Sample records for waste integrated cost

  1. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  2. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Yu-Chi, E-mail: clyde.weng@gmail.com; Fujiwara, Takeshi

    2011-06-15

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBAmore » framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.« less

  3. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.

    PubMed

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-01

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O&M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. A Nuclear Waste Management Cost Model for Policy Analysis

    NASA Astrophysics Data System (ADS)

    Barron, R. W.; Hill, M. C.

    2017-12-01

    Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost

  5. Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)

    EPA Pesticide Factsheets

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  6. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  7. Material and energy recovery in integrated waste management systems: a life-cycle costing approach.

    PubMed

    Massarutto, Antonio; de Carli, Alessandro; Graffi, Matteo

    2011-01-01

    A critical assumption of studies assessing comparatively waste management options concerns the constant average cost for selective collection regardless the source separation level (SSL) reached, and the neglect of the mass constraint. The present study compares alternative waste management scenarios through the development of a desktop model that tries to remove the above assumption. Several alternative scenarios based on different combinations of energy and materials recovery are applied to two imaginary areas modelled in order to represent a typical Northern Italian setting. External costs and benefits implied by scenarios are also considered. Scenarios are compared on the base of the full cost for treating the total waste generated in the area. The model investigates the factors that influence the relative convenience of alternative scenarios. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Costs of food waste in South Africa: Incorporating inedible food waste.

    PubMed

    de Lange, Willem; Nahman, Anton

    2015-06-01

    The economic, social and environmental costs of food waste are being increasingly recognised. Food waste consists of both edible and inedible components. Whilst wastage of edible food is problematic for obvious reasons, there are also costs associated with the disposal of the inedible fraction to landfill. This is the third in a series of papers examining the costs of food waste throughout the value chain in South Africa. The previous papers focused on the edible portion of food waste. In this paper, costs associated with inedible food waste in South Africa are estimated, in terms of the value foregone by not recovering this waste for use in downstream applications, such as energy generation or composting; as well as costs associated with disposal to landfill. Opportunity costs are estimated at R6.4 (US$0.64) billion per annum, or R2668 (US$266) per tonne. Adding this to the previous estimate for edible food waste of R61.5 billion per annum (in 2012 prices; equivalent to R65 billion in 2013 prices) results in a total opportunity cost of food waste in South Africa (in terms of loss of a potentially valuable food source or resource) of R71.4 (US$7.14) billion per annum, or R5667 (US$567) per tonne. Thereafter, estimates of the costs associated with disposal of this food waste to landfill, including both financial costs and externalities (social and environmental costs), are taken into account. These costs amount to R255 (US$25) per tonne, giving rise to a total cost of food waste in South Africa of R75 billion (US$7.5 billion) per annum, or R5922 (US$592) per tonne. This is equivalent to 2.2% of South Africa's 2013 GDP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Integrated crop/livestock systems reduce late-fall livestock feeding costs

    USDA-ARS?s Scientific Manuscript database

    Feed costs during the late-fall and winter periods represent the greatest cost to cow-calf production in the northern Great Plains. Integration of crop and livestock enterprises may improve sustainability through synergisms among enterprises reducing waste and improving productivity, and providing b...

  10. Multi-objective reverse logistics model for integrated computer waste management.

    PubMed

    Ahluwalia, Poonam Khanijo; Nema, Arvind K

    2006-12-01

    This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.

  11. Cost-effective treatment of swine wastes through recovery of energy and nutrients.

    PubMed

    Amini, Adib; Aponte-Morales, Veronica; Wang, Meng; Dilbeck, Merrill; Lahav, Ori; Zhang, Qiong; Cunningham, Jeffrey A; Ergas, Sarina J

    2017-11-01

    Wastes from concentrated animal feeding operations (CAFOs) are challenging to treat because they are high in organic matter and nutrients. Conventional swine waste treatment options in the U.S., such as uncovered anaerobic lagoons, result in poor effluent quality and greenhouse gas emissions, and implementation of advanced treatment introduces high costs. Therefore, the purpose of this paper is to evaluate the performance and life cycle costs of an alternative system for treating swine CAFO waste, which recovers valuable energy (as biogas) and nutrients (N, P, K + ) as saleable fertilizers. The system uses in-vessel anaerobic digestion (AD) for methane production and solids stabilization, followed by struvite precipitation and ion exchange (IX) onto natural zeolites (chabazite or clinoptilolite) for nutrient recovery. An alternative approach that integrated struvite recovery and IX into a single reactor, termed STRIEX, was also investigated. Pilot- and bench-scale reactor experiments were used to evaluate the performance of each stage in the treatment train. Data from these studies were integrated into a life cycle cost analysis (LCCA) to assess the cost-effectiveness of various process alternatives. Significant improvement in water quality, high methane production, and high nutrient recovery (generally over 90%) were observed with both the AD-struvite-IX process and the AD-STRIEX process. The LCCA showed that the STRIEX system can provide considerable financial savings compared to conventional systems. AD, however, incurs high capital costs compared to conventional anaerobic lagoons and may require larger scales to become financially attractive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development of integrated radioactive waste packaging and conditioning solutions in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Peter; Butter, Kevin; Zimmerman, Ian

    2013-07-01

    In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less

  13. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  14. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  15. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  16. Cost, cost-efficiency and cost-effectiveness of integrated family planning and HIV services.

    PubMed

    Shade, Starley B; Kevany, Sebastian; Onono, Maricianah; Ochieng, George; Steinfeld, Rachel L; Grossman, Daniel; Newmann, Sara J; Blat, Cinthia; Bukusi, Elizabeth A; Cohen, Craig R

    2013-10-01

    To evaluate costs, cost-efficiency and cost-effectiveness of integration of family planning into HIV services. Integration of family planning services into HIV care and treatment clinics. A cluster-randomized trial. Twelve health facilities in Nyanza, Kenya were randomized to integrate family planning into HIV care and treatment; six health facilities were randomized to (nonintegrated) standard-of-care with separately delivered family planning and HIV services. We assessed costs, cost-efficiency (cost per additional use of more effective family planning), and cost-effectiveness (cost per pregnancy averted) associated with the first year of integration of family planning into HIV care. More effective family planning methods included oral and injectable contraceptives, subdermal implants, intrauterine device, and female and male sterilization. We collected cost data through interviews with study staff and review of financial records to determine costs of service integration. Integration of services was associated with an average marginal cost of $841 per site and $48 per female patient. Average overall and marginal costs of integration were associated with personnel costs [initial ($1003 vs. $872) and refresher ($498 vs. $330) training, mentoring ($1175 vs. $902) and supervision ($1694 vs. $1636)], with fewer resources required for other fixed ($18 vs. $0) and recurring expenses ($471 vs. $287). Integration was associated with a marginal cost of $65 for each additional use of more effective family planning and $1368 for each pregnancy averted. Integration of family planning and HIV services is feasible, inexpensive to implement, and cost-efficient in the Kenyan setting, and thus supports current Kenyan integration policy.

  17. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  19. TRU Waste Management Program cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    1985-10-01

    The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementationmore » would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)« less

  20. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.

