Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.
Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P
2014-06-01
In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
Inaba, Rokuta; Nansai, Keisuke; Fujii, Minoru; Hashimoto, Seiji
2010-06-01
In this study, we conducted a hybrid life-cycle assessment (LCA) to evaluate reductions in CO(2) emissions by food waste biogasification of household food wastes in Japan. Two alternative scenarios were examined. In one alternative (Ref), all combustible municipal solid wastes (MSWs), including food waste, are incinerated. In the other (Bio), food waste is biogasified, while the other combustible wastes are incinerated. An inventory analysis of energy and material flow in the MSW management system was conducted. Subsequently, the inventory data were summarized into an input-output format, and a make-use input-output framework was applied. Furthermore, a production equilibrium model was established using a matrix representing the input- output relationship of energy and materials among the processes and sectors. Several levels of power generation efficiency from incineration were applied as a sensitivity analysis. The hybrid LCA indicated that the difference between the Bio and Ref scenarios, from the perspective of CO( 2) emissions, is relatively small. However, a 13-14% reduction of CO(2) emissions of the total waste management sector in Japan may be achieved by improving the efficiency of power generation from incineration from 10% to 25%.
Solid wastes integrated management in Rio de Janeiro: input-output analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimenteira, C.A.P.; Carpio, L.G.T.; Rosa, L.P.
2005-07-01
This paper analyzes the socioeconomic aspects of solid waste management in Rio de Janeiro. An 'input-output' methodology was used to examine how the secondary product resulting from recycling is re-introduced into the productive process. A comparative profile was developed from the state of recycling and the various other aspects of solid waste management, both from the perspective of its economic feasibility and from the social aspects involved. This was done analyzing the greenhouse gas emissions and the decreased energy consumption. The effects of re-introducing recycled raw materials into the matrix and the ensuing reduction of the demand for virgin rawmore » materials was based on the input-output matrix for the State of Rio de Janeiro. This paper also analyzes the energy savings obtained from recycling and measures the avoided emissions of greenhouse gases.« less
Kang, Hai-Yong; Schoenung, Julie M
2006-03-01
The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liang, Sai; Zhang, Tianzhu
2012-01-01
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.
The UK waste input-output table: Linking waste generation to the UK economy.
Salemdeeb, Ramy; Al-Tabbaa, Abir; Reynolds, Christian
2016-10-01
In order to achieve a circular economy, there must be a greater understanding of the links between economic activity and waste generation. This study introduces the first version of the UK waste input-output table that could be used to quantify both direct and indirect waste arisings across the supply chain. The proposed waste input-output table features 21 industrial sectors and 34 waste types and is for the 2010 time-period. Using the waste input-output table, the study results quantitatively confirm that sectors with a long supply chain (i.e. manufacturing and services sectors) have higher indirect waste generation rates compared with industrial primary sectors (e.g. mining and quarrying) and sectors with a shorter supply chain (e.g. construction). Results also reveal that the construction, mining and quarrying sectors have the highest waste generation rates, 742 and 694 tonne per £1m of final demand, respectively. Owing to the aggregated format of the first version of the waste input-output, the model does not address the relationship between waste generation and recycling activities. Therefore, an updated version of the waste input-output table is expected be developed considering this issue. Consequently, the expanded model would lead to a better understanding of waste and resource flows in the supply chain. © The Author(s) 2016.
Economy-wide material input/output and dematerialization analysis of Jilin Province (China).
Li, MingSheng; Zhang, HuiMin; Li, Zhi; Tong, LianJun
2010-06-01
In this paper, both direct material input (DMI) and domestic processed output (DPO) of Jilin Province in 1990-2006 were calculated and then based on these two indexes, a dematerialization model was established. The main results are summarized as follows: (1) both direct material input and domestic processed output increase at a steady rate during 1990-2006, with average annual growth rates of 4.19% and 2.77%, respectively. (2) The average contribution rate of material input to economic growth is 44%, indicating that the economic growth is visibly extensive. (3) During the studied period, accumulative quantity of material input dematerialization is 11,543 x 10(4) t and quantity of waste dematerialization is 5,987 x10(4) t. Moreover, dematerialization gaps are positive, suggesting that the potential of dematerialization has been well fulfilled. (4) In most years of the analyzed period, especially 2003-2006, the economic system of Jilin Province represents an unsustainable state. The accelerated economic growth relies mostly on excessive resources consumption after the Revitalization Strategy of Northeast China was launched.
NASA Technical Reports Server (NTRS)
Spurlock, J. M.
1975-01-01
Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.
Material flows generated by pyromet copper smelting
Goonan, T.G.
2005-01-01
Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.
Allesch, Astrid; Brunner, Paul H
2017-01-03
This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.
Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya
2013-05-07
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S
2015-12-01
This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The input and output management of solid waste using DEA models: A case study at Jengka, Pahang
NASA Astrophysics Data System (ADS)
Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah
2017-08-01
Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka
2016-01-01
In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.
Waste minimisation in a hard chromiun plating Small Medium Enterprise (SME).
Viguri, J R; Andrés, A; Irabien, A
2002-01-01
The high potential of waste stream minimisation in the metal finishing sector justifies specific studies of Small and Medium Enterprises (SME). In this work, the minimisation options of the wastes generated in a hard chromium plating activity have been analysed. The study has been performed in a small job shop company, which works in batch mode with big pieces. A process flowsheet after connecting the unit operations and determining the process inputs (raw and secondary materials) and outputs (waste streams) has been carried out. The main properties, quantity and current management of the waste streams have been shown. The obvious lack of information has been identified and finally the waste minimisation options that could be adopted by the company have been recorded.
Generic waste management requirements for a controlled ecological life support system /CELSS/
NASA Technical Reports Server (NTRS)
Hoshizaki, T.; Hansen, B. D., III
1981-01-01
Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.
Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H
2008-02-01
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.
NASA Astrophysics Data System (ADS)
Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.
2018-02-01
This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.
Systems and methods for predicting materials properties
Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano
2007-11-06
Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.
A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis.
Hawkins, Troy; Hendrickson, Chris; Higgins, Cortney; Matthews, H Scott; Suh, Sangwon
2007-02-01
Materials flow analysis models have traditionally been used to track the production, use, and consumption of materials. Economic input-output modeling has been used for environmental systems analysis, with a primary benefit being the capability to estimate direct and indirect economic and environmental impacts across the entire supply chain of production in an economy. We combine these two types of models to create a mixed-unit input-output model that is able to bettertrack economic transactions and material flows throughout the economy associated with changes in production. A 13 by 13 economic input-output direct requirements matrix developed by the U.S. Bureau of Economic Analysis is augmented with material flow data derived from those published by the U.S. Geological Survey in the formulation of illustrative mixed-unit input-output models for lead and cadmium. The resulting model provides the capabilities of both material flow and input-output models, with detailed material tracking through entire supply chains in response to any monetary or material demand. Examples of these models are provided along with a discussion of uncertainty and extensions to these models.
Direct and indirect generation of waste in the Spanish paper industry.
Ruiz Peñalver, Soraya María; Rodríguez Molina, Mercedes; Camacho Ballesta, José Antonio
2014-01-01
The paper industry has a relatively high degree of reliance on suppliers when compared to other industries. Exploring the role of the paper industry in terms of consumption of intermediate inputs from other industries may help to understand how the production of paper does not only generate waste by itself but also affects the amount of waste generated by other industries. The product Life Cycle Assessment (LCA) is a useful analytical tool to examine and assess environmental impacts over the entire life cycle of a product "from cradle to grave" but it is costly and time intensive. In contrast, Economic Input Output Life Cycle Assessment Models (IO-LCA) that combine LCA with Input-Output analysis (IO) are more accurate and less expensive, as they employ publicly available data. This paper represents one of the first Spanish studies aimed at estimating the waste generated in the production of paper by applying IO-LCA. One of the major benefits is the derivation of the contribution of direct and indirect suppliers to the paper industry. The results obtained show that there was no direct relationship between the impact on output and the impact on waste generation exerted by the paper industry. The major contributors to waste generation were the mining industry and the forestry industry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sustainable solutions for solid waste management in Southeast Asian countries.
Ngoc, Uyen Nguyen; Schnitzer, Hans
2009-06-01
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.
Kucukvar, Murat; Egilmez, Gokhan; Tatari, Omer
2014-06-01
Waste management in construction is critical for the sustainable treatment of building-related construction and demolition (C&D) waste materials, and recycling of these wastes has been considered as one of the best strategies in minimization of C&D debris. However, recycling of C&D materials may not always be a feasible strategy for every waste type and therefore recycling and other waste treatment strategies should be supported by robust decision-making models. With the aim of assessing the net carbon, energy, and water footprints of C&D recycling and other waste management alternatives, a comprehensive economic input-output-based hybrid life-cycle assessment model is developed by tracing all of the economy-wide supply-chain impacts of three waste management strategies: recycling, landfilling, and incineration. Analysis results showed that only the recycling of construction materials provided positive environmental footprint savings in terms of carbon, energy, and water footprints. Incineration is a better option as a secondary strategy after recycling for water and energy footprint categories, whereas landfilling is found to be as slightly better strategy when carbon footprint is considered as the main focus of comparison. In terms of construction materials' environmental footprint, nonferrous metals are found to have a significant environmental footprint reduction potential if recycled. © The Author(s) 2014.
Optimization of waste combinations during in-vessel composting of agricultural waste.
Varma, V Sudharsan; Kalamdhad, Ajay S; Kumar, Bimlesh
2017-01-01
In-vessel composting of agricultural waste is a well-described approach for stabilization of compost within a short time period. Although composting studies have shown the different combinations of waste materials for producing good quality compost, studies of the particular ratio of the waste materials in the mix are still limited. In the present study, composting was conducted with a combination of vegetable waste, cow dung, sawdust and dry leaves using a 550 L rotary drum composter. Application of a radial basis functional neural network was used to simulate the composting process. The model utilizes physico-chemical parameters with different waste materials as input variables and three output variables: volatile solids, soluble biochemical oxygen demand and carbon dioxide evolution. For the selected model, the coefficient of determination reached the high value of 0.997. The complicated interaction of agricultural waste components during composting makes it a nonlinear problem so it is difficult to find the optimal waste combinations for producing quality compost. Optimization of a trained radial basis functional model has yielded the optimal proportion as 62 kg, 17 kg and 9 kg for vegetable waste, cow dung and sawdust, respectively. The results showed that the predictive radial basis functional model described for drum composting of agricultural waste was well suited for organic matter degradation and can be successfully applied.
Using quantum theory to simplify input-output processes
NASA Astrophysics Data System (ADS)
Thompson, Jayne; Garner, Andrew J. P.; Vedral, Vlatko; Gu, Mile
2017-02-01
All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems-algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency-storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.
Sustainable solutions for solid waste management in Southeast Asian countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uyen Nguyen Ngoc; Schnitzer, Hans
2009-06-15
Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less
Preliminary analysis of phosphorus flow in Hue Citadel.
Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S
2016-01-01
Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
Municipal solid waste system analysis through energy consumption and return approach.
Tomić, Tihomir; Schneider, Daniel Rolph
2017-12-01
Inappropriate waste management and poor resource efficiency are two of the biggest problems which European Union is trying to solve through Landfill Directive, Waste Framework Directive and Circular Economy Package by increasing recycling and reuse and reducing waste disposal. In order to meet set goals, new European Union member states must quickly change national legislature and implement appropriate solutions. In the circumstances of strong EU resource and energy dependence, decision makers need to analyse which of the considered waste management systems leads to higher overall benefits ie. which is more sustainable. The main problem in this kind of analysis is a wide range of possible technologies and the difference in inputs and outputs. Sustainability of these systems is analysed through single-score LCA based assessment, using primary energy used to produce materials and energy vectors as a common measure. To ensure reliable results, interoperability between different data sources and material flows of waste and its components are monitored. Tracking external and internal material, and energy flows enable modelling of mutual interactions between different facilities. Resulting PERI, primary energy return based index, is used for comparison of different waste management scenarios. Results show that time and legislation dependent changes have great influence on decision making related to waste management and interconnected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Element exchange in a water-and gas-closed biological life support system
NASA Astrophysics Data System (ADS)
1997-01-01
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80°C controlled electromagnetic field is proposed.
Element exchange in a water-and gas-closed biological life support system
NASA Astrophysics Data System (ADS)
Gribovskaya, I. V.; Kudenko, Yu. A.; Gitelson, J. I.
1997-01-01
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of ``Bios-3'' life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human- metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide in a quartz reactor at the temperature of 80 degC controlled electromagnetic field is proposed.
Watershed nitrogen and phosphorus balance: The upper Potomac River basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaworski, N.A.; Groffman, P.M.; Keller, A.A.
1992-01-01
Nitrogen and phosphorus mass balances were estimated for the portion of the Potomac River basin watershed located above Washington, D.C. The total nitrogen (N) balance included seven input source terms, six sinks, and one 'change-in-storage' term, but was simplified to five input terms and three output terms. The phosphorus (P) baance had four input and three output terms. The estimated balances are based on watershed data from seven information sources. Major sources of nitrogen are animal waste and atmospheric deposition. The major sources of phosphorus are animal waste and fertilizer. The major sink for nitrogen is combined denitrification, volatilization, andmore » change-in-storage. The major sink for phosphorus is change-in-storage. River exports of N and P were 17% and 8%, respectively, of the total N and P inputs. Over 60% of the N and P were volatilized or stored. The major input and output terms on the budget are estimated from direct measurements, but the change-in-storage term is calculated by difference. The factors regulating retention and storage processes are discussed and research needs are identified.« less
Wiedenhofer, Dominik; Steinberger, Julia K; Eisenmenger, Nina; Haas, Willi
2015-08-01
Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in-use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business-as-usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.
Steinberger, Julia K.; Eisenmenger, Nina; Haas, Willi
2015-01-01
Summary Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in‐use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business‐as‐usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals. PMID:27524878
A note on scrap in the 1992 U.S. input-output tables
Swisko, George M.
2000-01-01
Introduction A key concern of industrial ecology and life cycle analysis is the disposal and recycling of scrap. One might conclude that the U.S. input-output tables are appropriate tools for analyzing scrap flows. Duchin, for instance, has suggested using input-output analysis for industrial ecology, indicating that input-output economics can trace the stocks and flows of energy and other materials from extraction through production and consumption to recycling or disposal. Lave and others use input-output tables to design life cycle assessment models for studying product design, materials use, and recycling strategies, even with the knowledge that these tables suffer from a lack of comprehensive and detailed data that may never be resolved. Although input-output tables can offer general guidance about the interdependence of economic and environmental processes, data reporting by industry and the economic concepts underlying these tables pose problems for rigorous material flow examinations. This is especially true for analyzing the output of scrap and scrap flows in the United States and estimating the amount of scrap that can be recycled. To show how data reporting has affected the values of scrap in recent input-output tables, this paper focuses on metal scrap generated in manufacturing. The paper also briefly discusses scrap that is not included in the input-output tables and some economic concepts that limit the analysis of scrap flows.
NASA Astrophysics Data System (ADS)
Lindawati, L.; Kusnadi, N.; Kuntjoro, S. U.; Swastika, D. K. S.
2018-02-01
Integrated farming system is a system that emphasized linkages and synergism of farming units waste utilization. The objective of the study was to analyze the impact of input and output prices on both Rice Livestock Integrated Farming System (RLIFS) and non RLIFS farmers. The study used econometric model in the form of a simultaneous equations system consisted of 36 equations (18 behavior and 18 identity equations). The impact of changes in some variables was obtained through simulation of input and output prices on simultaneous equations. The results showed that the price increasing of the seed, SP-36, urea, medication/vitamins, manure, bran, straw had negative impact on production of the rice, cow, manure, bran, straw and household income. The decrease in the rice and cow production, production input usage, allocation of family labor, rice and cow business income was greater in RLIFS than non RLIFS farmers. The impact of rising rice and cow cattle prices in the two groups of farmers was not too much different because (1) farming waste wasn’t used effectively (2) manure and straw had small proportion of production costs. The increase of input and output price didn’t have impact on production costs and household expenditures on RLIFS.
Liang, Sai; Zhang, Tianzhu; Xu, Yijian
2012-03-01
Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Quality control in the recycling stream of PVC cable waste by hyperspectral imaging analysis
NASA Astrophysics Data System (ADS)
Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Rem, Peter
2005-05-01
In recent years recycling is gaining a key role in the manufacturing industry. The use of recycled materials in the production of new goods has the double advantage of saving energy and natural resources, moreover from an economic point of view, recycled materials are in general cheaper than the virgin ones. Despite of these environmental and economic strengths, the use of recycled sources is still low compared to the raw materials consumption, indeed in Europe only 10% of the market is covered by recycled products. One of the reasons of this reticence in the use of secondary sources is the lack of an accurate quality certification system. The inputs of a recycled process are not always the same, which means that also the output of a particular process can vary depending on the initial composition of the treated material. Usually if a continuous quality control system is not present at the end of the process the quality of the output material is assessed on the minimum certified characteristics. Solving this issue is crucial to expand the possible applications of recycled materials and to assign a price based on the real characteristic of the material. The possibility of applying a quality control system based on a hyperspectral imaging (HSI) technology working in the near infrared (NIR) range to the output of a separation process of PVC cable wastes is explored in this paper. The analysed material was a residue fraction of a traditional separation process further treated by magnetic density separation. Results show as PVC, PE, rubber and copper particles can be identified and classified adopting the NIR-HSI approach.
Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-03-01
Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10 3 tonnes in 2007 to 437×10 3 tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10 3 and 7×10 3 tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10 3 to 253×10 6 tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10 3 to 158×10 3 tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.
Kleysteuber, William K.; Mayercheck, William D.
1979-01-01
This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.
Al Sabbagh, Maram K; Velis, Costas A; Wilson, David C; Cheeseman, Christopher R
2012-08-01
This paper presents a detailed review of municipal solid waste (MSW) and resource management in Bahrain, using the recently developed UN-Habitat city profile methodology. Performance indicators involve quantitative assessment of waste collection and sweeping, controlled disposal, materials recovery and financial sustainability together with qualitative assessment of user and provider inclusivity and institutional coherence. MSW management performance in Bahrain is compared with data for 20 other cities. The system in Bahrain is at an intermediate stage of development. A waste/material flow diagram allows visualization of the MSW system and quantifies all inputs and outputs, with the vast majority of MSW deposited in a controlled, but not engineered landfill. International comparative analysis shows that recycling and material recovery rates in Bahrain (8% wt. for domestic waste, of which 3% wt. due to informal sector) are generally lower than other cities, whereas waste quantities and generation rates at 1.1 kg capita(-1) day(-1)) are relatively high. The organic fraction (60% wt.) is comparable to that in middle- and low-income cities (50-80% wt.), although on the basis of gross domestic product Bahrain is classified as a high-income city, for which the average is generally less than 30% wt. Inclusivity in waste governance is at a medium stage as not all waste system stakeholders are considered in decision-making. While the system now appears to be financially stable, key pending issues are cost-effectiveness, improving the standards of disposal and deployment of extensive materials recovery/recycling services.
Nutrient Mass Balance for the Mobile River Basin in Alabama, Georgia, and Mississippi
NASA Astrophysics Data System (ADS)
Harned, D. A.; Harvill, J. S.; McMahon, G.
2001-12-01
The source and fate of nutrients in the Mobile River drainage basin are important water-quality concerns in Alabama, Georgia, and Mississippi. Land cover in the basin is 74 percent forested, 16 percent agricultural, 2.5 percent developed, and 4 percent wetland. A nutrient mass balance calculated for 18 watersheds in the Mobile River Basin indicates that agricultural non-point nitrogen and phosphorus sources and urban non-point nitrogen sources are the most important factors associated with nutrients in the streams. Nitrogen and phosphorus inputs from atmospheric deposition, crop fertilizer, biological nitrogen fixation, animal waste, and point sources were estimated for each of the 18 drainage basins. Total basin nitrogen inputs ranged from 27 to 93 percent from atmospheric deposition (56 percent mean), 4 to 45 percent from crop fertilizer (25 percent mean), <0.01 to 31 percent from biological nitrogen fixation (8 percent mean), 2 to 14 percent from animal waste (8 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Total basin phosphorus inputs ranged from 10 to 39 percent from atmospheric deposition (26 percent mean), 7 to 51 percent from crop fertilizer (28 percent mean), 20 to 64 percent from animal waste (41 percent mean), and 0.2 to 11 percent from point sources (3 percent mean). Nutrient outputs for the watersheds were estimated by calculating instream loads and estimating nutrient uptake, or withdrawal, by crops. The difference between the total basin inputs and outputs represents nutrients that are retained or processed within the basin while moving from the point of use to the stream, or in the stream. Nitrogen output, as a percentage of the total basin nitrogen inputs, ranged from 19 to 79 percent for instream loads (35 percent mean) and from 0.01 to 32 percent for crop harvest (10 percent mean). From 53 to 87 percent (75 percent mean) of nitrogen inputs were retained within the 18 basins. Phosphorus output ranged from 9 to 29 percent for instream loads (18 percent mean) and from 0.01 to 23 percent for crop harvest (7 percent mean). The basins retained from 60 to 87 percent (74 percent mean) of phosphorous inputs. Correlation of basin nutrient output loads and concentrations with the basin inputs and correlation of output loads and concentrations with basin land use were tested using the Spearman rank test. The correlation analysis indicated that higher nitrogen concentrations in the streams are associated with urban areas and higher loads are associated with agriculture; high phosphorus output loads and concentrations are associated with agriculture. Higher nutrient loads in agricultural basins are partly an effect of basin size-- larger basins generate larger nutrient loads. Nutrient loads and concentrations showed no significant correlation to point-source inputs. Nitrogen loads were significantly (p<0.05, correlation coefficient >0.5) higher in basins with greater cropland areas. Nitrogen concentrations also increased as residential, commercial, and total urban areas increased. Phosphorus loads were positively correlated with animal-waste inputs, pasture, and total agricultural land. Phosphorus concentrations were highest in basins with the greatest amounts of row-crop agriculture.
NASA Astrophysics Data System (ADS)
Wang, Bo-Zhi; Deng, Biao; Su, Shi-Jun; Ding, Sang-Lan; Sun, Wei-Yi
2018-03-01
Electrolytic manganese is conventionally produced through low-grade manganese ore leaching in SO2, with the combustion of high sulfur coal. Subsequently the coal ash and manganese slag, produced by the combustion of high sulfur coal and preparation of electrolytic manganese, can be used as raw ingredients for the preparation of sulphoaluminate cement. In order to realize the `coal-electricity-sulfur-manganese-building material' system of complementary resource utilization, the conditions of material inflow and outflow in each process were determined using material flow analysis. The material flow models in each unit and process can be obtained by analyzed of material flow for new technology, and the input-output model could be obtained. Through the model, it is possible to obtain the quantity of all the input and output material in the condition of limiting the quantity of a substance. Taking one ton electrolytic manganese as a basis, the quantity of other input material and cements can be determined with the input-output model. The whole system had thusly achieved a cleaner production level. Therefore, the input-output model can be used for guidance in practical production.
Low-carbon building assessment and multi-scale input-output analysis
NASA Astrophysics Data System (ADS)
Chen, G. Q.; Chen, H.; Chen, Z. M.; Zhang, Bo; Shao, L.; Guo, S.; Zhou, S. Y.; Jiang, M. M.
2011-01-01
Presented as a low-carbon building evaluation framework in this paper are detailed carbon emission account procedures for the life cycle of buildings in terms of nine stages as building construction, fitment, outdoor facility construction, transportation, operation, waste treatment, property management, demolition, and disposal for buildings, supported by integrated carbon intensity databases based on multi-scale input-output analysis, essential for low-carbon planning, procurement and supply chain design, and logistics management.
Janke, Benjamin D.; Nidzgorski, Daniel A.; Millet, Dylan B.; Baker, Lawrence A.
2017-01-01
Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains. PMID:28373560
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...
Emergy Analysis of Biogas Systems Based on Different Raw Materials
Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan
2013-01-01
Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials. PMID:23476134
Emergy analysis of biogas systems based on different raw materials.
Wang, Yang; Lin, Cong; Li, Jing; Duan, Na; Li, Xue; Fu, Yanyan
2013-01-01
Environmental pollution and energy crisis restrict the development of China, and the utilization of renewable technology is an effective strategy to alleviate the damage. Biogas engineering has rapidly developed attributes to solve environmental problems and create a renewable energy product biogas. In this paper, two different biogas plants' materials were analyzed by emergy method. One of them is a biogas project whose degraded material is feces (BPF system), and the other is the one whose degraded material is corn straw (BPC system). As a result, the ecological-economic values of BPF and BPC are $28,300/yr and $8,100/yr, respectively. Considering currency, environment, and human inputs, both of the biogas projects have the ability of disposing waste and potential for development. The proportion of biogas output is much more than fertilizer output; so, fertilizer utilization should be emphasized in the future. In comparison, BPF is better than BPC in the aspects of ecological-economic benefits, environmental benefits, and sustainability. The reason is the difficulty of corn straw seasonal collection and degradation. Thus it is proposed that BPC should be combined with the other raw materials.
Abeyta, Cynthia G.; Frenzel, Peter F.
1999-01-01
This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales D.
2010-03-30
This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.
Method and system for edge cladding of laser gain media
Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene
2014-03-25
A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.
Amiri, Mohammad Meskarpour; Nasiri, Taha; Saadat, Seyed Hassan; Anabad, Hosein Amini; Ardakan, Payman Mahboobi
2016-11-01
Efficiency analysis is necessary in order to avoid waste of materials, energy, effort, money, and time during scientific research. Therefore, analyzing efficiency of knowledge production in health areas is necessary, especially for developing and in-transition countries. As the first step in this field, the aim of this study was the analysis of selected health research center efficiency using data envelopment analysis (DEA). This retrospective and applied study was conducted in 2015 using input and output data of 16 health research centers affiliated with a health sciences university in Iran during 2010-2014. The technical efficiency of health research centers was evaluated based on three basic data envelopment analysis (DEA) models: input-oriented, output-oriented, and hyperbolic-oriented. The input and output data of each health research center for years 2010-2014 were collected from the Iran Ministry of Health and Medical Education (MOHE) profile and analyzed by R software. The mean efficiency score in input-oriented, output-oriented, and hyperbolic-oriented models was 0.781, 0.671, and 0.798, respectively. Based on results of the study, half of the health research centers are operating below full efficiency, and about one-third of them are operating under the average efficiency level. There is also a large gap between health research center efficiency relative to each other. It is necessary for health research centers to improve their efficiency in knowledge production through better management of available resources. The higher level of efficiency in a significant number of health research centers is achievable through more efficient management of human resources and capital. Further research is needed to measure and follow the efficiency of knowledge production by health research centers around the world and over a period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian
Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less
Waste management through life cycle assessment of products
NASA Astrophysics Data System (ADS)
Borodin, Yu V.; Aliferova, T. E.; Ncube, A.
2015-04-01
The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.
Wide bandgap matrix switcher, amplifier and oscillator
Sampayan, Stephen
2016-08-16
An electronic device comprising an optical gate, an electrical input an electrical output and a wide bandgap material positioned between the electrical input and the electrical output to control an amount of current flowing between the electrical input and the electrical output in response to a stimulus received at the optical gate can be used in wideband telecommunication applications in transmission of multi-channel signals.
Circular economy of plastic packaging: Current practice and perspectives in Austria.
Van Eygen, Emile; Laner, David; Fellner, Johann
2018-02-01
Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydrogen and sulfur recovery from hydrogen sulfide wastes
Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.
1993-05-18
A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.
Hydrogen and sulfur recovery from hydrogen sulfide wastes
Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.
1993-01-01
A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.
Enhancing e-waste estimates: improving data quality by multivariate Input-Output Analysis.
