised source of variation in animal studies that can also compromise the welfare of research animals. To reduce background variation and maximise welfare, methods that minimise handling stress should be developed and used wherever possible. Recent evidence has shown that handling mice by a familiar tunnel that is present in their home cage can minimise anxiety compared with standard tail handling. As yet, it is unclear whether a tunnel is required in each home cage to improve response to handling. We investigated the influence of prior experience with home tunnels among two common strains of laboratory mice: ICR(CD-1) and C57BL/6. We compared willingness to approach the handler and anxiety in an elevated plus maze test among mice picked up by the tail, by a home cage tunnel or by an external tunnel shared between cages. Willingness to interact with the handler was much greater for mice handled by a tunnel, even when this was unfamiliar, compared to mice picked up by the tail. Once habituated to handling, C57BL/6 mice were most interactive towards a familiar home tunnel, whereas the ICR strain showed strong interaction with all tunnel handling regardless of any experience of a home cage tunnel. Mice handled by a home cage or external tunnel showed less anxiety in an elevated plus maze than those picked up by the tail. This study shows that using a tunnel for routine handling reduces anxiety among mice compared to tail handling regardless of prior familiarity with tunnels. However, as home cage tunnels can further improve response to handling in some mice, we recommend that mice are handled with a tunnel provided in their home cage where possible as a simple practical method to minimise handling stress.

  9. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    USDA-ARS?s Scientific Manuscript database

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  10. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at

  11. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigsby V.P.

    2009-02-12

    , Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less

  12. A Failing Grade for WEEE Take-Back Programs for Information Technology Equipment

    ERIC Educational Resources Information Center

    Nakajima, Nina; Vanderburg, Willem H.

    2005-01-01

    Product take-back (also called extended producer responsibility) has become a trend for dealing with the garbage resulting from categories of problematic products. Waste electrical and electronic equipment (WEEE) is one such category with computer equipment being of particular significance. This article provides a description of the European…

  13. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUTTING AND WELDING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot program to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so in an effort to assist these manufacturers Waste Minimization Assessment Cent...

  14. Safe handling of cytotoxic compounds in a biopharmaceutical environment.

    PubMed

    Hensgen, Miriam I; Stump, Bernhard

    2013-01-01

    Handling cytotoxic drugs such as antibody-drug conjugates (ADCs) in a biopharmaceutical environment represents a challenge based on the potency of the compounds. These derivatives are dangerous to humans if they accidentally get in contact with the skin, are inhaled, or are ingested, either as pure compounds in their solid state or as a solution dissolved in a co-solvent. Any contamination of people involved in the manufacturing process has to be avoided. On the other hand, biopharmaceuticals need to be protected simultaneously against any contamination from the manufacturing personnel. Therefore, a tailor-made work environment is mandatory in order to manufacture ADCs. This asks for appropriate technical equipment to keep potential hazardous substances contained. In addition, clearly defined working procedures based on risk assessments as well as proper training for all personnel involved in the manufacturing process are needed to safely handle these highly potent pharmaceuticals.

  15. Gender difference in safe and unsafe practice of pesticide handling in tobacco farmers of malaysia.

    PubMed

    Bin Nordin, R; Araki, S; Sato, H; Yokoyama, K; Bin Wan Muda, W A; Win Kyi, D

    2001-01-01

    To identify gender difference in safe and unsafe practice of pesticide handling in tobacco farmers of Malaysia, we conducted a 20-item questionnaire interview on storage of pesticide (4 questions), mixing of pesticide (3 questions), use of personal protective equipment and clothing while spraying pesticide (7 questions), activities during and after spraying of pesticide (5 questions), and maintenance of pesticide sprayer (1 question) in 496 tobacco farmers (395 males and 101 females) in Bachok District, Kelantan, Malaysia. Duration of employment was significantly longer in females than those in males (p<0.001). In addition, proportion with no formal education in females was significantly higher than those in males (p<0.05). The following eight common factors were extracted from the 20 questionnaires by principal components factor analysis after varimax rotation in all farmers: (1) use of personal protective equipment, (2) unsafe work habit, (3) reading and following instructions on pesticide label, (4) security, storage and disposal of pesticide container, (5) safe work habit, (6) proper handling of pesticide and maintenance of pesticide sprayer, (7) use of personal protective clothing, and (8) safe handling of pesticide. Results of analysis of covariance for the eight factor scores of all male and female farmers, controlling for educational level and duration of employment, showed that: (1) factor scores for use of personal protective equipment (p<0.001), use of personal protective clothing (p<0.001) and safe work habit (p<0.001) in females were significantly lower than those in males; (2) conversely, factor scores for reading and following instruction on pesticide label (p<0.001) and proper handling of pesticide and maintenance of pesticide sprayer (p<0.01) in males were significantly lower than those in females; and (3) there were no significant differences in other three factor scores (p>0.05). We therefore conclude that: (1) for female tobacco farmers, choice

  16. Gender Difference in Safe and Unsafe Practice of Pesticide Handling in Tobacco Farmers of Malaysia

    PubMed Central

    BIN NORDIN, Rusli; ARAKI, Shunichi; SATO, Hajime; YOKOYAMA, Kazuhito; BIN WAN MUDA, Wan Abdul Manan; WIN KYI, Daw

    2001-01-01

    To identify gender difference in safe and unsafe practice of pesticide handling in tobacco farmers of Malaysia, we conducted a 20-item questionnaire interview on storage of pesticide (4 questions), mixing of pesticide (3 questions), use of personal protective equipment and clothing while spraying pesticide (7 questions), activities during and after spraying of pesticide (5 questions), and maintenance of pesticide sprayer (1 question) in 496 tobacco farmers (395 males and 101 females) in Bachok District, Kelantan, Malaysia. Duration of employment was significantly longer in females than those in males (p<0.001). In addition, proportion with no formal education in females was significantly higher than those in males (p<0.05). The following eight common factors were extracted from the 20 questionnaires by principal components factor analysis after varimax rotation in all farmers: (1) use of personal protective equipment, (2) unsafe work habit, (3) reading and following instructions on pesticide label, (4) security, storage and disposal of pesticide container, (5) safe work habit, (6) proper handling of pesticide and maintenance of pesticide sprayer, (7) use of personal protective clothing, and (8) safe handling of pesticide. Results of analysis of covariance for the eight factor scores of all male and female farmers, controlling for educational level and duration of employment, showed that: (1) factor scores for use of personal protective equipment (p<0.001), use of personal protective clothing (p<0.001) and safe work habit (p<0.001) in females were significantly lower than those in males; (2) conversely, factor scores for reading and following instruction on pesticide label (p<0.001) and proper handling of pesticide and maintenance of pesticide sprayer (p<0.01) in males were significantly lower than those in females; and (3) there were no significant differences in other three factor scores (p>0.05). We therefore conclude that: (1) for female tobacco farmers, choice

  17. Hazardous Wastes. Two Games for Teaching about the Problem. Environmental Communications Activities. Bulletin 703.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Cooperative Extension Service.

    Two games are presented which demonstrate the complexity of the hazardous waste problem through an introduction to the: (1) economics of waste disposal; (2) legislation surrounding waste disposal; (3) necessity to handle wastes with care; (4) damages to the environmental and human health resulting from improper disposal; (5) correct ways to…

  18. AUTOMATED REMOVAL OF BROMINATED FLAME RETARDANT MATERIAL FROM A MIXED E-WASTE PLASTICS RECYCLING STREAM - PHASE I

    EPA Science Inventory

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfills and leaching into the water supply. Because of these concerns, e-waste recycling is a rapidly gro...

  19. AUTOMATED REMOVAL OF BROMINATED FLAME RETARDANT MATERIAL FROM A MIXED E-WASTE PLASTICS RECYCLING STREAM - PHASE II

    EPA Science Inventory

    Electronic waste (e-waste) is one of the most rapidly growing waste problems worldwide. Improper handling of e-waste results in vast amounts of toxic waste being sent to landfill and leaching into the water supply. Due to there concerns e-waste recycling is a rapidly growing...

  20. Hazardous waste: cleanup and prevention

    USGS Publications Warehouse

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  1. Waste handling: A study of tributyl phosphate compatibility with nonmetallic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, C.F.; Briedenbach, P.J.