    PubMed

    Chen, Yi-di; Ho, Shih-Hsin; Nagarajan, Dillirani; Ren, Nan-Qi; Chang, Jo-Shu

    2018-04-01

    Commercialization of microalgal cultivation has been well realized in recent decades with the use of effective strains that can yield the target products, but it is still challenged by the high costs arising from mass production, harvesting, and further processing. Recently, more interest has been directed towards the utilization of waste resources, such as sludge digestate, to enhance the economic feasibility and sustainability of microalgae production. Anaerobic digestion for waste disposal and phototrophic microalgal cultivation are well-characterized technologies in both fields. However, integration of anaerobic digestion and microalgal cultivation to achieve substantial economic and environmental benefits is extremely limited, and thus deserves more attention and research effort. In particular, combining these two makes possible an ideal 'waste biorefinery' model, as the C/N/P content in the anaerobic digestate can be used to produce microalgal biomass that serves as feedstock for biofuels, while biogas upgrading can simultaneously be performed by phototrophic CO 2 fixation during microalgal growth. This review is thus aimed at elucidating recent advances as well as challenges and future directions with regard to waste biorefineries associated with the integration of anaerobic waste treatment and microalgal cultivation for bioenergy production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  2. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  3. Costs of Physician-Hospital Integration

    PubMed Central

    Cho, Na-Eun

    2015-01-01

    Abstract Given that the enactment of the Patient Protection and Affordable Care Act of 2010 is expected to generate forces toward physician-hospital integration, this study examined an understudied, albeit important, area of costs incurred in physician-hospital integration. Such costs were analyzed through 24 semi-structured interviews with physicians and hospital administrators in a multiple-case, inductive study. Two extreme types of physician-hospital arrangements were examined: an employed model (ie, integrated salary model, a group of physicians integrated by a hospital system) and a private practice (ie, a physician or group of physicians who are independent of economic or policy control). Interviews noted that integration leads to 3 evident costs, namely, monitoring, coordination, and cooperation costs. Improving our understanding of the kinds of costs that are incurred after physician-hospital integration will help hospitals and physicians to avoid common failures after integration. PMID:26496300

  4. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  5. Waste Management Facilities Cost Information report for Greater-Than-Class C and DOE equivalent special case waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feizollahi, F.; Shropshire, D.

    This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less

  6. Brain Network Analysis: Separating Cost from Topology Using Cost-Integration

    PubMed Central

    Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew

    2011-01-01

    A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437

  7. Does recyclable separation reduce the cost of municipal waste management in Japan?

    PubMed

    Chifari, Rosaria; Lo Piano, Samuele; Matsumoto, Shigeru; Tasaki, Tomohiro

    2017-02-01

    Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    PubMed

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and

  9. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of

  10. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Arne; Lidar, Per; Bergh, Niklas

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  11. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.

    PubMed

    Pagliano, Giorgia; Ventorino, Valeria; Panico, Antonio; Pepe, Olimpia

    2017-01-01

    Recently, issues concerning the sustainable and harmless disposal of organic solid waste have generated interest in microbial biotechnologies aimed at converting waste materials into bioenergy and biomaterials, thus contributing to a reduction in economic dependence on fossil fuels. To valorize biomass, waste materials derived from agriculture, food processing factories, and municipal organic waste can be used to produce biopolymers, such as biohydrogen and biogas, through different microbial processes. In fact, different bacterial strains can synthesize biopolymers to convert waste materials into valuable intracellular (e.g., polyhydroxyalkanoates) and extracellular (e.g., exopolysaccharides) bioproducts, which are useful for biochemical production. In particular, large numbers of bacteria, including Alcaligenes eutrophus , Alcaligenes latus , Azotobacter vinelandii , Azotobacter chroococcum , Azotobacter beijerincki , methylotrophs, Pseudomonas spp., Bacillus spp., Rhizobium spp., Nocardia spp., and recombinant Escherichia coli , have been successfully used to produce polyhydroxyalkanoates on an industrial scale from different types of organic by-products. Therefore, the development of high-performance microbial strains and the use of by-products and waste as substrates could reasonably make the production costs of biodegradable polymers comparable to those required by petrochemical-derived plastics and promote their use. Many studies have reported use of the same organic substrates as alternative energy sources to produce biogas and biohydrogen through anaerobic digestion as well as dark and photofermentation processes under anaerobic conditions. Therefore, concurrently obtaining bioenergy and biopolymers at a reasonable cost through an integrated system is becoming feasible using by-products and waste as organic carbon sources. An overview of the suitable substrates and microbial strains used in low-cost polyhydroxyalkanoates for biohydrogen and biogas

  12. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    PubMed

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  13. The cost of hybrid waste water systems: A systematic framework for specifying minimum cost-connection rates.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2016-10-15

    To determine the optimal connection rate (CR) for regional waste water treatment is a challenge that has recently gained the attention of academia and professional circles throughout the world. We contribute to this debate by proposing a framework for a total cost assessment of sanitation infrastructures in a given region for the whole range of possible CRs. The total costs comprise the treatment and transportation costs of centralised and on-site waste water management systems relative to specific CRs. We can then identify optimal CRs that either deliver waste water services at the lowest overall regional cost, or alternatively, CRs that result from households freely choosing whether they want to connect or not. We apply the framework to a Swiss region, derive a typology for regional cost curves and discuss whether and by how much the empirically observed CRs differ from the two optimal ones. Both optimal CRs may be reached by introducing specific regulatory incentive structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  15. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    PubMed

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  16. School Lunch Waste among Middle School Students: Implications for Nutrients Consumed and Food Waste Costs

    PubMed Central

    Cohen, Juliana F.W.; Richardson, Scott; Austin, S. Bryn; Economos, Christina D.; Rimm, Eric B.

    2013-01-01

    Background The National School Lunch Program has been guided by modest nutrient standards, and the palatability of meals, which drives consumption, receives inadequate attention. School food waste can have important nutritional and cost implications for policy makers, students, and their families. Purpose Nutrient losses and economic costs associated with school meal waste were examined. The study also assessed if school foods served were valid proxies for foods consumed by students. Methods Plate waste measurements were collected from middle school students in Boston attending two Chef Initiative schools (n=1609) and two control schools (n=1440) during a two-year pilot study (2007-2009) where a professional chef trained cafeteria staff to make healthier school meals. The costs associated with food waste were calculated and the percent of foods consumed was compared with a gold standard of 85% consumption. Analyses were conducted in 2010-2011. Results Overall, students consumed less than the required/recommended levels of nutrients. An estimated $432,349 of food (26.1% of the total food budget) was discarded by middle school students annually at lunch in Boston middle schools. For most meal components, significantly less than 85% was consumed. Conclusions There is substantial food waste among middle school students in Boston. Overall, students' nutrient consumption levels were below school meal standards and foods served were not valid proxies for foods consumed. The costs associated with discarded foods are high; if translated nationally for school lunches, roughly $1,238,846,400 annually is wasted. Students would benefit if additional focus was given to the quality and palatability of school meals. PMID:23332326