Wang, Feng; Huisman, Jaco; Stevels, Ab; Baldé, Cornelis Peter
2013-11-01
Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input-Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy Efficiency of Biogas Produced from Different Biomass Sources
NASA Astrophysics Data System (ADS)
Begum, Shahida; Nazri, A. H.
2013-06-01
Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.
Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules
NASA Astrophysics Data System (ADS)
Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.
2017-05-01
Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.
Banks, Charles J; Chesshire, Michael; Heaven, Sonia; Arnold, Rebecca
2011-01-01
An anaerobic digester receiving food waste collected mainly from domestic kitchens was monitored over a period of 426 days. During this time information was gathered on the waste input material, the biogas production, and the digestate characteristics. A mass balance accounted for over 90% of the material entering the plant leaving as gaseous or digestate products. A comprehensive energy balance for the same period showed that for each tonne of input material the potential recoverable energy was 405 kWh. Biogas production in the digester was stable at 642 m3 tonne(-1) VS added with a methane content of around 62%. The nitrogen in the food waste input was on average 8.9 kg tonne(-1). This led to a high ammonia concentration in the digester which may have been responsible for the accumulation of volatile fatty acids that was also observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].
Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng
2015-12-01
To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.
Agarwal, Manu; Tardio, James; Venkata Mohan, S
2013-11-01
To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.
Towards Rational Decision-Making in Secondary Education.
ERIC Educational Resources Information Center
Cohn, Elchanan
Without a conscious effort to achieve optimum resource allocation, there is a real danger that educational resources may be wasted. This document uses input-output analysis to develop a model for rational decision-making in secondary education. (LLR)
Amiri, Mohammad Meskarpour; Nasiri, Taha; Saadat, Seyed Hassan; Anabad, Hosein Amini; Ardakan, Payman Mahboobi
2016-01-01
Introduction Efficiency analysis is necessary in order to avoid waste of materials, energy, effort, money, and time during scientific research. Therefore, analyzing efficiency of knowledge production in health areas is necessary, especially for developing and in-transition countries. As the first step in this field, the aim of this study was the analysis of selected health research center efficiency using data envelopment analysis (DEA). Methods This retrospective and applied study was conducted in 2015 using input and output data of 16 health research centers affiliated with a health sciences university in Iran during 2010–2014. The technical efficiency of health research centers was evaluated based on three basic data envelopment analysis (DEA) models: input-oriented, output-oriented, and hyperbolic-oriented. The input and output data of each health research center for years 2010–2014 were collected from the Iran Ministry of Health and Medical Education (MOHE) profile and analyzed by R software. Results The mean efficiency score in input-oriented, output-oriented, and hyperbolic-oriented models was 0.781, 0.671, and 0.798, respectively. Based on results of the study, half of the health research centers are operating below full efficiency, and about one-third of them are operating under the average efficiency level. There is also a large gap between health research center efficiency relative to each other. Conclusion It is necessary for health research centers to improve their efficiency in knowledge production through better management of available resources. The higher level of efficiency in a significant number of health research centers is achievable through more efficient management of human resources and capital. Further research is needed to measure and follow the efficiency of knowledge production by health research centers around the world and over a period of time. PMID:28344756
Technical change in forest sector models: the global forest products model approach
Joseph Buongiorno; Sushuai Zhu
2015-01-01
Technical change is developing rapidly in some parts of the forest sector, especially in the pulp and paper industry where wood fiber is being substituted by waste paper. In forest sector models, the processing of wood and other input into products is frequently represented by activity analysis (inputâoutput). In this context, technical change translates in changes...
Analysing the production and treatment of solid waste using a national accounting framework.
Delahaye, Roel; Hoekstra, Rutger; Nootenboom, Leslie
2011-07-01
Our knowledge of the relationship between the economy and the environment has increased significantly over recent decades. One of the areas in which this is most apparent is the area of environmental accounting, where environmental data is presented according to national accounting principles. These accounts provide consistent, complete and detailed information for understanding environmental-economic interdependencies. One of the modules of these accounts is the waste accounts which record the origin and destination of waste materials. The first part of this paper discusses the Dutch waste accounts and their relation with economic indicators. In the second part a number of applications, which are based on the input-output model, are applied to these accounts. This section includes a novel structural decomposition analysis which quantifies the underlying driving forces of changes in total waste and landfilled waste between 1995 and 2004. The results show that the total amount of waste is mainly driven by economic growth (positive effect) and the direct export of waste (negative effect). The models also show that the construction sector has played a very important part in the reduction of waste. Furthermore, the decrease in the amount of landfilled waste, which is caused by Dutch regulations, has led to a large shift towards recycling and to a lesser degree incineration. Finally, the calculations for the 'environmental trade balance' for waste show that the waste-contents of exports exceed that of imports. This paper shows that the waste accounts have many analytical and policy-relevant applications.
Broitman, D; Raviv, O; Ayalon, O; Kan, I
2018-05-01
Setting up a sustainable agricultural vegetative waste-management system is a challenging investment task, particularly when markets for output products of waste-treatment technologies are not well established. We conduct an economic analysis of possible investments in treatment technologies of agricultural vegetative waste, while accounting for fluctuating output prices. Under a risk-neutral approach, we find the range of output-product prices within which each considered technology becomes most profitable, using average final prices as the exclusive factor. Under a risk-averse perspective, we rank the treatment technologies based on their computed certainty-equivalent profits as functions of the coefficient of variation of the technologies' output prices. We find the ranking of treatment technologies based on average prices to be robust to output-price fluctuations provided that the coefficient of variation of the output prices is below about 0.4, that is, approximately twice as high as that of well-established recycled-material markets such as glass, paper and plastic. We discuss some policy implications that arise from our analysis regarding vegetative waste management and its associated risks. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Martin, Brian
2011-01-01
Excellence in Research for Australia has a number of limitations: inputs are counted as outputs, time is wasted, disciplinary research is favoured and public engagement is discouraged. Most importantly, by focusing on measurement and emphasising competition, ERA may actually undermine the cooperation and intrinsic motivation that underpin research…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.; Argo, R.S.
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and preparedmore » by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the first of four volumes of the description of the CIRMIS Data System.« less
Mercury distribution characteristics in primary manganese smelting plants.
Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil
2017-08-01
The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.
BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT
Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...
Impact Response Characteristics of Polymeric Materials
1981-11-01
amplitude-frequency domain. In the language of signal communications an input signal given by some time dependence FAt) is introduced into a " channel ...fixed and not altered by the signal. The channel can be charac- terized by its own function H(t), called the transfer function. This concept can be...rcpresented schematically as follows: Input Signal - [ Channel ] -- Output Signal At) H(t) G(t) In our case the input signal is the impact event, the output
Unattended Multiplicity Shift Register
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, Matt; Jones, David C.
2017-01-16
The Unattended Multiplicity Shift Register (UMSR) is a specialized pulse counter used primarily to count neutron events originating in neutron detection instruments. While the counter can be used to count any TTL input pulses, its unique ability to record time correlated events and the multiplicity distributions of these events makes it an ideal instrument for counting neutron events in the nuclear fields of material safeguards, waste assay and process monitoring and control. The UMSR combines the Los Alamos National Laboratory (LANL) simple and robust shift register design with a Commercial-Off-The-Shelf (COTS) processor and Ethernet communications. The UMSR is fully compatiblemore » with existing International Atomic Energy Agency (IAEA) neutron data acquisition instruments such as the Advance Multiplicity Shift Register (AMSR) and JSR-15. The UMSR has three input channels: a multiplicity shift register input and two auxiliary inputs. The UMSR provides 0V to 2kV of programmable High Voltage (HV) bias and both a 12V and a 5V detector power supply output. A serial over USB communication line to the UMSR allows the use of existing versions of INCC or MIC software while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less
An assessment of the current municipal solid waste management system in Lahore, Pakistan.
Masood, Maryam; Barlow, Claire Y; Wilson, David C
2014-09-01
The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.
Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos
2017-06-23
This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.
Yan, Dahai; Peng, Zheng; Yu, Lifeng; Sun, Yangzhao; Yong, Ren; Helge Karstensen, Kåre
2018-03-21
A disposal method for fly ash from a municipal solid waste incinerator (MSWI-FA) that involved a water washing pretreatment and co-processing in a cement kiln was tested. The mass flows of toxic heavy metals (HMs), including volatile HM (Hg), semi-volatile HMs (Pb, Cd, Tl, and As), and low-volatility HMs, and polychlorinated dibenzo-p-dioxin/polychlorinated dibenzofuran (PCDD/Fs) in the input, intermediate, and output materials were characterized. The flue gas Hg concentrations from tests 0, 1, and 2, fed with 0, 3.1, and 1.7 t/h of dried-washed FA (DWFA), were 28.60, 61.95, and 35.40 μg N m -3 , respectively. Co-processing of DWFA did not significantly affect the metal concentration in clinker as most of the major input metals, with the exception of Cd, Pb, and Sb (which came from DWFA), were from raw materials and coal. Co-processing of DWFA did not influence on the release of PCDD/Fs; baseline and co-processing values ranged from 0.022 to 0.039 ng-TEQ/N m 3 , and from 0.01 to 0.031 ng-TEQ/N m 3 , respectively. The total destruction efficiency for PCDD/Fs in MSWI fly was 82.6%. This technology seems to be an environmentally sound option for the disposal of MSWI-FA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Flow analysis of metals in a municipal solid waste management system.
Jung, C H; Matsuto, T; Tanaka, N
2006-01-01
This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.
Flow analysis of metals in a municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, C.H.; Matsuto, T.; Tanaka, N.
2006-07-01
This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less
Building Enterprise Transition Plans Through the Development of Collapsing Design Structure Matrices
2015-09-17
processes from the earliest input to the final output to evaluate where change is needed to reduce costs, reduce waste, and improve the flow of information...from) integrating a large complex enterprise? • How should firms/enterprises evaluate systems prior to integration? What are some valid taxonomies
Ahmadi Doabi, Shahab; Karami, Mahin; Afyuni, Majid
2016-04-01
It is important to study the status and trend of soil contamination with trace elements to make sustainable management strategies for agricultural soils. This study was conducted in order to model zinc (Zn), copper (Cu), and nickel (Ni) accumulation rates in agricultural soils of Kermanshah province using input and output fluxes mass balance and to evaluate the associated uncertainties. The input and output fluxes of Zn, Cu, and Ni into (from) the agricultural soils of Kermanshah province via livestock manure, mineral fertilizers, municipal waste compost, pesticides, atmospheric deposition, and crop removal were assessed for the period 2000-2014. The data were collected to compute the fluxes at both township and regional scales from available databases such as regional agricultural statistics. The basic units of the balance were 9 townships of Kermanshah province. Averaged over the entire study region, the estimated net fluxes of Zn, Cu, and Ni into agricultural soils were 341, 84, and131 g ha year(-1), with a range of 211 to 1621, 61 to 463, and 114 to 679 among the townships. The livestock manure was responsible for 55, 56, and 67 % of the total Zn, Cu, and Ni inputs at regional scale, while municipal waste compost and mineral fertilizers accounted for approximately 19, 38, and 15 % and 24, 4, and 14 % of the total Zn, Cu, and Ni inputs, respectively. Atmospheric deposition was a considerable source only for Ni and at township scale (7-29 % of total Ni input). For Zn, Cu, and Ni, the input-to-output ratio of the fluxes ranged from 1.8 to 48.9, 2 to 48.2, and 4 to 303 among townships and averaged 2.8, 3, and 9 for the entire study area, respectively. Considering that outputs other than with crop harvests are minor, this means that Zn, Cu, and Ni (in particular Ni) stocks are rapidly building up in soils of some parts of the study region. Uncertainties in the livestock manure and crop removal data were the main sources of estimation uncertainty in this study. This study provides the basic information to develop policies for controlling the trace elements inputs into agricultural soils of the study area.
Graphics and composite material computer program enhancements for SPAR
NASA Technical Reports Server (NTRS)
Farley, G. L.; Baker, D. J.
1980-01-01
User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.
2015-12-01
The material flow account of Tangshan City was established by material flow analysis (MFA) method to analyze the periodical characteristics of material input and output in the operation of economy-environment system, and the impact of material input and output intensities on economic development. Using econometric model, the long-term interaction mechanism and relationship among the indexes of gross domestic product (GDP) , direct material input (DMI), domestic processed output (DPO) were investigated after unit root hypothesis test, Johansen cointegration test, vector error correction model, impulse response function and variance decomposition. The results showed that during 1992-2011, DMI and DPO both increased, and the growth rate of DMI was higher than that of DPO. The input intensity of DMI increased, while the intensity of DPO fell in volatility. Long-term stable cointegration relationship existed between GDP, DMI and DPO. Their interaction relationship showed a trend from fluctuation to gradual ste adiness. DMI and DPO had strong, positive impacts on economic development in short-term, but the economy-environment system gradually weakened these effects by short-term dynamically adjusting indicators inside and outside of the system. Ultimately, the system showed a long-term equilibrium relationship. The effect of economic scale on economy was gradually increasing. After decomposing the contribution of each index to GDP, it was found that DMI's contribution grew, GDP's contribution declined, DPO's contribution changed little. On the whole, the economic development of Tangshan City has followed the traditional production path of resource-based city, mostly depending on the material input which caused high energy consumption and serous environmental pollution.
Nakamura, Shinichiro; Murakami, Shinsuke; Nakajima, Kenichi; Nagasaka, Tetsuya
2008-05-15
The production process of metals such as copper, lead, and zinc is characterized by mutual interconnections and interdependence, as well as by the occurrence of a large number of byproducts, which include precious or rare metals, such as gold, silver, bismuth, and indium. On the basis of the framework of waste input-output (WIO), we present a hybrid 10 model that takes full account of the mutual interdependence among the metal production processes and the interdependence between them and all the other production sectors of the economy as well. The combination of a comprehensive representation of the whole national economy and the introduction of process knowledge of metal production allows for a detailed analysis of different materials-use scenarios under the consideration of full supply chain effects. For illustration, a hypothetical case study of the introduction of lead-free solder involving the production of silver as a byproduct of copper and lead smelting processes was developed and implemented using Japanese data. To meet the increased demand for the recovery and recycling of silver resources from end-of-life products, the final destination of metal silver in terms of products and user categories was estimated, and the target components with the highest silver concentration were identified.
Lunar base CELSS: A bioregenerative approach
NASA Technical Reports Server (NTRS)
Easterwood, G. W.; Street, J. J.; Sartain, J. B.; Hubbell, D. H.; Robitaille, H. A.
1992-01-01
During the twenty-first century, human habitation of a self-sustaining lunar base could become a reality. To achieve this goal, the occupants will have to have food, water, and an adequate atmosphere within a carefully designed environment. Advanced technology will be employed to support terrestrial life-sustaining processes on the Moon. One approach to a life support system based on food production, waste management and utilization, and product synthesis is outlined. Inputs include an atmosphere, water, plants, biodegradable substrates, and manufacutured materials such as fiberglass containment vessels from lunar resources. Outputs include purification of air and water, food, and hydrogen (H2) generated from methane (CH4). Important criteria are as follows: (1) minimize resupply from Earth; and (2) recycle as efficiently as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp
2011-03-15
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less
Environmental efficiency of energy, materials, and emissions.
Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke
2015-09-15
This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya
2011-02-01
Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated.
Martin, S.J.; Ricco, A.J.
1993-08-10
A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.
A recycling index for food and health security: urban Taipei.
Huang, Susana Tzy-Ying
2010-01-01
The modern food system has evolved into one with highly inefficient activities, producing waste at each step of the food pathway from growing to consumption and disposal. The present challenge is to improve recyclability in the food system as a fundamental need for food and health security. This paper develops a methodological approach for a Food Recycling Index (FRI) as a tool to assess recyclability in the food system, to identify opportunities to reduce waste production and environmental contamination, and to provide a self-assessment tool for participants in the food system. The urban Taipei framework was used to evaluate resource and nutrient flow within the food consumption and waste management processes of the food system. A stepwise approach for a FRI is described: (1) identification of the major inputs and outputs in the food chain; (2) classification of inputs and outputs into modules (energy, water, nutrients, and contaminants); (3) assignment of semi-quantitative scores for each module and food system process using a matrix; (4) assessment for recycling status and recyclability potential; (5) conversion of scores into sub-indices; (6) derivation of an aggregate FRI. A FRI of 1.24 was obtained on the basis of data for kitchen waste management in Taipei, a score which encompasses absolute and relative values for a comprehensive interpretation. It is apparent that a FRI could evolve into a broader ecosystem concept with health relevance. Community end-users and policy planners can adopt this approach to improve food and health security.
CIRMIS Data system. Volume 2. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required.The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the second of four volumes of the description of the CIRMIS Data System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrichs, D.R.
1980-01-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for use by the hydrologic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System is a storage and retrieval system for model input and output data, including graphical interpretation and display. This is the fourth of four volumes of the description of the CIRMIS Data System.« less
Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste.
Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui; Yang, Lili; Wang, Mei
2017-05-01
Co-incineration of sewage sludge in cement kilns can be used for its disposal. In the present study, samples were collected from three cement production runs where sewage sludge and other wastes (e.g. municipal solid waste, waste acid and wet sewage sludge) were co-processed. The samples were analyzed for polychlorinated biphenyls (PCBs). The dioxin-like (dl)-PCB concentrations in the stack gases from run 1, 2, and 3 were 344.6, 548.7, and 104.3 pg m -3 , respectively. The toxic equivalency (TEQs) values for runs 1, 2, and 3 were 5.6, 8.9, and 0.7 pg TEQ Nm -3 , respectively. Calculation of net emissions for the three runs indicated that the co-incineration of other waste in addition to sewage sludge in cement kilns would not increase emission of the dl-PCBs. PCB concentrations in samples from the suspension boiler and humidifier tower, kiln-end bag filter, and cyclone preheater were much higher than those in samples from the kiln head area, indicating that these stages will be important for controlling PCB formation. Chlorinated biphenyl (CB)-77, CB-105 and CB-118 were the major dl-PCB congeners, CB-52, CB-101 were the major indicator PCB congeners, and tetra-CB to hexa-CB were the major homologues for the total input or output materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad; Ali, Nadeem; Ali, Shahid; Rashid, Muhammad Imtiaz; Ismail, Iqbal Mohammad Ibrahim; Koller, Martin
2017-09-01
The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management. This information will be... assessments; however questions are being raised about its scope, the data sources used, the assumptions made...
76 FR 51879 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... input for processing in some stage of a manufacturing or production process to produce a different end... and sold on the market as a material for input into manufacturing or production processes. The... production of any agricultural, commercial, consumer, or industrial product, provided that material qualified...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... process unit. If the greatest input to and/or output from a shared storage vessel is the same for two or... not have an intervening storage vessel. If two or more PAI process units have the same input to or... process unit that sends the most material to or receives the most material from the storage vessel. If two...
Substance Flow Analysis of Mercury in China
NASA Astrophysics Data System (ADS)
Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.
2015-12-01
In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding products. Besides, 729t Hg is released to the environment, among which, 534 t is emitted to air, 129 t flows into water and 66 t is discharged to soil. To decrease the released mercury, the used mercury should be reduced firstly. On the one hand, large users like VCM production (the largest intentionally mercury user) should lower used mercury, on the other hand, mercury recycling should be enhanced.
Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta
2017-06-01
Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of the recycling companies. The evaluation of the indicators led to the decision to modify the layout to improve the interception of some polymers for which the performance indicators were poor. In particular, two additional optical sorters have to be inserted to increase the yield indicator and to the overall performance of the facility. Definitely, the results of the work allowed to: increase the yield and purity of products' flows; ensure the compliance of waste flows; increase the workability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Propulsion/flight control integration technology (PROFIT) software system definition
NASA Technical Reports Server (NTRS)
Carlin, C. M.; Hastings, W. J.
1978-01-01
The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.
Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo
2017-08-01
This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).
Materials and energy flow in the life cycle of leather: a case study of Bangladesh
NASA Astrophysics Data System (ADS)
Chowdhury, Zia Uddin Md.; Ahmed, Tanvir; Hashem, Md. Abul
2018-05-01
This article presents the results of the materials and energy flow analysis for leather produced in Bangladesh and establishes an inventory for the life cycle assessment. Also, a comparison is made with the material and energy flow of the Indian leather. A cradle to gate analysis is performed for full-chrome leather (FCL), a representative leather article from an export-oriented industry in Bangladesh, taking into consideration the main processes associated with leather production and the corresponding materials and energy input. Data was collected on annual wet-salted rawhide consumption, water, and steam consumption, chemicals requirement, tannery solid waste generation, electricity, fuel oil use for the generator and steam boiler. Moreover, an analysis of the physical and chemical properties of wastewater emissions of the different leather unit processes was performed. The input and output profiles of the FCL were compared to those of an Indian leather. It was seen that FCL consumed water 2 times higher than the Indian leather while the electricity consumption of Indian leather was almost 2 times higher than its Bangladeshi counterpart. The Indian leather had significantly higher carbon footprint (in terms of CO2 equivalent emission) mainly because of the consumption of grid electricity that comes from coal-based power generation. Wastewater parameters such as chloride, Total Dissolved Solids (TDS) and Total Solids (TS) for the Indian leather are more than 4.5, 3 and 3 times higher respectively than that of corresponding emissions for the Bangladeshi FCL, which can be attributed to the higher use of inorganic salts in the process. Despite similar input of chromium compounds for both the leathers, the emission of total chromium was slightly higher in the case of Indian leather probably due to lower uptake of chromium by the substrate. Bangladeshi FCL used twice in the amount of (NH4)2SO4 than India, which may be responsible for the higher BOD load in the wastewater. It can also be seen that a significant amount of rawhide input is not converted into the usable leather as demonstrated by the high proportion of solid waste generation (70% and 55% for Bangladeshi FCL and Indian leather respectively). This study highlights that wide variations exist in the materials and energy flows from different tanneries. Understanding these variations is essential to pinpoint areas where resources can be used more efficiently and optimally in the leather manufacturing process.
10 CFR 74.53 - Process monitoring.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula... estimated measurement standard deviation greater than five percent that is either input or output material... results generated during an inventory period for indications of measurement biases or unidentified loss...
Effective pine bark composting with the Dome Aeration Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trois, Cristina; Polster, Andreas
2007-07-01
In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25more » (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process monitoring revealed that prevailing climatic conditions in a subtropical location do not affect the high efficiency of this technology. However, the composition of the input material can be detrimental for production of high quality compost because of a lack of nitrate.« less
Thermodynamic metrics for measuring the ``sustainability'' of design for recycling
NASA Astrophysics Data System (ADS)
Reuter, Markus; van Schaik, Antoinette
2008-08-01
In this article, exergy is applied as a parameter to measure the “sustainability” of a recycling system in addition to the fundamental prediction of material recycling and energy recovery, summarizing a development of over 20 years by the principal author supported by various co-workers, Ph.D., and M.Sc. students. In order to achieve this, recyclate qualities and particle size distributions throughout the system must be predicted as a function of product design, liberation during shredding, process dynamics, physical separation physics, and metallurgical thermodynamics. This crucial development enables the estimation of the true exergy of a recycling system from its inputs and outputs including all its realistic industrial traits. These models have among others been linked to computer aided design tools of the automotive industry and have been used to evaluate the performance of waste electric and electronic equipment recycling systems in The Netherlands. This paper also suggests that the complete system must be optimized to find a “truer” optimum of the material production system linked to the consumer market.
A hybrid life cycle inventory of nano-scale semiconductor manufacturing.
Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Raoux, Sebastien; Clark, Daniel; Dornfeld, David
2008-04-15
The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive, and generate significant waste. It is important to understand and reduce the environmental impacts of semiconductor manufacturing because these devices are ubiquitous components in electronics. Furthermore, the fabrication processes used in the semiconductor industry are finding increasing application in other products, such as microelectromechanical systems (MEMS), flat panel displays, and photovoltaics. In this work we develop a library of typical gate-to-gate materials and energy requirements, as well as emissions associated with a complete set of fabrication process models used in manufacturing a modern microprocessor. In addition, we evaluate upstream energy requirements associated with chemicals and materials using both existing process life cycle assessment (LCA) databases and an economic input-output (EIO) model. The result is a comprehensive data set and methodology that may be used to estimate and improve the environmental performance of a broad range of electronics and other emerging applications that involve nano and micro fabrication.
Municipal Solid Waste Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.
Lightweight Radiator for in Space Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; Tomboulian, Briana; SanSoucie, Michael
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Harrington
2004-10-25
The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less
USEPA’s Land‐Based Materials Management Exposure and Risk Assessment Tool System
It is recognized that some kinds of 'waste' materials can in fact be reused as input materials for making safe products that benefit society. RIMM (Risk-Informed Materials Management) provides an integrated data gathering and analysis capability to enable scientifically rigorous ...
Dual control active superconductive devices
Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.
1993-07-20
A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.
Designing testing service at baristand industri Medan’s liquid waste laboratory
NASA Astrophysics Data System (ADS)
Kusumawaty, Dewi; Napitupulu, Humala L.; Sembiring, Meilita T.
2018-03-01
Baristand Industri Medan is a technical implementation unit under the Industrial and Research and Development Agency, the Ministry of Industry. One of the services often used in Baristand Industri Medan is liquid waste testing service. The company set the standard of service is nine working days for testing services. At 2015, 89.66% on testing services liquid waste does not meet the specified standard of services company because of many samples accumulated. The purpose of this research is designing online services to schedule the coming the liquid waste sample. The method used is designing an information system that consists of model design, output design, input design, database design and technology design. The results of designing information system of testing liquid waste online consist of three pages are pages to the customer, the recipient samples and laboratory. From the simulation results with scheduled samples, then the standard services a minimum of nine working days can be reached.
Thompson, Robert; Tanimoto, Steven; Abbott, Robert; Nielsen, Kathleen; Lyman, Ruby Dawn; Geselowitz, Kira; Habermann, Katrien; Mickail, Terry; Raskind, Marshall; Peverly, Stephen; Nagy, William; Berninger, Virginia
2017-01-01
This study in programmatic research on technology-supported instruction first identified, through pretesting using evidence-based criteria, students with persisting specific learning disabilities (SLDs) in written language during middle childhood (grades 4-6) and early adolescence (grades 7-9). Participants then completed computerized writing instruction and posttesting. The 12 computer lessons varied output modes (letter production by stylus alternating with hunt and peck keyboarding versus by pencil with grooves alternating with touch typing on keyboard), input (read or heard source material), and task (notes or summaries). Posttesting and coded notes and summaries showed the effectiveness of computerized writing instruction on both writing tasks for multiple modes of language input and letter production output for improving letter production and related writing skills.
Thompson, Robert; Tanimoto, Steven; Abbott, Robert; Nielsen, Kathleen; Lyman, Ruby Dawn; Geselowitz, Kira; Habermann, Katrien; Mickail, Terry; Raskind, Marshall; Peverly, Stephen; Nagy, William; Berninger, Virginia
2017-01-01
This study in programmatic research on technology-supported instruction first identified, through pretesting using evidence-based criteria, students with persisting specific learning disabilities (SLDs) in written language during middle childhood (grades 4-6) and early adolescence (grades 7-9). Participants then completed computerized writing instruction and posttesting. The 12 computer lessons varied output modes (letter production by stylus alternating with hunt and peck keyboarding versus by pencil with grooves alternating with touch typing on keyboard), input (read or heard source material), and task (notes or summaries). Posttesting and coded notes and summaries showed the effectiveness of computerized writing instruction on both writing tasks for multiple modes of language input and letter production output for improving letter production and related writing skills. PMID:27434553
Thermal energy storage for low grade heat in the organic Rankine cycle
NASA Astrophysics Data System (ADS)
Soda, Michael John
Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.
Statistical evaluation of PACSTAT random number generation capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piepel, G.F.; Toland, M.R.; Harty, H.