    1989-01-01

    The need for numerous seals, plastic tubing, instrument components, and miles of plastic pipe for transferring process waste streams containing tributyl phosphate (TBP) and petroleum solvents led to an investigation of compatibility. TBP is a solvent for many plastics and elastomers and causes softening, crazing, or cracking of most nonmetallics tested. In this regard it may be considered an external plasticizer for some polymers. TBP also is a surfactant in aqueous solution. Dimension changes and property changes associated with softening will preclude the use of some materials as gaskets. Teflon/trademark/ and Kalrez/trademark/ gaskets appear to be compatible with TBP. Mixedmore » results were obtained with EPDM elastomers, but EPDM O-rings are less costly than Kalrez/trademark/ and are being applied in some areas. Exposure of CPVC rigid piping led to crazing and, ultimately, catastrophic stress cracking, thus precluding its use in the waste services described. High-density polyethylene and PVDF plastic piping were unaffected by the test exposures and are useable for process and process waste service. Applications include 25-30 miles of polyethylene pipe and a large number of EPDM gaskets in the filter assembly of an effluent treatment system at the Savannah River Plant. 3 refs., 7 figs., 3 tabs.« less

  2. Documentation forms for monitoring occupational surveillance of healthcare workers who handle cytotoxic drugs.

    PubMed

    Parillo, V L

    1994-01-01

    To develop a procedure for medical surveillance of healthcare workers who handle cytotoxic drugs. Literature review and guidelines published by the Occupational Safety and Health Administration and the National Institute for Occupational Safety and Health. INFORMATION SELECTION: Studies of possible exposure screening tests, congenital defects in offspring, and case studies. Some degree of risk exists in handling cytotoxic drugs, but no reliable screening test for cytotoxic drug exposure has been developed. Reproductive hazards are possible when protective equipment is not used. Areas to be addressed when devising surveillance procedures include who to cover, what baseline data to gather, what periodic monitoring will be necessary (and at what interval it will be conducted), how to handle exposure incidents, and what documentation system will be used. A procedure using a baseline risk factor form and a yearly monitoring questionnaire was devised and implemented. Forms contain documentation of worker teaching. Most often, nurses are the healthcare workers who handle cytotoxic drugs. A consistent approach to monitoring healthcare workers is facilitated by using a defined procedure and standardized forms.

  3. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  4. 40 CFR 63.703 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gaseous HAP emitted from each solvent storage tank, piece of mix preparation equipment, coating operation..., piece of mix preparation equipment, coating operation, waste handling device, and condenser vent in... of this method is sufficient to meet the requirements of paragraph (c)(1) or (2) of this section. (4...

  5. Factors influencing oncology nurses' use of hazardous drug safe-handling precautions.

    PubMed

    Polovich, Martha; Clark, Patricia C

    2012-05-01

    To examine relationships among factors affecting nurses' use of hazardous drug (HD) safe-handling precautions, identify factors that promote or interfere with HD precaution use, and determine managers' perspectives on the use of HD safe-handling precautions. Cross-sectional, mixed methods; mailed survey to nurses who handle chemotherapy and telephone interviews with managers. Mailed invitation to oncology centers across the United States. 165 nurses who reported handling chemotherapy and 20 managers of nurses handling chemotherapy. Instruments measured the use of HD precautions and individual and organizational factors believed to influence precaution use. Data analysis included descriptive statistics and hierarchical regression. Manager interview data were analyzed using content analysis. Chemotherapy exposure knowledge, self-efficacy, perceived barriers, perceived risk, interpersonal influences, and workplace safety climate. Nurses were well educated, experienced, and certified in oncology nursing. The majority worked in outpatient settings and administered chemotherapy to an average of 6.8 patients per day. Exposure knowledge, self-efficacy for using personal protective equipment, and perceived risk of harm from HD exposure were high; total precaution use was low. Nurse characteristics did not predict HD precaution use. Fewer barriers, better workplace safety climate, and fewer patients per day were independent predictors of higher HD precaution use. HD handling policies were present, but many did not reflect current recommendations. Few managers formally monitored nurses' HD precaution use. Circumstances in the workplace interfere with nurses' use of HD precautions. Interventions should include fostering a positive workplace safety climate, reducing barriers, and providing appropriate nurse-patient ratios.

  6. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    PubMed

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. TANKS 18 AND 19-F EQUIPMENT GROUT FILL MATERIAL EVALUATION AND RECOMMENDATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanko, D.; Langton, C.

    The United States Department of Energy (US DOE) intends to remove Tanks 18-F and 19-F at the Savannah River Site (SRS) from service. The high-level waste (HLW) tanks have been isolated from the F-area Tank Farm (FTF) facilities and will be filled with cementitious grout for the purpose of: (1) physically stabilizing the empty volumes in the tanks, (2) limiting/eliminating vertical pathways from the surface to residual waste on the bottom of the tanks, (3) providing an intruder barrier, and (4) providing an alkaline, chemical reducing environment within the closure boundary to limit solubility of residual radionuclides. Bulk waste andmore » heel waste removal equipment will remain in Tanks 18-F and 19-F when the tanks are closed. This equipment includes: mixer pumps, transfer pumps, transfer jets, equipment support masts, sampling masts and dip tube assemblies. The current Tank 18-F and 19-F closure strategy is to grout the internal void spaces in this equipment to eliminate fast vertical pathways and slow water infiltration to the residual material on the tank floor. This report documents the results of laboratory testing performed to identify a grout formulation for filling the abandoned equipment in Tanks 18-F and 19-F. The objective of this work was to formulate a flowable grout for filling internal voids of equipment that will remain in Tanks 18-F and 19-F during the final closures. This work was requested by V. A. Chander, Tank Farm Closure Engineering, in HLW-TTR-2011-008. The scope for this task is provided in the Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The specific objectives of this task were to: (1) Prepare and evaluate the SRR cooling coil grout identified in WSRC-STI-2008-00298 per the TTR for this work. The cooling coil grout is a mixture of BASF MasterFlow{reg_sign} 816 cable grout (67.67 wt. %), Grade 100 ground granulated blast furnace slag (7.52 wt. %) and water (24.81 wt. %); (2) Identify equipment grout placement

  8. Indonesia municiple solid waste life cycle and environmental monitoring: current situation, before and future challenges

    NASA Astrophysics Data System (ADS)

    Susmono

    2017-03-01

    Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support

  9. Utilization of the wastes of vital activity

    NASA Technical Reports Server (NTRS)

    Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.

    1979-01-01

    The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.

  10. E-waste: a global hazard.

    PubMed

    Perkins, Devin N; Brune Drisse, Marie-Noel; Nxele, Tapiwa; Sly, Peter D

    2014-01-01

    Waste from end-of-life electrical and electronic equipment, known as e-waste, is a rapidly growing global problem. E-waste contains valuable materials that have an economic value when recycled. Unfortunately, the majority of e-waste is recycled in the unregulated informal sector and results in significant risk for toxic exposures to the recyclers, who are frequently women and children. The aim of this study was to document the extent of the problems associated with inappropriate e-waste recycling practices. This was a narrative review that highlighted where e-waste is generated, where it is recycled, the range of adverse environmental exposures, the range of adverse health consequences, and the policy frameworks that are intended to protect vulnerable populations from inappropriate e-waste recycling practices. The amount of e-waste being generated is increasing rapidly and is compounded by both illegal exportation and inappropriate donation of electronic equipment, especially computers, from developed to developing countries. As little as 25% of e-waste is recycled in formal recycling centers with adequate worker protection. The health consequences of both direct exposures during recycling and indirect exposures through environmental contamination are potentially severe but poorly studied. Policy frameworks aimed at protecting vulnerable populations exist but are not effectively applied. E-waste recycling is necessary but it should be conducted in a safe and standardized manor. The acceptable risk thresholds for hazardous, secondary e-waste substances should not be different for developing and developed countries. However, the acceptable thresholds should be different for children and adults given the physical differences and pronounced vulnerabilities of children. Improving occupational conditions for all e-waste workers and striving for the eradication of child labor is non-negotiable. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  11. Recovering metallic fractions from waste electrical and electronic equipment by a novel vibration system.

    PubMed

    Habib, Muddasar; Miles, Nicholas J; Hall, Philip

    2013-03-01

    The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Knowledge, Attitude and Practice of Healthcare Managers to Medical Waste Management and Occupational Safety Practices: Findings from Southeast Nigeria.