  17. Operative costs, reasons for operative waste, and vendor credit replacement in spinal surgery.

    PubMed

    Epstein, Nancy E; Roberts, Rita; Collins, John

    2015-01-01

    In 2012, Epstein et al. documented that educating spinal surgeons reduced the cost of operative waste (explanted devices: placed but removed prior to closure) occurring during anterior cervical diskectomy/fusion from 20% to 5.8%.[5] This prompted the development of a two-pronged spine surgeon-education program (2012-2014) aimed at decreasing operative costs for waste, and reducing the nine reasons for operative waste. The spine surgeon-education program involved posting the data for operative costs of waste and the nine reasons for operative waste over the neurosurgery/orthopedic scrub sinks every quarter. These data were compared for 2012 (latter 10 months), 2013 (12 months), and 2014 (first 9 months) (e.g. data were normalized). Savings from a 2013 Vendor Credit Replacement program were also calculated. From 2012 to 2013 and 2014, spinal operative costs for waste were, respectively reduced by 64.7% and 61% for orthopedics, and 49.4% and 45.2% for neurosurgery. Although reduced by the program, the major reason for operative waste for all 3 years remained surgeon-related factors (e.g. 159.6, to 67, and 96, respectively). Alternatively, the eight other reasons for operative waste were reduced from 68.4 (2012) to 12 (2013) and finally to zero by 2014. Additionally, the Vendor Replacement program for 2013 netted $78,564. The spine surgeon-education program reduced the costs/reasons for operative waste for 2012 to lower levels by 2013 and 2014. Although the major cost/reasons for operative waste were attributed to surgeon-related factors, these declined while the other eight reasons for operative waste were reduced to zero by 2014.

  18. Life-cycle cost as basis to optimize waste collection in space and time: A methodology for obtaining a detailed cost breakdown structure.

    PubMed

    Sousa, Vitor; Dias-Ferreira, Celia; Vaz, João M; Meireles, Inês

    2018-05-01

    Extensive research has been carried out on waste collection costs mainly to differentiate costs of distinct waste streams and spatial optimization of waste collection services (e.g. routes, number, and location of waste facilities). However, waste collection managers also face the challenge of optimizing assets in time, for instance deciding when to replace and how to maintain, or which technological solution to adopt. These issues require a more detailed knowledge about the waste collection services' cost breakdown structure. The present research adjusts the methodology for buildings' life-cycle cost (LCC) analysis, detailed in the ISO 15686-5:2008, to the waste collection assets. The proposed methodology is then applied to the waste collection assets owned and operated by a real municipality in Portugal (Cascais Ambiente - EMAC). The goal is to highlight the potential of the LCC tool in providing a baseline for time optimization of the waste collection service and assets, namely assisting on decisions regarding equipment operation and replacement.

  19. The costs and cost-effectiveness of an integrated sepsis treatment protocol.

    PubMed

    Talmor, Daniel; Greenberg, Dan; Howell, Michael D; Lisbon, Alan; Novack, Victor; Shapiro, Nathan

    2008-04-01

    Sepsis is associated with high mortality and treatment costs. International guidelines recommend the implementation of integrated sepsis protocols; however, the true cost and cost-effectiveness of these are unknown. To assess the cost-effectiveness of an integrated sepsis protocol, as compared with conventional care. Prospective cohort study of consecutive patients presenting with septic shock and enrolled in the institution's integrated sepsis protocol. Clinical and economic outcomes were compared with a historical control cohort. Beth Israel Deaconess Medical Center. Overall, 79 patients presenting to the emergency department with septic shock in the treatment cohort and 51 patients in the control group. An integrated sepsis treatment protocol incorporating empirical antibiotics, early goal-directed therapy, intensive insulin therapy, lung-protective ventilation, and consideration for drotrecogin alfa and steroid therapy. In-hospital treatment costs were collected using the hospital's detailed accounting system. The cost-effectiveness analysis was performed from the perspective of the healthcare system using a lifetime horizon. The primary end point for the cost-effectiveness analysis was the incremental cost per quality-adjusted life year gained. Mortality in the treatment group was 20.3% vs. 29.4% in the control group (p = .23). Implementing an integrated sepsis protocol resulted in a mean increase in cost of approximately $8,800 per patient, largely driven by increased intensive care unit length of stay. Life expectancy and quality-adjusted life years were higher in the treatment group; 0.78 and 0.54, respectively. The protocol was associated with an incremental cost of $11,274 per life-year saved and a cost of $16,309 per quality-adjusted life year gained. In patients with septic shock, an integrated sepsis protocol, although not cost-saving, appears to be cost-effective and compares very favorably to other commonly delivered acute care interventions.

  20. Low Cost Dewatering of Waste Slurries

    NASA Technical Reports Server (NTRS)

    Peterson, J. B.; Sharma, S. K.; Church, R. H.; Scheiner, B. J.

    1993-01-01

    The U.S. Bureau of Mines has developed a technique for dewatering mineral waste slurries which utilizes polymer and a static screen. A variety of waste slurries from placer gold mines and crushed stone operations have been successfully treated using the system. Depending on the waste, a number of polymers have been used successfully with polymer costs ranging from $0.05 to $0.15 per 1,000 gal treated. The dewatering is accomplished using screens made from either ordinary window screen or wedge wire. The screens used are 8 ft wide and 8 ft long. The capacity of the screens varies from 3 to 7 gpm/sq. ft. The water produced is acceptable for recycling to the plant or for discharge to the environment. For example, a fine grain dolomite waste slurry produced from a crushed stone operation was dewatered from a nominal 2.5 pct solids to greater than 50 pct solids using $0.10 to $0.15 worth of polymer per 1,000 gal of slurry. The resulting waste water had a turbidity of less than 50 NTU and could be discharged or recycled. The paper describes field tests conducted using the polymer-screen dewatering system.

  1. The salutary effect of an integrated system on the rate of repeat CT scanning in transferred trauma patients: Improved costs and efficiencies.

    PubMed

    Bledsoe, Joseph; Liepert, Amy E; Allen, Todd L; Dong, Li; Hemingway, Jamon; Majercik, Sarah; Gardner, Scott; Stevens, Mark H

    2017-08-01

    Duplication of Computed Tomography (CT) scanning in trauma patients has been a source of quality waste in healthcare and potential harm for patients. Integrated and regional health systems have been shown to promote opportunities for efficiencies, cost savings and increased safety. This study evaluated traumatically injured patients who required transfer to a Level One Trauma Center (TC) from either within a vertically integrated healthcare system (IN) or from an out-of-network (OON) hospital. We found the rate of repeat CT scanning, radiology costs and total costs for day one of hospitalization to be significantly lower for trauma patients transferred from an IN hospital as compared to those patients transferred from OON hospitals. The inefficiencies and waste often associated with transferred patients can be mitigated and strategies to do so are necessary to reduce costs in the current healthcare environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Assessing the costs of disposable and reusable supplies wasted during surgeries.