1988-05-01
This report summarizes the work performed in verifying the general purpose Monte Carlo driver-program PACSTAT. The main objective of the work was to verify the performance of PACSTAT's random number generation capabilities. Secondary objectives were to document (using controlled configuration management procedures) changes made in PACSTAT at Pacific Northwest Laboratory, and to assure that PACSTAT input and output files satisfy quality assurance traceability constraints. Upon receipt of the PRIME version of the PACSTAT code from the Basalt Waste Isolation Project, Pacific Northwest Laboratory staff converted the code to run on Digital Equipment Corporation (DEC) VAXs. The modifications to PACSTAT weremore » implemented using the WITNESS configuration management system, with the modifications themselves intended to make the code as portable as possible. Certain modifications were made to make the PACSTAT input and output files conform to quality assurance traceability constraints. 10 refs., 17 figs., 6 tabs.« less
Meeting EFL Learners Halfway by Using Locally Relevant Authentic Materials
ERIC Educational Resources Information Center
Thomas, Catherine
2014-01-01
The author defines and describes authentic materials and discusses their benefits--citing the Input Hypothesis and the Output Principle in support of such materials--as well as some challenges of using authentic materials. Five categories of authentic materials are presented, and sources for materials and ways to use them in the EFL classroom are…
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
40 CFR 98.113 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this section. (i) For each EAF, determine the annual mass of carbon in each carbon-containing input and output... section. Carbon-containing input materials include carbon electrodes and carbonaceous reducing agents. If...
State governments are showing an increasing interest in the concept and application of sustainable materials management (SMM). SMM implies that a life cycle perspective be taken on materials management and environmental and social impacts of materials be taken into account in eva...
Manual for LS-DYNA Wood Material Model 143
DOT National Transportation Integrated Search
2007-08-01
An elastoplastic damage model with rate effects was developed for wood and was implemented into LS-DYNA, a commercially available finite element code. This manual documents the theory of the wood material model, describes the LS-DYNA input and output...
Impacts-BRC (below regulatory concern): The microcomputer version
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.E.; O'Neal, B.L.
1989-01-01
The IMPACTS-BRC computer code was designed for use by the Nuclear Regulatory Commission and industry to evaluate petitions to classify specific waste streams as below regulatory concern (BRC). The code provides a capability for calculating radiation doses to a maximal individual, critical group, and the general population as a result of transportation, treatment, disposal, and post-disposal activities involving low level radioactive waste. Since IMPACTS-BRC is expected to be widely used, the code has been adapted for use on a microcomputer. The microcomputer version of the code provides several features that simplify its use and broaden its applicability. These features includemore » (1) a menu-driven environment, (2) an input editor to simplify creation and editing of input files, (3) default input values and help screens to guide the user in analyzing a particular problem, (4) the ability to perform both parametric studies and Monte Carlo analysis to examine uncertainties, and (5) interactive graphics and statistics output. This paper describes the microcomputer version of IMPACTS-BRC and illustrates its use through an example application. 5 refs., 5 figs., 3 tabs.« less
Global fishmeal and fish-oil supply: inputs, outputs and markets.
Shepherd, C J; Jackson, A J
2013-10-01
Recent data on fishmeal and fish-oil supply are presented identifying key producer countries and raw material sources and distinguishing between whole fish and by-products. The conversion of these raw materials into marine ingredients is discussed and global volumes presented. This is followed by a summary of the main countries using these marine ingredients over recent years. Uses of fishmeal and fish-oil by market segment are then presented. From this, a global mass balance of inputs and outputs is derived which allows the calculation of the input-to-output ratios (fish in:fish out; FIFO) for the main aquaculture production types to be made. Current areas of focus by the industry include the need to demonstrate sustainable practice, more strategic use of marine ingredients, greater use of fishery and land-animal by-products as well as vegetable substitutes, and novel sources of essential omega-3 fats, notably the long-chain polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Implications are drawn for future supply prospects of fishmeal and fish-oil and their future role in aquaculture, agriculture and human health. © 2013 The Fisheries Society of the British Isles.
30 CFR 206.460 - Transportation allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... washing allowance and the transportation allowance reduce the value for royalty purposes to zero. (c)(1... quantity of clean coal output and the rejected waste material. The transportation allowance shall be...
Computer program calculates gamma ray source strengths of materials exposed to neutron fluxes
NASA Technical Reports Server (NTRS)
Heiser, P. C.; Ricks, L. O.
1968-01-01
Computer program contains an input library of nuclear data for 44 elements and their isotopes to determine the induced radioactivity for gamma emitters. Minimum input requires the irradiation history of the element, a four-energy-group neutron flux, specification of an alloy composition by elements, and selection of the output.
Recent advances in yeast cell-surface display technologies for waste biorefineries.
Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko
2016-09-01
Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-15
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airbornemore » emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.« less
Cherubini, Francesco; Bargigli, Silvia; Ulgiati, Sergio
2008-12-01
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.
Waste minimization charges up recycling of spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queneau, P.B.; Troutman, A.L.
Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less
Solid recovered fuel: An experiment on classification and potential applications.
Bessi, C; Lombardi, L; Meoni, R; Canovai, A; Corti, A
2016-01-01
The residual urban waste of Prato district (Italy) is characterized by a high calorific value that would make it suitable for direct combustion in waste-to-energy plants. Since the area of central Italy lacks this kind of plant, residual municipal waste is quite often allocated to mechanical treatment plants in order to recover recyclable materials (such as metals) and energy content, sending the dry fractions to waste-to-energy plants outside the region. With the previous Italian legislation concerning Refuse Derived Fuels, only the dry stream produced as output by the study case plant, considered in this study, could be allocated to energy recovery, while the other output flows were landfilled. The most recent Italian regulation, introduced a new classification for the fuel streams recovered from waste following the criteria of the European standard (EN 15359:2011), defining the Solid Recovered Fuel (SRF). In this framework, the aim of this study was to check whether the different streams produced as output by the study case plant could be classified as SRF. For this reason, a sampling and analysis campaign was carried out with the purpose of characterizing every single output stream that can be obtained from the study case mechanical treatment plant, when operating it in different ways. The results showed that all the output flows from the study case mechanical treatment plant were classified as SRF, although with a wide quality range. In particular, few streams, of rather poor quality, could be fed to waste-to-energy plants, compatibly with the plant feeding systems. Other streams, with very high quality, were suitable for non-dedicated facilities, such as cement plants or power plants, as a substitute for coal. The implementation of the new legislation has hence the potential for a significant reduction of landfilling, contributing to lowering the overall environmental impact by avoiding the direct impacts of landfilling and by exploiting the beneficial effects of energy recovery from waste. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development and weighting of a life cycle assessment screening model
NASA Astrophysics Data System (ADS)
Bates, Wayne E.; O'Shaughnessy, James; Johnson, Sharon A.; Sisson, Richard
2004-02-01
Nearly all life cycle assessment tools available today are high priced, comprehensive and quantitative models requiring a significant amount of data collection and data input. In addition, most of the available software packages require a great deal of training time to learn how to operate the model software. Even after this time investment, results are not guaranteed because of the number of estimations and assumptions often necessary to run the model. As a result, product development, design teams and environmental specialists need a simplified tool that will allow for the qualitative evaluation and "screening" of various design options. This paper presents the development and design of a generic, qualitative life cycle screening model and demonstrates its applicability and ease of use. The model uses qualitative environmental, health and safety factors, based on site or product-specific issues, to sensitize the overall results for a given set of conditions. The paper also evaluates the impact of different population input ranking values on model output. The final analysis is based on site or product-specific variables. The user can then evaluate various design changes and the apparent impact or improvement on the environment, health and safety, compliance cost and overall corporate liability. Major input parameters can be varied, and factors such as materials use, pollution prevention, waste minimization, worker safety, product life, environmental impacts, return of investment, and recycle are evaluated. The flexibility of the model format will be discussed in order to demonstrate the applicability and usefulness within nearly any industry sector. Finally, an example using audience input value scores will be compared to other population input results.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.
Talens Peiró, Laura; Villalba Méndez, Gara; Gabarrell i Durany, Xavier
2008-07-01
Used cooking oil (UCO) is a domestic waste generated daily by food industries, restaurants, and households. It is estimated that in Europe 5 kg of UCO are generated per inhabitant, totalling 2.5 million metric tons per year. Recovering UCO for the production of biodiesel offers a way of minimizing and avoiding this waste and related pollution. An exergy analysis of the integrated waste management (IWM) scheme for UCO is used to evaluate such a possibility by accounting for inputs and outputs in each stage, calculating the exergy loss and the resource input and quantifying the possible improvements. The IWM includes the collection, pretreatment, and delivery of UCO and the production of biodiesel. The results show that the greatest exergy loss occurs during the transport stages (57%). Such exergy loss can be minimized to 20% by exploiting the full capacity of collecting vans and using biodiesel in the transport stages. Further, the cumulative exergy consumption helps study how the exergy consumption of biodiesel can be further reduced by using methanol obtained from biogas in the transesterification stage. Finally, the paper discusses how increasing the collection of UCO helps minimize uncontrolled used oil disposal and consequently provides a sustainable process for biodiesel production.
Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold
2016-12-01
In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phasing surface emitting diode laser outputs into a coherent laser beam
Holzrichter, John F [Berkeley, CA
2006-10-10
A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
Demonstration and Validation of a Waste-to-Energy Conversion System for Fixed DoD Installations
2013-09-01
hydrocarbon HVAC heating, ventilation , and air conditioning HX heat exchanger I/O input/output ISO International Organization for Standardization...DEMONSTRATION In 2011, renewable energy accounted for just 9% of total energy consumption in the United States, and just 5% (or 0.45% overall) of that (477...operations and facilities.3 Facility energy costs accounted for ~21% ($4.1 billion). DoD has made great progress in reducing its energy consumption for
The environmental impact of recombinant bovine somatotropin (rbST) use in dairy production
Capper, Judith L.; Castañeda-Gutiérrez, Euridice; Cady, Roger A.; Bauman, Dale E.
2008-01-01
The environmental impact of using recombinant bovine somatotropin (rbST) in dairy production was examined on an individual cow, industry-scale adoption, and overall production system basis. An average 2006 U.S. milk yield of 28.9 kg per day was used, with a daily response to rbST supplementation of 4.5 kg per cow. Rations were formulated and both resource inputs (feedstuffs, fertilizers, and fuels) and waste outputs (nutrient excretion and greenhouse gas emissions) calculated. The wider environmental impact of production systems was assessed via acidification (AP), eutrophication (EP), and global warming (GWP) potentials. From a producer perspective, rbST supplementation improved individual cow production, with reductions in nutrient input and waste output per unit of milk produced. From an industry perspective, supplementing one million cows with rbST reduced feedstuff and water use, cropland area, N and P excretion, greenhouse gas emissions, and fossil fuel use compared with an equivalent milk production from unsupplemented cows. Meeting future U.S. milk requirements from cows supplemented with rbST conferred the lowest AP, EP, and GWP, with intermediate values for conventional management and the highest environmental impact resulting from organic production. Overall, rbST appears to represent a valuable management tool for use in dairy production to improve productive efficiency and to have less negative effects on the environment than conventional dairying. PMID:18591660
McCann, J.A.; Jones, R.H.
1961-08-15
A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Asbury, C.E.; Oaksford, E.T.
1997-01-01
Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.
High voltage photo switch package module
Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E
2014-02-18
A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.
A new approach for implementation of associative memory using volume holographic materials
NASA Astrophysics Data System (ADS)
Habibi, Mohammad; Pashaie, Ramin
2012-02-01
Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.
Morf, Leo S; Tremp, Josef; Gloor, Rolf; Huber, Yvonne; Stengele, Markus; Zennegg, Markus
2005-11-15
Brominated flame retardants (BFRs) are synthetic additives mainly used in electrical and electronic appliances and in construction materials. The properties of some BFRs are typical for persistent organic pollutants, and certain BFRs, in particular some polybrominated diphenyl ether (PBDE) congeners and hexabromocyclododecane (HBCD), are suspected to cause adverse health effects. Global consumption of the most demanded BFRs, i.e., penta-, octa-, and decaBDE, tetrabromobisphenol A (TBBPA), and HBCD, has doubled in the 1990s. Only limited and rather uncertain data are available regarding the occurrence of BFRs in consumer goods and waste fractions as well as regarding emissions during use and disposal. The knowledge of anthropogenic substance flows and stocks is essential for early recognition of environmental impacts and effective chemicals management. In this paper, actual levels of penta-, octa-, and decaBDE, TBBPA, and HBCD in waste electrical and electronic equipment (WEEE) as a major carrier of BFRs are presented. These BFRs have been determined in products of a modern Swiss recycling plant applying gas chromatography/electron capture detection and gas chromatography/mass spectrometry analysis. A substance flow analysis (SFA) technique has been used to characterize the flows of target substances in the recycling process from the bulk WEEE input into the output products. Average concentrations in small size WEEE, representing the relevant electric and electronic appliances in WEEE, sampled in 2003 amounted to 34 mg/kg for pentaBDE, 530 mg/kg for octaBDE, 510 mg/kg for decaBDE, 1420 mg/kg for TBBPA (as an additive), 17 mg/kg for HBCD, 5500 mg/kg for bromine, and 1700 mg/kg for antimony. In comparison to data that have been calculated by SFA for Switzerland from literature for the 1990s, these measured concentrations in small size WEEE were 7 times higher for pentaBDE, unexpectedly about 50% lower for decaBDE, and agreed fairly well for TBBPA (as an additive) and octaBDE. Roughly 60% of the total bromine input determined by SFA based on X-ray fluorescence analysis of the output materials of the recycling plant cannot be assigned to the selected BFRs. This is an indication for the presence of other brominated substances as substitutes for PBDEs in electrical and electronic equipment. The presence of BFRs, in particular PBDEs in the low grams per kilogram concentration range, in the fine dust fraction recovered in the off-gas purification system of the recycling plant reveals a high potential for BFR emissions from WEEE management and point out the importance for environmentally sound recycling and disposal technologies for BFR-containing residues.
DOE-2 sample run book: Version 2.1E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.
1993-11-01
The DOE-2 Sample Run Book shows inputs and outputs for a variety of building and system types. The samples start with a simple structure and continue to a high-rise office building, a medical building, three small office buildings, a bar/lounge, a single-family residence, a small office building with daylighting, a single family residence with an attached sunspace, a ``parameterized`` building using input macros, and a metric input/output example. All of the samples use Chicago TRY weather. The main purpose of the Sample Run Book is instructional. It shows the relationship of LOADS-SYSTEMS-PLANT-ECONOMICS inputs, displays various input styles, and illustrates manymore » of the basic and advanced features of the program. Many of the sample runs are preceded by a sketch of the building showing its general appearance and the zoning used in the input. In some cases we also show a 3-D rendering of the building as produced by the program DrawBDL. Descriptive material has been added as comments in the input itself. We find that a number of users have loaded these samples onto their editing systems and use them as ``templates`` for creating new inputs. Another way of using them would be to store various portions as files that can be read into the input using the {number_sign}{number_sign} include command, which is part of the Input Macro feature introduced in version DOE-2.lD. Note that the energy rate structures here are the same as in the DOE-2.lD samples, but have been rewritten using the new DOE-2.lE commands and keywords for ECONOMICS. The samples contained in this report are the same as those found on the DOE-2 release files. However, the output numbers that appear here may differ slightly from those obtained from the release files. The output on the release files can be used as a check set to compare results on your computer.« less
Radiocesium migration in the litter layer of different forest types in Fukushima, Japan.
Kurihara, Momo; Onda, Yuichi; Kato, Hiroaki; Loffredo, Nicolas; Yasutaka, Tetsuo; Coppin, Frederic
2018-07-01
Cesium-137 ( 137 Cs) migration in the litter layer consists of various processes, such as input via throughfall, output via litter decomposition, and input from deeper layers via soil organism activity. We conducted litter bag experiments over 2 years (December 2014-November 2016) to quantify the inputs and outputs of 137 Cs in the litter layer in a Japanese cedar plantation (Cryptomeria japonica) and a mixed broadleaf forest dominated by Quercus serrata located 40 km northwest of the Fukushima Dai-ichi Nuclear Power Plant. The experiments included four conditions, combining contaminated and non-contaminated litter and deeper layer material, and the inputs and outputs were estimated from the combination of 137 Cs increases and decreases in the litter layer under each condition. The 137 Cs dynamics differed between the two forests. In the C. japonica forest, some 137 Cs input via throughfall remained in the litter layer, and downward 137 Cs flux passed through the litter layer was 0.42 (/year).Upward flux of 137 Cs from the deeper layer was very restricted, < 0.017 (/year). In the broadleaf forest, migration of 137 Cs in throughfall into deeper layers was restricted, downward 137 Cs flux was less than 0.003 (/year).Upward input of 137 Cs from the deeper layer was prominent, 0.037 (/year). 137 Cs output via litter decomposition was observed in both forests. The flux in the C. japonica forest was slower than that in the broadleaf forest, 0.12 and 0.15 (/year), respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Inverter ratio failure detector
NASA Technical Reports Server (NTRS)
Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)
1974-01-01
A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.
Dervaux, B; Leleu, H; Valdmanis, V; Walker, D
2003-12-01
An aim of vaccination programs is near-complete coverage. One method for achieving this is for health facilities providing these services to operate frequently and for many hours during each session. However, if vaccine vials are not fully used, the remainder is often discarded, considered as waste. Without an active appointment schedule process, there is no way for facility staff to control the stochastic demand of potential patients, and hence reduce waste. And yet reducing the hours of operation or number of sessions per week could hinder access to vaccination services. In lieu of any formal system of controlling demand, we propose to model the optimal number of hours and sessions in order to maximize outputs, the number and type of vaccines provided given inputs, using Data Envelopment Analysis (DEA). Inputs are defined as the amount of vaccine wastage and the number of full-time equivalent staff, size of the facility, number of hours of operation and the number of sessions. Outputs are defined as the number and type of vaccines aimed at children and pregnant women. This analysis requires two models: one DEA model with possible reallocations between the number of hours and the number of sessions but with the total amount of time fixed and one model without this kind of reallocation in scheduling. Comparing these two scores we can identify the "gain" that would be possible were the scheduling of hours and sessions modified while controlling for all other types of inefficiency. By modeling an output-based model, we maintain the objective of increasing coverage while assisting decision-makers determining optimal operating processes.
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Harvest and utilization of chemical energy in wastes by microbial fuel cells.
Sun, Min; Zhai, Lin-Feng; Li, Wen-Wei; Yu, Han-Qing
2016-05-21
Organic wastes are now increasingly viewed as a resource of energy that can be harvested by suitable biotechnologies. One promising technology is microbial fuel cells (MFC), which can generate electricity from the degradation of organic pollutants. While the environmental benefits of MFC in waste treatment have been recognized, their potential as an energy producer is not fully understood. Although progresses in material and engineering have greatly improved the power output from MFC, how to efficiently utilize the MFC's energy in real-world scenario remains a challenge. In this review, fundamental understandings on the energy-generating capacity of MFC from real waste treatment are provided and the challenges and opportunities are discussed. The limiting factors restricting the energy output and impairing the long-term reliability of MFC are also analyzed. Several energy storage and in situ utilization strategies for the management of MFC's energy are proposed, and future research needs for real-world application of this approach are explored.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
A nanomaterial release model for waste shredding using a Bayesian belief network
NASA Astrophysics Data System (ADS)
Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk
2018-02-01
The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.
Engineered Barrier System: Physical and Chemical Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Dixon
2004-04-26
The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less
Ecologising Societal Metabolism and Recycling of Phosphorus At Household and Neighbourhood Level
NASA Astrophysics Data System (ADS)
Gumbo, B.; Savenije, H. H. G.
The pressures of humanity on a fragile water resource base, and the corresponding need for environmental and freshwater protection requires that human excreta and other societal wastes (solid and liquid) be recycled and used as a resource. The Bel- lagio principles underpin the basis for this new approach to environmental sanitation. There are two main concepts emanating from the Bellagio principles, which make the basis of this paper. Firstly, the Household Centred Environmental Sanitation (HCES) puts the household at the focal point of environmental sanitation planning and; sec- ondly, the Circular System of Resource Management (CSRM) that emphasises conser- vation, local recycling and reuse of resources. Recycling of Phosphorus (P) in urban or peri-urban ecological agriculture (without synthetic fertilisers) is used in this paper to assess the feasibility of these concepts. An inventory of annual P-fluxes based on characterisation of input goods, processes, transformation, output fluxes and storage was conducted for a high-density suburb in Harare, Zimbabwe where agriculture is already a major activity. Using systems thinking approach and material flow account- ing two compartments or subsystems are defined to enable accounting and analysis of P-bearing materials. The "household" (consumption/use and excretion/waste) and "agriculture" (soil-plant interaction). With a population of about 100 000 inhabitants, P inflows amount to about 26 600 kg/a and 1 900 kg/a as food/beverages and deter- gents respectively within the "household" subsystem. Storage is taken as negligible, whilst 85
Ni, Hong-Gang; Lu, Shao-You; Mo, Ting; Zeng, Hui
2016-07-01
Based on the most widely used plastics in China, five plastic wastes were selected for investigation of brominated flame retardant (BFR) emission behaviors during open burning. Considerable variations were observed in the emission factors (EF) of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) from the combustion of different plastic wastes. Distribution of BFR output mass showed that ΣPBDE was emitted mainly by the airborne particle (51%), followed by residual ash (44%) and the gas phase (5.1%); these values for ΣHBCD were 62%, 24%, and 14%, respectively. A lack of mass balance after the burning of the plastic wastes for some congeners (output/input mass ratios>1) suggested that formation and survival exceeded PBDE decomposition during the burns. However, that was not the case for HBCD. A comparison with literature data showed that the open burning of plastic waste is major source of PBDE compared to regulated combustion activities. Even for state-of-the-art waste incinerators equipped with sophisticated complex air pollution control technologies, BFRs are released on a small scale to the environment. According to our estimate, ΣPBDE release to the air and land from municipal solid waste (MSW) incineration plants in China in 2015 were 105 kg/year and 7124 kg/year. These data for ΣHBCD were 25.5 and 71.7 kg/year, respectively. Considering the fact that a growing number of cities in China are switching to incineration as the preferred method for MSW treatment, our estimate is especially important. This study provides the first data on the environmental exposure of BFRs emitted from MSW incineration in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nutrient contributions and biogas potential of co-digestion of feedstocks and dairy manure.
Ma, Guiling; Neibergs, J Shannon; Harrison, Joseph H; Whitefield, Elizabeth M
2017-06-01
This study focused on collection of data on nutrient flow and biogas yield at a commercial anaerobic digester managed with dairy manure from a 1000 cow dairy and co-digestion of additional feedstocks. Feedstocks included: blood, fish, paper pulp, out of date beverages and grease trap waste. Mass flow of inputs and outputs, nutrient concentration of inputs and outputs, and biogas yield were obtained. It was determined that manure was the primary source of nutrients to the anaerobic digester when co-digested with feedstocks. The percentage of contribution from manure to the total nutrient inputs for total nitrogen, ammonia-nitrogen, phosphorus and total solids was 46.3%, 67.7%, 32.8% and 23.4%, respectively. On average, manure contributed the greatest amount of total nitrogen and ammonia-nitrogen. Grease trap waste contributed the greatest amount of phosphorus and total solids at approximately 50%. Results demonstrated that a reliable estimate of nutrient inflow could be obtained from the product of the nutrient analyses of a single daily composite of influent subsamples times the total daily flow estimated with an in-line flow meter. This approach to estimate total daily nutrient inflow would be more cost effective than testing and summing the contribution of individual feedstocks. Data collected after liquid-solid separation confirmed that the majority (>75%) of nutrients remain with the liquid effluent portion of the manure stream. It was demonstrated that the ash concentration in solids before and after composting could be used to estimate the mass balance of total solids during the compost process. This data confirms that biogas or methane yield could be accurately measured from the ratio of % volatile solids to % total solids. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sirait, M.
2018-01-01
The aim of this research is to conduct cleaner production options for improving the environmental performance during the production of batik industry, the case of UKM batik, Malang, East Java. Batik industry is one of small and medium textile industry which has contribution to economic growth in Malang. However, during production the batik, it generates wastewater that has potential to decrease the environmental performance. Wastewater from Celaket batik industry has BOD, COD, TSS, and pH level is far larger than the threshold of water quality standard as a result of use chemical substance during the dyes processing. In order to prevent generating wastewater, this study utilized cleaner production options, such as substitution of input material.Substitution of input material for dyes process was implemented by replacement chemical dyes (e.g.indigosol, nafthol, rapid) with natural dyes (e.g. Indigofero Tintoria). Modifying of technology/equipment was conducted by developing wastewater treatment equipment to reduce waste of batik production. The implementation of this strategy was carried out by changing input material from chemical dyes with natural dyes. The CP uptake could reduce significantly the environmental impact in term of reduction of COD, BOD, and TSS.
User's manual for a material transport code on the Octopus Computer Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naymik, T.G.; Mendez, G.D.
1978-09-15
A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.
Carbon materials derived from waste tires as high-performance anodes in microbial fuel cells.
Chen, Wei; Feng, Huajun; Shen, Dongsheng; Jia, Yufeng; Li, Na; Ying, Xianbin; Chen, Ting; Zhou, Yuyang; Guo, Jiayun; Zhou, Mengjiao
2018-03-15
In this study, carbonized waste tires were directly used as a high-performance anode material in microbial fuel cells (MFCs). The effect of the pyrolysis temperature used for waste tire carbonization on the current output performance was investigated to determine the optimal pyrolysis temperature. Thermal gravimetric analysis/differential scanning calorimetry showed that tire carbonization started at 200°C and ended at about 500°C; the weight loss was about 64%. When used in an MFC, the electrode obtained from waste tires carbonized at 800°C gave a current density of 23.1±1.4Am -2 , which is much higher than that achieved with traditional graphite felt anodes (5.5±0.1Am -2 ). The results of this study will be useful in optimizing the design of carbonized waste tire anodes for enhancing MFC performances and will alleviate the environmental problems caused by waste tires. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy harvesting from low frequency applications using piezoelectric materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huidong; Tian, Chuan; Deng, Z. Daniel, E-mail: zhiqun.deng@pnnl.gov
2014-12-15
In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and themore » methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters.« less
A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.
Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian
2016-08-16
Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.
Matsukami, Hidenori; Kose, Tomohiro; Watanabe, Mafumi; Takigami, Hidetaka
2014-09-15
Chlorinated and non-halogenated organophosphorus flame retardants (OPFRs) including tris(2-chloroisopropyl) phosphate (TCIPP), diethylene glycol bis(di(2-chloroisopropyl) phosphate) (DEG-BDCIPP), triphenyl phosphate (TPHP), and bisphenol A bis(diphenyl phosphate) (BPA-BDPP) have been used increasingly as alternatives to polybrominated diphenyl ethers and other brominated flame retardants. For this study, five batches of incineration experiments of wastes containing approximately 1% of TCIPP, DEG-BDCIPP, TPHP, and BPA-BDPP were conducted using a pilot-scale incinerator. Destruction and emission behaviors of OPFRs were investigated along with the effects on behaviors of unintentional persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), and pentachlorophenol (PCP). Incineration conditions were chosen according to current regulations for waste incinerators in Japan and UNEP. The OPFRs in the input materials were mainly destroyed in the primary combustion with destruction efficiencies greater than 99.999%. Concentrations of the OPFRs in the exhaust gases and ash were, respectively, <0.01-0.048 μg m(-3) and <0.5-68 μg kg(-1). Almost all of the total phosphorus in the input materials was partitioned into the ash, but less into final exit gases, indicating negligible emissions of volatile phosphorus compounds during incineration. Inputs of chlorinated OPFRs did not affect the formation markedly. Destruction and emission behaviors of unintentional POPs were investigated. Emissions of such POPs in exhaust gases and the ash were lower than the Japanese and international standards. Results show that even in wastes with high contents of chlorinated and non-halogenated OPFRs, waste incineration by the current regulations for the waste incinerators can control environmental emissions of OPFRs and unintentional POPs. Incineration is regarded as a best available technology (BAT) for waste management systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Sustainability assessment of shielded metal arc welding (SMAW) process
NASA Astrophysics Data System (ADS)
Alkahla, Ibrahim; Pervaiz, Salman
2017-09-01
Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.