    PubMed

    Anozie, Okechukwu Bonaventure; Lawani, Lucky Osaheni; Eze, Justus Ndulue; Mamah, Emmanuel Johnbosco; Onoh, Robinson Chukwudi; Ogah, Emeka Onwe; Umezurike, Daniel Akuma; Anozie, Rita Onyinyechi

    2017-03-01

    Awareness of appropriate waste management procedures and occupational safety measures is fundamental to achieving a safe work environment, and ensuring patient and staff safety. This study was conducted to assess the attitude of healthcare managers to medical waste management and occupational safety practices. This was a cross-sectional study conducted among 54 hospital administrators in Ebonyi state. Semi-structured questionnaires were used for qualitative data collection and analyzed with SPSS statistics for windows (2011), version 20.0 statistical software (Armonk, NY: IBM Corp). Two-fifth (40%) of healthcare managers had received training on medical waste management and occupational safety. Standard operating procedure of waste disposal was practiced by only one hospital (1.9%), while 98.1% (53/54) practiced indiscriminate waste disposal. Injection safety boxes were widely available in all health facilities, nevertheless, the use of incinerators and waste treatment was practiced by 1.9% (1/54) facility. However, 40.7% (22/54) and 59.3% (32/54) of respondents trained their staff and organize safety orientation courses respectively. Staff insurance cover was offered by just one hospital (1.9%), while none of the hospitals had compensation package for occupational hazard victims. Over half (55.6%; 30/54) of the respondents provided both personal protective equipment and post exposure prophylaxis for HIV. There was high level of non-compliance to standard medical waste management procedures, and lack of training on occupational safety measures. Relevant regulating agencies should step up efforts at monitoring and regulation of healthcare activities and ensure staff training on safe handling and disposal of hospital waste.

  13. Best Practices for Management of Biocontaminated Waste ...

    EPA Pesticide Factsheets

    Report The purpose of these best practices is to provide federal, state, territorial, and local waste management entities information on techniques and methodologies that have the potential to improve the handling and management of biocontaminated waste streams after a biological agent incident. These best practices are intended to be general in nature serving as a resource to a variety of biological agents in a variety of situations; however, these best practices also present a specific homeland security scenario – a biological attack with Bacillus anthracis (B. anthracis) – to help illustrate specific waste management considerations.

  14. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the

  15. Improvement and modification of the routing system for the health-care waste collection and transportation in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alagoez, Aylin Zeren; Kocasoy, Guenay

    Handling of health-care wastes is among the most important environmental problems in Turkey as it is in the whole world. Approximately 25-30 tons of health-care wastes, in addition to the domestic and recyclable wastes, are generated from hospitals, clinics and other small health-care institutions daily on the European and the Asian sides of Istanbul [Kocasoy, G., Topkaya, B., Zeren, B.A., Kilic, M., et al., 2004. Integrated Health-care Waste Management in Istanbul, Final Report of the LIFE00 TCY/TR/054 Project, Turkish National Committee on Solid Wastes, Istanbul, Turkey; Zeren, B.A., 2004. The Health-care Waste Management of the Hospitals in the European Sidemore » of Istanbul, M.S. Thesis, Bogazici University, Istanbul, Turkey; Kilic, M., 2004. Determination of the Health-care Waste Handling and Final Disposal of the Infected Waste of Hospital-Medical Centers in the Anatolian Side of Istanbul. M.S. Thesis, Bogazici University, Istanbul, Turkey]. Unfortunately, these wastes are not handled, collected or temporarily stored at the institutions properly according to the published Turkish Medical Waste Control Regulation [Ministry of Environment and Forestry, 2005. Medical Waste Control Regulation. Official Gazette No. 25883, Ankara, Turkey]. Besides the inappropriate handling at the institutions, there is no systematic program for the transportation of the health-care wastes to the final disposal sites. The transportation of these wastes is realized by the vehicles of the municipalities in an uncontrolled, very primitive way. As a consequence, these improperly managed health-care wastes cause many risks to the public health and people who handle them. This study has been conducted to develop a health-care waste collection and transportation system for the city of Istanbul, Turkey. Within the scope of the study, the collection of health-care wastes from the temporary storage rooms of the health-care institutions, transportation of these wastes to the final disposal

  16. Improvement and modification of the routing system for the health-care waste collection and transportation in Istanbul.

    PubMed

    Alagöz, Aylin Zeren; Kocasoy, Günay

    2008-01-01

    Handling of health-care wastes is among the most important environmental problems in Turkey as it is in the whole world. Approximately 25-30tons of health-care wastes, in addition to the domestic and recyclable wastes, are generated from hospitals, clinics and other small health-care institutions daily on the European and the Asian sides of Istanbul [Kocasoy, G., Topkaya, B., Zeren, B.A., Kiliç, M., et al., 2004. Integrated Health-care Waste Management in Istanbul, Final Report of the LIFE00 TCY/TR/054 Project, Turkish National Committee on Solid Wastes, Istanbul, Turkey; Zeren, B.A., 2004. The Health-care Waste Management of the Hospitals in the European Side of Istanbul, M.S. Thesis, Boğaziçi University, Istanbul, Turkey; Kiliç, M., 2004. Determination of the Health-care Waste Handling and Final Disposal of the Infected Waste of Hospital-Medical Centers in the Anatolian Side of Istanbul. M.S. Thesis, Boğaziçi University, Istanbul, Turkey]. Unfortunately, these wastes are not handled, collected or temporarily stored at the institutions properly according to the published Turkish Medical Waste Control Regulation [Ministry of Environment and Forestry, 2005. Medical Waste Control Regulation. Official Gazette No. 25883, Ankara, Turkey]. Besides the inappropriate handling at the institutions, there is no systematic program for the transportation of the health-care wastes to the final disposal sites. The transportation of these wastes is realized by the vehicles of the municipalities in an uncontrolled, very primitive way. As a consequence, these improperly managed health-care wastes cause many risks to the public health and people who handle them. This study has been conducted to develop a health-care waste collection and transportation system for the city of Istanbul, Turkey. Within the scope of the study, the collection of health-care wastes from the temporary storage rooms of the health-care institutions, transportation of these wastes to the final disposal

  17. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  18. NASA/ESA CV-990 Spacelab simulation. Appendixes: C, data-handling: Planning and implementation; D, communications; E, mission documentation

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.

    1976-01-01

    Data handling, communications, and documentation aspects of the ASSESS mission are described. Most experiments provided their own data handling equipment, although some used the airborne computer for backup, and one experiment required real-time computations. Communications facilities were set up to simulate those to be provided between Spacelab and the ground, including a downlink TV system. Mission documentation was kept to a minimum and proved sufficient. Examples are given of the basic documents of the mission.

  19. Planning equipment acquisitions.

    PubMed

    Sadock, J M

    1995-08-01

    As the mire of healthcare reform continues to grow, many providers are developing an insatiable appetite for alternatives to the way they currently do business. For some, solutions come in the form of repackaging the same old stuff. Others have jumped recklessly into every managed, capitated, or reformed idea that has come along. Old-school thinkers are still awaiting government direction. Providers of quality healthcare face increasing demands on their shrinking capital funds. An aging population, indigent care, AIDS patients, medical waste disposal, nursing shortages, declining reimbursement, increasing labor costs, and the federal healthcare reform threat have negatively affected cash flow. Though previous cost-plus reimbursement encouraged wasteful spending, the threat of healthcare reform has already caused providers and suppliers alike to work together to cut costs even without government mandates. The impact has been the closure of over 600 facilities nationwide in the past ten years. More than 70,000 acute care hospital beds have been lost from the US healthcare system. Many healthcare facilities have merged into managed care systems, integrated delivery networks, and regional alliances whose costs can be consolidated and controlled. At the same time, new services and profit centers are also being created to increase revenue. A healthcare moves into alternative care environments--home care, ambulatory care, diagnostic testing--these providers need more capital equipment to serve an increased patient load. Coupled with an aging installed base of technology in the acute care environment, healthcare managers face an ever-growing need for capital equipment and creative financing programs to meet longer payment options.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. The impact of drywall handling tools on the low back.

    PubMed

    Hess, Jennifer A; Kincl, Laurel D; Davis, Kermit

    2010-03-01

    Carpenters and other construction workers who install drywall have high rates of strains and sprains to the low back and shoulder. Drywall is heavy and awkward to handle resulting in increased risk of injury. The purpose of this study was to evaluate several low-cost coupling tools that have the potential to reduce awkward postures in drywall installers. Five coupling tools were evaluated using the Lumbar Motion Monitor that measures trunk kinematics and predicts probability of low back disorder group membership risk (LBD risk). Workers answered surveys about their comfort while using each tool. The results indicate that use of the 2-person manual lift and the J-handle provide the best reduction in awkward postures, motions, low back sagittal moment, and LBD risk. The two-person manual lift appears to be the safest method of lifting and moving drywall, though using the two-person J-handle also significantly reduces injury risk. Given that carpenters are skeptical about using equipment that can get in the way or get lost, a practical recommendation is promotion of two-person manual lifting. For single-person lifts, the Old Man tool is a viable option to decrease risk of MSDs.