    PubMed

    Chasseigne, V; Leguelinel-Blache, G; Nguyen, T L; de Tayrac, R; Prudhomme, M; Kinowski, J M; Costa, P

    2018-05-01

    The management of disposable and reusable supplies might have an impact on the cost efficiency of the Operating Room (OR). This study aimed to evaluate the cost and reasons for wasted supplies in the OR during surgical procedures. We conducted an observational and prospective study in a French university hospital. We assessed the cost of wasted supplies in the OR (defined by opened unused devices), the reasons for the wastage, and the circulator retrievals. At the end, we assessed the perception of surgeons and nurses relative to the supply wastage. Fifty routine procedures and five non-scheduled procedures were observed in digestive (n = 20), urologic (n = 20) and gynecologic surgery (n = 15). The median cost [IQR] of open unused devices was €4.1 [0.5; 10.5] per procedure. Wasted supplies represented up to 20.1% of the total cost allocated to surgical supplies. Considering the 8000 surgical procedures performed in these three surgery departments, the potential annual cost savings were 100 000€. The most common reason of wastage was an anticipation of the surgeon's needs. The circulating nurse spent up to 26.3% of operative time outside of the OR, mainly attending to an additional demand from the surgeon (30%). Most of the survey respondents (68%) agreed that knowing supply prices would change their behavior. This study showed the OR is a major source of wasted hospital expenditure and an area wherein an intervention would have a significant impact. Reducing wasted supplies could improve the cost efficiency of the OR and also decrease its ecological impact. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Life cycle costing of food waste: A review of methodological approaches.

    PubMed

    De Menna, Fabio; Dietershagen, Jana; Loubiere, Marion; Vittuari, Matteo

    2018-03-01

    Food waste (FW) is a global problem that is receiving increasing attention due to its environmental and economic impacts. Appropriate FW prevention, valorization, and management routes could mitigate or avoid these effects. Life cycle thinking and approaches, such as life cycle costing (LCC), may represent suitable tools to assess the sustainability of these routes. This study analyzes different LCC methodological aspects and approaches to evaluate FW management and valorization routes. A systematic literature review was carried out with a focus on different LCC approaches, their application to food, FW, and waste systems, as well as on specific methodological aspects. The review consisted of three phases: a collection phase, an iterative phase with experts' consultation, and a final literature classification. Journal papers and reports were retrieved from selected databases and search engines. The standardization of LCC methodologies is still in its infancy due to a lack of consensus over definitions and approaches. Research on the life cycle cost of FW is limited and generally focused on FW management, rather than prevention or valorization of specific flows. FW prevention, valorization, and management require a consistent integration of LCC and Life Cycle Assessment (LCA) to avoid tradeoffs between environmental and economic impacts. This entails a proper investigation of methodological differences between attributional and consequential modelling in LCC, especially with regard to functional unit, system boundaries, multi-functionality, included cost, and assessed impacts. Further efforts could also aim at finding the most effective and transparent categorization of costs, in particular when dealing with multiple stakeholders sustaining costs of FW. Interpretation of results from LCC of FW should take into account the effect on larger economic systems. Additional key performance indicators and analytical tools could be included in consequential approaches

  4. Cost/Benefits of Solid Waste Reuse

    ERIC Educational Resources Information Center

    Schulz, Helmut W.

    1975-01-01

    Municipalities and industry are being forced to seek alternatives to sanitary landfills and incineration as means of eliminating solid wastes. Based on the Columbia study, the two most cost-effective, environmentally acceptable alternatives are the high temperature, oxygen-fed pyrolysis process and the co-combustion of refuse-derived fuel in…

  5. A comparison of costs associated with utility management options for dry active waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornibrook, C.

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, allmore » utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.« less

  6. Integration of Mahalanobis-Taguchi system and traditional cost accounting for remanufacturing crankshaft

    NASA Astrophysics Data System (ADS)

    Abu, M. Y.; Norizan, N. S.; Rahman, M. S. Abd

    2018-04-01

    Remanufacturing is a sustainability strategic planning which transforming the end of life product to as new performance with their warranty is same or better than the original product. In order to quantify the advantages of this strategy, all the processes must implement the optimization to reach the ultimate goal and reduce the waste generated. The aim of this work is to evaluate the criticality of parameters on the end of life crankshaft based on Taguchi’s orthogonal array. Then, estimate the cost using traditional cost accounting by considering the critical parameters. By implementing the optimization, the remanufacturer obviously produced lower cost and waste during production with higher potential to gain the profit. Mahalanobis-Taguchi System was proven as a powerful method of optimization that revealed the criticality of parameters. When subjected the method to the MAN engine model, there was 5 out of 6 crankpins were critical which need for grinding process while no changes happened to the Caterpillar engine model. Meanwhile, the cost per unit for MAN engine model was changed from MYR1401.29 to RM1251.29 while for Caterpillar engine model have no changes due to the no changes on criticality of parameters consideration. Therefore, by integrating the optimization and costing through remanufacturing process, a better decision can be achieved after observing the potential profit will be gained. The significant of output demonstrated through promoting sustainability by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.

  7. Costs of food waste along the value chain: evidence from South Africa.

    PubMed

    Nahman, Anton; de Lange, Willem

    2013-11-01

    In a previous paper (Nahman et al., 2012), the authors estimated the costs of household food waste in South Africa, based on the market value of the wasted food (edible portion only), as well as the costs of disposal to landfill. In this paper, we extend the analysis by assessing the costs of edible food waste throughout the entire food value chain, from agricultural production through to consumption at the household level. First, food waste at each stage of the value chain was quantified in physical units (tonnes) for various food commodity groups. Then, weighted average representative prices (per tonne) were estimated for each commodity group at each stage of the value chain. Finally, prices were multiplied by quantities, and the resulting values were aggregated across the value chain for all commodity groups. In this way, the total cost of food waste across the food value chain in South Africa was estimated at R61.5 billion per annum (approximately US$7.7 billion); equivalent to 2.1% of South Africa's annual gross domestic product. The bulk of this cost arises from the processing and distribution stages of the fruit and vegetable value chain, as well as the agricultural production and distribution stages of the meat value chain. These results therefore provide an indication of where interventions aimed at reducing food waste should be targeted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Endobronchial ultrasonography versus mediastinoscopy: a single-institution cost analysis and waste comparison.

    PubMed

    Andrade, Rafael S; Podgaetz, Eitan; Rueth, Natasha M; Majumder, Kaustav; Hall, Eric; Saric, Crystal; Thelen, Lynn

    2014-09-01

    Mediastinoscopy (MED) and endobronchial ultrasonography with transbronchial needle aspiration (EBUS-TBNA) have similar accuracy for mediastinal lymph node sampling (MLNS). The threatened financial and environmental sustainability of our health care system mandate that surgeons consider cost and environmental impact in clinical decision making of similarly effective procedures. We performed a cost and waste comparison of MED versus EBUS-TBNA for MLNS to raise awareness of the financial and environmental implications of our practices. We conducted a retrospective review of outpatients who underwent MLNS under general anesthesia in the OR with MED or EBUS-TBNA (September 2007 to December 2009). We analyzed direct costs based on hospital charges, calculated expected payment using a decision support model, and profit margins (modeled expected payment-direct costs). Our waste comparison was measured in kilograms of solid waste per case. We performed MLNS in 148 patients (89 EBUS-TBNA, 39 MED, 20 EBUS + MED). Direct costs were lower for MED ($2,356) compared with EBUS-TBNA ($2,503), whereas expected payment was greater (MED, $3,449; EBUS-TBNA, $3,249), resulting in a profit margin that was $347 greater for MED. The amount of solid waste for each MED was 1.8 kg versus 0.5 kg for EBUS-TBNA. MED costs less than EBUS-TBNA in the OR setting but generates 3.6 times the amount of EBUS-TBNA waste. The cost of EBUS-TBNA may improve by performance in the endoscopy suite, and surgical pack revision could reduce the amount of MED solid waste. This comparison sets the stage for sophistication of our clinical decision making, taking into consideration the major threats to our health care system. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  10. Cost effective waste management through composting in Africa.