The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J., E-mail: skoester@umn.edu
All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare themore » effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.« less
Marken, Richard S; Horth, Brittany
2011-06-01
Experimental research in psychology is based on an open-loop causal model which assumes that sensory input causes behavioral output. This model was tested in a tracking experiment where participants were asked to control a cursor, keeping it aligned with a target by moving a mouse to compensate for disturbances of differing difficulty. Since cursor movements (inputs) are the only observable cause of mouse movements (outputs), the open-loop model predicts that there will be a correlation between input and output that increases as tracking performance improves. In fact, the correlation between sensory input and motor output is very low regardless of the quality of tracking performance; causality, in terms of the effect of input on output, does not seem to imply correlation in this situation. This surprising result can be explained by a closed-loop model which assumes that input is causing output while output is causing input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif
Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less
Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.
Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José
2015-01-01
A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.
NASA Astrophysics Data System (ADS)
Fachrurrozi, Muhammad; Saparudin; Erwin
2017-04-01
Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.
Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra
2014-10-01
In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sustainability assessment and prioritisation of bottom ash management in Macao.
Sou, W I; Chu, Andrea; Chiueh, P T
2016-12-01
In Macao, about 7200 t yr -1 of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions. © The Author(s) 2016.
Handbook of energy utilization in agriculture. [Collection of available data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimentel, D.
1980-01-01
Available data, published and unpublished, on energy use in agriculture and forestry production are presented. The data specifically focus on the energy-input aspects of crop, livestock, and forest production. Energy values for various agricultural inputs are discussed in the following: Energy Inputs for Nitrogen, Phosphorus, and Potash Fertilizers; Energy Used in the US for Agricultural Liming Materials; Assessing the Fossil Energy Costs of Propagating Agricultural Crops; Energy Requirements for Irrigation; Energy Inputs for the Production, Formulation, Packaging, and Transport of Various Pesticides; Energy Requirements for Various Methods of Crop Drying; Energy Used for Transporting Supplies to the Farm; and Unitmore » Energy Cost of Farm Buildings. Energy inputs and outputs for field crop systems are discussed for barley, corn, oats, rice, rye, sorghum, wheat, soybeans, dry beans, snap beans, peas, safflower, sugarcane in Louisiana, sugar beet, alfalfa, hay, and corn silage. Energy inputs for vegetables are discussed for cabbage, Florida celery, lettuce, potato, pickling cucumbers, cantaloupes, watermelon, peppers, and spinach. Energy inputs and outputs for fruits and tree crops discussed are: Eastern US apples, apricots, cherries, peaches, pears, plums and prunes, grapes in the US, US citrus, banana in selected areas, strawberries in the US, red raspberries, blueberries, cranberries, pecans, walnuts, almonds, and maple production in Vermont. Energy inputs and outputs for livestock production are determined for dairy products, poultry, swine, beef, sheep, and aquaculture. Energy requirments for inshore and offshore fishing crafts (the case of the Northeast fishery) and energy production and consumption in wood harvest are presented.« less
Licursi, Domenico; Antonetti, Claudia; Martinelli, Marco; Ribechini, Erika; Zanaboni, Marco; Raspolli Galletti, Anna Maria
2016-03-01
Recycled paper needs a lot of mechanical/chemical treatments for its re-use in the papermaking process. Some of these ones produce considerable rejected waste fractions, such as "screen rejects", which include both cellulose fibers and non-fibrous organic contaminants, or "stickies", these last representing a shortcoming both for the papermaking process and for the quality of the final product. Instead, the accepted fractions coming from these unit operations become progressively poorer in contaminants and richer in cellulose. Here, input and output streams coming from mechanical screening systems of a papermaking plant using recycled paper for cardboard production were sampled and analyzed directly and after solvent extraction, thus confirming the abundant presence of styrene-butadiene rubber (SBR) and ethylene vinyl acetate (EVA) copolymers in the output rejected stream and cellulose in the output accepted one. Despite some significant drawbacks, the "screen reject" fraction could be traditionally used as fuel for energy recovery within the paper mill, in agreement with the integrated recycled paper mill approach. The waste, which still contains a cellulose fraction, can be also exploited by means of the hydrothermal route to give levulinic acid, a platform chemical of very high value added. Copyright © 2016 Elsevier Ltd. All rights reserved.
Implementing wavelet inverse-transform processor with surface acoustic wave device.
Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan
2013-02-01
The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.
Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.
Li, Wenfeng; Cui, Zhaojie; Han, Feng
2015-01-01
The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140.96%, respectively. The computation result for each indicator revealed that IS could lead to the use of energy with high efficiency and lighten the financial burden of enterprises in the XF IP. And the proposed index system may help IPs and EIPs to make strategic decisions when designing IS modes.
A computer program for simulating geohydrologic systems in three dimensions
Posson, D.R.; Hearne, G.A.; Tracy, J.V.; Frenzel, P.F.
1980-01-01
This document is directed toward individuals who wish to use a computer program to simulate ground-water flow in three dimensions. The strongly implicit procedure (SIP) numerical method is used to solve the set of simultaneous equations. New data processing techniques and program input and output options are emphasized. The quifer system to be modeled may be heterogeneous and anisotropic, and may include both artesian and water-table conditions. Systems which consist of well defined alternating layers of highly permeable and poorly permeable material may be represented by a sequence of equations for two dimensional flow in each of the highly permeable units. Boundaries where head or flux is user-specified may be irregularly shaped. The program also allows the user to represent streams as limited-source boundaries when the streamflow is small in relation to the hydraulic stress on the system. The data-processing techniques relating to ' cube ' input and output, to swapping of layers, to restarting of simulation, to free-format NAMELIST input, to the details of each sub-routine 's logic, and to the overlay program structure are discussed. The program is capable of processing large models that might overflow computer memories with conventional programs. Detailed instructions for selecting program options, for initializing the data arrays, for defining ' cube ' output lists and maps, and for plotting hydrographs of calculated and observed heads and/or drawdowns are provided. Output may be restricted to those nodes of particular interest, thereby reducing the volumes of printout for modelers, which may be critical when working at remote terminals. ' Cube ' input commands allow the modeler to set aquifer parameters and initialize the model with very few input records. Appendixes provide instructions to compile the program, definitions and cross-references for program variables, summary of the FLECS structured FORTRAN programming language, listings of the FLECS and FORTRAN source code, and samples of input and output for example simulations. (USGS)
System and methods for reducing harmonic distortion in electrical converters
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2013-12-03
Systems and methods are provided for delivering energy using an energy conversion module. An exemplary method for delivering energy from an input interface to an output interface using an energy converison module coupled between the input interface and the output interface comprises the steps of determining an input voltage reference for the input interface based on a desired output voltage and a measured voltage and the output interface, determining a duty cycle control value based on a ratio of the input voltage reference and the measured voltage, operating one or more switching elements of the energy conversion module to deliver energy from the input interface to the output interface to the output interface with a duty cycle influenced by the dute cycle control value.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Optimal inverse functions created via population-based optimization.
Jennings, Alan L; Ordóñez, Raúl
2014-06-01
Finding optimal inputs for a multiple-input, single-output system is taxing for a system operator. Population-based optimization is used to create sets of functions that produce a locally optimal input based on a desired output. An operator or higher level planner could use one of the functions in real time. For the optimization, each agent in the population uses the cost and output gradients to take steps lowering the cost while maintaining their current output. When an agent reaches an optimal input for its current output, additional agents are generated in the output gradient directions. The new agents then settle to the local optima for the new output values. The set of associated optimal points forms an inverse function, via spline interpolation, from a desired output to an optimal input. In this manner, multiple locally optimal functions can be created. These functions are naturally clustered in input and output spaces allowing for a continuous inverse function. The operator selects the best cluster over the anticipated range of desired outputs and adjusts the set point (desired output) while maintaining optimality. This reduces the demand from controlling multiple inputs, to controlling a single set point with no loss in performance. Results are demonstrated on a sample set of functions and on a robot control problem.
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-01-01
Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.
NASA Astrophysics Data System (ADS)
Li, Shifeng; Duan, Zhaoyun; Huang, Hua; Liu, Zhenbang; He, Hu; Wang, Fei; Wang, Zhanliang; Gong, Yubin
2018-04-01
In this paper, an extended interaction oversized coaxial relativistic klystron amplifier (EIOC-RKA) with Gigawatt-level output at Ka band is proposed. We introduce the oversized coaxial and multi-gap resonant cavities to increase the power capacity and investigate a non-uniform extended interaction output cavity to improve the electronic efficiency of the EIOC-RKA. We develop a high order mode gap in the input and output cavities to easily design and fabricate the input and output couplers. Meanwhile, we design the EIOC-RKA by using the particle-in-cell simulation. In the simulations, we use an electron beam with a current of 6 kA and a voltage of 525 kV, which is focused by a low focusing magnetic flux intensity of 0.5 T. The simulation results demonstrate that the saturated output power is 1.17 GW, the electronic efficiency is 37.1%, and the saturated gain is 57 dB at 30 GHz. The self-oscillation is suppressed by adopting the absorbing materials. The proposed EIOC-RKA has plenty of advantages such as large power capacity, high electronic efficiency, low focusing magnetic, high gain, and simple structure.
The environmental impact of dairy production: 1944 compared with 2007.
Capper, J L; Cady, R A; Bauman, D E
2009-06-01
A common perception is that pasture-based, low-input dairy systems characteristic of the 1940s were more conducive to environmental stewardship than modern milk production systems. The objective of this study was to compare the environmental impact of modern (2007) US dairy production with historical production practices as exemplified by the US dairy system in 1944. A deterministic model based on the metabolism and nutrient requirements of the dairy herd was used to estimate resource inputs and waste outputs per billion kg of milk. Both the modern and historical production systems were modeled using characteristic management practices, herd population dynamics, and production data from US dairy farms. Modern dairy practices require considerably fewer resources than dairying in 1944 with 21% of animals, 23% of feedstuffs, 35% of the water, and only 10% of the land required to produce the same 1 billion kg of milk. Waste outputs were similarly reduced, with modern dairy systems producing 24% of the manure, 43% of CH(4), and 56% of N(2)O per billion kg of milk compared with equivalent milk from historical dairying. The carbon footprint per billion kilograms of milk produced in 2007 was 37% of equivalent milk production in 1944. To fulfill the increasing requirements of the US population for dairy products, it is essential to adopt management practices and technologies that improve productive efficiency, allowing milk production to be increased while reducing resource use and mitigating environmental impact.
Second Generation Integrated Composite Analyzer (ICAN) Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Ginty, Carol A.; Sanfeliz, Jose G.
1993-01-01
This manual updates the original 1986 NASA TP-2515, Integrated Composite Analyzer (ICAN) Users and Programmers Manual. The various enhancements and newly added features are described to enable the user to prepare the appropriate input data to run this updated version of the ICAN code. For reference, the micromechanics equations are provided in an appendix and should be compared to those in the original manual for modifications. A complete output for a sample case is also provided in a separate appendix. The input to the code includes constituent material properties, factors reflecting the fabrication process, and laminate configuration. The code performs micromechanics, macromechanics, and laminate analyses, including the hygrothermal response of polymer-matrix-based fiber composites. The output includes the various ply and composite properties, the composite structural response, and the composite stress analysis results with details on failure. The code is written in FORTRAN 77 and can be used efficiently as a self-contained package (or as a module) in complex structural analysis programs. The input-output format has changed considerably from the original version of ICAN and is described extensively through the use of a sample problem.
GUIDE TO CLEANER TECHNOLOGIES: ORGANIC COATING REMOVAL
A cleaner technology is a source reduction or recycle method |applied to eliminate or significantly reduce hazardous waste generation. Source reduction includes product changes and source control. Source control can be further characterized as input material changes, technology...
Influences of climate and land use on contemporary ...
Human beings have greatly accelerated nitrogen and phosphorus flows from land to aquatic ecosystems, often resulting in eutrophication, harmful algal blooms, and hypoxia in lakes and coastal waters. Although differences in nitrogen export from watersheds have been clearly linked to a combination of human nitrogen sources and climate in the U.S., relatively less is known about how natural and anthropogenic landscape characteristics mediate losses of phosphorus from watersheds. We quantified major phosphorus inputs (fertilizer, manure, and human waste) and outputs (riverine export, crop harvest and sewage treatment) for 94 watersheds in 2012 across the continental U.S. and examined how climate, hydrology, soil characteristics, and land use influenced phosphorus exports from watersheds to rivers as total phosphorus and dissolved inorganic phosphorus concentrations and yields. We identified regional differences in major input sources as well as the importance of landscape mediating factors, highlighting the importance of both the biophysical and anthropogenic contexts on the relationship between major phosphorus sources and water quality. This study represents the most up-to-date spatially explicit inventory of anthropogenic P inputs and outputs for the conterminous United States. Linking this inventory with losses of phosphorus to waterways is an important step in understanding what policies and practices may be most effective in mitigating water quality problems.
Synaptic control of the shape of the motoneuron pool input-output function
Heckman, Charles J.
2017-01-01
Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire. NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs. PMID:28053245
On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers
NASA Technical Reports Server (NTRS)
Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)
2015-01-01
A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
Relative risk analysis of several manufactured nanomaterials: an insurance industry context.
Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R
2005-11-15
A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.
Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora
2012-05-01
As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cellular MYCro economics: Balancing MYC function with MYC expression.
Levens, David
2013-11-01
The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.
Modelling the nitrogen loadings from large yellow croaker (Larimichthys crocea) cage aquaculture.
Cai, Huiwen; Ross, Lindsay G; Telfer, Trevor C; Wu, Changwen; Zhu, Aiyi; Zhao, Sheng; Xu, Meiying
2016-04-01
Large yellow croaker (LYC) cage farming is a rapidly developing industry in the coastal areas of the East China Sea. However, little is known about the environmental nutrient loadings resulting from the current aquaculture practices for this species. In this study, a nitrogenous waste model was developed for LYC based on thermal growth and bioenergetic theories. The growth model produced a good fit with the measured data of the growth trajectory of the fish. The total, dissolved and particulate nitrogen outputs were estimated to be 133, 51 and 82 kg N tonne(-1) of fish production, respectively, with daily dissolved and particulate nitrogen outputs varying from 69 to 104 and 106 to 181 mg N fish(-1), respectively, during the 2012 operational cycle. Greater than 80 % of the nitrogen input from feed was predicted to be lost to the environment, resulting in low nitrogen retention (<20 %) in the fish tissues. Ammonia contributed the greatest proportion (>85 %) of the dissolved nitrogen generated from cage farming. This nitrogen loading assessment model is the first to address nitrogenous output from LYC farming and could be a valuable tool to examine the effects of management and feeding practices on waste from cage farming. The application of this model could help improve the scientific understanding of offshore fish farming systems. Furthermore, the model predicts that a 63 % reduction in nitrogenous waste production could be achieved by switching from the use of trash fish for feed to the use of pelleted feed.
NASA Technical Reports Server (NTRS)
Neilson, Jeffrey M. (Inventor)
2002-01-01
A horn has an input aperture and an output aperture, and comprises a conductive inner surface formed by rotating a curve about a central axis. The curve comprises a first arc having an input aperture end and a transition end, and a second arc having a transition end and an output aperture end. When rotated about the central axis, the first arc input aperture end forms an input aperture, and the second arc output aperture end forms an output aperture. The curve is then optimized to provide a mode conversion which maximizes the power transfer of input energy to the Gaussian mode at the output aperture.
Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.
Chen, Wei-Qiang; Graedel, T E; Nuss, Philip; Ohno, Hajime
2016-04-05
Based on the combination of the U.S. economic input-output table and the stocks and flows framework for characterizing anthropogenic metal cycles, this study presents a methodology for building material flow networks of bulk metals in the U.S. economy and applies it to aluminum. The results, which we term the Input-Output Material Flow Networks (IO-MFNs), achieve a complete picture of aluminum flow in the entire U.S. economy and for any chosen industrial sector (illustrated for the Automobile Manufacturing sector). The results are compared with information from our former study on U.S. aluminum stocks and flows to demonstrate the robustness and value of this new methodology. We find that the IO-MFN approach has the following advantages: (1) it helps to uncover the network of material flows in the manufacturing stage in the life cycle of metals; (2) it provides a method that may be less time-consuming but more complete and accurate in estimating new scrap generation, process loss, domestic final demand, and trade of final products of metals, than existing material flow analysis approaches; and, most importantly, (3) it enables the analysis of the material flows of metals in the U.S. economy from a network perspective, rather than merely that of a life cycle chain.
Reproducibility, Controllability, and Optimization of Lenr Experiments
NASA Astrophysics Data System (ADS)
Nagel, David J.
2006-02-01
Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.
Models for forecasting energy use in the US farm sector
NASA Astrophysics Data System (ADS)
Christensen, L. R.
1981-07-01
Econometric models were developed and estimated for the purpose of forecasting electricity and petroleum demand in US agriculture. A structural approach is pursued which takes account of the fact that the quantity demanded of any one input is a decision made in conjunction with other input decisions. Three different functional forms of varying degrees of complexity are specified for the structural cost function, which describes the cost of production as a function of the level of output and factor prices. Demand for materials (all purchased inputs) is derived from these models. A separate model which break this demand up into demand for the four components of materials is used to produce forecasts of electricity and petroleum is a stepwise manner.
Experimental study of efficiency of solar panel by phase change material cooling
NASA Astrophysics Data System (ADS)
Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng
2017-07-01
The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.
NASA Technical Reports Server (NTRS)
Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)
2006-01-01
Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.
Sustainable nanomaterials using waste agricultural residues
Sustainable synthetic processes developed during the past two decades involving the use of alternate energy inputs and greener reaction media are summarized. Learning from nature, one can produce a wide variety of nanoparticles using completely safe and benign materials such as ...
Input-output analysis and the hospital budgeting process.
Cleverly, W O
1975-01-01
Two hospitals budget systems, a conventional budget and an input-output budget, are compared to determine how they affect management decisions in pricing, output, planning, and cost control. Analysis of data from a 210-bed not-for-profit hospital indicates that adoption of the input-output budget could cause substantial changes in posted hospital rates in individual departments but probably would have no impact on hospital output determination. The input-output approach promises to be a more accurate system for cost control and planning because, unlike the conventional approach, it generates objective signals for investigating variances of expenses from budgeted levels. PMID:1205865
Catastrophic failure of contaminated fused silica optics at 355 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genin, F. Y., LLNL
1996-12-03
For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less
Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands
Andle, Jeffrey C.; Lec, Ryszard M.
2000-01-01
A piezoelectric sensor and assembly for measuring chemical, biochemical and physical measurands is disclosed. The piezoelectric sensor comprises a piezoelectric material, preferably a crystal, a common metal layer attached to the top surface of the piezoelectric crystal, and a pair of independent resonators placed in close proximity on the piezoelectric crystal such that an efficacious portion of acoustic energy couples between the resonators. The first independent resonator serves as an input port through which an input signal is converted into mechanical energy within the sensor and the second independent resonator serves an output port through which a filtered replica of the input signal is detected as an electrical signal. Both a time delay and an attenuation at a given frequency between the input signal and the filtered replica may be measured as a sensor output. The sensor may be integrated into an assembly with a series feedback oscillator and a radio frequency amplifier to process the desired sensor output. In the preferred embodiment of the invention, a selective film is disposed upon the grounded metal layer of the sensor and the resonators are encapsulated to isolate them from the measuring environment. In an alternative embodiment of the invention, more than two resonators are used in order to increase the resolution of the sensor.
Versatile current-mode universal biquadratic filter using DO-CCIIs
NASA Astrophysics Data System (ADS)
Chen, Hua-Pin
2013-07-01
In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.
DITTY - a computer program for calculating population dose integrated over ten thousand years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, B.A.; Peloquin, R.A.; Strenge, D.L.
The computer program DITTY (Dose Integrated Over Ten Thousand Years) was developed to determine the collective dose from long term nuclear waste disposal sites resulting from the ground-water pathways. DITTY estimates the time integral of collective dose over a ten-thousand-year period for time-variant radionuclide releases to surface waters, wells, or the atmosphere. This document includes the following information on DITTY: a description of the mathematical models, program designs, data file requirements, input preparation, output interpretations, sample problems, and program-generated diagnostic messages.
Compact waveguide power divider with multiple isolated outputs
Moeller, Charles P.
1987-01-01
A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).
Non-blocking crossbar permutation engine with constant routing latency
NASA Technical Reports Server (NTRS)
Monacos, Steve P. (Inventor)
1994-01-01
The invention is embodied in an N x N crossbar for routing packets from a set of N input ports to a set of N output ports, each packet having a header identifying one of the output ports as its destination, including a plurality of individual links which carry individual packets. Each link has a link input end and a link output end, a plurality of switches. Each of the switches has at least top and bottom switch inputs connected to a corresponding pair of the link output ends and top and bottom switch outputs connected to a corresponding pair of link input ends, whereby each switch is connected to four different links. Each of the switches has an exchange state which routes packets from the top and bottom switch inputs to the bottom and top switch outputs, respectively, and a bypass state which routes packets from the top and bottom switch inputs to the top and bottom switch outputs, respectively. A plurality of individual controller devices governing respective switches for sensing from a header of a packet at each switch input for the identity of the destination output port of the packet and selecting one of the exchange and bypass states in accordance with the identity of the destination output port and with the location of the corresponding switch relative to the destination output port.
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, C.A.; Baetz, B.W.
1998-12-31
Although there are a number of expert systems available which are designed to assist in resolving environmental problems, there is still a need for a system which would assist managers in determining waste management options for all types of wastes from one or more industrial plants, giving priority to sustainable use of resources, reuse and recycling. A prototype model was developed to determine the potentials for reuse and recycling of waste materials, to select the treatments needed to recycle waste materials or for treatment before disposal, and to determine potentials for co-treatment of wastes. A knowledge-based decision support system wasmore » then designed using this model. This paper describes the prototype model, the developed knowledge-based decision support system, the input and storage of data within the system and the inference engine developed for the system to determine the treatment options for the wastes. Options for sorting and selecting treatment trains are described, along with a discussion of the limitations of the approach and future developments needed for the system.« less
Correction of I/Q channel errors without calibration
Doerry, Armin W.; Tise, Bertice L.
2002-01-01
A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.
ERIC Educational Resources Information Center
Benati, Alessandro
2017-01-01
In this paper, a review of the role of input, output and instruction in second language acquisition is provided. Several pedagogical interventions in grammar instruction (e.g., processing instruction, input enhancement, structured output and collaborative output tasks) are presented and their effectiveness reviewed. A final and overall evaluation…
Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A
2014-01-01
Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na+ spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na+ spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow. DOI: http://dx.doi.org/10.7554/eLife.04551.001 PMID:25390033
Logic elements for reactor period meter
McDowell, William P.; Bobis, James P.
1976-01-01
Logic elements are provided for a reactor period meter trip circuit. For one element, first and second inputs are applied to first and second chopper comparators, respectively. The output of each comparator is O if the input applied to it is greater than or equal to a trip level associated with each input and each output is a square wave of frequency f if the input applied to it is less than the associated trip level. The outputs of the comparators are algebraically summed and applied to a bandpass filter tuned to f. For another element, the output of each comparator is applied to a bandpass filter which is tuned to f to give a sine wave of frequency f. The outputs of the filters are multiplied by an analog multiplier whose output is 0 if either input is 0 and a sine wave of frequency 2f if both inputs are a frequency f.
Modeling of materials supply, demand and prices
NASA Technical Reports Server (NTRS)
1982-01-01
The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.
Theory of optimal information transmission in E. coli chemotaxis pathway
NASA Astrophysics Data System (ADS)
Micali, Gabriele; Endres, Robert G.
Bacteria live in complex microenvironments where they need to make critical decisions fast and reliably. These decisions are inherently affected by noise at all levels of the signaling pathway, and cells are often modeled as an input-output device that transmits extracellular stimuli (input) to internal proteins (channel), which determine the final behavior (output). Increasing the amount of transmitted information between input and output allows cells to better infer extracellular stimuli and respond accordingly. However, in contrast to electronic devices, the separation into input, channel, and output is not always clear in biological systems. Output might feed back into the input, and the channel, made by proteins, normally interacts with the input. Furthermore, a biological channel is affected by mutations and can change under evolutionary pressure. Here, we present a novel approach to maximize information transmission: given cell-external and internal noise, we analytically identify both input distributions and input-output relations that optimally transmit information. Using E. coli chemotaxis as an example, we conclude that its pathway is compatible with an optimal information transmission device despite the ultrasensitive rotary motors.
Method and system for modulation of gain suppression in high average power laser systems
Bayramian, Andrew James [Manteca, CA
2012-07-31
A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.
Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position
NASA Astrophysics Data System (ADS)
Rahmatalla, Salam; DeShaw, Jonathan
2011-12-01
Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.
NASA Astrophysics Data System (ADS)
Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan
2017-08-01
Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.
Yong, Ping; Mikheenko, Iryna P; Deplanche, Kevin; Redwood, Mark D; Macaskie, Lynne E
2010-12-01
Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried 'Bio-Pd' materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd( D. desulfuricans ) (positive control) and Bio-Pd( E. coli ) (negative control) was ~140 and ~30 mW respectively. Bio-Pd( C. metallidurans ) was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This 'Bio-precious metal' ('Bio-PM') gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd( D. desulfuricans ) when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.
Administrative Decision Making and Resource Allocation.
ERIC Educational Resources Information Center
Sardy, Susan; Sardy, Hyman
This paper considers selected aspects of the systems analysis of administrative decisionmaking regarding resource allocations in an educational system. A model of the instructional materials purchase system is presented. The major components of this model are: environment, input, decision process, conversion structure, conversion process, output,…
Environmental analysis of waste foundry sand via life cycle assessment.
Mitterpach, Jozef; Hroncová, Emília; Ladomerský, Juraj; Balco, Karol
2017-01-01
The aim of this manuscript is to provide an environmental assessment of the creation and use of waste foundry sand (WFS) via an LCA in a foundry for grey cast iron. A life cycle impact assessment was carried out using SimaPro 8. This environmental analysis assessed the impact of creating waste foundry sand (WFS) in a foundry, Hronec (Slovakia, Central Europe). According to BREF, this foundry is classified as an iron foundry with a production capacity greater than 20 t/day with processes typical for grey cast iron foundries. Molten metal is poured into single-use sand moulds. We identified those factors influencing the creation and use of WFS which significantly affect the quality of the environment. The use of WFS from the production of cores in regenerated moulding mixtures with installed circuits brings marked minimisation of material and energy inputs in the processes of creating WFS and it positively influences the consumption of resources and the quality of the ecosystem. Space for lessening the impact of WFS processes upon the consumption of resources and ecosystem quality is mainly found in recycling WFS in the building sector. In the next step, it is necessary to thoroughly verify the eco-toxicological properties of not only the created WFS and other foundry waste, but mainly the building products for which this waste is used. In terms of transportation, it is important that waste is recycled at local level. The processes of creating WFS have a marked influence upon all the selected waste categories (consumption of resources, ecosystem quality, human health). By minimising material inputs into processes and the effective adjustment of production technology, a foundry can significantly lessen the impacts of processes for creating WFS upon the environment.
The Comprehensible Output Hypothesis and Self-directed Learning: A Learner's Perspective.
ERIC Educational Resources Information Center
Liming, Yu
1990-01-01
Discusses the significance to language acquisition of pushing for comprehensible output. Three issues are examined: (1) comprehensible output and negative input, (2) comprehensible and incomprehensible output, and (3) comprehensible output and comprehensible input. (28 references) (GLR)
Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA
2011-10-04
A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.