  1. Sprag Handle Wrenches

    NASA Technical Reports Server (NTRS)

    Vranishm, John M.

    2010-01-01

    Sprag handle wrenches have been proposed for general applications in which conventional pawl-and-ratchet wrenches and sprag and cam "clickless" wrenches are now used. Sprag handle wrenches are so named because they would include components that would function both as parts of handles and as sprags (roller locking/unlocking components). In comparison with all of the aforementioned conventional wrenches, properly designed sprag handle wrenches could operate with much less backlash; in comparison with the conventional clickless wrenches, sprag handle wrenches could be stronger and less expensive (because the sprags would be larger and more easily controllable than are conventional sprags and cams).

  2. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  3. The national biennial RCRA hazardous waste report (based on 1997 data) : national analysis

    DOT National Transportation Integrated Search

    1999-09-01

    National Analysis presents a detailed look at waste-handling practices in the EPA Regions, States, and largest facilities nationally, including (1) the quantity of waste generated, managed, shipped and received, and imported and exported between Stat...

  4. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  5. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving forcemore » for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is

  6. Environmental management of industrial hazardous wastes in India.

    PubMed

    Dutta, Shantanu K; Upadhyay, V P; Sridharan, U

    2006-04-01

    Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper.

  7. Developing models for the prediction of hospital healthcare waste generation rate.

    PubMed

    Tesfahun, Esubalew; Kumie, Abera; Beyene, Abebe

    2016-01-01

    An increase in the number of health institutions, along with frequent use of disposable medical products, has contributed to the increase of healthcare waste generation rate. For proper handling of healthcare waste, it is crucial to predict the amount of waste generation beforehand. Predictive models can help to optimise healthcare waste management systems, set guidelines and evaluate the prevailing strategies for healthcare waste handling and disposal. However, there is no mathematical model developed for Ethiopian hospitals to predict healthcare waste generation rate. Therefore, the objective of this research was to develop models for the prediction of a healthcare waste generation rate. A longitudinal study design was used to generate long-term data on solid healthcare waste composition, generation rate and develop predictive models. The results revealed that the healthcare waste generation rate has a strong linear correlation with the number of inpatients (R(2) = 0.965), and a weak one with the number of outpatients (R(2) = 0.424). Statistical analysis was carried out to develop models for the prediction of the quantity of waste generated at each hospital (public, teaching and private). In these models, the number of inpatients and outpatients were revealed to be significant factors on the quantity of waste generated. The influence of the number of inpatients and outpatients treated varies at different hospitals. Therefore, different models were developed based on the types of hospitals. © The Author(s) 2015.

  8. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umari, A.M.J.; Geldon, A.; Patterson, G.

    1994-12-31

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumentedmore » with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain.« less

  9. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This reportmore » includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and

  10. Transportation and handling loads

    NASA Technical Reports Server (NTRS)

    Ostrem, F. E.

    1971-01-01

    Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).

  11. Engineering solutions of environmental problems in organic waste handling

    NASA Astrophysics Data System (ADS)

    Briukhanov, A. Y.; Vasilev, E. V.; Shalavina, E. V.; Kucheruk, O. N.

    2017-10-01

    This study shows the urgent need to consider modernization of agricultural production in terms of sustainable development, which takes into account environmental implications of intensive technologies in livestock farming. Some science-based approaches are offered to address related environmental challenges. High-end technologies of organic livestock waste processing were substantiated by the feasibility study and nutrient balance calculation. The technologies were assessed on the basis of best available techniques criteria, including measures such as specific capital and operational costs associated with nutrient conservation and their delivery to the plants.

  12. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  13. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  14. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  15. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  16. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment, structures, and soils during the partial and final closure periods. By removing any hazardous wastes or hazardous...

  17. RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex

  18. Household food waste separation behavior and the importance of convenience.

    PubMed

    Bernstad, Anna

    2014-07-01

    Two different strategies aiming at increasing household source-separation of food waste were assessed through a case-study in a Swedish residential area (a) use of written information, distributed as leaflets amongst households and (b) installation of equipment for source-segregation of waste with the aim of increasing convenience food waste sorting in kitchens. Weightings of separately collected food waste before and after distribution of written information suggest that this resulted in neither a significant increased amount of separately collected food waste, nor an increased source-separation ratio. After installation of sorting equipment in households, both the amount of separately collected food waste as well as the source-separation ratio increased vastly. Long-term monitoring shows that results where longstanding. Results emphasize the importance of convenience and existence of infrastructure necessary for source-segregation of waste as important factors for household waste recycling, but also highlight the need of addressing these aspects where waste is generated, i.e. already inside the household. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bottlenecks

    ERIC Educational Resources Information Center

    Grinstead, Robert R.

    1972-01-01

    Solid wastes that go at low cost into municipal landfills contain valuable raw materials which technology is not equipped to handle on a large scale. Identifying the key stumbling blocks may help divert the flow of wastes to useful purposes rather than into permanent burial sites. First of a two-part article. (BL)

  20. Managing the Navy’s Infectious Medical Waste

    DTIC Science & Technology

    1992-08-04

    pasteur pipetes, broken glass, scalpel blades) which have come into contact with infectious agents during use in patient care or in medical , research...concerned patients with a responsible method of disposal of their syringes. 4.8 Proposed Federal Legislation On June 22, 1992, American Medical News reported...disposal point for non- medically related wastes which required special handling. These wastes included such items as confiscated marijuana , sensitive

  1. Clinical solid waste management practices and its impact on human health and environment - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.

    2011-04-15

    Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non

  2. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant.

    PubMed

    Morf, Leo S; Tremp, Josef; Gloor, Rolf; Huber, Yvonne; Stengele, Markus; Zennegg, Markus

    2005-11-15

    Brominated flame retardants (BFRs) are synthetic additives mainly used in electrical and electronic appliances and in construction materials. The properties of some BFRs are typical for persistent organic pollutants, and certain BFRs, in particular some polybrominated diphenyl ether (PBDE) congeners and hexabromocyclododecane (HBCD), are suspected to cause adverse health effects. Global consumption of the most demanded BFRs, i.e., penta-, octa-, and decaBDE, tetrabromobisphenol A (TBBPA), and HBCD, has doubled in the 1990s. Only limited and rather uncertain data are available regarding the occurrence of BFRs in consumer goods and waste fractions as well as regarding emissions during use and disposal. The knowledge of anthropogenic substance flows and stocks is essential for early recognition of environmental impacts and effective chemicals management. In this paper, actual levels of penta-, octa-, and decaBDE, TBBPA, and HBCD in waste electrical and electronic equipment (WEEE) as a major carrier of BFRs are presented. These BFRs have been determined in products of a modern Swiss recycling plant applying gas chromatography/electron capture detection and gas chromatography/mass spectrometry analysis. A substance flow analysis (SFA) technique has been used to characterize the flows of target substances in the recycling process from the bulk WEEE input into the output products. Average concentrations in small size WEEE, representing the relevant electric and electronic appliances in WEEE, sampled in 2003 amounted to 34 mg/kg for pentaBDE, 530 mg/kg for octaBDE, 510 mg/kg for decaBDE, 1420 mg/kg for TBBPA (as an additive), 17 mg/kg for HBCD, 5500 mg/kg for bromine, and 1700 mg/kg for antimony. In comparison to data that have been calculated by SFA for Switzerland from literature for the 1990s, these measured concentrations in small size WEEE were 7 times higher for pentaBDE, unexpectedly about 50% lower for decaBDE, and agreed fairly well for TBBPA (as an additive) and

  3. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  4. A new virtual-reality training module for laparoscopic surgical skills and equipment handling: can multitasking be trained? A randomized controlled trial.