    PubMed

    Couth, R; Trois, C

    2012-12-01

    Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Drug waste minimization as an effective strategy of cost-containment in Oncology

    PubMed Central

    2014-01-01

    Background Sustainability of cancer care is a crucial issue for health care systems worldwide, even more during a time of economic recession. Low-cost measures are highly desirable to contain and reduce expenditures without impairing the quality of care. In this paper we aim to demonstrate the efficacy of drug waste minimization in reducing drug-related costs and its importance as a structural measure in health care management. Methods We first recorded intravenous cancer drugs prescription and amount of drug waste at the Oncology Department of Udine, Italy. Than we developed and applied a protocol for drug waste minimization based on per-pathology/per-drug scheduling of chemotherapies and pre-planned rounding of dosages. Results Before the protocol, drug wastage accounted for 8,3% of the Department annual drug expenditure. Over 70% of these costs were attributable to six drugs (cetuximab, docetaxel, gemcitabine, oxaliplatin, pemetrexed and trastuzumab) that we named ‘hot drugs’. Since the protocol introduction, we observed a 45% reduction in the drug waste expenditure. This benefit was confirmed in the following years and drug waste minimazion was able to limit the impact of new pricely drugs on the Department expenditures. Conclusions Facing current budgetary constraints, the application of a drug waste minimization model is effective in drug cost containment and may produce durable benefits. PMID:24507545

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less

  13. School lunch waste among middle school students: nutrients consumed and costs.

    PubMed

    Cohen, Juliana F W; Richardson, Scott; Austin, S Bryn; Economos, Christina D; Rimm, Eric B

    2013-02-01

    The National School Lunch Program has been guided by modest nutrient standards, and the palatability of meals, which drives consumption, receives inadequate attention. School food waste can have important nutritional and cost implications for policymakers, students, and their families. Nutrient losses and economic costs associated with school meal waste were examined. The study also assessed if school foods served were valid proxies for foods consumed by students. Plate waste measurements were collected from middle school students in Boston attending two Chef Initiative schools (n=1609) and two control schools (n=1440) during a 2-year pilot study (2007-2009) in which a professional chef trained cafeteria staff to make healthier school meals. The costs associated with food waste were calculated and the percentage of foods consumed was compared with a gold standard of 85% consumption. Analyses were conducted in 2010-2011. Overall, students consumed less than the required/recommended levels of nutrients. An estimated $432,349 of food (26.1% of the total food budget) was discarded by middle school students annually at lunch in these Boston middle schools. For most meal components, substantially less than 85% was consumed. There is substantial food waste among middle school students in Boston. Overall, students' nutrient consumption levels were below school meal standards, and foods served were not valid proxies for foods consumed. The costs associated with discarded foods are high; if translated nationally for school lunches, roughly $1,238,846,400 annually is wasted. Students might benefit if additional focus were given to the quality and palatability of school meals. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. INVENTORY ANALYSIS AND COST ACCOUNTING OF FACILITY MAINTANANCE IN WASTE INCINERATION

    NASA Astrophysics Data System (ADS)

    Morioka, Tohru; Ozaki, Taira; Kitazume, Keiichi; Yamamoto, Tsukasa

    A solid waste incineration plant consists of so many facilities and mechanical parts that it requires periodic careful maintenance of them for stable solid waste management. The current research investigates maintenance costs of the stoker type incinerator and continuous firing plants in detail and develops an accounting model for maintenance of them. This model is able to distinguish among the costs of inspection, repair and renewal by plant with seven process flaw s and three common factors. Parameters based on real data collected by questionnaire surveys give appropriate results in comparison with other plants and enable to apply the model to plants which incinerates 500 - 600 ton solid waste per day.

  15. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes: energy and economic feasibility study.

    PubMed

    Cano, R; Nielfa, A; Fdz-Polanco, M

    2014-09-01

    An economic assessment of thermal hydrolysis as a pretreatment to anaerobic digestion has been achieved to evaluate its implementation in full-scale plants. Six different solid wastes have been studied, among them municipal solid waste (MSW). Thermal hydrolysis has been tested with batch lab-scale tests, from which an energy and economic assessment of three scenarios is performed: with and without energy integration (recovering heat to produce steam in a cogeneration plant), finally including the digestate management costs. Thermal hydrolysis has lead to an increase of the methane productions (up to 50%) and kinetics parameters (even double). The study has determined that a proper energy integration design could lead to important economic savings (5 €/t) and thermal hydrolysis can enhance up to 40% the incomes of the digestion plant, even doubling them when digestate management costs are considered. In a full-scale MSW treatment plant (30,000 t/year), thermal hydrolysis would provide almost 0.5 M€/year net benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach. [Continental Shelf and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.

    1975-01-01

    The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.

  17. Financial sustainability in municipal solid waste management--costs and revenues in Bahir Dar, Ethiopia.

    PubMed

    Lohri, Christian Riuji; Camenzind, Ephraim Joseph; Zurbrügg, Christian

    2014-02-01

    Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dar's SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service. We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value

  18. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Per Lidar; Arne Larsson; Niklas Bergh

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions

  19. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    PubMed

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  20. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  1. An analysis of UK waste minimization clubs: key requirements for future cost effective developments.

    PubMed

    Phillips, P S; Pratt, R M; Pike, K

    2001-01-01

    The UK waste strategy is based upon use of the best practicable environmental option (BPEO), by those making waste management decisions. BPEO is supported by the use of the waste hierarchy, with its range of preferable options for dealing with waste, and the proximity principle, where waste is treated/disposed of as close to its point of origin as possible. The national waste strategy emphasizes the key role of waste minimization and encourages industry, commerce and the public to move towards sustainable waste management practice for economic and environmental reasons. Waste minimization clubs have been used, since the early 1990s, to demonstrate to industry/commerce that reducing waste production can lead to significant financial savings. There have been around 75 such clubs in the UK and they receive support from a wide range of agencies, including the Environmental Technology Best Practice Program. The early Demonstration Clubs had significant savings to cost ratios, e.g. Aire and Calder at 8.4, but had very high costs, e.g. Aire and Calder at 400,000 pounds. It is acknowledged that the number of clubs will have to be approximately doubled in the next few years so as to have an adequate coverage of the UK. There are at present, marked regional variations in club development and cognizance needs to be taken, by facilitators, of the need for extensive coverage of the UK. Future clubs will probably have to operate in a financially constrained climate and they need to be designed to deliver significant savings and waste reduction at low cost. To aid future club design, final reports of all projects should report in a standard manner so that cost benefit analysis can be used to inform facilitators about the most effective club type. rights reserved.