Micro-fabrication of a novel linear actuator
NASA Astrophysics Data System (ADS)
Jiang, Shuidong; Liu, Lei; Hou, Yangqing; Fang, Houfei
2017-04-01
The novel linear actuator is researched with light weight, small volume, low power consumption, fast response and relatively large displacement output. It can be used for the net surface control of large deployable mesh antennas, the tension precise adjustment of the controlled cable in the tension and tensile truss structure and many other applications. The structure and the geometry parameters are designed and analysed by finite element method in multi-physics coupling. Meantime, the relationship between input voltage and displacement output is computed, and the strength check is completed according to the stress distribution. Carbon fiber reinforced composite (CFRC), glass fiber reinforced composited (GFRC), and Lead Zirconium Titanate (PZT) materials are used to fabricate the actuator by using laser etching and others MEMS process. The displacement output is measured by the laser displacement sensor device at the input voltage range of DC0-180V. The response time is obtained by oscilloscope at the arbitrarily voltage in the above range. The nominal force output is measured by the PTR-1101 mechanics setup. Finally, the computed and test results are compared and analysed.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause the voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. The method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Method and Apparatus for Reducing the Vulnerability of Latches to Single Event Upsets
NASA Technical Reports Server (NTRS)
Shuler, Robert L., Jr. (Inventor)
2002-01-01
A delay circuit includes a first network having an input and an output node, a second network having an input and an output, the input of the second network being coupled to the output node of the first network. The first network and the second network are configured such that: a glitch at the input to the first network having a length of approximately one-half of a standard glitch time or less does not cause tile voltage at the output of the second network to cross a threshold, a glitch at the input to the first network having a length of between approximately one-half and two standard glitch times causes the voltage at the output of the second network to cross the threshold for less than the length of the glitch, and a glitch at the input to the first network having a length of greater than approximately two standard glitch times causes the voltage at the output of the second network to cross the threshold for approximately the time of the glitch. A method reduces the vulnerability of a latch to single event upsets. The latch includes a gate having an input and an output and a feedback path from the output to the input of the gate. The method includes inserting a delay into the feedback path and providing a delay in the gate.
Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.
Krepkovich, Eileen T; Perreault, Eric J
2008-01-01
This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.
High frequency inductive lamp and power oscillator
Kirkpatrick, Douglas A.; Gitsevich, Aleksandr
2005-09-27
An oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and a tuning circuit connected to the input of the amplifier, wherein the tuning circuit is continuously variable and consists of solid state electrical components with no mechanically adjustable devices including a pair of diodes connected to each other at their respective cathodes with a control voltage connected at the junction of the diodes. Another oscillator includes an amplifier having an input and an output, a feedback network connected between the input of the amplifier and the output of the amplifier, the feedback network being configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and transmission lines connected to the input of the amplifier with an input pad and a perpendicular transmission line extending from the input pad and forming a leg of a resonant "T", and wherein the feedback network is coupled to the leg of the resonant "T".
Xu, Yin; Xiao, Jinbiao
2016-01-01
On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112
Chen, Hua-Pin
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.
2014-01-01
This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs), two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design. PMID:24982963
On-chip remote charger model using plasmonic island circuit
NASA Astrophysics Data System (ADS)
Ali, J.; Youplao, P.; Pornsuwancharoen, N.; Aziz, M. S.; Chiangga, S.; Amiri, I. S.; Punthawanunt, S.; Singh, G.; Yupapin, P.
2018-06-01
We propose the remote charger model using the light fidelity (LiFi) transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10-11 AW-1, with the gold height of 1.0 μm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.
Liu, Yu; Wang, Can; Chen, Minpeng
2017-05-01
Research on carbon cycling has attracted attention from both scientists and policy-makers. Based on material flow analysis, this study systematically budgets the carbon inputs, outputs and balance from 1980 to 2013 for China's agro-ecosystem and its sub-systems, including agricultural land use, livestock breeding and rural life. The results show that from 1980 to 2013, both the carbon input and output were growing gradually, with the carbon input doubling from 1.6PgC/year in 1980 to 3.4PgC/year in 2013, while carbon output grew from 2.2PgC/year in 1980 to 3.8PgC/year in 2013. From 1980 to 2013, the crop production system in China has remained a carbon source, and the agricultural land uses were also almost all carbon sources instead of carbon sinks. As soil carbon stock plays a very important role in deciding the function of China's agro-ecosystem as a carbon sink or source, practices that can promote carbon storage and sequestration will be an essential component of low carbon agriculture development in China. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Duke, J. C., Jr.; Henneke, E. G., II
1986-01-01
To evaluate the response of composite materials, it is imperative that the input excitation as well as the observed output be well characterized. This characterization ideally should be in terms of displacements as a function of time with high spatial resolution. Additionally, the ability to prescribe these features for the excitation is highly desirable. Various methods for generating and detecting ultrasound in advanced composite materials are examined. Characterization and tailoring of input excitation is considered for contact and noncontact, mechanical, and electromechanical devices. Type of response as well as temporal and spatial resolution of detection methods are discussed as well. Results of investigations at Virginia Tech in application of these techniques to characterizing the response of advanced composites are presented.
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin
2017-06-01
Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.
A Comparative Analysis of Life-Cycle Assessment Tools for ...
We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.
Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun
2015-08-06
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.
NASA Technical Reports Server (NTRS)
Carazo, Alfredo V.; Wintucky, Edwin G.
2004-01-01
Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.
Systems and methods for compensating for electrical converter nonlinearities
Perisic, Milun; Ransom, Ray M.; Kajouke, Lateef A.
2013-06-18
Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module coupled between the input interface and the output interface, and a control module. The control module determines a duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface. The control module determines an input power error at the input interface and adjusts the duty cycle control value in a manner that is influenced by the input power error, resulting in a compensated duty cycle control value. The control module operates switching elements of the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value.
Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MATTHEW,; KOZAK, W.
1994-02-09
Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less
Dual Brushless Resolver Rate Sensor
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor)
1997-01-01
A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.
Long period pseudo random number sequence generator
NASA Technical Reports Server (NTRS)
Wang, Charles C. (Inventor)
1989-01-01
A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).
Transported Geothermal Energy Technoeconomic Screening Tool - Calculation Engine
Liu, Xiaobing
2016-09-21
This calculation engine estimates technoeconomic feasibility for transported geothermal energy projects. The TGE screening tool (geotool.exe) takes input from input file (input.txt), and list results into output file (output.txt). Both the input and ouput files are in the same folder as the geotool.exe. To use the tool, the input file containing adequate information of the case should be prepared in the format explained below, and the input file should be put into the same folder as geotool.exe. Then the geotool.exe can be executed, which will generate a output.txt file in the same folder containing all key calculation results. The format and content of the output file is explained below as well.
Automatic insulation resistance testing apparatus
Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.
2005-06-14
An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.
NASA Technical Reports Server (NTRS)
Griffin, Brian Joseph; Burken, John J.; Xargay, Enric
2010-01-01
This paper presents an L(sub 1) adaptive control augmentation system design for multi-input multi-output nonlinear systems in the presence of unmatched uncertainties which may exhibit significant cross-coupling effects. A piecewise continuous adaptive law is adopted and extended for applicability to multi-input multi-output systems that explicitly compensates for dynamic cross-coupling. In addition, explicit use of high-fidelity actuator models are added to the L1 architecture to reduce uncertainties in the system. The L(sub 1) multi-input multi-output adaptive control architecture is applied to the X-29 lateral/directional dynamics and results are evaluated against a similar single-input single-output design approach.
Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chia, A.; Wiseman, H. M.
2011-07-15
Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensivemore » use of vector-operator algebra.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ethan W. Brown
2001-09-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less
Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy
NASA Astrophysics Data System (ADS)
Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng
2018-06-01
To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.
ERIC Educational Resources Information Center
Yamashita, Taichi; Iizuka, Takehiro
2017-01-01
Discussion of the roles of input and output has been attracting a number of researchers in second language acquisition (e.g., DeKeyser, 2007; Doughty, 1991; Krashen, 1982; Long, 1983; Norris & Ortega, 2000; Swain, 2000), and VanPatten (2004) advocated that both structured input and structured output allow learners to process input properly.…
A novel productivity-driven logic element for field-programmable devices
NASA Astrophysics Data System (ADS)
Marconi, Thomas; Bertels, Koen; Gaydadjiev, Georgi
2014-06-01
Although various techniques have been proposed for power reduction in field-programmable devices (FPDs), they are still all based on conventional logic elements (LEs). In the conventional LE, the output of the combinational logic (e.g. the look-up table (LUT) in many field-programmable gate arrays (FPGAs)) is connected to the input of the storage element; while the D flip-flop (DFF) is always clocked even when not necessary. Such unnecessary transitions waste power. To address this problem, we propose a novel productivity-driven LE with reduced number of transitions. The differences between our LE and the conventional LE are in the FFs-type used and the internal LE organisation. In our LEs, DFFs have been replaced by T flip-flops with the T input permanently connected to logic value 1. Instead of connecting the output of the combinational logic to the FF input, we use it as the FF clock. The proposed LE has been validated via Simulation Program with Integrated Circuit Emphasis (SPICE) simulations for a 45-nm Complementary Metal-Oxide-Semiconductor (CMOS) technology as well as via a real Computer-Aided Design (CAD) tools on a real FPGA using the standard Microelectronic Center of North Carolina (MCNC) benchmark circuits. The experimental results show that FPDs using our proposal not only have 48% lower total power but also run 17% faster than conventional FPDs on average.
Reconfigurable data path processor
NASA Technical Reports Server (NTRS)
Donohoe, Gregory (Inventor)
2005-01-01
A reconfigurable data path processor comprises a plurality of independent processing elements. Each of the processing elements advantageously comprising an identical architecture. Each processing element comprises a plurality of data processing means for generating a potential output. Each processor is also capable of through-putting an input as a potential output with little or no processing. Each processing element comprises a conditional multiplexer having a first conditional multiplexer input, a second conditional multiplexer input and a conditional multiplexer output. A first potential output value is transmitted to the first conditional multiplexer input, and a second potential output value is transmitted to the second conditional multiplexer output. The conditional multiplexer couples either the first conditional multiplexer input or the second conditional multiplexer input to the conditional multiplexer output, according to an output control command. The output control command is generated by processing a set of arithmetic status-bits through a logical mask. The conditional multiplexer output is coupled to a first processing element output. A first set of arithmetic bits are generated according to the processing of the first processable value. A second set of arithmetic bits may be generated from a second processing operation. The selection of the arithmetic status-bits is performed by an arithmetic-status bit multiplexer selects the desired set of arithmetic status bits from among the first and second set of arithmetic status bits. The conditional multiplexer evaluates the select arithmetic status bits according to logical mask defining an algorithm for evaluating the arithmetic status bits.
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
An equation has been developed to model the iterative scale growth and spalling process that occurs during cyclic oxidation of high temperature materials. Parabolic scale growth and spalling of a constant surface area fraction have been assumed. Interfacial spallation of the only the thickest segments was also postulated. This simplicity allowed for representation by a simple deterministic summation series. Inputs are the parabolic growth rate constant, the spall area fraction, oxide stoichiometry, and cycle duration. Outputs include the net weight change behavior, as well as the total amount of oxygen and metal consumed, the total amount of oxide spalled, and the mass fraction of oxide spalled. The outputs all follow typical well-behaved trends with the inputs and are in good agreement with previous interfacial models.
Effect of Burnishing Parameters on Surface Finish
NASA Astrophysics Data System (ADS)
Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund
2017-08-01
Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.
Low intensity X-ray and gamma-ray imaging device. [fiber optics
NASA Technical Reports Server (NTRS)
Yin, L. I. (Inventor)
1979-01-01
A radiation to visible light converter is combined with a visible light intensifier. The converter is a phosphor or scintillator material which is modified to block ambient light. The intensifier includes fiber optics input and output face plates with a photocathode-microchannel plate amplifier-phosphor combination. Incoming radiation is converted to visible light by the converter which is piped into the intensifier by the input fiber optics face plate. The photocathode converts the visible light to electrons which are amplified by a microchannel plate amplifier. The electrons are converted back to light by a phosphor layer and piped out for viewing by the output fiber optics faces plate. The converter-intensifier combination may be further combined with its own radiation source or used with an independent source.
Output Control Using Feedforward And Cascade Controllers
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.
Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, David O.
2007-01-01
A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less
Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output
NASA Astrophysics Data System (ADS)
Brito, F. P.; Figueiredo, L.; Rocha, L. A.; Cruz, A. P.; Goncalves, L. M.; Martins, J.; Hall, M. J.
2016-03-01
Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal-electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.
Liu, Yanli; Sun, Tiantian; Yang, Lie
2017-08-01
Construction and demolition (C&D) waste diminishes scarce land resources and endangers human health and the surrounding environment. Quantitative and visualized analysis was conducted to evaluate worldwide scientific research output on C&D waste from 2000 to 2016. The related information of 857 publications was collected from SCI-Expanded database and statistically analyzed. The number of documents about C&D waste presented a general growth during the last 17 years. Construction and Building Materials publication ranked first in the most productive journals. China and Spain acted as dominated roles comparing to other countries, and Hong Kong Polytechnic University was the institution with the largest amount of C&D waste research. Recycled aggregates, sustainable C&D waste management, and the rewarding program and commerce system were the hottest topics during 2000-2016 and in the near future according to the intellectual structure analysis.
Streamwater nitrate concentrations in six agricultural catchments in Scotland.
Hooda, P S; Moynagh, M; Svoboda, I F; Thurlow, M; Stewart, M; Thomson, M; Anderson, H A
1997-08-01
The concentrations of nitrate-N (NO3-N) in catchment inputs and outputs have been compared and contrasted between 6 farm catchments in Scotland, 3 in the West and 3 in the North-East. Forms of intensive animal farming ranging between beef and dairy cattle, sheep and poultry give different sources for potential NO3-N leakage from the systems. While stream reaches bordered by intensive cereal production give rise to the largest inputs to surface waters, climatic influences result in the more-efficient use of fertilizer- and farm waste-N in the West, and an enhanced potential for N-loss to waters in the cooler North-East, regardless of the N-inputs being considerably lower in the latter region. Although the EC Nitrate Directive limit of 11.3 mg NO3-N 1(-1) was not exceeded, peak values occurring during summer baseflows and autumn soil rewetting were commonly larger than the 'target' maximum concentration of 5.65 mg NO3-N 1-1.
Fuzzy Neuron: Method and Hardware Realization
NASA Technical Reports Server (NTRS)
Krasowski, Michael J.; Prokop, Norman F.
2014-01-01
This innovation represents a method by which single-to-multi-input, single-to-many-output system transfer functions can be estimated from input/output data sets. This innovation can be run in the background while a system is operating under other means (e.g., through human operator effort), or may be utilized offline using data sets created from observations of the estimated system. It utilizes a set of fuzzy membership functions spanning the input space for each input variable. Linear combiners associated with combinations of input membership functions are used to create the output(s) of the estimator. Coefficients are adjusted online through the use of learning algorithms.
Gating-signal propagation by a feed-forward neural motif
NASA Astrophysics Data System (ADS)
Liang, Xiaoming; Yanchuk, Serhiy; Zhao, Liang
2013-07-01
We study the signal propagation in a feed-forward motif consisting of three bistable neurons: Two input neurons receive input signals and the third output neuron generates the output. We find that a weak input signal can be propagated from the input neurons to the output neuron without amplitude attenuation. We further reveal that the initial states of the input neurons and the coupling strength act as signal gates and determine whether the propagation is enhanced or not. We also investigate the effect of the input signal frequency on enhanced signal propagation.
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Active Flow Control with Thermoacoustic Actuators
2014-01-31
AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Justin; Hund, Lauren
2017-02-01
Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less
Vertical Flume Testing of WIPP Surrogate Waste Materials
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Schuhen, M.; Kicker, D.
2012-12-01
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
Vertical Flume Testing of WIPP Surrogate Waste Materials
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Schuhen, M.; Kicker, D.
2013-12-01
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. The DOE demonstrates compliance with 40 CFR 194 by means of performance assessment (PA) calculations conducted by Sandia National Laboratories. WIPP PA calculations estimate the probability and consequences of radionuclide releases for a 10,000 year regulatory period. Human intrusion scenarios include cases in which a future borehole is drilled through the repository. Drilling mud flowing up the borehole will apply a hydrodynamic shear stress to the borehole wall which could result in erosion of the waste and radionuclides being carried up the borehole. WIPP PA uses the parameter TAUFAIL to represent the shear strength of the degraded waste. The hydrodynamic shear strength can only be measured experimentally by flume testing. Flume testing is typically performed horizontally, mimicking stream or ocean currents. However, in a WIPP intrusion event, the drill bit would penetrate the degraded waste and drilling mud would flow up the borehole in a predominantly vertical direction. In order to simulate this, a flume was designed and built so that the eroding fluid enters an enclosed vertical channel from the bottom and flows up past a specimen of surrogate waste material. The sample is pushed into the current by a piston attached to a step motor. A qualified data acquisition system controls and monitors the fluid's flow rate, temperature, pressure, and conductivity and the step motor's operation. The surrogate materials used correspond to a conservative estimate of degraded TRU waste at the end of the regulatory period. The recipes were previously developed by SNL based on anticipated future states of the waste considering inventory, changes in the underground environment, and theoretical and experimental results. The recipes represent the degraded waste in its weakest condition; simulating 50, 75, and 100% degradation by weight. The percent degradation indicates the anticipated amount of iron corrosion and decomposition of cellulosics, plastics, and rubbers. Samples were die compacted to two pressures, 2.3 and 5.0 MPa. Testing has established that the less degraded the surrogate material is and the higher the compaction stress it undergoes, the stronger the sample is. The 50% degraded surrogate waste material was accepted for use in obtaining input parameters for another WIPP PA model by a conceptual model peer review panel and the EPA. The use of a 50% degraded surrogate waste in vertical flume testing would provide an improved estimate of the waste shear strength and establish consistency between PA models in the approach used to obtain input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.
Programmable remapper for image processing
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor); Sampsell, Jeffrey B. (Inventor)
1991-01-01
A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix.
Understanding virtual water flows: A multiregion input-output case study of Victoria
NASA Astrophysics Data System (ADS)
Lenzen, Manfred
2009-09-01
This article explains and interprets virtual water flows from the well-established perspective of input-output analysis. Using a case study of the Australian state of Victoria, it demonstrates that input-output analysis can enumerate virtual water flows without systematic and unknown truncation errors, an issue which has been largely absent from the virtual water literature. Whereas a simplified flow analysis from a producer perspective would portray Victoria as a net virtual water importer, enumerating the water embodiments across the full supply chain using input-output analysis shows Victoria as a significant net virtual water exporter. This study has succeeded in informing government policy in Australia, which is an encouraging sign that input-output analysis will be able to contribute much value to other national and international applications.
1982-05-06
access 99 6.3.2 Input/output interrupt code 99 register (IOIC) 6.3.2.1 Read input/output interrupt 100 code, level 1 (OAOOOH) 6.3.2.2 Read input...output interrupt 100 code, level 2 (OA001H) 6.3.3 Console input/output 100 6.3.3.1 Clear console (4001H) 100 6.3.3.2 Console output (4000H) 100 6.3.3.3...Console input (COOOH) 100 6.3.3.4 Read console status (C0O01H) 100 6.3.4 Memory fault status register (MFSR) 100 6.3.4.1 Read memory fault register
Quantum description of light propagation in generalized media
NASA Astrophysics Data System (ADS)
Häyrynen, Teppo; Oksanen, Jani
2016-02-01
Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.
Method and apparatus for loss of control inhibitor systems
NASA Technical Reports Server (NTRS)
A'Harrah, Ralph C. (Inventor)
2007-01-01
Active and adaptive systems and methods to prevent loss of control incidents by providing tactile feedback to a vehicle operator are disclosed. According to the present invention, an operator gives a control input to an inceptor. An inceptor sensor measures an inceptor input value of the control input. The inceptor input is used as an input to a Steady-State Inceptor Input/Effector Output Model that models the vehicle control system design. A desired effector output from the inceptor input is generated from the model. The desired effector output is compared to an actual effector output to get a distortion metric. A feedback force is generated as a function of the distortion metric. The feedback force is used as an input to a feedback force generator which generates a loss of control inhibitor system (LOCIS) force back to the inceptor. The LOCIS force is felt by the operator through the inceptor.
A novel integrated assessment methodology of urban water reuse.
Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S
2011-01-01
Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos
Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting highmore » output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.« less
Motion video compression system with neural network having winner-take-all function
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi (Inventor); Sheu, Bing J. (Inventor)
1997-01-01
A motion video data system includes a compression system, including an image compressor, an image decompressor correlative to the image compressor having an input connected to an output of the image compressor, a feedback summing node having one input connected to an output of the image decompressor, a picture memory having an input connected to an output of the feedback summing node, apparatus for comparing an image stored in the picture memory with a received input image and deducing therefrom pixels having differences between the stored image and the received image and for retrieving from the picture memory a partial image including the pixels only and applying the partial image to another input of the feedback summing node, whereby to produce at the output of the feedback summing node an updated decompressed image, a subtraction node having one input connected to received the received image and another input connected to receive the partial image so as to generate a difference image, the image compressor having an input connected to receive the difference image whereby to produce a compressed difference image at the output of the image compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roeleveld, J.J.
1985-01-01
This dissertation develops a general model of technological substitution that could be of help to planners and decision makers in industry who are faced with the problems created by continual technological change. The model as presented differs from existing models in the theoretical literature because of its emphasis on analyzing current and potential technologies in an attempt to understand the underlying factors contributing to technological substitution. The general model and the cost model that is part of it belong to that step in the interactive planning cycle called the formulation of the mess. The methodology underlying the cost model ismore » a combination of life-cycle analysis (i.e., from raw materials in nature, through all intermediate products, to waste returned to the environment) and resoumetrics, which is an engineering approach to measuring all physical inputs required to produce a certain level of output. The models are illustrated with a specific field of interest: substitution of primary packaging technologies in the US brewing industry. The physical costs of packaging beer in different containers are compared. Strategic considerations for a brewery deciding to adopt plastic packaging technology are discussed. Attention is given to another potential fruitful application of the model in the field of technology transfer to developing countries.« less
Thermoelectric power generator for variable thermal power source
Bell, Lon E; Crane, Douglas Todd
2015-04-14
Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.
Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation
1992-06-01
and transformed input in transform domain). 44 Figure 21. SHFTOUTPUT1 ( inverse transform of product of Bessel filter and transformed input). . . . 44...Figure 22. SHFT OUTPUT2 ( inverse transform of product of ,derivative filter and transformed input).. 45 Figure 23. •tIFT OUTPUT (sum of SHFTOUTPUT1...52 Figure 33. SHFT OUTPUT1 at time slice 1 ( inverse transform of product of Bessel filter and transformed input) .... ............. ... 53
Life cycle inventory for palm based plywood: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis
2013-11-01
The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Carbogno, Christian; Levchenko, Sergey; Mohamed, Fawzi; Huhs, Georg; Lüders, Martin; Oliveira, Micael; Scheffler, Matthias
2017-11-01
With big-data driven materials research, the new paradigm of materials science, sharing and wide accessibility of data are becoming crucial aspects. Obviously, a prerequisite for data exchange and big-data analytics is standardization, which means using consistent and unique conventions for, e.g., units, zero base lines, and file formats. There are two main strategies to achieve this goal. One accepts the heterogeneous nature of the community, which comprises scientists from physics, chemistry, bio-physics, and materials science, by complying with the diverse ecosystem of computer codes and thus develops "converters" for the input and output files of all important codes. These converters then translate the data of each code into a standardized, code-independent format. The other strategy is to provide standardized open libraries that code developers can adopt for shaping their inputs, outputs, and restart files, directly into the same code-independent format. In this perspective paper, we present both strategies and argue that they can and should be regarded as complementary, if not even synergetic. The represented appropriate format and conventions were agreed upon by two teams, the Electronic Structure Library (ESL) of the European Center for Atomic and Molecular Computations (CECAM) and the NOvel MAterials Discovery (NOMAD) Laboratory, a European Centre of Excellence (CoE). A key element of this work is the definition of hierarchical metadata describing state-of-the-art electronic-structure calculations.
Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Tasaki, Tomohiro; Nagasaka, Tetsuya
2012-09-04
Metals can in theory be infinitely recycled in a closed-loop without any degradation in quality. In reality, however, open-loop recycling is more typical for metal scrap recovered from end-of-life (EoL) products because mixing of different metal species results in scrap quality that no longer matches the originals. Further losses occur when meeting the quality requirement of the target product requires dilution of the secondary material by adding high purity materials. Standard LCA usually does not address these losses. This paper presents a novel approach to quantifying quality- and dilution losses, by means of hybrid input-output analysis. We focus on the losses associated with the recycling of ferrous materials from end-of-life vehicle (ELV) due to the mixing of copper, a typical contaminant in steel recycling. Given the quality of scrap in terms of copper density, the model determines the ratio by which scrap needs to be diluted in an electric arc furnace (EAF), and the amount of demand for EAF steel including those quantities needed for dilution. Application to a high-resolution Japanese IO table supplemented with data on ferrous materials including different grades of scrap indicates that a nationwide avoidance of these losses could result in a significant reduction of CO(2) emissions.
Method and apparatus for measuring response time
Johanson, Edward W.; August, Charles
1985-01-01
A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.
Method and apparatus for measuring response time
Johanson, E.W.; August, C.
1983-08-11
A method of measuring the response time of an electrical instrument which generates an output signal in response to the application of a specified input, wherein the output signal varies as a function of time and when subjected to a step input approaches a steady-state value, comprises the steps of: (a) applying a step input of predetermined value to the electrical instrument to generate an output signal; (b) simultaneously starting a timer; (c) comparing the output signal to a reference signal to generate a stop signal when the output signal is substantially equal to the reference signal, the reference signal being a specified percentage of the steady-state value of the output signal corresponding to the predetermined value of the step input; and (d) applying the stop signal when generated to stop the timer.
NASA Technical Reports Server (NTRS)
Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)
2017-01-01
A current source logic gate with depletion mode field effect transistor ("FET") transistors and resistors may include a current source, a current steering switch input stage, and a resistor divider level shifting output stage. The current source may include a transistor and a current source resistor. The current steering switch input stage may include a transistor to steer current to set an output stage bias point depending on an input logic signal state. The resistor divider level shifting output stage may include a first resistor and a second resistor to set the output stage point and produce valid output logic signal states. The transistor of the current steering switch input stage may function as a switch to provide at least two operating points.
2 micron femtosecond fiber laser
Liu, Jian; Wan, Peng; Yang, Lihmei
2014-07-29
Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.
Fan, Jinlong; Pan, Zhihua; Zhao, Ju; Zheng, Dawei; Tuo, Debao; Zhao, Peiyi
2004-04-01
The degradation of ecological environment in the agriculture-pasture ecotone in northern China has been paid more attentions. Based on our many years' research and under the guide of energy and material flow theory, this paper put forward an ecological management model, with a hill as the basic cell and according to the natural, social and economic characters of Houshan dryland farming area inside the north agriculture-pasture ecotone. The input and output of three models, i.e., the traditional along-slope-tillage model, the artificial grassland model and the ecological management model, were observed and recorded in detail in 1999. Energy and material flow analysis based on field test showed that compared with traditional model, ecological management model could increase solar use efficiency by 8.3%, energy output by 8.7%, energy conversion efficiency by 19.4%, N output by 26.5%, N conversion efficiency by 57.1%, P output by 12.1%, P conversion efficiency by 45.0%, and water use efficiency by 17.7%. Among the models, artificial grassland model had the lowest solar use efficiency, energy output and energy conversion efficiency; while the ecological management model had the most outputs and benefits, was the best model with high economic effect, and increased economic benefits by 16.1%, compared with the traditional model.