    PubMed

    Bongers, Pim J; Diederick van Hove, P; Stassen, Laurents P S; Dankelman, Jenny; Schreuder, Henk W R

    2015-01-01

    During laparoscopic surgery distractions often occur and multitasking between surgery and other tasks, such as technical equipment handling, is a necessary competence. In psychological research, reduction of adverse effects of distraction is demonstrated when specifically multitasking is trained. The aim of this study was to examine whether multitasking and more specifically task-switching can be trained in a virtual-reality (VR) laparoscopic skills simulator. After randomization, the control group trained separately with an insufflator simulation module and a laparoscopic skills exercise module on a VR simulator. In the intervention group, insufflator module and VR skills exercises were combined to develop a new integrated training in which multitasking was a required competence. At random moments, problems with the insufflator appeared and forced the trainee to multitask. During several repetitions of a different multitask VR skills exercise as posttest, performance parameters (laparoscopy time, insufflator time, and errors) were measured and compared between both the groups as well with a pretest exercise to establish the learning effect. A face-validity questionnaire was filled afterward. University Medical Centre Utrecht, The Netherlands. Medical and PhD students (n = 42) from University Medical Centre Utrecht, without previous experience in laparoscopic simulation, were randomly assigned to either intervention (n = 21) or control group (n = 21). All participants performed better in the posttest exercises without distraction of the insufflator compared with the exercises in which multitasking was necessary to solve the insufflator problems. After training, the intervention group was significantly quicker in solving the insufflator problems (mean = 1.60Log(s) vs 1.70Log(s), p = 0.02). No significant differences between both the groups were seen in laparoscopy time and errors. Multitasking has negative effects on the laparoscopic performance. This study suggests

  5. Looking south through east portion of Centralized Work Equipment (C.W.E.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south through east portion of Centralized Work Equipment (C.W.E.) Storage Shed (Bldg. 126). Note overhead monorails for material-handling hoists. This shed stored track maintenance materials - Atchison, Topeka, Santa Fe Railroad, Albuquerque Shops, C.W.E. Storage Shed, 908 Second Street, Southwest, Albuquerque, Bernalillo County, NM

  6. Using operational equipment to read accident dosemeters.

    PubMed

    Devine, R T; Vigil, M M; Martinez, W A

    2004-01-01

    Analysis of accident dosemeters usually involves the use of laboratory-based counting equipment. Gamma spectrometers are used for indium, copper and gold, and alpha-beta detectors for sulphur. This equipment is usually not easily transported due to the shielding required and the weight and delicacy of the counters. For intercomparison studies that require reading the dosemeters on site, a transportable system is required unless the site operating the study can count samples for all the participants. In the case of an actual accident these systems would have a difficulty in counting a large number of accident dosemeters. In an accident, personnel are usually subdivided according to their level of exposure. Those exposed to higher doses are treated immediately. An alternate system should be made available to handle the dosemeters worn by those personnel are likely to receive lower doses. Improvements in portable operational equipment for gamma and beta monitoring allow their use as spectrometers. Such a system was used for the SILENE intercomparison conducted at IRSN Valduc on 12 June and 19, 2002, and the preliminary results compared well with the other participants.

  7. Heat Recovery Incinerator-Equipment Selection and Plant Layout for Safety, Human Engineering and Maintainability.

    DTIC Science & Technology

    1984-10-01

    16 4.2 Solid Waste Receiving and Storage Area ........................ 17 4.3 Equipment Location and Spacing...10OROS (Ccr4n-ifl. **,0d. d - -eet -.d tdonfffy by bltk -P-+) HRI, RAM, Human factors, HRI design, IRI safety, solid waste , energy recovery 10 AOSTNACT...health and safety hazards to individuals hand-sorting the conglomerate of solid waste , the potential of dangerous substances and inflammable or ex

  8. Hazardous healthcare waste management in the Kingdom of Bahrain.

    PubMed

    Mohamed, L F; Ebrahim, S A; Al-Thukair, A A

    2009-08-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  9. Hazardous healthcare waste management in the Kingdom of Bahrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less

  10. Contaminated waste incinerator modification study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, F.

    1995-08-01

    An explosive waste incinerator (EWI) can be installed in the existing Badger AAP Contaminated Waste Processor (CWP). An engineering evaluation of installing a rotary kiln furnace to dispose of waste energetic material has shown the installation to be possible. An extensive literature search was completed to develop the known proven methods of energetic waste disposal. Current incineration practice including thermal treatment alternatives was investigated. Existing and new equipment was reviewed for adequacy. Current CWP operations and hazardous waste to be disposed of were determined. Comparisons were made with other AAP`s EWI.

  11. 78 FR 26110 - Kicking Cars and Going Between Rolling Equipment During Flat Switching Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Cars and Going Between Rolling Equipment During Flat Switching Operations AGENCY: Federal Railroad... occurred during a railroad switching operation that involved a railroad employee kicking cars and... make recommendations to railroads regarding the adoption of car-handling procedures during flat...

  12. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  13. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  14. The Best-of-2-Worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies.

    PubMed

    Wang, Feng; Huisman, Jaco; Meskers, Christina E M; Schluep, Mathias; Stevels, Ab; Hagelüken, Christian

    2012-11-01

    E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the 'Best-of-2-Worlds' philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of 'best' pre-processing in developing countries to manually dismantle e-waste and 'best' end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated

  15. Differences among nursing homes in outcomes of a safe resident handling program

    PubMed Central

    Kurotvski, Alicia; Gore, Rebecca; Buchholz, Bryan; Punnett, Laura

    2018-01-01

    A large nursing home corporation implemented a safe resident handling program (SRHP) in 2004–2007. We evaluated its efficacy over a 2-year period by examining differences among 5 centers in program outcomes and potential predictors of those differences. We observed nursing assistants (NAs), recording activities and body postures at 60-second intervals on personal digital assistants at baseline and at 3-month, 12-month, and 24-month follow-ups. The two outcomes computed were change in equipment use during resident handling and change in a physical workload index that estimated spinal loading due to body postures and handled loads. Potential explanatory factors were extracted from post-observation interviews, investigator surveys of the workforce, from administrative data, and employee satisfaction surveys. The facility with the most positive outcome measures was associated with many positive changes in explanatory factors and the facility with the fewest positive outcome measures experienced negative changes in the same factors. These findings suggest greater SRHP benefits where there was lower NA turnover and agency staffing; less time pressure; and better teamwork, staff communication, and supervisory support. PMID:22833329

  16. Implementation and adoption of mechanical patient lift equipment in the hospital setting: The importance of organizational and cultural factors.

    PubMed

    Schoenfisch, Ashley L; Myers, Douglas J; Pompeii, Lisa A; Lipscomb, Hester J

    2011-12-01

    Work focused on understanding implementation and adoption of interventions designed to prevent patient-handling injuries in the hospital setting is lacking in the injury literature and may be more insightful than more traditional evaluation measures. Data from focus groups with health care workers were used to describe barriers and promoters of the adoption of patient lift equipment and a shift to a "minimal-manual lift environment" at two affiliated hospitals. Several factors influencing the adoption of the lift equipment and patient-handling policy were noted: time, knowledge/ability, staffing, patient characteristics, and organizational and cultural aspects of work. The adoption process was complex, and considerable variability by hospital and across units was observed. The use of qualitative data can enhance the understanding of factors that influence implementation and adoption of interventions designed to prevent patient-handling injuries among health care workers. Copyright © 2011 Wiley Periodicals, Inc.

  17. Process technology and effects of spallation products: Circuit components, maintenance, and handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigg, B.; Haines, S.J.; Dressler, R.

    1996-06-01

    Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handlingmore » needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.« less

  18. Radioactive wastes in biological research institutions (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchmann, R.

    1973-01-01

    The different radioelements used in the Belgian Biological Research Laboratories and the activities used are indicated. The types of utilization of / sup 3/H, /sup 14/C, /sup 32/P, /sup 125/I, /sup 131/I, /sup 85/Sr, and /sup 226/ Ra are given. The handling procedures for contaminated wastes of these radionuclides are described. The release of radioactive waste by all the laboratories which were investigated is estimated. (auth)

  19. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  20. Optical system for UV-laser technological equipment

    NASA Astrophysics Data System (ADS)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  1. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Gorpani

    2000-06-23

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks aremore » prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on themore » various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.« less

  3. Options and processes for spent catalyst handling and utilization.

    PubMed

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  4. Can Small Countries Benefit from the E-waste Global Value Chain?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meine Pieter, Dijk van, E-mail: mpvandijk@iss.nl

    E-waste is a term used to cover items of all types of electrical and electronic equipment and its parts that have been discarded by the owners as waste without the intention of re-use, because this equipment has ceased to be of any value to its owners. E-waste is one of the fastestgrowing waste streams globally. Since the Rio Summit Earth summit organized by the United Nations in 1992, the concept of sustainability extends to rendering basic services such as Solid Waste Management and dealing with e-waste. People are afraid of e-waste because of its possible negative effects on health andmore » because it could pollute the environment. Indicators of unsustainable service provision concerninge-waste include irregular collection, open dumping, burning of solid and e-waste in open spaces. Often collection covers a small part of the country, cost recovery is limited or not existent, and one notes poor utilization of available resources with no or very limited reuse and recycling.« less

  5. Evaluation of knowledge, practices, and possible barriers among healthcare providers regarding medical waste management in Dhaka, Bangladesh.