  2. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less

  3. Nutritional, Economic, and Environmental Costs of Milk Waste in a Classroom School Breakfast Program.

    PubMed

    Blondin, Stacy A; Cash, Sean B; Goldberg, Jeanne P; Griffin, Timothy S; Economos, Christina D

    2017-04-01

    To measure fluid milk waste in a US School Breakfast in the Classroom Program and estimate its nutritional, economic, and environmental effects. Fluid milk waste was directly measured on 60 elementary school classroom days in a medium-sized, urban district. The US Department of Agriculture nutrition database, district cost data, and carbon dioxide equivalent (CO 2 e) emissions and water footprint estimates for fluid milk were used to calculate the associated nutritional, economic, and environmental costs. Of the total milk offered to School Breakfast Program participants, 45% was wasted. A considerably smaller portion of served milk was wasted (26%). The amount of milk wasted translated into 27% of vitamin D and 41% of calcium required of School Breakfast Program meals. The economic and environmental costs amounted to an estimated $274 782 (16% of the district's total annual School Breakfast Program food expenditures), 644 893 kilograms of CO 2 e, and 192 260 155 liters of water over the school year in the district. These substantial effects of milk waste undermine the School Breakfast Program's capacity to ensure short- and long-term food security and federal food waste reduction targets. Interventions that reduce waste are urgently needed.

  4. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  5. Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model.

    PubMed

    Nguyen-Trong, Khanh; Nguyen-Thi-Ngoc, Anh; Nguyen-Ngoc, Doanh; Dinh-Thi-Hai, Van

    2017-01-01

    The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making.

    PubMed

    He, Li; Huang, G H; Lu, Hongwei

    2011-10-15

    Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Full cost accounting in the analysis of separated waste collection efficiency: A methodological proposal.

    PubMed

    D'Onza, Giuseppe; Greco, Giulio; Allegrini, Marco

    2016-02-01

    Recycling implies additional costs for separated municipal solid waste (MSW) collection. The aim of the present study is to propose and implement a management tool - the full cost accounting (FCA) method - to calculate the full collection costs of different types of waste. Our analysis aims for a better understanding of the difficulties of putting FCA into practice in the MSW sector. We propose a FCA methodology that uses standard cost and actual quantities to calculate the collection costs of separate and undifferentiated waste. Our methodology allows cost efficiency analysis and benchmarking, overcoming problems related to firm-specific accounting choices, earnings management policies and purchase policies. Our methodology allows benchmarking and variance analysis that can be used to identify the causes of off-standards performance and guide managers to deploy resources more efficiently. Our methodology can be implemented by companies lacking a sophisticated management accounting system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions basedmore » on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.« less

  9. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.; Serne, R Jeffrey

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at themore » Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.« less

  10. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2017-11-01

    The management of municipal solid waste (MSW) is one of the main costs incurred by local authorities in developing countries. According to some estimates, these costs can account for up to 50% of city government budgets. It is therefore of importance that policymakers, urban planners and practitioners have an adequate understanding of what these costs consist of, from collection to final waste disposal. This article focuses on a specific stage of the MSW value chain, the treatment of waste, and it aims to identify cost patterns associated with the implementation and operation of waste treatment approaches in developing Asian countries. An analysis of the capital (CAPEX) and operational expenditures (OPEX) of a number of facilities located in countries of the region was conducted based on a database gathering nearly 100 projects and which served as basis for assessing four technology categories: composting, anaerobic digestion (AD), thermal treatment, and the production of refuse-derived fuel (RDF). Among these, it was found that the least costly to invest, asa function of the capacity to process waste, are composting facilities, with an average CAPEX per ton of 21,493 USD 2015 /ton. Conversely, at the upper end featured incineration plants, with an average CAPEX of 81,880 USD 2015 /ton, with this treatment approach ranking by and large as the most capital intensive of the four categories assessed. OPEX figures of the plants, normalized and analyzed in the form of OPEX/ton, were also found to be higher for incineration than for biological treatment methods, although on this component differences amongst the technology groups were less pronounced than those observed for CAPEX. While the results indicated the existence of distinct cost implications for available treatment approaches in the developing Asian context, the analysis also underscored the importance of understanding the local context asa means to properly identify the cost structure of each specific plant

  11. Costs associated with the management of waste from healthcare facilities: An analysis at national and site level.

    PubMed

    Vaccari, Mentore; Tudor, Terry; Perteghella, Andrea

    2018-01-01

    Given rising spend on the provision of healthcare services, the sustainable management of waste from healthcare facilities is increasingly becoming a focus as a means of reducing public health risks and financial costs. Using data on per capita healthcare spend at the national level, as well as a case study of a hospital in Italy, this study examined the relationship between trends in waste generation and the associated costs of managing the waste. At the national level, healthcare spend as a percentage of gross domestic product positively correlated with waste arisings. At the site level, waste generation and type were linked to department type and clinical performance, with the top three highest generating departments of hazardous healthcare waste being anaesthetics (5.96 kg day -1 bed -1 ), paediatric and intensive care (3.37 kg day -1 bed -1 ) and gastroenterology-digestive endoscopy (3.09 kg day -1 bed -1 ). Annual overall waste management costs were $US5,079,191, or approximately $US2.36 kg -1 , with the management of the hazardous fraction of the waste being highest at $US3,707,939. In Italy, reduction in both waste arisings and the associated costs could be realised through various means, including improved waste segregation, and linking the TARI tax to waste generation.

  12. Evaluation of Externality Costs in Life-Cycle Optimization of Municipal Solid Waste Management Systems.

    PubMed

    Martinez-Sanchez, Veronica; Levis, James W; Damgaard, Anders; DeCarolis, Joseph F; Barlaz, Morton A; Astrup, Thomas F

    2017-03-21

    The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO 2 , CH 4 , N 2 O, PM 2.5 , PM 10 , NO x , SO 2 , VOC, CO, NH 3 , Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO 2 , NO x , PM 2.5 , CH 4 , fossil CO 2 , and NH 3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.

  13. Distribution Grid Integration Unit Cost Database | Solar Research | NREL

    Science.gov Websites

    Unit Cost Database Distribution Grid Integration Unit Cost Database NREL's Distribution Grid Integration Unit Cost Database contains unit cost information for different components that may be used to associated with PV. It includes information from the California utility unit cost guides on traditional

  14. Urban Mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining.

    PubMed

    Zeng, Xianlai; Mathews, John A; Li, Jinhui

    2018-04-17

    Stocks of virgin-mined materials utilized in linear economic flows continue to present enormous challenges. E-waste is one of the fastest growing waste streams, and threatens to grow into a global problem of unmanageable proportions. An effective form of management of resource recycling and environmental improvement is available, in the form of extraction and purification of precious metals taken from waste streams, in a process known as urban mining. In this work, we demonstrate utilizing real cost data from e-waste processors in China that ingots of pure copper and gold could be recovered from e-waste streams at costs that are comparable to those encountered in virgin mining of ores. Our results are confined to the cases of copper and gold extracted and processed from e-waste streams made up of recycled TV sets, but these results indicate a trend and potential if applied across a broader range of e-waste sources and metals extracted. If these results can be extended to other metals and countries, they promise to have positive impact on waste disposal and mining activities globally, as the circular economy comes to displace linear economic pathways.

  15. Development of an Integrated Waste Plan for Chalk River Laboratories - 13376

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.

    2013-07-01

    To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling

  16. Integrated Design Tools Reduce Risk, Cost

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Thanks in part to a SBIR award with Langley Research Center, Phoenix Integration Inc., based in Wayne, Pennsylvania, modified and advanced software for process integration and design automation. For NASA, the tool has resulted in lower project costs and reductions in design time; clients of Phoenix Integration are experiencing the same rewards.