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
Transforming the Way We Teach Function Transformations
ERIC Educational Resources Information Center
Faulkenberry, Eileen Durand; Faulkenberry, Thomas J.
2010-01-01
In this article, the authors discuss "function," a well-defined rule that relates inputs to outputs. They have found that by using the input-output definition of "function," they can examine transformations of functions simply by looking at changes to input or output and the respective changes to the graph. Applying transformations to the input…
670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)
2014-01-01
A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology
NASA Astrophysics Data System (ADS)
Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.
2017-05-01
Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.
Regenerative braking device with rotationally mounted energy storage means
Hoppie, Lyle O.
1982-03-16
A regenerative braking device for an automotive vehicle includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (30) and an output shaft (32), clutches (50, 56) and brakes (52, 58) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. In a second embodiment the clutches and brakes are dispensed with and the variable ratio transmission is connected directly across the input and output shafts. In both embodiments the rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft rotates faster or relative to the output shaft and are torsionally relaxed to deliver energy to the vehicle when the output shaft rotates faster or relative to the input shaft.
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
Optimization Under Uncertainty for Electronics Cooling Design
NASA Astrophysics Data System (ADS)
Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.
Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...
Laminated piezoelectric transformer
NASA Technical Reports Server (NTRS)
Vazquez Carazo, Alfredo (Inventor)
2006-01-01
A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.
Fernandez, Fernando R.; Malerba, Paola; White, John A.
2015-01-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971
Fernandez, Fernando R; Malerba, Paola; White, John A
2015-04-01
The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... used to heat waste gas to combustion temperatures. Any energy recovery section is not physically formed..., photoionization, or thermal conductivity. Primary fuel means the fuel that provides the principal heat input (i.e... flame, the primary purpose of which is to transfer heat to a process fluid or process material that is...
Forecasting hotspots using predictive visual analytics approach
Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David
2014-12-30
A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.
Neural network models for biological waste-gas treatment systems.
Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian
2011-12-15
This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes. Copyright © 2011. Published by Elsevier B.V.
Morita, Kenji; Tsumoto, Kunichika; Aihara, Kazuyuki
2005-06-01
Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.
Calculating the pre-consumer waste footprint: A screening study of 10 selected products.
Laurenti, Rafael; Moberg, Åsa; Stenmarck, Åsa
2017-01-01
Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.
A RESTful API for Exchanging Materials Data in the AFLOWLIB.org Consortium
2014-03-12
of North Texas, Denton TX 4Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708 †On leave from the...software tools, input and output data are maintained remotely, lowering cost, improving ecological sustainability (saving electricity ) and increas- ing...enthalpy_formation_atom) – Description. Returns the formation enthalpy ∆HF per unit cell (∆HF atomic per atom). For compounds ANABNB · · · with NA + NB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, J M; Ehinger, M H; Joseph, C
1978-10-01
Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.; Brown, K.; Flach, G.
The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material propertiesmore » via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.« less
High power RF solid state power amplifier system
NASA Technical Reports Server (NTRS)
Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)
2011-01-01
A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.
NASA Technical Reports Server (NTRS)
Pyle, R. S.; Sykora, R. G.; Denman, S. C.
1976-01-01
FLEXSTAB, an array of computer programs developed on CDC equipment, has been converted to operate on the IBM 360 computation system. Instructions for installing, validating, and operating FLEXSTAB on the IBM 360 are included. Hardware requirements are itemized and supplemental materials describe JCL sequences, the CDC to IBM conversion, the input output subprograms, and the interprogram data flow.
Signal Processing Equipment and Techniques for Use in Measuring Ocean Acoustic Multipath Structures
1983-12-01
Demodulator 3.4 Digital Demodulator 3.4.1 Number of Bits in the Input A/D Converter Quantization Effects The Demodulator Output Filter Effects of... power caused by ignoring cross spectral term a) First order Butterworth filter b) Second order Butterworth filter 48 3.4 Ordering of e...spectrum 59 3.7 Multiplying D/A Converter input and output spectra a) Input b) Output 60 3.8 Demodulator output spectrum prior to filtering 63
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
High temperature composite analyzer (HITCAN) user's manual, version 1.0
NASA Technical Reports Server (NTRS)
Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.
1993-01-01
This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.
Probing dynamical symmetry breaking using quantum-entangled photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao; Piryatinski, Andrei; Jerke, Jonathan
Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.
Probing dynamical symmetry breaking using quantum-entangled photons
Li, Hao; Piryatinski, Andrei; Jerke, Jonathan; ...
2017-11-15
Here, we present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
USEEIO: a New and Transparent United States ...
National-scope environmental life cycle models of goods and services may be used for many purposes, not limited to quantifying impacts of production and consumption of nations, assessing organization-wide impacts, identifying purchasing hot spots, analyzing environmental impacts of policies, and performing streamlined life cycle assessment. USEEIO is a new environmentally extended input-output model of the United States fit for such purposes and other sustainable materials management applications. USEEIO melds data on economic transactions between 389 industry sectors with environmental data for these sectors covering land, water, energy and mineral usage and emissions of greenhouse gases, criteria air pollutants, nutrients and toxics, to build a life cycle model of 385 US goods and services. In comparison with existing US input-output models, USEEIO is more current with most data representing year 2013, more extensive in its coverage of resources and emissions, more deliberate and detailed in its interpretation and combination of data sources, and includes formal data quality evaluation and description. USEEIO was assembled with a new Python module called the IO Model Builder capable of assembling and calculating results of user-defined input-output models and exporting the models into LCA software. The model and data quality evaluation capabilities are demonstrated with an analysis of the environmental performance of an average hospital in the US. All USEEIO f
Low voltage to high voltage level shifter and related methods
NASA Technical Reports Server (NTRS)
Mentze, Erik J. (Inventor); Buck, Kevin M. (Inventor); Hess, Herbert L. (Inventor); Cox, David F. (Inventor)
2006-01-01
A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Sun, Shanxia; Delgado, Michael S; Sesmero, Juan P
2016-07-15
Input- and output-based economic policies designed to reduce water pollution from fertilizer runoff by adjusting management practices are theoretically justified and well-understood. Yet, in practice, adjustment in fertilizer application or land allocation may be sluggish. We provide practical guidance for policymakers regarding the relative magnitude and speed of adjustment of input- and output-based policies. Through a dynamic dual model of corn production that takes fertilizer as one of several production inputs, we measure the short- and long-term effects of policies that affect the relative prices of inputs and outputs through the short- and long-term price elasticities of fertilizer application, and also the total time required for different policies to affect fertilizer application through the adjustment rates of capital and land. These estimates allow us to compare input- and output-based policies based on their relative cost-effectiveness. Using data from Indiana and Illinois, we find that input-based policies are more cost-effective than their output-based counterparts in achieving a target reduction in fertilizer application. We show that input- and output-based policies yield adjustment in fertilizer application at the same speed, and that most of the adjustment takes place in the short-term. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, M.S.Y.
1990-12-01
The PAGAN code system is a part of the performance assessment methodology developed for use by the U.S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1. has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simple ground-water transport analysismore » and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time and location-dependent radionuclide concentration at a well in the aquifer, or a time and location-dependent radionuclide flux into a surface-water body.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.
Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E
2016-05-01
Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.
Bittner, J.W.; Biscardi, R.W.
1991-03-19
An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.
Bittner, John W.; Biscardi, Richard W.
1991-01-01
An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.
Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa
2017-12-01
In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.
1984-12-01
input/output relationship. These are obtained from the design specifications (10:68i-684). Note that the first digit of the subscript of bkj refers...to the output and the second digit to the input. Thus, bkj is.a function of the response requirements on the output, Yk’ due to the input, r.. 169 . A...NXPMAX pNYPMAX, IPLOT) C C C* LIBARY OF PLOT SUBR(OUTINES PSNTCT NLIEPRINTER ONLY~ C* C C C SUP’ LPLOTS C C C DIMENSION IXY(101,71)918UF(100) COMMON /HOPY
WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER
Laine, E.F.
1959-11-17
A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.
2003-01-01
Improvements in the efficiency and size of DC-DC converters have resulted from advances in components, primarily semiconductors, and improved topologies. One topology, which has shown very high potential in limited applications, is the Series Connected Boost Unit (SCBU), wherein a small DC-DC converter output is connected in series with the input bus to provide an output voltage equal to or greater than the input voltage. Since the DC-DC converter switches only a fraction of the power throughput, the overall system efficiency is very high. But this technique is limited to applications where the output is always greater than the input. The Series Connected Buck Boost Regulator (SCBBR) concept extends partial power processing technique used in the SCBU to operation when the desired output voltage is higher or lower than the input voltage, and the implementation described can even operate as a conventional buck converter to operate at very low output to input voltage ratios. This paper describes the operation and performance of an SCBBR configured as a bus voltage regulator providing 50 percent voltage regulation range, bus switching, and overload limiting, operating above 98 percent efficiency. The technique does not provide input-output isolation.
Group interaction and flight crew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton; Helmreich, Robert L.
1988-01-01
The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.
Wireless, relative-motion computer input device
Holzrichter, John F.; Rosenbury, Erwin T.
2004-05-18
The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.
Detecting Waste Tire Sites Using Satellite Imagery
NASA Astrophysics Data System (ADS)
Quinlan, B.; Huybrechts, C.; Schmidt, C.; Skiles, J. W.
2005-12-01
Waste tire piles pose environmental threats in the form of toxic fires and potential insect habitat. Previous techniques used to locate tire piles have included California Highway Patrol aerial surveillance and location tips from stakeholders. The TIRe (Tire Identification from Reflectance) model was developed as part of a pilot-project funded by the California Integrated Waste Management Board (CIWMB), a division of the California Environmental Protection Agency, and executed at NASA Ames Research Center's DEVELOP Program during the summer of 2005. The goal of the pilot-project was to determine if high-resolution satellite imagery could be used to locate waste tire disposal sites. The TIRe model, built in Leica Geosystems' ERDAS Imagine Model Builder, was created to automate the process of isolating tires in satellite imagery in two land cover types found in California. The sole geospatial data input to the TIRe model was Space Imaging IKONOS imagery. Once the imagery was processed through the TIRe model, less than 1% of the original image remained, consisting only of dark pixels containing tires or spectrally similar features. The output, a binary image was overlain on top of the original image for visual interpretation. The TIRe model was successfully able to identify waste tire piles as small as 400 tires and will prove to be a valuable tool for the detection, monitoring and remediation of waste tire sites.
Measuring efficiency of university-industry Ph.D. projects using best worst method.
Salimi, Negin; Rezaei, Jafar
A collaborative Ph.D. project, carried out by a doctoral candidate, is a type of collaboration between university and industry. Due to the importance of such projects, researchers have considered different ways to evaluate the success, with a focus on the outputs of these projects. However, what has been neglected is the other side of the coin-the inputs. The main aim of this study is to incorporate both the inputs and outputs of these projects into a more meaningful measure called efficiency. A ratio of the weighted sum of outputs over the weighted sum of inputs identifies the efficiency of a Ph.D. The weights of the inputs and outputs can be identified using a multi-criteria decision-making (MCDM) method. Data on inputs and outputs are collected from 51 Ph.D. candidates who graduated from Eindhoven University of Technology. The weights are identified using a new MCDM method called Best Worst Method (BWM). Because there may be differences in the opinion of Ph.D. candidates and supervisors on weighing the inputs and outputs, data for BWM are collected from both groups. It is interesting to see that there are differences in the level of efficiency from the two perspectives, because of the weight differences. Moreover, a comparison between the efficiency scores of these projects and their success scores reveals differences that may have significant implications. A sensitivity analysis divulges the most contributing inputs and outputs.
Compensation for electrical converter nonlinearities
Perisic, Milun; Ransom, Ray M; Kajouke, Lateef A
2013-11-19
Systems and methods are provided for delivering energy from an input interface to an output interface. An electrical system includes an input interface, an output interface, an energy conversion module between the input interface and the output interface, an inductive element between the input interface and the energy conversion module, and a control module. The control module determines a compensated duty cycle control value for operating the energy conversion module to produce a desired voltage at the output interface and operates the energy conversion module to deliver energy to the output interface with a duty cycle that is influenced by the compensated duty cycle control value. The compensated duty cycle control value is influenced by the current through the inductive element and accounts for voltage across the switching elements of the energy conversion module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A
An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCsmore » convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.« less
High-frequency matrix converter with square wave input
Carr, Joseph Alexander; Balda, Juan Carlos
2015-03-31
A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it
Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
NASA Astrophysics Data System (ADS)
Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi
2017-09-01
Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.
Cilla, M; Pérez-Rey, I; Martínez, M A; Peña, Estefania; Martínez, Javier
2018-06-23
Motivated by the search for new strategies for fitting a material model, a new approach is explored in the present work. The use of numerical and complex algorithms based on machine learning techniques such as support vector machines for regression, bagged decision trees and artificial neural networks is proposed for solving the parameter identification of constitutive laws for soft biological tissues. First, the mathematical tools were trained with analytical uniaxial data (circumferential and longitudinal directions) as inputs, and their corresponding material parameters of the Gasser, Ogden and Holzapfel strain energy function as outputs. The train and test errors show great efficiency during the training process in finding correlations between inputs and outputs; besides, the correlation coefficients were very close to 1. Second, the tool was validated with unseen observations of analytical circumferential and longitudinal uniaxial data. The results show an excellent agreement between the prediction of the material parameters of the SEF and the analytical curves. Finally, data from real circumferential and longitudinal uniaxial tests on different cardiovascular tissues were fitted, thus the material model of these tissues was predicted. We found that the method was able to consistently identify model parameters, and we believe that the use of these numerical tools could lead to an improvement in the characterization of soft biological tissues. This article is protected by copyright. All rights reserved.
Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators.
Yoo, Jinho; Cho, Seunghyeon; Kim, Wook; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk; Kim, Chang-Wan; Choi, Dukhyun
2015-07-10
Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators.
Schoer, Karl; Wood, Richard; Arto, Iñaki; Weinzettel, Jan
2013-12-17
The mass of material consumed by a population has become a useful proxy for measuring environmental pressure. The "raw material equivalents" (RME) metric of material consumption addresses the issue of including the full supply chain (including imports) when calculating national or product level material impacts. The RME calculation suffers from data availability, however, as quantitative data on production practices along the full supply chain (in different regions) is required. Hence, the RME is currently being estimated by three main approaches: (1) assuming domestic technology in foreign economies, (2) utilizing region-specific life-cycle inventories (in a hybrid framework), and (3) utilizing multi-regional input-output (MRIO) analysis to explicitly cover all regions of the supply chain. While the first approach has been shown to give inaccurate results, this paper focuses on the benefits and costs of the latter two approaches. We analyze results from two key (MRIO and hybrid) projects modeling raw material equivalents, adjusting the models in a stepwise manner in order to quantify the effects of individual conceptual elements. We attempt to isolate the MRIO gap, which denotes the quantitative impact of calculating the RME of imports by an MRIO approach instead of the hybrid model, focusing on the RME of EU external trade imports. While, the models give quantitatively similar results, differences become more pronounced when tracking more detailed material flows. We assess the advantages and disadvantages of the two approaches and look forward to ways to further harmonize data and approaches.
Power inverter with optical isolation
Duncan, Paul G.; Schroeder, John Alan
2005-12-06
An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.
An assessment of individual foodprints attributed to diets and food waste in the United States
NASA Astrophysics Data System (ADS)
Birney, Catherine I.; Franklin, Katy F.; Davidson, F. Todd; Webber, Michael E.
2017-10-01
This paper assesses the environmental impacts of the average American’s diet and food loss and waste (FLW) habits through an analysis of energy, water, land, and fertilizer requirements (inputs) and greenhouse gas (GHG) emissions (outputs). We synthesized existing datasets to determine the ramifications of the typical American adult’s food habits, as well as the environmental impact associated with shifting diets to meet the US Department of Agriculture (USDA) dietary guideline recommendations. In 2010, FLW accounted for 35% of energy use, 34% of blue water use, 34% of GHG emissions, 31% of land use, and 35% of fertilizer use related to an individual’s food-related resource consumption, i.e. their foodprint. A shift in consumption towards a healthier diet, combined with meeting the USDA and Environmental Protection Agency’s 2030 food loss and waste reduction goal could increase per capita food related energy use 12%, decrease blue water consumption 4%, decrease green water use 23%, decrease GHG emissions from food production 11%, decrease GHG emissions from landfills 20%, decrease land use 32%, and increase fertilizer use 12%.
Rhomboid prism pair for rotating the plane of parallel light beams
NASA Technical Reports Server (NTRS)
Orloff, K. L. (Inventor); Yanagita, H.
1982-01-01
An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Karaguelle, H.; Lee, S. S.; Williams, J., Jr.
1984-01-01
The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.
Reagor, David [Los Alamos, NM; Vasquez-Dominguez, Jose [Los Alamos, NM
2006-05-09
A method and apparatus for effective through-the-earth communication involves a signal input device connected to a transmitter operating at a predetermined frequency sufficiently low to effectively penetrate useful distances through-the earth, and having an analog to digital converter receiving the signal input and passing the signal input to a data compression circuit that is connected to an encoding processor, the encoding processor output being provided to a digital to analog converter. An amplifier receives the analog output from the digital to analog converter for amplifying said analog output and outputting said analog output to an antenna. A receiver having an antenna receives the analog output passes the analog signal to a band pass filter whose output is connected to an analog to digital converter that provides a digital signal to a decoding processor whose output is connected to an data decompressor, the data decompressor providing a decompressed digital signal to a digital to analog converter. An audio output device receives the analog output form the digital to analog converter for producing audible output.
NASA Astrophysics Data System (ADS)
Peterson, H. M.; Baker, L. A.
2012-12-01
Phosphorus (P) is a non-renewable resource, essential for agriculture and human food production. Although it is being depleted globally, urban P use is inefficient and contributes to water resources degradation, particularly accelerated eutrophication of receiving waters. A paradox in the P cycle is that although P enters the system through fertilizer application to agricultural land or livestock manure production in rural areas, the resulting food produced is consumed within urban households. Dietary food consumption is the largest P input to, and output from, Twin Cities Metropolitan Area (TCMA), Minnesota, households. This 7-county area has a population of 2.9 million (2010), which is over half of the State's population. Human food accounts for 41% of the P input to and 46% of the P output from the TCMA; only about 1% of the P in food waste is recycled. Expanding on previous work by the Twin Cities Household Ecosystem Project (TCHEP), this P flow analysis aims to quantify nutrient inputs required throughout the agricultural system to produce the amount of food consumed by TCMA households, while examining P use efficiency by summarizing the extent of leakage (waste), storage, and reuse throughout these systems. Food corresponding to a minimum of 80% of the total dietary P-input for TCMA households can be produced entirely within Minnesota's agricultural system, hence our "food-shed" is more-or-less directly connected to urban consumers. The top food products which contribute the largest input of dietary P are milk, cheese, wheat flour, beef, chicken, caloric sweeteners and pork. Mapping out an agricultural footprint which can support this urban ecosystem enables P use to be conceptualized through a circular economy model, in this case with Minnesota as the food-shed boundary. Using state-level data, augmented with intensive interview data collected from local livestock and food production experts, a detailed P balance was developed for each major animal and cropping system within the food-shed. P use efficiencies for these systems include: corn (1.14), hog (0.47), dairy (0.36), and beef (0.20). We will present three scenarios to illustrate how upstream and downstream changes alter the urban food-shed P balance. The first scenario examines upstream (food processing) waste management to identify nutrient recycling inefficiencies between agricultural and urban systems. The second scenario focuses on quantifying how altering consumer choices, such as converting to a more vegetable-based diet, shifts the P balance within the food-shed. The final scenario seeks to improve P use efficiency within the urban ecosystem to reduce downstream transfer. This research will contribute to the understanding of how human diets within a concentrated urban ecosystem impact an entire systems P balance. The potential for increasing P use efficiency and identifying barriers and opportunities to improve P use efficiency will be discussed.
An experimental investigation of thermoacoustic lasers operating in audible frequency range
NASA Astrophysics Data System (ADS)
Kolhe, Sanket Anil
Thermoacoustic lasers convert heat from a high-temperature heat source into acoustic power while rejecting waste heat to a low temperature sink. The working fluids involved can be air or noble gases which are nontoxic and environmentally benign. Simple in construction due to absence of moving parts, thermoacoustic lasers can be employed to achieve generation of electricity at individual homes, water-heating for domestic purposes, and to facilitate space heating and cooling. The possibility of utilizing waste heat or solar energy to run thermoacoustic devices makes them technically promising and economically viable to generate large quantities of acoustic energy. The research presented in this thesis deals with the effects of geometric parameters (stack position, stack length, tube length) associated with a thermoacoustic laser on the output sound wave. The effects of varying input power on acoustic output were also studied. Based on the experiments, optimum operating conditions were identified and qualitative and/or quantitative explanations were provided to justify our observations. It was observed that the maximum sound pressure level was generated for the laser with the stack positioned at a distance of quarter lengths of a resonator from the closed end. Higher sound pressure levels were recorded for the laser with longer stack lengths and longer resonator lengths. Efforts were also made to develop high-frequency thermoacoustic lasers.
ERIC Educational Resources Information Center
Fairchild, Charles K.
The objective of the project was to develop methods for establishing output and input performance standards for the placement and placement-support functions of the U.S. Employment Service (ES). Volume 4, a preliminary or working handbook, contains all forms, guidelines, procedures, and training materials for primary data collection and analysis…
Spherical roller bearing analysis. SKF computer program SPHERBEAN. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Kleckner, R. J.; Dyba, G. J.
1980-01-01
The user's guide for the SPHERBEAN computer program for prediction of the thermomechanical performance characteristics of high speed lubricated double row spherical roller bearings is presented. The material presented is structured to guide the user in the practical and correct implementation of SPHERBEAN. Input and output, guidelines for program use, and sample executions are detailed.
Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.
Chang, Cheng-Yang; Chen, Tsung-Lin
2017-10-31
Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.
Computer codes for thermal analysis of a solid rocket motor nozzle
NASA Technical Reports Server (NTRS)
Chauhan, Rajinder Singh
1988-01-01
A number of computer codes are available for performing thermal analysis of solid rocket motor nozzles. Aerotherm Chemical Equilibrium (ACE) computer program can be used to perform one-dimensional gas expansion to determine the state of the gas at each location of a nozzle. The ACE outputs can be used as input to a computer program called Momentum/Energy Integral Technique (MEIT) for predicting boundary layer development development, shear, and heating on the surface of the nozzle. The output from MEIT can be used as input to another computer program called Aerotherm Charring Material Thermal Response and Ablation Program (CMA). This program is used to calculate oblation or decomposition response of the nozzle material. A code called Failure Analysis Nonlinear Thermal and Structural Integrated Code (FANTASTIC) is also likely to be used for performing thermal analysis of solid rocket motor nozzles after the program is duly verified. A part of the verification work on FANTASTIC was done by using one and two dimension heat transfer examples with known answers. An attempt was made to prepare input for performing thermal analysis of the CCT nozzle using the FANTASTIC computer code. The CCT nozzle problem will first be solved by using ACE, MEIT, and CMA. The same problem will then be solved using FANTASTIC. These results will then be compared for verification of FANTASTIC.
Graphene ballistic nano-rectifier with very high responsivity
Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin
2016-01-01
Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162
Industrial ecology: a philosophical introduction.
Frosch, R A
1992-01-01
By analogy with natural ecosystems, an industrial ecology system, in addition to minimizing waste production in processes, would maximize the economical use of waste materials and of products at the ends of their lives as inputs to other processes and industries. This possibility can be made real only if a number of potential problems can be solved. These include the design of wastes along with the design of products and processes, the economics of such a system, the internalizing of the costs of waste disposal to the design and choice of processes and products, the effects of regulations intended for other purposes, and problems of responsibility and liability. The various stakeholders in making the effects of industry on the environment more benign will need to adopt some new behaviors if the possibility is to become real. PMID:11607255
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, M. W.
1978-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of estimation problems. Our purpose is to present an easy to use, multi-purpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given along with examples of how these routines can be used. The following outline indicates the scope of this report: Section (1) introduction with reference to background material; Section (2) examples and applications; Section (3) subroutine directory summary; Section (4) the subroutine directory user description with input, output, and usage explained; and Section (5) subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation and Kalman filter data processing algorithms that are often used for least squares analyses.
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Jones, Hollis H.
2011-01-01
Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.
Large-Signal Klystron Simulations Using KLSC
NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Ferguson, P.
1997-05-01
We describe a new, 2-1/2 dimensional, klystron-simulation code, KLSC. This code has a sophisticated input cavity model for calculating the klystron gain with arbitrary input cavity matching and tuning, and is capable of modeling coupled output cavities. We will discuss the input and output cavity models, and present simulation results from a high-power, S-band design. We will use these results to explore tuning issues with coupled output cavities.
Pandemic recovery analysis using the dynamic inoperability input-output model.
Santos, Joost R; Orsi, Mark J; Bond, Erik J
2009-12-01
Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.
Information encoder/decoder using chaotic systems
Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson
1997-01-01
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.
Information encoder/decoder using chaotic systems
Miller, S.L.; Miller, W.M.; McWhorter, P.J.
1997-10-21
The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.
Microwave Power Combiner/Switch Utilizing a Faraday Rotator
NASA Technical Reports Server (NTRS)
Perez, Raul
2008-01-01
A proposed device for combining or switching electromagnetic beams would have three ports, would not contain any moving parts, and would be switchable among three operating states: Two of the ports would be for input; the remaining port would be for output. In one operating state, the signals at both input ports would be coupled through to the output port. In each of the other two operating states, the signal at only one input port would be coupled to the output port. The input port would be selected through choice of the operating state.
Silicon photonics thermal phase shifter with reduced temperature range
Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R
2013-12-17
Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, W. L.; Snyder, C. T.; Frank, Steven
This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na 2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions andmore » degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.« less
Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste
2011-01-01
Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885
CMUTs with high-K atomic layer deposition dielectric material insulation layer.
Xu, Toby; Tekes, Coskun; Degertekin, F
2014-12-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, M.A.; Moskowitz, P.D.
1981-07-01
Sample analyses and detailed documentation are presented for a Reference Material System (RMS) to estimate health and environmental risks of different material cycles and energy systems. Data inputs described include: end-use material demands, efficiency coefficients, environmental emission coefficients, fuel demand coefficients, labor productivity estimates, and occupational health and safety coefficients. Application of this model permits analysts to estimate fuel use (e.g., Btu), occupational risk (e.g., fatalities), and environmental emissions (e.g., sulfur oxide) for specific material trajectories or complete energy systems. Model uncertainty is quantitatively defined by presenting a range of estimates for each data input. Systematic uncertainty not quantified relatesmore » to the boundaries chosen for analysis and reference system specification. Although the RMS can be used to analyze material system impacts for many different energy technologies, it was specifically used to examine the health and environmental risks of producing the following four types of photovoltaic devices: silicon n/p single-crystal cells produced by a Czochralski process; silicon metal/insulator/semiconductor (MIS) cells produced by a ribbon-growing process; cadmium sulfide/copper sulfide backwall cells produced by a spray deposition process; and gallium arsenide cells with 500X concentrator produced by a modified Czochralski process. Emission coefficients for particulates, sulfur dioxide and nitrogen dioxide; solid waste; total suspended solids in water; and, where applicable, air and solid waste residuals for arsenic, cadmium, gallium, and silicon are examined and presented. Where data are available the coefficients for particulates, sulfur oxides, and nitrogen oxides include both process and on-site fuel-burning emissions.« less
Method and apparatus for varying accelerator beam output energy
Young, Lloyd M.
1998-01-01
A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.
NASA Technical Reports Server (NTRS)
Cliff, R. A. (Inventor)
1975-01-01
An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.