    PubMed

    Sarker, Mohammad Abul Bashar; Harun-Or-Rashid, Md; Hirosawa, Tomoya; Abdul Hai, Md Shaheen Bin; Siddique, Md Ruhul Furkan; Sakamoto, Junichi; Hamajima, Nobuyuki

    2014-12-09

    Improper handling of medical wastes, which is common in Bangladesh, could adversely affect the hospital environment and community at large, and poses a serious threat to public health. We aimed to assess the knowledge and practices regarding medical waste management (MWM) among healthcare providers (HCPs) and to identify possible barriers related to it. A cross-sectional study was carried out during June to September, 2012 including 1 tertiary, 3 secondary, and 3 primary level hospitals in Dhaka division, Bangladesh through 2-stage cluster sampling. Data were collected from 625 HCPs, including 245 medical doctors, 220 nurses, 44 technologists, and 116 cleaning staff who were directly involved in MWM using a self-administered (researcher-administered for cleaning staff), semi-structured questionnaire. Nearly one-third of medical doctors and nurses and two-thirds of technologists and cleaning staff had inadequate knowledge, and about half of medical doctors (44.0%) and cleaning staff (56.0%) had poor practices. HCPs without prior training on MWM were more likely to have poor practices compared to those who had training. Lack of personal protective equipment, equipment for final disposal, MWM-related staff, proper policy/guideline, and lack of incinerator were identified as the top 5 barriers. Strengthening and expansion of ongoing educational programs/training is necessary to improve knowledge and practices regarding MWM. The government should take necessary steps and provide financial support to eliminate the possible barriers related to proper MWM.

  6. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE).

    PubMed

    Savi, Daniel; Kasser, Ueli; Ott, Thomas

    2013-12-01

    The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yapuncich, F.; Ross, A.; Clark, R.H.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less

  8. Handling and restraint.

    PubMed

    Donovan, John; Brown, Patricia

    2006-07-01

    For the safety of the handler and the animal, proper methods for handling and restraining laboratory animals should be followed. Improper handling can result in increased stress and injury to the animal. In addition, the handler risks injury from bite wounds or scratches inflicted when the animal becomes fearful or anxious. By using sure, direct movements with a determined attitude, the animal can be easily handled and restrained. Animals can be restrained either manually or in a plastic restrainer. The protocols in this unit describe handling and manual restraint of mice, rats, hamsters, and rabbits. Alternate protocols describe restraint using the plastic restrainer.

  9. Handling and restraint.

    PubMed

    Donovan, John; Brown, Patricia

    2004-09-01

    For the safety of the handler and the animal, proper methods for handling and restraining laboratory animals should be followed. Improper handling can result in increased stress and injury to the animal. In addition, the handler risks injury from bite wounds or scratches inflicted when the animal becomes fearful or anxious. By using sure, direct movements with a determined attitude, the animal can be easily handled and restrained. Animals can be restrained either manually or in a plastic restrainer. The protocols in this unit describe handling and manual restraint of mice, rats, hamsters, and rabbits. Alternate protocols describe restraint using the plastic restrainer.

  10. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0218] Comparative Environmental Evaluation of Alternatives... public comment the Draft Comparative Environmental Evaluation of Alternatives for Handling Low-Level.... Availability of Documents ADAMS Accession No. Document title ML12256A965 Draft Comparative Environmental...

  11. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe

    PubMed Central

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders. PMID:27418935

  12. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe.

    PubMed

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders.

  13. SOLVENT WASTE REDUCTION ALTERNATIVES

    EPA Science Inventory

    This publication contains edited versions of presentations on this subject made at five Technology Transfer seminars in 1988. Chapters are included on land disposal regulations and requirements; waste solvent disposal alternatives from various industries such as process equipment...

  14. The University of Georgia Chemical Waste Disposal Program.

    ERIC Educational Resources Information Center

    Dreesen, David W.; Pohlman, Thomas J.

    1980-01-01

    Describes a university-wide program directed at reducing the improper storage and disposal of toxic chemical wastes from laboratories. Specific information is included on the implementation of a waste pick-up service, safety equipment, materials and methods for packaging, and costs of the program. (CS)

  15. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  16. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  17. Economic evaluation of radiation processing in urban solid wastes treatment

    NASA Astrophysics Data System (ADS)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  18. Texas passes first law for safe patient handling in America: landmark legislation protects health-care workers and patients from injury related to manual patient lifting.

    PubMed

    Hudson, Mary Anne

    2005-01-01

    On June 17,2005, Texas Governor Rick Perry (R) signed into law Senate Bill 1525, making Texas the first state in the nation to require hospitals and nursing homes to implement safe patient handling and movement programs. Governor Perry is to be commended for this heroic first stand for safe patient handling in America. The landmark legislation will take effect January 1, 2006, requiring the establishment of policy to identify, assess, and develop methods of controlling the risk of injury to patients and nurses associated with lifting, transferring, repositioning, and movement of patients; evaluation of alternative methods from manual lifting to reduce the risk of injury from patient lifting, including equipment and patient care environment; restricting, to the extent feasible with existing equipment, manual handling of all or most of a patient's weight to emergency, life-threatening, or exceptional circumstances; and provision for refusal to perform patient handling tasks believed to involve unacceptable risks of injury to a patient or nurse. Manually lifting patients has been called deplorable, inefficient, dangerous to nurses, and painful and brutal to patients; manual lifting can cause needless suffering and injury to patients, with dangers including pain, bruising, skin tears, abrasions, tube dislodgement, dislocations, fractures, and being dropped by nursing staff during attempts to manually lift. Use of safe, secure, mechanical lift equipment and gentle friction-reducing devices for patient maneuvering tasks could eliminate such needless brutality. Research has proven that manual patient lifting is extremely hazardous to health-care workers, creating substantial risk of low-back injury, whether with one or two patient handlers. Studies on the use of mechanical patient lift equipment, by either nursing staff or lift teams, have proven repeatedly that most nursing staff back injury is preventable, leading to substantial savings to employers on medical and

  19. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    NASA Astrophysics Data System (ADS)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  20. Crushing leads to waste disposal savings for FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.

    1997-02-01

    In this article the author discusses the application of a rock crusher as a means of implementing cost savings in the remediation of FUSRAP sites. Transportation and offsite disposal costs are at present the biggest cost items in the remediation of FUSRAP sites. If these debris disposal problems can be handled in different manners, then remediation savings are available. Crushing can result in the ability to handle some wastes as soil disposal problems, which have different disposal regulations, thereby permitting cost savings.

  1. Efforts to Handle Waste through Science, Environment, Technology and Society (SETS)

    NASA Astrophysics Data System (ADS)

    Rahmawati, D.; Rahman, T.; Amprasto, A.

    2017-09-01

    This research to identify the attempt to deal with the waste through a learning SETS to facilitate troubleshooting and environmentally conscious high school students. The research method is weak experiment, with the design of the study “The One-group pretest-Posttest Design”. The population used in this study is an entire senior high school class in Ciamis Regency of Indonesia many as 10 classes totaling 360 students. The sample used in this study were 1 class. Data collected through pretest and posttest to increase problem-solving skills and environmental awareness of students. Instruments used in this research is to test the ability to solve the problem on the concept of Pollution and Environmental Protection, in the form of essays by 15 matter, the attitude scale questionnaire of 28 statements. The analysis N-gain average showed that the SETS problem-solving skills and environmental awareness of students in the medium category. In addition, students’ creativity in finding out pretty good waste management by creating products that are aesthetically valuable and economic appropriately.

  2. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  3. Overview regarding construction and demolition waste in Spain.

    PubMed

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The construction sector comprises a number of activities that may result in environmental impacts of considerable magnitude, waste generation being one of the major negative effects of this industry due to the large streams generated. Proper knowledge of the environmental problem caused by the sector is of great importance in order to achieve an effective waste management. Thus, this paper analyse the Spanish situation regarding construction and demolition waste (CDW) compared with other European Union countries; which sets out the current figures of the CDW scenario (legislation, generation, composition, treatment and market) as well as the difficulties encountered when handling this residue.

  4. Impact of shuttle environment on prelaunch handling of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Green, R. S.

    1986-01-01

    Deployment of the American Satellite Company 1 spacecraft for the Space Shuttle Discovery in August 1985 set a new milestone in nickel-hydrogen battery technology. This communications satellite is equipped with two 35 Ah nickel-hydrogen batteries and it is the first such satellite launched into orbit via the Space Shuttle. The prelaunch activities, combined with the environmental constraints onboard the Shuttle, led to the development of a new battery handling procedure. An outline of the prelaunch activities, with particular attention to battery charging, is presented.