  17. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    PubMed

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  18. Eco-dialysis: the financial and ecological costs of dialysis waste products: is a 'cradle-to-cradle' model feasible for planet-friendly haemodialysis waste management?

    PubMed

    Piccoli, Giorgina Barbara; Nazha, Marta; Ferraresi, Martina; Vigotti, Federica Neve; Pereno, Amina; Barbero, Silvia

    2015-06-01

    Approximately 2 million chronic haemodialysis patients produce over 2,000,000 tons of waste per year that includes about 600,000 tons of potentially hazardous waste. The aim of the present study was to analyse the characteristics of the waste that is produced through chronic haemodialysis in an effort to identify strategies to reduce its environmental and financial impact. The study included three dialysis machines and disposables for bicarbonate dialysis, haemodiafiltration (HFR) and lactate dialysis. Hazardous waste is defined as waste that comes into contact with bodily fluids. The weight and cost of waste management was evaluated by various policies of differentiation, ranging from a careful-optimal differentiation to a careless one. The amount of time needed for optimal management was recorded in 30 dialysis sessions. Non-hazardous materials were assessed for potential recycling. The amount of plastic waste that is produced per dialysis session ranges from 1.5 to 8 kg (from 1.1 to 8 kg of potentially hazardous waste), depending upon the type of dialysis machine and supplies, differentiation and emptying policies. The financial cost of waste disposal is high, and is mainly related to hazardous waste disposal, with costs ranging from 2.2 to 16 Euro per session (2.7-21 USD) depending on the waste management policy. The average amount of time needed for careful, optimal differentiation disposal is approximately 1 minute for a haemodialysis session and 2 minutes for HFR. The ecological cost is likewise high: less than one-third of non-hazardous waste (23-28%) is potentially recyclable, while the use of different types of plastic, glues, inks and labels prevents the remaining materials from being recycled. Acknowledging the problem of waste management in dialysis could lead to savings of hundreds of millions of Dollars and to the reuse and recycling of hundreds of tons of plastic waste per year on a world-wide scale with considerable financial and ecological savings

  19. Sorption of mercury onto waste material derived low-cost activated carbon

    NASA Astrophysics Data System (ADS)

    Bhakta, Jatindra N.; Rana, Sukanta; Lahiri, Susmita; Munekage, Yukihiro

    2017-03-01

    The present study was performed to develop the low-cost activated carbon (AC) from some waste materials as potential mercury (Hg) sorbent to remove high amount of Hg from aqueous phase. The ACs were prepared from banana peel, orange peel, cotton fiber and paper wastes by pyrolysis and characterized by analyzing physico-chemical properties and Hg sorption capacity. The Brunauer Emmett and Teller surface areas (cotton 138 m2/g; paper 119 m2/g), micropore surface areas (cotton 65 m2/g; paper 54 m2/g) and major constituent carbon contents (cotton 95.04 %; paper 94.4 %) were higher in ACs of cotton fiber and paper wastes than the rest two ACs. The Hg sorption capacities and removal percentages were greater in cotton and paper wastes-derived ACs compared to those of the banana and orange peels. The results revealed that elevated Hg removal ability of cotton and paper wastes-derived ACs is largely regulated by their surface area, porosity and carbon content properties. Therefore, ACs of cotton and paper wastes were identified as potential sorbent among four developed ACs to remove high amount of Hg from aqueous phase. Furthermore, easily accessible precursor material, simple preparation process, favorable physico-chemical properties and high Hg sorption capacity indicated that cotton and paper wastes-derived ACs could be used as potential and low-cost sorbents of Hg for applying in practical field to control the severe effect of Hg contamination in the aquatic environment to avoid its human and environmental health risks.

  20. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  1. Framework for integration of informal waste management sector with the formal sector in Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y

    2013-10-01

    Historically, waste pickers around the globe have utilised urban solid waste as a principal source of livelihood. Formal waste management sectors usually perceive the informal waste collection/recycling networks as backward, unhygienic and generally incompatible with modern waste management systems. It is proposed here that through careful planning and administration, these seemingly troublesome informal networks can be integrated into formal waste management systems in developing countries, providing mutual benefits. A theoretical framework for integration based on a case study in Lahore, Pakistan, is presented. The proposed solution suggests that the municipal authority should draw up and agree on a formal work contract with the group of waste pickers already operating in the area. The proposed system is assessed using the integration radar framework to classify and analyse possible intervention points between the sectors. The integration of the informal waste workers with the formal waste management sector is not a one dimensional or single step process. An ideal solution might aim for a balanced focus on all four categories of intervention, although this may be influenced by local conditions. Not all the positive benefits will be immediately apparent, but it is expected that as the acceptance of such projects increases over time, the informal recycling economy will financially supplement the formal system in many ways.

  2. Systematic Approach to Better Understanding Integration Costs: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Gregory B.

    2015-09-28

    When someone mentions integration costs, thoughts of the costs of integrating renewable generation into an existing system come to mind. We think about how variability and uncertainty can increase power system cycling costs as increasing amounts of wind or solar generation are incorporated into the generation mix. However, seldom do we think about what happens to system costs when new baseload generation is added to an existing system or when generation self-schedules. What happens when a highly flexible combined-cycle plant is added? Do system costs go up, or do they go down? Are other, non-cycling, maintenance costs impacted? In thismore » paper we investigate six technologies and operating practices--including VG, baseload generation, generation mix, gas prices, self-scheduling, and fast-start generation--and how changes in these areas can impact a system's operating costs. This paper provides a working definition of integration costs and four components of variable costs. It describes the study approach and how a production cost modeling-based method was used to determine the cost effects, and, as a part of the study approach section, it describes the test system and data used for the comparisons. Finally, it presents the research findings, and, in closing, suggests three areas for future work.« less

  3. Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usher, Sam

    2007-07-01

    Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social andmore » ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision

  4. Comparison of mass balance, energy consumption and cost of composting facilities for different types of organic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Huijun; Matsuto, Toshihiko, E-mail: matsuto@eng.hokudai.ac.jp

    2011-03-15

    Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities. The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in themore » compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.« less

  5. Repurposing Waste Streams: Lessons on Integrating Hospital Food Waste into a Community Garden.

    PubMed

    Galvan, Adri M; Hanson, Ryan; George, Daniel R

    2018-04-06

    There have been increasing efforts in recent decades to divert institutional food waste into composting programs. As major producers of food waste who must increasingly demonstrate community benefit, hospitals have an incentive to develop such programs. In this article, we explain the emerging opportunity to link hospitals' food services to local community gardens in order to implement robust composting programs. We describe a partnership model at our hospital in central Pennsylvania, share preliminary outcomes establishing feasibility, and offer guidance for future efforts. We also demonstrate that the integration of medical students in such efforts can foster systems thinking in the development of programs to manage hospital waste streams in more ecologically-friendly ways.

  6. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter Andrew

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less

  7. European trends in greenhouse gases emissions from integrated solid waste management.

    PubMed

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  8. Systematic Approach to Better Understanding Integration Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Gregory B.