Alant, Erna; du Plooy, Amelia; Dada, Shakila
2007-01-01
Although the sequence of graphic or pictorial symbols displayed on a communication board can have an impact on the language output of children, very little research has been conducted to describe this. Research in this area is particularly relevant for prioritising the importance of specific visual and graphic features in providing more effective and user-friendly access to communication boards. This study is concerned with understanding the impact ofspecific sequences of graphic symbol input on the graphic and spoken output of children who have acquired language. Forty participants were divided into two comparable groups. Each group was exposed to graphic symbol input with a certain word order sequence. The structure of input was either in typical English word order sequence Subject- Verb-Object (SVO) or in the word order sequence of Subject-Object-Verb (SOV). Both input groups had to answer six questions by using graphic output as well as speech. The findings indicated that there are significant differences in the PCS graphic output patterns of children who are exposed to graphic input in the SOV and SVO sequences. Furthermore, the output produced in the graphic mode differed considerably to the output produced in the spoken mode. Clinical implications of these findings are discussed
Warpage analysis on thin shell part using glowworm swarm optimisation (GSO)
NASA Astrophysics Data System (ADS)
Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.
2017-09-01
The Autodesk Moldflow Insight (AMI) software was used in this study to focuses on the analysis in plastic injection moulding process associate the input parameter and output parameter. The material used in this study is Acrylonitrile Butadiene Styrene (ABS) as the moulded material to produced the plastic part. The MATLAB sortware is a method was used to find the best setting parameter. The variables was selected in this study were melt temperature, packing pressure, coolant temperature and cooling time.
Sensitivity Analysis of the Integrated Medical Model for ISS Programs
NASA Technical Reports Server (NTRS)
Goodenow, D. A.; Myers, J. G.; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Young, M.
2016-01-01
Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral part of the overall verification, validation, and credibility review of IMM v4.0.
Plants for water recycling, oxygen regeneration and food production
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.
1991-01-01
During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
Interdicting an Adversary’s Economy Viewed As a Trade Sanction Inoperability Input Output Model
2017-03-01
set of sectors. The design of an economic sanction, in the context of this thesis, is the selection of the sector or set of sectors to sanction...We propose two optimization models. The first, the Trade Sanction Inoperability Input-output Model (TS-IIM), selects the sector or set of sectors that...Interdependency analysis: Extensions to demand reduction inoperability input-output modeling and portfolio selection . Unpublished doctoral dissertation
The relative degree enhancement problem for MIMO nonlinear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenwald, D.A.; Oezguener, Ue.
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less
Self-tuning multivariable pole placement control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1992-01-01
This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.
Test Plan: WIPP bin-scale CH TRU waste tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molecke, M.A.
1990-08-01
This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less
A holistic approach to the environmental evaluation of food waste prevention.
Salemdeeb, Ramy; Font Vivanco, David; Al-Tabbaa, Abir; Zu Ermgassen, Erasmus K H J
2017-01-01
The environmental evaluation of food waste prevention is considered a challenging task due to the globalised nature of the food supply chain and the limitations of existing evaluation tools. The most significant of these is the rebound effect: the associated environmental burdens of substitutive consumption that arises as a result of economic savings made from food waste prevention. This study introduces a holistic approach to addressing these challenges, with a focus on greenhouse gas (GHG) emissions from household food waste in the UK. It uses a hybrid life-cycle assessment model coupled with a highly detailed multi-regional environmentally extended input output analysis to capture environmental impacts across the global food supply chain. The study also takes into consideration the rebound effect, which was modelled using a linear specification of an almost ideal demand system. The study finds that food waste prevention could lead to substantial reductions in GHG emissions in the order of 706-896kg CO 2 -eq. per tonne of food waste, with most of these savings (78%) occurring as a result of avoided food production overseas. The rebound effect may however reduce such GHG savings by up to 60%. These findings provide a deeper insight into our understanding of the environmental impacts of food waste prevention: the study demonstrates the need to adopt a holistic approach when developing food waste prevention policies in order to mitigate the rebound effect and highlight the importance of increasing efficiency across the global food supply chain, particularly in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Del Prete, Valeria; Treves, Alessandro
2002-04-01
In a previous paper we have evaluated analytically the mutual information between the firing rates of N independent units and a set of multidimensional continuous and discrete stimuli, for a finite population size and in the limit of large noise. Here, we extend the analysis to the case of two interconnected populations, where input units activate output ones via Gaussian weights and a threshold linear transfer function. We evaluate the information carried by a population of M output units, again about continuous and discrete correlates. The mutual information is evaluated solving saddle-point equations under the assumption of replica symmetry, a method that, by taking into account only the term linear in N of the input information, is equivalent to assuming the noise to be large. Within this limitation, we analyze the dependence of the information on the ratio M/N, on the selectivity of the input units and on the level of the output noise. We show analytically, and confirm numerically, that in the limit of a linear transfer function and of a small ratio between output and input noise, the output information approaches asymptotically the information carried in input. Finally, we show that the information loss in output does not depend much on the structure of the stimulus, whether purely continuous, purely discrete or mixed, but only on the position of the threshold nonlinearity, and on the ratio between input and output noise.
Rapid and long-lasting plasticity of input-output mapping.
Yamamoto, Kenji; Hoffman, Donna S; Strick, Peter L
2006-11-01
Skilled use of tools requires us to learn an "input-output map" for the device, i.e., how our movements relate to the actions of the device. We used the paradigm of visuo-motor rotation to examine two questions about the plasticity of input-output maps: 1) does extensive practice on one mapping make it difficult to modify and/or to form a new input-output map and 2) once a map has been modified or a new map has been formed, does this map survive a gap in performance? Humans and monkeys made wrist movements to control the position of a cursor on a computer monitor. Humans practiced the task for approximately 1.5 h; monkeys practiced for 3-9 yr. After this practice, we gradually altered the direction of cursor movement relative to wrist movement while subjects moved either to a single target or to four targets. Subjects were unaware of the change in cursor-movement relationship. Despite their prior practice on the task, the humans and the monkeys quickly adjusted their motor output to compensate for the visuo-motor rotation. Monkeys retained the modified input-output map during a 2-wk gap in motor performance. Humans retained the altered map during a gap of >1 yr. Our results show that sensorimotor performance remains flexible despite considerable practice on a specific task, and even relatively short-term exposure to a new input-output mapping leads to a long-lasting change in motor performance.
NASA Astrophysics Data System (ADS)
Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.
2014-05-01
By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
NASA Astrophysics Data System (ADS)
Jindal, Sumit Kumar; Raghuwanshi, Sanjeev Kumar
2016-03-01
In this paper we have initially designed a circular diaphragm based MOEMS pressure sensor and a thermistor based temperature sensor. This has been done by the help of externally modulated LiNbO3 Mach Zhender Interferometer (MZI) which senses the input voltage signal and modulates it to give an output in the form of intensity of light. This output is then calibrated to understand the proper relation between the input applied and output measured. The next aspect has been the use of MZI to work as a 2:1 MUX where two input lines are -pressure signal and temperature signal. The arrangement of MZI is then modulated in such a way that based on the requirement it chooses the proper input signal and sends it to the output port for the measurement. The design has been simulated in Opti-BPM software.
Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian
2014-11-07
A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.
Computer simulation and design of a three degree-of-freedom shoulder module
NASA Technical Reports Server (NTRS)
Marco, David; Torfason, L.; Tesar, Delbert
1989-01-01
An in-depth kinematic analysis of a three degree of freedom fully-parallel robotic shoulder module is presented. The major goal of the analysis is to determine appropriate link dimensions which will provide a maximized workspace along with desirable input to output velocity and torque amplification. First order kinematic influence coefficients which describe the output velocity properties in terms of actuator motions provide a means to determine suitable geometric dimensions for the device. Through the use of computer simulation, optimal or near optimal link dimensions based on predetermined design criteria are provided for two different structural designs of the mechanism. The first uses three rotational inputs to control the output motion. The second design involves the use of four inputs, actuating any three inputs for a given position of the output link. Alternative actuator placements are examined to determine the most effective approach to control the output motion.
Design of vaccination and fumigation on Host-Vector Model by input-output linearization method
NASA Astrophysics Data System (ADS)
Nugraha, Edwin Setiawan; Naiborhu, Janson; Nuraini, Nuning
2017-03-01
Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious population by using feedback control especially input-output liniearization method. Host population is divided into three compartments: susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infectious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
Audio distribution and Monitoring Circuit
NASA Technical Reports Server (NTRS)
Kirkland, J. M.
1983-01-01
Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.
Computer model for economic study of unbleached kraft paperboard production
Peter J. Ince
1984-01-01
Unbleached kraft paperboard is produced from wood fiber in an industrial papermaking process. A highly specific and detailed model of the process is presented. The model is also presented as a working computer program. A user of the computer program will provide data on physical parameters of the process and on prices of material inputs and outputs. The program is then...
MAGNA (Materially and Geometrically Nonlinear Analysis). Part I. Finite Element Analysis Manual.
1982-12-01
provided for operating the program, modifying storage caoacity, preparing input data, estimating computer run times , and interpreting the output...7.1.3 Reserved File Names 7.1.16 7.1.4 Typical Execution Times on CDC Computers 7.1.18 7.2 CRAY PROGRAM VERSION 7.2.1 7.2.1 Job Control Language 7.2.1...7.2.2 Modification of Storage Capacity 7.2.8 7.2.3 Execution Times on the CRAY-I Computer 7.2.12 7.3 VAX PROGRAM VERSION 7.3.1 8 INPUT DATA 8.0.1 8.1
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
ERIC Educational Resources Information Center
Nowbakht, Mohammad; Shahnazari, Mohammadtaghi
2015-01-01
In the present study, the comparative effects of comprehensible input, output and corrective feedback on the receptive acquisition of L2 vocabulary items were investigated. Two groups of beginning EFL learners participated in the study. The control group received comprehensible input only, while the experimental group received input and was…
Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
Xu, Lu; Huang, Defeng David; Guo, Yingjie Jay
2015-12-01
In this paper, we propose a new blind learning algorithm, namely, the Benveniste-Goursat input-output decision (BG-IOD), to enhance the convergence performance of neural network-based equalizers for nonlinear channel equalization. In contrast to conventional blind learning algorithms, where only the output of the equalizer is employed for updating system parameters, the BG-IOD exploits a new type of extra information, the input decision information obtained from the input of the equalizer, to mitigate the influence of the nonlinear equalizer structure on parameters learning, thereby leading to improved convergence performance. We prove that, with the input decision information, a desirable convergence capability that the output symbol error rate (SER) is always less than the input SER if the input SER is below a threshold, can be achieved. Then, the BG soft-switching technique is employed to combine the merits of both input and output decision information, where the former is used to guarantee SER convergence and the latter is to improve SER performance. Simulation results show that the proposed algorithm outperforms conventional blind learning algorithms, such as stochastic quadratic distance and dual mode constant modulus algorithm, in terms of both convergence performance and SER performance, for nonlinear equalization.
Robotics control using isolated word recognition of voice input
NASA Technical Reports Server (NTRS)
Weiner, J. M.
1977-01-01
A speech input/output system is presented that can be used to communicate with a task oriented system. Human speech commands and synthesized voice output extend conventional information exchange capabilities between man and machine by utilizing audio input and output channels. The speech input facility is comprised of a hardware feature extractor and a microprocessor implemented isolated word or phrase recognition system. The recognizer offers a medium sized (100 commands), syntactically constrained vocabulary, and exhibits close to real time performance. The major portion of the recognition processing required is accomplished through software, minimizing the complexity of the hardware feature extractor.
Brandt, Adam R
2008-10-01
Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.
Using the split Hopkinson pressure bar to validate material models.
Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian
2014-08-28
This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer-Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
ERIC Educational Resources Information Center
Webster, Raymond E.
1980-01-01
A significant two-way input modality by output modality interaction suggested that short term memory capacity among the groups differed as a function of the modality used to present the items in combination with the output response required. (Author/CL)
Hybrid powertrain system including smooth shifting automated transmission
Beaty, Kevin D.; Nellums, Richard A.
2006-10-24
A powertrain system is provided that includes a prime mover and a change-gear transmission having an input, at least two gear ratios, and an output. The powertrain system also includes a power shunt configured to route power applied to the transmission by one of the input and the output to the other one of the input and the output. A transmission system and a method for facilitating shifting of a transmission system are also provided.
Li, Ji; Wu, Hong-sheng; Gao, Zhi-qiu; Shang, Xiao-xia; Zheng, Pei-hui; Yin, Jin; Kakpa, Didier; Ren, Qian-qi; Faustin, Ogou Katchele; Chen, Su-yun; Xu, Ya; Yao, Tong-yan; Ji, Wei; Qian, Jing-shan; Ma, Shi-jie
2015-08-01
Phosphogypsum is a phosphorus chemical waste which has not been managed and reused well, resultantly, causing environmental pollution and land-occupation. Phosphogypsum wastes were used as a soil amendment to assess the effect on wheat growth, yield and CO2 emissions from winter wheat fields. Its economic and environmental benefits were analyzed at the same time. The results showed that wheat yield was increased by 37.71% in the treatment of phosphogypsum of 2 100 kg x hm(-2). Compared with the control treatment, throughout the wheat growing season, CO2 emission was accumulatively reduced by 3% in the treatment of phosphogypsum waste of 1050 kg x hm(-2), while reduced by 8% , 10% , and 6% during the jointing stage, heading date and filling period of wheat, respectively; while CO2 emission was accumulatively reduced by 7% in the treatment of phosphogypsum waste of 2 100 kg x hm(-2) throughout the wheat growing season, as reduced by 11% , 4% , and 12% during the reviving wintering stage, heading date and filling period of wheat, respectively. It was better for CO2 emission reduction in the treatment of a larger amount of phosphogypsum waste. In the case of application of phosphogypsum waste residue within a certain range, the emission intensity of CO2 ( CO2 emissions of per unit of fresh weight or CO2 emissions of per unit of yield) , spike length, fresh weight and yield showed a significantly negative correlation--the longer the ear length, the greater fresh weight and yield and the lower the CO2 emissions intensity. As to the carbon trading, phosphogypsum utilization was of high economic and environmental benefits. Compared with the control, the ratio of input to output changed from 1: 8.3 to 1: 10.7, which in the same situation of investment the output could be increased by 28.92% ; phosphogypsum as a greenhouse gas reducing agent in the wheat field, it could decrease the cost and increase the environmental benefit totally about 290 yuan per unit of ton. The results demonstrated phosphogypsum wastes could obviously decrease the CO2 emission from field soil and had a great potential to control agricultural greenhouse gases. Hopefully it has an important application perspective for the low-carbon, ecological and sustainable agricultural development.
Local area network with fault-checking, priorities, and redundant backup
NASA Technical Reports Server (NTRS)
Morales, Sergio (Inventor); Friedman, Gary L. (Inventor)
1989-01-01
This invention is a redundant error detecting and correcting local area networked computer system having a plurality of nodes each including a network connector board within the node for connecting to an interfacing transceiver operably attached to a network cable. There is a first network cable disposed along a path to interconnect the nodes. The first network cable includes a plurality of first interfacing transceivers attached thereto. A second network cable is disposed in parallel with the first cable and, in like manner, includes a plurality of second interfacing transceivers attached thereto. There are a plurality of three position switches each having a signal input, three outputs for individual selective connection to the input, and a control input for receiving signals designating which of the outputs is to be connected to the signal input. Each of the switches includes means for designating a response address for responding to addressed signals appearing at the control input and each of the switches further has its signal input connected to a respective one of the input/output lines from the nodes. Also, one of the three outputs is connected to a repective one of the plurality of first interfacing transceivers. There is master switch control means having an output connected to the control inputs of the plurality of three position switches and an input for receiving directive signals for outputting addressed switch position signals to the three position switches as well as monitor and control computer means having a pair of network connector boards therein connected to respective ones of one of the first interfacing transceivers and one of the second interfacing transceivers and an output connected to the input of the master switch means for monitoring the status of the networked computer system by sending messages to the nodes and receiving and verifying messages therefrom and for sending control signals to the master switch to cause the master switch to cause respective ones of the nodes to use a desired one of the first and second cables for transmitting and receiving messages and for disconnecting desired ones of the nodes from both cables.
Optimal Output Trajectory Redesign for Invertible Systems
NASA Technical Reports Server (NTRS)
Devasia, S.
1996-01-01
Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.
Rosen, I G; Luczak, Susan E; Weiss, Jordan
2014-03-15
We develop a blind deconvolution scheme for input-output systems described by distributed parameter systems with boundary input and output. An abstract functional analytic theory based on results for the linear quadratic control of infinite dimensional systems with unbounded input and output operators is presented. The blind deconvolution problem is then reformulated as a series of constrained linear and nonlinear optimization problems involving infinite dimensional dynamical systems. A finite dimensional approximation and convergence theory is developed. The theory is applied to the problem of estimating blood or breath alcohol concentration (respectively, BAC or BrAC) from biosensor-measured transdermal alcohol concentration (TAC) in the field. A distributed parameter model with boundary input and output is proposed for the transdermal transport of ethanol from the blood through the skin to the sensor. The problem of estimating BAC or BrAC from the TAC data is formulated as a blind deconvolution problem. A scheme to identify distinct drinking episodes in TAC data based on a Hodrick Prescott filter is discussed. Numerical results involving actual patient data are presented.
NASA Astrophysics Data System (ADS)
Liu, Jian; Ruan, Xiaoe
2017-07-01
This paper develops two kinds of derivative-type networked iterative learning control (NILC) schemes for repetitive discrete-time systems with stochastic communication delay occurred in input and output channels and modelled as 0-1 Bernoulli-type stochastic variable. In the two schemes, the delayed signal of the current control input is replaced by the synchronous input utilised at the previous iteration, whilst for the delayed signal of the system output the one scheme substitutes it by the synchronous predetermined desired trajectory and the other takes it by the synchronous output at the previous operation, respectively. In virtue of the mathematical expectation, the tracking performance is analysed which exhibits that for both the linear time-invariant and nonlinear affine systems the two kinds of NILCs are convergent under the assumptions that the probabilities of communication delays are adequately constrained and the product of the input-output coupling matrices is full-column rank. Last, two illustrative examples are presented to demonstrate the effectiveness and validity of the proposed NILC schemes.
Insulated electrocardiographic electrodes. [without paste electrolyte
NASA Technical Reports Server (NTRS)
David, R. M.; Portnoy, W. A. (Inventor)
1975-01-01
An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.
The Arab world's contribution to solid waste literature: a bibliometric analysis.
Zyoud, Sa'ed H; Al-Jabi, Samah W; Sweileh, Waleed M; Al-Khalil, Suleiman; Zyoud, Shaher H; Sawalha, Ansam F; Awang, Rahmat
2015-01-01
Environmental and health-related effects of solid waste material are considered worldwide problems. The aim of this study was to assess the volume and impact of Arab scientific output published in journals indexed in the Science Citation Index (SCI) on solid waste. We included all the documents within the SCI whose topic was solid waste from all previous years up to 31 December 2012. In this bibliometric analysis we sought to evaluate research that originated from Arab countries in the field of solid waste, as well as its relative growth rate, collaborative measures, productivity at the institutional level, and the most prolific journals. A total of 382 (2.35 % of the overall global research output in the field of solid waste) documents were retrieved from the Arab countries. The annual number of documents published in the past three decades (1982-2012) indicated that research productivity demonstrated a noticeable rise during the last decade. The highest number of articles associated with solid waste was that of Egypt (22.8 %), followed by Tunisia (19.6), and Jordan (13.4 %). the total number of citations over the analysed years at the date of data collection was 4,097, with an average of 10.7 citations per document. The h-index of the citing articles was 31. Environmental science was the most researched topic, represented by 175 (45.8 %) articles. Waste Management was the top active journal. The study recognized 139 (36.4 %) documents from collaborations with 25 non-Arab countries. Arab authors mainly collaborated with countries in Europe (22.5 %), especially France, followed by countries in the Americas (9.4 %), especially the USA. The most productive institution was the American University of Beirut, Lebanon, with 6.3 % of total publications. Despite the expected increase in solid waste production from Arab world, research activity about solid waste is still low. Governments must invest more in solid waste research to avoid future unexpected problems. Finally, since solid waste is a multidisciplinary science, research teams in engineering, health, toxicology, environment, geology and others must be formulated to produce research in solid waste from different scientific aspects.
Vawter, G. Allen; Hadley, G. Ronald
1997-01-01
An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interfers in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler.
Vawter, G.A.; Hadley, G.R.
1997-05-06
An integrated optical XY coupler having two converging input waveguide arms meeting in a central section and a central output waveguide arm and two diverging flanking output waveguide arms emanating from the central section. In-phase light from the input arms constructively interferes in the central section to produce a single mode output in the central output arm with the rest of the light being collected in the flanking output arms. Crosstalk between devices on a substrate is minimized by this collection of the out-of-phase light by the flanking output arms of the XY coupler. 9 figs.
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
Shaper design in CMOS for high dynamic range
De Geronimo, Gianluigi; Li, Shaorui
2015-06-30
An analog filter is presented that comprises a chain of filter stages, a feedback resistor for providing a negative feedback, and a feedback capacitor for providing a positive feedback. Each filter stage has an input node and an output node. The output node of a filter stage is connected to the input node of an immediately succeeding filter stage through a resistor. The feedback resistor has a first end connected to the output node of the last filter stage along the chain of filter stages, and a second end connected to the input node of a first preceding filter stage. The feedback capacitor has a first end connected to the output node of one of the chain of filter stages, and a second end connected to the input node of a second preceding filter stage.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
High-performance ultra-low power VLSI analog processor for data compression
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1996-01-01
An apparatus for data compression employing a parallel analog processor. The apparatus includes an array of processor cells with N columns and M rows wherein the processor cells have an input device, memory device, and processor device. The input device is used for inputting a series of input vectors. Each input vector is simultaneously input into each column of the array of processor cells in a pre-determined sequential order. An input vector is made up of M components, ones of which are input into ones of M processor cells making up a column of the array. The memory device is used for providing ones of M components of a codebook vector to ones of the processor cells making up a column of the array. A different codebook vector is provided to each of the N columns of the array. The processor device is used for simultaneously comparing the components of each input vector to corresponding components of each codebook vector, and for outputting a signal representative of the closeness between the compared vector components. A combination device is used to combine the signal output from each processor cell in each column of the array and to output a combined signal. A closeness determination device is then used for determining which codebook vector is closest to an input vector from the combined signals, and for outputting a codebook vector index indicating which of the N codebook vectors was the closest to each input vector input into the array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metin, E.; Eroeztuerk, A.; Neyim, C
This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Jason R.; Mayo, Jackson R.
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less
Input filter compensation for switching regulators
NASA Technical Reports Server (NTRS)
Lee, F. C.; Kelkar, S. S.
1982-01-01
The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.
Labor and Capital in the Soviet Union by Republics
1977-08-01
under the title ’Input-Output Analysis and the Soviet Economy. An Annotated Bibliotraphy.’ 934 entries. 180 pp. I 2. Jaees UT. Cillula The Structure ...Input-Output in the Soviet Union.’* April 1974, 94 pp. S. eneD. Guill, "Interteporal Comparison of the Structure of the Soviet Economy.- February...49 pp. I *10. Daniel L. Bond, "Input-Output Structure of a Soviet Republic, the Latvian SSR, August 1975." (with an appendix by Gene Guill and Per
2009-03-01
meters. The input and output control structures are modeled as sharp crested , rectangular weirs one meter in width. The elevation of the input weir is...manipulated by adjusting the width of both the input and output weirs and the crest height of the output weir . All of these adjustments were found to be...reduction of the weir crest height had an effect on the amount of storm water retained during low precipitation conditions, but not on the crest
NASA Technical Reports Server (NTRS)
George, Jude (Inventor); Schlecht, Leslie (Inventor); McCabe, James D. (Inventor); LeKashman, John Jr. (Inventor)
1998-01-01
A network management system has SNMP agents distributed at one or more sites, an input output module at each site, and a server module located at a selected site for communicating with input output modules, each of which is configured for both SNMP and HNMP communications. The server module is configured exclusively for HNMP communications, and it communicates with each input output module according to the HNMP. Non-iconified, informationally complete views are provided of network elements to aid in network management.
Offset Compound Gear Inline Two-Speed Drive
NASA Technical Reports Server (NTRS)
Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)
2012-01-01
A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.
Peak-Seeking Control Using Gradient and Hessian Estimates
NASA Technical Reports Server (NTRS)
Ryan, John J.; Speyer, Jason L.
2010-01-01
A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.
Offset Compound Gear Inline Two-Speed Drive
NASA Technical Reports Server (NTRS)
Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)
2014-01-01
A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.
A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design
NASA Technical Reports Server (NTRS)
Raquea, Steven M.
1999-01-01
During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.
Machine Learning Classification of Heterogeneous Fields to Estimate Physical Responses
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Akhriev, A.; Alzate, C.; Zhuk, S.
2017-12-01
The promise of machine learning to enhance physics-based simulation is examined here using the transient pressure response to a pumping well in a heterogeneous aquifer. 10,000 random fields of log10 hydraulic conductivity (K) are created and conditioned on a single K measurement at the pumping well. Each K-field is used as input to a forward simulation of drawdown (pressure decline). The differential equations governing groundwater flow to the well serve as a non-linear transform of the input K-field to an output drawdown field. The results are stored and the data set is split into training and testing sets for classification. A Euclidean distance measure between any two fields is calculated and the resulting distances between all pairs of fields define a similarity matrix. Similarity matrices are calculated for both input K-fields and the resulting drawdown fields at the end of the simulation. The similarity matrices are then used as input to spectral clustering to determine groupings of similar input and output fields. Additionally, the similarity matrix is used as input to multi-dimensional scaling to visualize the clustering of fields in lower dimensional spaces. We examine the ability to cluster both input K-fields and output drawdown fields separately with the goal of identifying K-fields that create similar drawdowns and, conversely, given a set of simulated drawdown fields, identify meaningful clusters of input K-fields. Feature extraction based on statistical parametric mapping provides insight into what features of the fields drive the classification results. The final goal is to successfully classify input K-fields into the correct output class, and also, given an output drawdown field, be able to infer the correct class of input field that created it.
A GIS-based modeling system for petroleum waste management. Geographical information system.
Chen, Z; Huang, G H; Li, J B
2003-01-01
With an urgent need for effective management of petroleum-contaminated sites, a GIS-aided simulation (GISSIM) system is presented in this study. The GISSIM contains two components: an advanced 3D numerical model and a geographical information system (GIS), which are integrated within a general framework. The modeling component undertakes simulation for the fate of contaminants in subsurface unsaturated and saturated zones. The GIS component is used in three areas throughout the system development and implementation process: (i) managing spatial and non-spatial databases; (ii) linking inputs, model, and outputs; and (iii) providing an interface between the GISSIM and its users. The developed system is applied to a North American case study. Concentrations of benzene, toluene, and xylenes in groundwater under a petroleum-contaminated site are dynamically simulated. Reasonable outputs have been obtained and presented graphically. They provide quantitative and scientific bases for further assessment of site-contamination impacts and risks, as well as decisions on practical remediation actions.
The SLH framework for modeling quantum input-output networks
Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan
2017-09-04
Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less
The SLH framework for modeling quantum input-output networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan
Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less
Long term thermoelectric module testing system.
D'Angelo, Jonathan; Hogan, Timothy
2009-10-01
Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.
NASA Astrophysics Data System (ADS)
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua
2016-03-01
Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.
Hoppie, Lyle O.
1982-01-12
Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.
Identification of single-input-single-output quantum linear systems
NASA Astrophysics Data System (ADS)
Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin
2017-03-01
The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.
NASA Astrophysics Data System (ADS)
Koten, V. K.; Tanamal, C. E.