  5. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.; Bhatt, R.N.

    2003-01-14

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  6. A compost bin for handling privy wastes: its fabrication and use

    Treesearch

    R.E. Leonard; S.C. Fay

    1978-01-01

    A 24-ft3 (6.8-m3) fiberglass bin was constructed and tested for its effectiveness in composting privy wastes. A mixture of ground hardwood bark and raw sewage was used for composting. Temperatures in excess of 60°C for 36 hours were produced in the bin by aerobic, thermophilic composting. This temperature is...

  7. Mystery of the Cast Off Caper: 4-H Solid Waste Curriculum Guide.

    ERIC Educational Resources Information Center

    North Carolina Cooperative Extension Service, Raleigh.

    This curriculum guide is composed of 16 lesson plans about terminology and concepts relevant to the four major methods of handling solid waste problems: (1) reuse; (2) recycling; (3) conversion of waste to energy ; and (4) landfilling. Games, investigations, a play, projects, a slide presentation, and skits are some of the teaching techniques…

  8. Microphone Handling Noise: Measurements of Perceptual Threshold and Effects on Audio Quality

    PubMed Central

    Kendrick, Paul; Jackson, Iain R.; Fazenda, Bruno M.; Cox, Trevor J.; Li, Francis F.

    2015-01-01

    A psychoacoustic experiment was carried out to test the effects of microphone handling noise on perceived audio quality. Handling noise is a problem affecting both amateurs using their smartphones and cameras, as well as professionals using separate microphones and digital recorders. The noises used for the tests were measured from a variety of devices, including smartphones, laptops and handheld microphones. The signal features that characterise these noises are analysed and presented. The sounds include various types of transient, impact noises created by tapping or knocking devices, as well as more sustained sounds caused by rubbing. During the perceptual tests, listeners auditioned speech podcasts and were asked to rate the degradation of any unwanted sounds they heard. A representative design test methodology was developed that tried to encourage everyday rather than analytical listening. Signal-to-noise ratio (SNR) of the handling noise events was shown to be the best predictor of quality degradation. Other factors such as noise type or background noise in the listening environment did not significantly affect quality ratings. Podcast, microphone type and reproduction equipment were found to be significant but only to a small extent. A model allowing the prediction of degradation from the SNR is presented. The SNR threshold at which 50% of subjects noticed handling noise was found to be 4.2 ± 0.6 dBA. The results from this work are important for the understanding of our perception of impact sound and resonant noises in recordings, and will inform the future development of an automated predictor of quality for handling noise. PMID:26473498

  9. Mass balance and life cycle assessment of the waste electrical and electronic equipment management system implemented in Lombardia Region (Italy).

    PubMed

    Biganzoli, L; Falbo, A; Forte, F; Grosso, M; Rigamonti, L

    2015-08-15

    Waste electrical and electronic equipment (WEEE) is one of the fastest growing waste streams in Europe, whose content of hazardous substances as well as of valuable materials makes the study of the different management options particularly interesting. The present study investigates the WEEE management system in Lombardia Region (Italy) in the year 2011 by applying the life cycle assessment (LCA) methodology. An extensive collection of primary data was carried out to describe the main outputs and the energy consumptions of the treatment plants. Afterwards, the benefits and burdens associated with the treatment and recovery of each of the five categories in which WEEE is classified according to the Italian legislation (heaters and refrigerators - R1, large household appliances - R2, TV and monitors - R3, small household appliances - R4 and lighting equipment - R5) were evaluated. The mass balance of the treatment and recovery system of each of the five WEEE categories showed that steel and glass are the predominant streams of materials arising from the treatment; a non-negligible amount of plastic is also recovered, together with small amounts of precious metals. The LCA of the regional WEEE management system showed that the benefits associated with materials and energy recovery balance the burdens of the treatment processes, with the sole exception of two impact categories (human toxicity-cancer effects and freshwater ecotoxicity). The WEEE categories whose treatment and recovery resulted more beneficial for the environment and the human health are R3 and R5. The contribution analysis showed that overall the main benefits are associated with the recovery of metals, as well as of plastic and glass. Some suggestions for improving the performance of the system are given, as well as an indication for a more-in-depth analysis for the toxicity categories and a proposal for a new characterisation method for WEEE. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  11. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrificationmore » campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).« less

  12. 40 CFR 267.34 - When must personnel have access to communication equipment or an alarm system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to an internal alarm or emergency communication device, either directly or through visual or voice... communication equipment or an alarm system? 267.34 Section 267.34 Protection of Environment ENVIRONMENTAL... have access to communication equipment or an alarm system? (a) Whenever hazardous waste is being poured...

  13. Differences among nursing homes in outcomes of a safe resident handling program.

    PubMed

    Kurowski, Alicia; Gore, Rebecca; Buchholz, Bryan; Punnett, Laura

    2012-01-01

    A large nursing home corporation implemented a safe resident handling program (SRHP) in 2004-2007. We evaluated its efficacy over a 2-year period by examining differences among 5 centers in program outcomes and potential predictors of those differences. We observed nursing assistants (NAs), recording activities and body postures at 60-second intervals on personal digital assistants at baseline and at 3-month, 12-month, and 24-month follow-ups. The two outcomes computed were change in equipment use during resident handling and change in a physical workload index that estimated spinal loading due to body postures and handled loads. Potential explanatory factors were extracted from post-observation interviews, investigator surveys of the workforce, from administrative data, and employee satisfaction surveys. The facility with the most positive outcome measures was associated with many positive changes in explanatory factors and the facility with the fewest positive outcome measures experienced negative changes in the same factors. These findings suggest greater SRHP benefits where there was lower NA turnover and agency staffing; less time pressure; and better teamwork, staff communication, and supervisory support. © 2012 American Society for Healthcare Risk Management of the American Hospital Association.

  14. Equipment failures and their contribution to industrial incidents and accidents in the manufacturing industry.

    PubMed

    Bourassa, Dominic; Gauthier, François; Abdul-Nour, Georges

    2016-01-01

    Accidental events in manufacturing industries can be caused by many factors, including work methods, lack of training, equipment design, maintenance and reliability. This study is aimed at determining the contribution of failures of commonly used industrial equipment, such as machines, tools and material handling equipment, to the chain of causality of industrial accidents and incidents. Based on a case study which aimed at the analysis of an existing pulp and paper company's accident database, this paper examines the number, type and gravity of the failures involved in these events and their causes. Results from this study show that equipment failures had a major effect on the number and severity of accidents accounted for in the database: 272 out of 773 accidental events were related to equipment failure, where 13 of them had direct human consequences. Failures that contributed directly or indirectly to these events are analyzed.

  15. Biomedical Waste Management : An Infrastructural Survey of Hospitals.

    PubMed

    Rao, Skm; Ranyal, R K; Bhatia, S S; Sharma, V R

    2004-10-01

    The Ministry of Environment & Forests notified the Biomedical Waste (management & handling) Rules, 1998" (BMW Mgt) in July 1998. In accordance with the rules, every hospital generating BMW needs to set up requisite BMW treatment facilities on site or ensure requisite treatment of waste at common treatment facility. No untreated BMW shall be kept stored beyond a period of 48 hours. The cost of construction, operation and maintenance of system for managing BMW represents a significant part of overall budget of a hospital if the BMW rules have to be implemented in their true spirit. Two types of costs are required to be incurred by hospitals for BMW Mgt, internal and external. Internal cost is the cost for segregation, mutilation, disinfection, internal storage and transportation including hidden cost of protective equipment. External costs are off site transportation, treatment and final disposal. A study of hospitals was carried out from various sectors like Govt, Private, Charitable institutions etc. to assess the infrastructural requirement for BMW Mgt. Cost was worked out for a hospital where all the infrastructure as per each and every requirement of BMW rules had been implemented and then it was compared with other hospitals where hospitals have made compromises on each stage of BMW Mgt. Capital cost incurred by benchmarked hospital of 1047 beds was Rs.3 lakh 59 thousand excluding cost of incinerator and hospital is incurring Rs. 656/- per day as recurring expenditure. Pune city has common regional facility for BMW final disposal. Facility is charging Rs.20 per kg of infectious waste. As on Dec 2001 there were 400 institutions including nursing homes, labs and blood banks which were registered. After analyzing the results of study it was felt that there is an urgent need to standardize the infrastructural requirement so that hospitals following BMW rules strictly do not suffer additional costs.

  16. Global responses for recycling waste CRTs in e-waste.

    PubMed

    Singh, Narendra; Li, Jinhui; Zeng, Xianlai

    2016-11-01

    The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Taking the Heat: Handling the Shuttle's RCC Wing Panels

    NASA Technical Reports Server (NTRS)

    Stegles, Katrine S.

    2008-01-01

    Innovative inspection technology was developed to inspect the Reinforced Carbon-Carbon (RCC) wing panels on the vehicle, thus eliminating need to remove/reinstall all 44 RCC panels for inspections per processing flow. Manually holding inspection tools up to the RCC panels was a 3-person job with high risk of personnel injury and flight hardware damage. To further enhance ergonomics, reduce personnel/flight hardware risks, and improve repeatability, an inspection cart and fixture were constructed to physically secure the instruments for Inspectors during 652 inspection points per flow. The electric lift used to handle RCCs was also utilized to raise the heavy, bulky inspection equipment up to the wing leading edge.

  18. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  19. POLLUTION BALANCE METHOD AND THE DEMONSTRATION OF ITS APPLICATION TO MINIMIZING WASTE IN A BIOCHEMICAL PROCESS

    EPA Science Inventory

    In this study, we introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appro...

  20. Intelligent Processing Equipment Projects at DLA

    NASA Technical Reports Server (NTRS)

    Obrien, Donald F.

    1992-01-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  1. Intelligent processing equipment projects at DLA

    NASA Astrophysics Data System (ADS)

    Obrien, Donald F.

    1992-04-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  2. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, V.

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less

  3. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION FOR A MANUFACTURER OF COMPRESSED AIR EQUIPMENT COMPONENTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...

  4. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  5. A bio-hybrid anaerobic treatment of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Chou, C.Y.

    1987-01-01

    Hybrid anaerobic treatment of papaya processing wastes is technically feasible. At 30/sup 0/C, the optimal organic loading rates for maximizing organic removal efficiency and methane production are 1.3 and 4.8 g TCOD/1/day, respectively. Elimination of post-handling and treatment of digested effluent can also be achieved. The system is more suitable for those processing plants with a waste amount of more than 3,000 metric tons per year.

  6. Rotary Kiln Gasification of Solid Waste for Base Camps

    DTIC Science & Technology

    2017-10-02

    cup after full day run 3.3 Feedstock Handling System Garbage bags containing waste feedstock are placed into feed bin FB-101. Ram feeder RF-102...Environmental Science and Technology using the Factory Talk SCADA software running on a laptop computer. A wireless Ethernet router that is located within the...pyrolysis oil produced required consistent draining from the system during operation and became a liquid waste disposal problem. A 5-hour test run could

  7. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.

    PubMed

    Taurino, R; Cannio, M; Mafredini, T; Pozzi, P

    2014-01-01

    In this study, X-ray fluorescence (XRF) spectroscopy was used, in combination with micro-Raman spectroscopy, for a fast determination of bromine concentration and then of brominated flame retardants (BFRs) compounds in waste electrical and electronic equipments. Different samples from different recycling industries were characterized to evaluate the sorting performances of treatment companies. This investigation must be considered of prime research interest since the impact of BFRs on the environment and their potential risk on human health is an actual concern. Indeed, the new European Restriction of Hazardous Substances Directive (RoHS 2011/65/EU) demands that plastics with BFRs concentration above 0.1%, being potential health hazards, are identified and eliminated from the recycling process. Our results show the capability and the potential of Raman spectroscopy, together with XRF analysis, as effective tools for the rapid detection of BFRs in plastic materials. In particular, the use of these two techniques in combination can be considered as a promising method suitable for quality control applications in the recycling industry.

  8. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CAN-MANUFACTURING EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at ...

  9. Sustainable Materials Management (SMM) WasteWise Data

    EPA Pesticide Factsheets

    EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources

  10. Reprogramming the articulated robotic arm for glass handling by using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Razali, Zol Bahri; Kader, Mohamed Mydin M. Abdul; Kadir, Mohd Asmadi Akmal; Daud, Mohd Hisam

    2017-09-01

    The application of articulated robotic arm in industries is raised due to the expansion of using robot to replace human task, especially for the harmful tasks. However a few problems happen with the program use to schedule the arm, Thus the purpose of this project is to design, fabricate and integrate an articulated robotic arm by using Arduino microcontroller for handling glass sorting system. This project was designed to segregate glass and non-glass waste which would be pioneer step for recycling. This robotic arm has four servo motors to operate as a whole; three for the body and one for holding mechanism. This intelligent system is controlled by Arduino microcontroller and build with optical sensor to provide the distinguish objects that will be handled. Solidworks model was used to produce the detail design of the robotic arm and make the mechanical properties analysis by using a CAD software.

  11. [Hospital and environment: waste disposal].

    PubMed

    Faure, P; Rizzo Padoin, N

    2003-11-01

    Like all production units, hospitals produce waste and are responsible for waste disposal. Hospital waste is particular due to the environmental risks involved, particularly concerning infection, effluents, and radionucleide contamination. Management plans are required to meet environmental, hygiene and regulatory obligations and to define reference waste products. The first step is to optimize waste sorting, with proper definition of the different categories, adequate containers (collection stations, color-coded sacks), waste circuits, intermediate then central storage areas, and finally transfer to an incineration unit. Volume and delay to elimination must be carefully controlled. Elimination of drugs and related products is a second aspect: packaging, perfusion pouches, tubing, radiopharmaceutic agents. These later products are managed with non-sealed sources whose elimination depends on the radioactive period, requiring selective sorting and specific holding areas while radioactivity declines. Elimination of urine and excreta containing anti-cancer drugs or intravesical drugs, particularly coming from protected rooms using radioactive iodine is another aspect. There is also a marginal flow of unused or expired drugs. For a health establishment, elimination of drugs is not included as part of waste disposal. This requires establishing a specific circuit with selective sorting and carefully applied safety regulations. Market orders for collecting and handling hospital wastes must be implemented in compliance with the rules of Public Health Tenders.

  12. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  13. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  14. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  15. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market

    PubMed Central

    Puype, Franky; Samsonek, Jiří; Knoop, Jan; Egelkraut-Holtus, Marion; Ortlieb, Markus

    2015-01-01

    In order to confirm the possibility that recycled fractions from the waste electrical and electronic equipment (WEEE) stream were illegally entering the European market in black polymeric food-contact articles (FCAs), bromine quantification, brominated flame retardant (BFR) identification combined with WEEE-relevant elemental analysis and polymer impurity analysis were performed. From the 10 selected FCAs, seven samples contained a bromine level ranging from 57 to 5975 mg kg− 1, which is lower than expected to achieve flame retardancy. The BFRs that were present were tetrabromobisphenol A (TBBPA), decabromodiphenylether (decaBDE), decabromodiphenylethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Typical elements used in electronic equipment and present in WEEE were detected either at trace level or at elevated concentrations. In all cases when bromine was detected at higher concentrations, concurrently antimony was also detected, which confirms the synergetic use of antimony in combination with BFRs. This study describes also the measurement of rare earth elements where combinations of cerium, dysprosium, lanthanum, neodymium, praseodymium and yttrium were detected in four of the seven BFR-positive samples. Additionally, polymer purity was investigated where in all cases foreign polymer fractions were detected. Despite the fact that this study was carried out on a very small amount of samples, there is a significant likelihood that WEEE has been used for the production of FCAs. PMID:25599136

  16. Command and data handling for Atmosphere Explorer satellite

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.

    1974-01-01

    The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.

  17. Equipment selection for recovering fiber from stripper harvested gin waste

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown the quantity of recoverable fibers with the potential to be marketed as motes approaches 10 to 25 percent of gin trash by weight. As a result of these findings and practical experience from a commercial cotton gin, questions arose as to the best equipment setup needed to ...

  18. 75 FR 82005 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... hazardous waste or hazardous constituents to air, soil, or surface water. This information is also needed to... environment from hazardous waste accumulation practices, including contamination from equipment leaks and...

  19. THE ETV P2 INNOVATIVE COATINGS AND COATING EQUIPMENT PROGRAM--AN UPDATE

    EPA Science Inventory

    The paper focuses on the Pollution Prevention (P2), Recycling, and Waste Treatment Systems Center of the EPA's Environmental Technology Verification (ETV) Program and, specifically, the P2 Innovating Coatings and Coating Equipment Program (CCEP) housed within the Center. The focu...

  20. How Schools Can Plug the Energy Drain

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    Schools could conserve energy by following recommendations by Educational Facilities Laboratories: (1) review operations and maintenance personnel qualifications to handle mechanical-electrical equipment, (2) analyze energy consumption to identify waste sources in schools, (3) incorporate energy conservation into all architectural programs for…