2017-03-01
Manufacturing agricultural products by the farmers, people or person who involve in medium industry, small industry, and households industry still be done in separately. Although the power on primemover is enough, in operations, primemover was only to move one of several agricultural products machine. This study attempts to design and construct power transmition multi output with single primemover; a single construction that allows primemover move some agricultur products machine in the same or not. This study begins with the determination of production capacity and the power to destroy products, the determination of resources and rotation, normalization of resources and rotation, the determination of the type material used, the size determination of each machine elements, construction machine elements, and assemble machine elements into a construction multi output power transmition with single primemover on agricultural products machine. The results show that with a input normalization 4 PK (2984 Watt), rotation 2000 rpm, the strength of material 60 kg/mm2, and several operating consideration, thus obtained size of machine elements through calculation. Based on the size, the machine elements is made through the use of some machine tools and assembled to form a multi output power transmition with single primemover.
Zhang, Tong; Ni, Jiupai; Xie, Deti
2016-04-01
This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.
Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.
Hang, Giao B; Dan, Yang
2011-01-01
Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.
EXFILE: A program for compiling irradiation data on UN and UC fuel pins
NASA Technical Reports Server (NTRS)
Mayer, J. T.; Smith, R. L.; Weinstein, M. B.; Davison, H. W.
1973-01-01
A FORTRAN-4 computer program for handling fuel pin data is described. Its main features include standardized output, easy access for data manipulation, and tabulation of important material property data. An additional feature allows simplified preparation of input decks for a fuel swelling computer code (CYGRO-2). Data from over 300 high temperature nitride and carbide based fuel pin irradiations are listed.
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 27
1977-02-10
input and output conditions. The power section of the circuit is modified to permit triacs and thyristors, respectively, to function. The purpose of the...electronic materials, components, and devices, on circuit theory, pulse techniques, electromagnetic wave propagation, radar, quantum electronic theory...Lasers, Masers, Holography, Quasi-Optical 20 Microelectronics and General Circuit Theory and Information 21 Radars and Radio Wavigati on 22
European Scientific Notes. Volume 36, Number 4,
1982-04-30
and building an icebreaking research and resupply ship (1982). R.W. Booker 79 ESN 36-4 (1982) Powder Compaction: Fundamentals and MATERIAL Recent...Developments SCIENCES The 18th John Player Lecture, Powder Compaction: Fundamentals and Recent Developments by Prof. II.F. Fischmeister, Max-Planck...directions) power consumption. The design that operates was used to position the cladded input and at the highest speed uses a depletion-mode output
Programmable electronic synthesized capacitance
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.
Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass
NASA Astrophysics Data System (ADS)
Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.
2018-04-01
Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.
Dual physiological rate measurement instrument
NASA Technical Reports Server (NTRS)
Cooper, Tommy G. (Inventor)
1990-01-01
The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)
1990-01-01
This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.
High-Voltage-Input Level Translator Using Standard CMOS
NASA Technical Reports Server (NTRS)
Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.
2011-01-01
proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors, which, by virtue of being identical to the input transistors, would reproduce the input differential potential at the output
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer
Xu, Toby; Tekes, Coskun; Degertekin, F. Levent
2014-01-01
Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786
Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks
2018-01-01
Abstract Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity, could be described by a common circuit architecture. Simulations showed that cortical input-output transformations can be changed from linear to sublinear with moderate (∼20%) strengthening of connections between inhibitory neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons, networks produce a wider range of output spiking responses in the presence of feedforward inhibition. PMID:29682603
Multistage Force Amplification of Piezoelectric Stacks
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)
2015-01-01
Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.
An exact algebraic solution of the infimum in H-infinity optimization with output feedback
NASA Technical Reports Server (NTRS)
Chen, Ben M.; Saberi, Ali; Ly, Uy-Loi
1991-01-01
This paper presents a simple and noniterative procedure for the computation of the exact value of the infimum in the standard H-infinity-optimal control with output feedback. The problem formulation is general and does not place any restrictions on the direct feedthrough terms between the control input and the controlled output variables, and between the disturbance input and the measurement output variables. The method is applicable to systems that satisfy (1) the transfer function from the control input to the controlled output is right-invertible and has no invariant zeros on the j(w) axis and, (2) the transfer function from the disturbance to the measurement output is left-invertible and has no invariant zeros on the j(w) axis. A set of necessary and sufficient conditions for the solvability of H-infinity-almost disturbance decoupling problem via measurement feedback with internal stability is also given.
Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das
2018-02-01
This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Approximate circuits for increased reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the referencemore » circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.« less
Using a Polytope to Estimate Efficient Production Functions of Joint Product Processes.
ERIC Educational Resources Information Center
Simpson, William A.
In the last decade, a modeling technique has been developed to handle complex input/output analyses where outputs involve joint products and there are no known mathematical relationships linking the outputs or inputs. The technique uses the geometrical concept of a six-dimensional shape called a polytope to analyze the efficiency of each…
Policy instruments for pollution control in developing countries.
Eskeland, G S; Jimenez, E
1992-07-01
Economic development in developing countries must be accomplished in a manner that does not harm the environment with pollution. Pollution harms human health and productivity. Thus appropriate strategies must be developed that promote growth, reduce poverty, and protect the environment. A review of the current literature is performed with attention paid to cost-effective interventions i.e., comparisons of regulatory and fiscal instruments that can reduce pollution. Both direct instruments (like effluent charges, tradable permits, deposit refund systems, emission regulations and regulatory agency funding for purification, cleanup, waste disposal, and enforcement) and indirect instruments (like input/output taxes and subsidies, substitution subsidies, abatement inputs, regulation of equipment and processes, and development of clean technologies) are examined. Examples are used to show how indirect instruments can be successful when monitoring and enforcement is too costly. A careful examination of distributive concerns illustrate how the effect on the poor may need particular consideration and how groups with vested interests can help evaluate the probable success of such interventions.
Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389
Getting out what we put in: productivity of the English National Health Service.
Castelli, Adriana; Laudicella, Mauro; Street, Andrew; Ward, Padraic
2011-07-01
Many countries are incorporating direct measures of non-market outputs in the national accounts. For any particular output to be included there has to be data about it for two adjacent periods. This is problematic because the classification of non-market outputs is often subject to wholesale revision. We outline the challenges associated with classification changes and propose a solution. To illustrate we construct output and input indices and estimate productivity growth of the English National Health Service (NHS) for the period 2003-2004 to 2007-2008. Our index of output growth incorporates all care provided to NHS patients and captures improvements in survival rates, waiting times and disease management. We find that more patients are being treated and the quality of the care they receive has been improving. We implement our approach to dealing with changes as to how health services are defined and show what effect this has on estimates of output growth. Our index of input growth captures all labour, intermediate and capital inputs into health service production and we improve on how capital has been measured in the past. Inputs have increased over time but there has also been a slowdown since 2005-2006, primarily the result of a levelling off in staff recruitment and less reliance on the use of agency staff. Productivity is assessed by comparing output growth with growth in inputs, the net effect being constant productivity growth between 2003-2004 and 2007-2008.
London, Michael; Larkum, Matthew E; Häusser, Michael
2008-11-01
Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.
Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure
NASA Astrophysics Data System (ADS)
Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.
2017-05-01
Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”
Apparatus for and method of eliminating single event upsets in combinational logic
NASA Technical Reports Server (NTRS)
Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor); Cameron, Kelly B. (Inventor)
2001-01-01
An apparatus for and method of eliminating single event upsets (or SEU) in combinational logic are used to prevent error propagation as a result of cosmic particle strikes to the combinational logic. The apparatus preferably includes a combinational logic block electrically coupled to a delay element, a latch and an output buffer. In operation, a signal from the combinational logic is electrically coupled to a first input of the latch. In addition, the signal is routed through the delay element to produce a delayed signal. The delayed signal is routed to a second input of the latch. The latch used in the apparatus for preventing SEU preferably includes latch outputs and a feature that the latch outputs will not change state unless both latch inputs are correct. For example, the latch outputs may not change state unless both latch inputs have the same logical state. When a cosmic particle strikes the combinational logic, a transient disturbance with a predetermined length may appear in the signal. However, a function of the delay element is to preferably provide a time delay greater than the length of the transient disturbance. Therefore, the transient disturbance will not reach both latch inputs simultaneously. As a result, the latch outputs will not permanently change state in error due to the transient disturbance. In addition, the output buffer preferably combines the latch outputs in such a way that the correct state is preserved at all times. Thus, combinational logic with protection from SEU is provided.
NASA Technical Reports Server (NTRS)
Grauling, C. H., Jr.; Parker, T. W.
1977-01-01
Switch achieves high isolation and continuous input/output matching by using resonant coupling structure of diplexer. Additionally, dc bias network used to control switch is decoupled from RF input and output lines. Voltage transients in external circuits are thus minimized.
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
Goudarzi, Reza; Pourreza, Abolghasem; Shokoohi, Mostafa; Askari, Roohollah; Mahdavi, Mahdi; Moghri, Javad
2014-01-01
Background: Hospitals are highly resource-dependent settings, which spend a large proportion of healthcare financial resources. The analysis of hospital efficiency can provide insight into how scarce resources are used to create health values. This study examines the Technical Efficiency (TE) of 12 teaching hospitals affiliated with Tehran University of Medical Sciences (TUMS) between 1999 and 2011. Methods: The Stochastic Frontier Analysis (SFA) method was applied to estimate the efficiency of TUMS hospitals. A best function, referred to as output and input parameters, was calculated for the hospitals. Number of medical doctors, nurses, and other personnel, active beds, and outpatient admissions were considered as the input variables and number of inpatient admissions as an output variable. Results: The mean level of TE was 59% (ranging from 22 to 81%). During the study period the efficiency increased from 61 to 71%. Outpatient admission, other personnel and medical doctors significantly and positively affected the production (P< 0.05). Concerning the Constant Return to Scale (CRS), an optimal production scale was found, implying that the productions of the hospitals were approximately constant. Conclusion: Findings of this study show a remarkable waste of resources in the TUMS hospital during the decade considered. This warrants policy-makers and top management in TUMS to consider steps to improve the financial management of the university hospitals. PMID:25114947
Diagnosable structured logic array
NASA Technical Reports Server (NTRS)
Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)
2009-01-01
A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.
Complexity and non-commutativity of learning operations on graphs.
Atmanspacher, Harald; Filk, Thomas
2006-07-01
We present results from numerical studies of supervised learning operations in small recurrent networks considered as graphs, leading from a given set of input conditions to predetermined outputs. Graphs that have optimized their output for particular inputs with respect to predetermined outputs are asymptotically stable and can be characterized by attractors, which form a representation space for an associative multiplicative structure of input operations. As the mapping from a series of inputs onto a series of such attractors generally depends on the sequence of inputs, this structure is generally non-commutative. Moreover, the size of the set of attractors, indicating the complexity of learning, is found to behave non-monotonically as learning proceeds. A tentative relation between this complexity and the notion of pragmatic information is indicated.
Assessment of input-output properties and control of neuroprosthetic hand grasp.
Hines, A E; Owens, N E; Crago, P E
1992-06-01
Three tests have been developed to evaluate rapidly and quantitatively the input-output properties and patient control of neuroprosthetic hand grasp. Each test utilizes a visual pursuit tracking task during which the subject controls the grasp force and grasp opening (position) of the hand. The first test characterizes the static input-output properties of the hand grasp, where the input is a slowly changing patient generated command signal and the outputs are grasp force and grasp opening. Nonlinearities and inappropriate slopes have been documented in these relationships, and in some instances the need for system returning has been indicated. For each subject larger grasp forces were produced when grasping larger objects, and for some subjects the shapes of the relationships also varied with object size. The second test quantifies the ability of the subject to control the hand grasp outputs while tracking steps and ramps. Neuroprosthesis users had rms errors two to three times larger when tracking steps versus ramps, and had rms errors four to five times larger than normals when tracking ramps. The third test provides an estimate of the frequency response of the hand grasp system dynamics, from input and output data collected during a random tracking task. Transfer functions were estimated by spectral analysis after removal of the static input-output nonlinearities measured in the first test. The dynamics had low-pass filter characteristics with 3 dB cutoff frequencies from 1.0 to 1.4 Hz. The tests developed in this study provide a rapid evaluation of both the system and the user. They provide information to 1) help interpret subject performance of functional tasks, 2) evaluate the efficacy of system features such as closed-loop control, and 3) screen the neuroprosthesis to indicate the need for retuning.
Dynamics of nonlinear feedback control.
Snippe, H P; van Hateren, J H
2007-05-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.
Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Self-seeded injection-locked FEL amplifer
Sheffield, Richard L.
1999-01-01
A self-seeded free electron laser (FEL) provides a high gain and extraction efficiency for the emitted light. An accelerator outputs a beam of electron pulses to a permanent magnet wiggler having an input end for receiving the electron pulses and an output end for outputting light and the electron pulses. An optical feedback loop collects low power light in a small signal gain regime at the output end of said wiggler and returns the low power light to the input end of the wiggler while outputting high power light in a high signal gain regime.
Measuring Equity: Creating a New Standard for Inputs and Outputs
ERIC Educational Resources Information Center
Knoeppel, Robert C.; Della Sala, Matthew R.
2013-01-01
The purpose of this article is to introduce a new statistic to capture the ratio of equitable student outcomes given equitable inputs. Given the fact that finance structures should be aligned to outcome standards according to judicial interpretation, a ratio of outputs to inputs, or "equity ratio," is introduced to discern if conclusions can be…
NASA Technical Reports Server (NTRS)
1982-01-01
Personal data input, decompression data, nitrogen washout, nitrogen data, and update computer programs are described. Input data and formats; program output, reports, and data; program flowcharts; program listings; sample runs with input and output pages; hardware operation; and engineering data are provided.
Escalating trends in the urban metabolism of Hong Kong: 1971-1997
NASA Technical Reports Server (NTRS)
Warren-Rhodes, K.; Koenig, A.
2001-01-01
Urban metabolism measures quantitatively a city's load on the natural environment. We update the Newcombe et al. (3) pioneering study of Hong Kong's urban metabolism in 1971, highlighting trends in resource consumption and waste generation. Per capita food, water and materials consumption have surged since the early 1970s by 20%, 40%, and 149%, respectively. Tremendous pollution has accompanied this growing affluence and materialism, and total air emissions, CO2 outputs, municipal solid wastes, and sewage discharges have risen by 30%, 250%, 245%, and 153%. As a result, systemic overload of land, atmospheric and water systems has occurred. While some strategies to tackle deteriorating environmental quality have succeeded, greater and more far-reaching changes in consumer behavior and government policy are needed if Hong Kong is to achieve its stated goal of becoming "a truly sustainable city" in the 21st century.
Prototype Focal-Plane-Array Optoelectronic Image Processor
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey
1995-01-01
Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.
Fellner, Johann; Cencic, Oliver; Zellinger, Günter; Rechberger, Helmut
2011-10-01
Thermal utilization of municipal solid waste and commercial wastes has become of increasing importance in European waste management. As waste materials are generally composed of fossil and biogenic materials, a part of the energy generated can be considered as renewable and is thus subsidized in some European countries. Analogously, CO(2) emissions of waste incinerators are only partly accounted for in greenhouse gas inventories. A novel approach for determining these fractions is the so-called balance method. In the present study, the implementation of the balance method on a waste-to-energy plant using oxygen-enriched combustion air was investigated. The findings of the 4-year application indicate on the one hand the general applicability and robustness of the method, and on the other hand the importance of reliable monitoring data. In particular, measured volume flows of the flue gas and the oxygen-enriched combustion air as well as corresponding O(2) and CO(2) contents should regularly be validated. The fraction of renewable (biogenic) energy generated throughout the investigated period amounted to between 27 and 66% for weekly averages, thereby denoting the variation in waste composition over time. The average emission factor of the plant was approximately 45 g CO(2) MJ(-1) energy input or 450 g CO(2) kg(-1) waste incinerated. The maximum error of the final result was about 16% (relative error), which was well above the error (<8%) of the balance method for plants with conventional oxygen supply.
Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.
2015-08-03
Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from themore » photonic crystal structure.« less
Time Triggered Ethernet System Testing Means and Method
NASA Technical Reports Server (NTRS)
Smithgall, William Todd (Inventor); Hall, Brendan (Inventor); Varadarajan, Srivatsan (Inventor)
2014-01-01
Methods and apparatus are provided for evaluating the performance of a Time Triggered Ethernet (TTE) system employing Time Triggered (TT) communication. A real TTE system under test (SUT) having real input elements communicating using TT messages with output elements via one or more first TTE switches during a first time interval schedule established for the SUT. A simulation system is also provided having input simulators that communicate using TT messages via one or more second TTE switches with the same output elements during a second time interval schedule established for the simulation system. The first and second time interval schedules are off-set slightly so that messages from the input simulators, when present, arrive at the output elements prior to messages from the analogous real inputs, thereby having priority over messages from the real inputs and causing the system to operate based on the simulated inputs when present.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Prestressed elastomer for energy storage
Hoppie, Lyle O.; Speranza, Donald
1982-01-01
Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.
Cumulative metal leaching from utilisation of secondary building materials in river engineering.
Leuven, R S E W; Willems, F H G
2004-01-01
The present paper estimates the utilisation of bulky wastes (minestone, steel slag, phosphorus slag and demolition waste) in hydraulic engineering structures in Dutch parts of the rivers Rhine, Meuse and Scheldt over the period 1980-2025. Although they offer several economic, technical and environmental benefits, these secondary building materials contain various metals that may leach into river water. A leaching model was used to predict annual emissions of arsenic, cadmium, copper, chromium, lead, mercury, nickel and zinc. Under the current utilisation and model assumptions, the contribution of secondary building materials to metal pollution in Dutch surface waters is expected to be relatively low compared to other sources (less than 0.1% and 0.2% in the years 2000 and 2025, respectively). However, continued and widespread large-scale applications of secondary building materials will increase pollutant leaching and may require further cuts to be made in emissions from other sources to meet emission reduction targets and water quality standards. It is recommended to validate available leaching models under various field conditions. Complete registration of secondary building materials will be required to improve input data for leaching models.
Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease
NASA Astrophysics Data System (ADS)
Marsden, Alison
2009-11-01
Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions
NASA Technical Reports Server (NTRS)
Houston, Janice; Almond, Deborah F. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.
Polarization changes at Lyot depolarizer output for different types of input beams.
de Sande, J Carlos G; Piquero, Gemma; Teijeiro, Cristina
2012-03-01
Lyot depolarizers are optical devices made of birefringent materials used for producing unpolarized beams from totally polarized incident light. The depolarization is produced for polychromatic input beams due to the different phase introduced by the Lyot depolarizer for each wavelength. The effect of this device on other types of incident fields is investigated. In particular two cases are analyzed: (i) monochromatic and nonuniformly polarized incident beams and (ii) incident light synthesized by superposition of two monochromatic orthogonally polarized beams with different wavelengths. In the last case, it is theoretically and experimentally shown that the Lyot depolarizer increases the degree of polarization instead of depolarizes.
Multi-output differential technologies
NASA Astrophysics Data System (ADS)
Bidare, Srinivas R.
1997-01-01
A differential is a very old and proven mechanical device that allows a single input to be split into two outputs having equal torque irrespective of the output speeds. A standard differential is capable of providing only two outputs from a single input. A recently patented multi-output differential technology known as `Plural-Output Differential' allows a single input to be split into many outputs. This new technology is the outcome of a systematic study of complex gear trains (Bidare 1992). The unique feature of a differential (equal torque at different speeds) can be applied to simplify the construction and operation of many complex mechanical devices that require equal torque's or forces at multiple outputs. It is now possible to design a mechanical hand with three or more fingers with equal torque. Since these finger are powered via a differential they are `mechanically intelligent'. A prototype device is operational and has been used to demonstrate the utility and flexibility of the design. In this paper we shall review two devices that utilize the new technology resulting in increased performance, robustness with reduced complexity and cost.
Quality control in the recycling stream of PVC from window frames by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter
2013-05-01
Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.
Input/output properties of the lateral vestibular nucleus
NASA Technical Reports Server (NTRS)
Boyle, R.; Bush, G.; Ehsanian, R.
2004-01-01
This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.
Fast metabolite identification with Input Output Kernel Regression.
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-06-15
An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. celine.brouard@aalto.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Apparatus and Method for Effecting Data Transfer Between Data Systems
NASA Technical Reports Server (NTRS)
Kirkpatrick, Joey V. (Inventor); Grosz, Francis B., Jr. (Inventor); Lannes, Kenny (Inventor); Maniscalco, David G. (Inventor)
2001-01-01
An apparatus for effecting data transfer between data systems comprising a first transceiver and a second transceiver. The first transceiver has an input for receiving digital data from one of the data systems, an output for serially outputting digital data to one of the data systems, at least one transmitter for converting digital data received at the input into optical signals, and at least one receiver for receiving optical signals and serially converting the received optical signals to digital data for output to the data output. The second transceiver has an input for receiving digital data from another one of the data systems, an output for serially outputting digital data to the another one of the data systems, at least one transmitter for serially converting digital data received at the input of the second transceiver into optical signals, and at least one receiver for receiving optical signals and serially converting the received optical signals to digital data for output to the output of the second transceiver. The apparatus further comprises an optical link connecting the first and second transceivers. The optical link comprising a pair of optical fibers. One of the optical fibers optically links the transmitter of the first transceiver to the receiver of the second transceiver. The other optical fiber optically links the receiver of the first transceiver to the transmitter of the second transceiver.
Fast metabolite identification with Input Output Kernel Regression
Brouard, Céline; Shen, Huibin; Dührkop, Kai; d'Alché-Buc, Florence; Böcker, Sebastian; Rousu, Juho
2016-01-01
Motivation: An important problematic of metabolomics is to identify metabolites using tandem mass spectrometry data. Machine learning methods have been proposed recently to solve this problem by predicting molecular fingerprint vectors and matching these fingerprints against existing molecular structure databases. In this work we propose to address the metabolite identification problem using a structured output prediction approach. This type of approach is not limited to vector output space and can handle structured output space such as the molecule space. Results: We use the Input Output Kernel Regression method to learn the mapping between tandem mass spectra and molecular structures. The principle of this method is to encode the similarities in the input (spectra) space and the similarities in the output (molecule) space using two kernel functions. This method approximates the spectra-molecule mapping in two phases. The first phase corresponds to a regression problem from the input space to the feature space associated to the output kernel. The second phase is a preimage problem, consisting in mapping back the predicted output feature vectors to the molecule space. We show that our approach achieves state-of-the-art accuracy in metabolite identification. Moreover, our method has the advantage of decreasing the running times for the training step and the test step by several orders of magnitude over the preceding methods. Availability and implementation: Contact: celine.brouard@aalto.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307628
Distribution of materials in construction and demolition waste in Portugal.
Coelho, André; de Brito, Jorge
2011-08-01
It may not be enough simply to know the global volume of construction and demolition waste (CDW) generated in a certain region or country if one wants to estimate, for instance, the revenue accruing from separating several types of materials from the input entering a given CDW recycling plant. A more detailed determination of the distribution of the materials within the generated CDW is needed and the present paper addresses this issue, distinguishing different buildings and types of operation (new construction, retrofitting and demolition). This has been achieved by measuring the materials from buildings of different ages within the Portuguese building stock, and by using direct data from demolition/retrofitting sites and new construction average values reported in the literature. An attempt to establish a benchmark with other countries is also presented. This knowledge may also benefit industry management, especially that related to CDW recycling, helping to optimize procedures, equipment size and operation and even industrial plant spatial distribution. In an extremely competitive market, where as in Portugal low-tech and high environmental impact procedures remain the norm in the construction industry (in particular, the construction waste industry), the introduction of a successful recycling industry is only possible with highly optimized processes and based on a knowledge-based approach to problems.
Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement.
Li, Wei; Yang, Yang; Yan, Hao; Liu, Yan
2013-06-12
In biomolecular programming, the properties of biomolecules such as proteins and nucleic acids are harnessed for computational purposes. The field has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. DNA has already been used to build complex molecular circuits, where the basic building blocks are logic gates that produce single outputs from one or more logical inputs. We designed and experimentally realized a three-input majority gate based on DNA strand displacement. One of the key features of a three-input majority gate is that the three inputs have equal priority, and the output will be true if any of the two inputs are true. Our design consists of a central, circular DNA strand with three unique domains between which are identical joint sequences. Before inputs are introduced to the system, each domain and half of each joint is protected by one complementary ssDNA that displays a toehold for subsequent displacement by the corresponding input. With this design the relationship between any two domains is analogous to the relationship between inputs in a majority gate. Displacing two or more of the protection strands will expose at least one complete joint and return a true output; displacing none or only one of the protection strands will not expose a complete joint and will return a false output. Further, we designed and realized a complex five-input logic gate based on the majority gate described here. By controlling two of the five inputs the complex gate can realize every combination of OR and AND gates of the other three inputs.
NASA Astrophysics Data System (ADS)
Suganthi, K.; Malarvizhi, S.
2018-03-01
A high gain, low power, low Noise figure (NF) and wide band of milli-meter Wave (mmW) circuits design at 50 GHz are used for Radio Frequency (RF) front end. The fundamental necessity of a receiver front-end includes perfect output and input impedance matching and port-to-port isolation with high gain and low noise over the entire band of interest. In this paper, a design of Cascade-Cascode CMOS LNA circuit at 50 GHz for Q-band application is proposed. The design of Low noise amplifier at 50 GHz using Agilent ADS tool with microstrip lines which provides simplicity in fabrication and less chip area. The low off-leakage current Ioff can be maintained with high K-dielectrics CMOS structure. Nano-scale electronics can be achieved with increased robustness. The design has overall gain of 11.091 dB and noise figure of 2.673 dB for the Q-band of 48.3 GHz to 51.3 GHz. Impedance matching is done by T matching network and the obtained input and output reflection coefficients are S11 = <-10 dB and S22 = <-10 dB. Compared to Silicon (Si) material, Wide Band Gap semiconductor materials used attains higher junction temperatures which is well matched to ceramics used in packaging technology, the protection and reliability also can be achieved with the electronic packaging. The reverse transmission coefficient S21 is less than -21 dB has shown that LNA has better isolation between input and output, Stability factor greater than 1 and Power is also optimized in this design. Layout is designed, power gain of 4.6 dB is achieved and area is optimized which is nearly equal to 502 740 μm2. The observed results show that the proposed Cascade-Cascode LNA design can find its suitability in future milli-meter Wave Radar application.
Rawson, Randi L; Martin, E Anne; Williams, Megan E
2017-08-01
For most neurons to function properly, they need to develop synaptic specificity. This requires finding specific partner neurons, building the correct types of synapses, and fine-tuning these synapses in response to neural activity. Synaptic specificity is common at both a neuron's input and output synapses, whereby unique synapses are built depending on the partnering neuron. Neuroscientists have long appreciated the remarkable specificity of neural circuits but identifying molecular mechanisms mediating synaptic specificity has only recently accelerated. Here, we focus on recent progress in understanding input and output synaptic specificity in the mammalian brain. We review newly identified circuit examples for both and the latest research identifying molecular mediators including Kirrel3, FGFs, and DGLα. Lastly, we expect the pace of research on input and output specificity to continue to accelerate with the advent of new technologies in genomics, microscopy, and proteomics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Variable ratio regenerative braking device
Hoppie, Lyle O.
1981-12-15
Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Saber, A.
1993-01-01
A simple and noniterative procedure for the computation of the exact value of the infimum in the singular H(infinity)-optimization problem is presented, as a continuation of our earlier work. Our problem formulation is general and we do not place any restrictions in the finite and infinite zero structures of the system, and the direct feedthrough terms between the control input and the controlled output variables and between the disturbance input and the measurement output variables. Our method is applicable to a class of singular H(infinity)-optimization problems for which the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output satisfy certain geometric conditions. In particular, the paper extends the result of earlier work by allowing these two transfer functions to have invariant zeros on the j(omega) axis.