    2015-09-01

    This research presents a systematic approach to evaluating the costs of integrating new generation and operational procedures into an existing power system, and the methodology is independent of the type of change or nature of the generation. The work was commissioned by the U.S. Department of Energy and performed by the National Renewable Energy Laboratory to investigate three integration cost-related questions: (1) How does the addition of new generation affect a system's operational costs, (2) How do generation mix and operating parameters and procedures affect costs, and (3) How does the amount of variable generation (non-dispatchable wind and solar) impactmore » the accuracy of natural gas orders? A detailed operational analysis was performed for seven sets of experiments: variable generation, large conventional generation, generation mix, gas prices, fast-start generation, self-scheduling, and gas supply constraints. For each experiment, four components of integration costs were examined: cycling costs, non-cycling VO&M costs, fuel costs, and reserves provisioning costs. The investigation was conducted with PLEXOS production cost modeling software utilizing an updated version of the Institute of Electrical and Electronics Engineers 118-bus test system overlaid with projected operating loads from the Western Electricity Coordinating Council for the Sacramento Municipal Utility District, Puget Sound Energy, and Public Service Colorado in the year 2020. The test system was selected in consultation with an industry-based technical review committee to be a reasonable approximation of an interconnection yet small enough to allow the research team to investigate a large number of scenarios and sensitivity combinations. The research should prove useful to market designers, regulators, utilities, and others who want to better understand how system changes can affect production costs.« less

  9. Evidence-based integrated environmental solutions for secondary lead smelters: pollution prevention and waste minimization technologies and practices.

    PubMed

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M

    2009-05-01

    An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization practices and technologies that meet the following criteria: (a) reduce/recover/recycle the largest quantities of lead currently being disposed of as waste, (b) technically and economically viable, that is, ready to be diffused and easily transferable, and (c) strong industry interest (i.e., industry would consider implementing projects with higher payback periods). The following specific aims are designed to achieve the study objectives: Aim 1 - To describe the recycling process of recovering refined lead from scrap; Aim 2 - To document pollution prevention and waste management technologies and practices adopted by US stakeholders along the trajectory of LAB and lead product life cycle; Aim 3 - To explore improved practices and technologies which are employed by other organizations with an emphasis on the aforementioned criteria; Aim 4 - To demonstrate the economic and environmental costs and benefits of applying improved technologies and practices to existing US smelting operations; and Aim 5 - To evaluate improved environmental technologies and practices using an algorithm that integrates quantitative and qualitative criteria. The process of identifying relevant articles and reports was documented. The description of evidence was presented for current practices and technologies used by US smelters as well as improved practices and technologies. Options for integrated environmental solutions for secondary smelters were introduced and rank ordered on the basis of costs (i.e., capital investment) and benefits (i.e., production increases, energy and flux savings, and reduction of SO(2) and slag). An example was provided to demonstrate the utility of the algorithm by detailing the costs and

  10. Cost and efficiency of disaster waste disposal: A case study of the Great East Japan Earthquake.

    PubMed

    Sasao, Toshiaki

    2016-12-01

    This paper analyzes the cost and efficiency of waste disposal associated with the Great East Japan Earthquake. The following two analyses were performed: (1) a popular parametric approach, which is an ordinary least squares (OLS) method to estimate the factors that affect the disposal costs; (2) a non-parametric approach, which is a two-stage data envelopment analysis (DEA) to analyze the efficiency of each municipality and clarify the best performance of the disaster waste management. Our results indicate that a higher recycling rate of disaster waste and a larger amount of tsunami sediments decrease the average disposal costs. Our results also indicate that area-wide management increases the average cost. In addition, the efficiency scores were observed to vary widely by municipality, and more temporary incinerators and secondary waste stocks improve the efficiency scores. However, it is likely that the radioactive contamination from the Fukushima Daiichi nuclear power station influenced the results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Solidification as low cost technology prior to land filling of industrial hazardous waste sludge.

    PubMed

    El-Sebaie, O; Ahmed, M; Ramadan, M

    2000-01-01

    The aim of this study is to stabilize and solidify two different treated industrial hazardous waste sludges, which were selected from factories situated close to Alexandria. They were selected to ensure their safe transportation and landfill disposal by reducing their potential leaching of hazardous elements, which represent significant threat to the environment, especially the quality of underground water. The selected waste sludges have been characterized. Ordinary Portland Cement (OPC), Cement Kiln Dust (CKD) from Alexandria Portland Cement Company, and Calcium Sulphate as a by-product from the dye industry were used as potential solidification additives to treat the selected treated waste sludges from tanning and dyes industry. Waste sludges as well as the solidified wastes have been leach-tested, using the General Acid Neutralization Capacity (GANC) procedure. Concentration of concerning metals in the leachates was determined to assess changes in the mobility of major contaminants. The treated tannery waste sludge has an acid neutralization capacity much higher than that of the treated dyes waste sludge. Experiment results demonstrated the industrial waste sludge solidification mix designs, and presented the reduction of contaminant leaching from two types of waste sludges. The main advantages of solidification are that it is simple and low cost processing which includes readily available low cost solidification additives that will convert industrial hazardous waste sludges into inert materials.

  12. 3 Steps to Developing a Tribal Integrated Waste Management Plan (IWMP)

    EPA Pesticide Factsheets

    An Integrated Waste Management Plan (IWMP) is the blueprint of a comprehensive waste management program. The steps to developing an IWMP are collect background data, map out the tribal IWMP framework, and write and implement the tribal IWMP.

  13. Cost Implications of an Interim Storage Facility in the Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  14. Analysis of National Solid Waste Recycling Programs and Development of Solid Waste Recycling Cost Functions: A Summary of the Literature (1999)

    EPA Pesticide Factsheets

    Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control

  15. Applications of life cycle assessment and cost analysis in health care waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br; Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br; Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of USmore » $$ 0.12 kg{sup -1} for the waste treated with microwaves, US$$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a

  16. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.

    PubMed

    Yan, Dong; Lu, Yue; Chen, Yi-Feng; Wu, Qingyu

    2011-06-01

    The by-product of sugar refinery-waste molasses was explored as alternative to glucose-based medium of Chlorella protothecoides in this study. Enzymatic hydrolysis is required for waste molasses suitable for algal growth. Waste molasses hydrolysate was confirmed as a sole source of full nutrients to totally replace glucose-based medium in support of rapid growth and high oil yield from algae. Under optimized conditions, the maximum algal cell density, oil content, and oil yield were respectively 70.9 g/L, 57.6%, and 40.8 g/L. The scalability of the waste molasses-fed algal system was confirmed from 0.5L flasks to 5L fermenters. The quality of biodiesel from waste molasses-fed algae was probably comparable to that from glucose-fed ones. Economic analysis indicated the cost of oil production from waste molasses-fed algae reduced by 50%. Significant cost reduction of algal biodiesel production through fermentation engineering based on the approach is expected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty.

    PubMed

    Li, Y P; Huang, G H

    2010-09-15

    Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Astrophysics Data System (ADS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2016-03-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and

  19. Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive

    NASA Technical Reports Server (NTRS)

    Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya

    2015-01-01

    Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have

  20. Controlling healthcare costs by removing waste: what American doctors can do now.

    PubMed

    Swensen, Stephen J; Kaplan, Gary S; Meyer, Gregg S; Nelson, Eugene C; Hunt, Gordon C; Pryor, David B; Weissberg, Jed I; Daley, Jennifer; Yates, Gary R; Chassin, Mark R

    2011-06-01

    Healthcare costs are unsustainable. The authors propose a solution to control costs without rationing (deliberate withholding of effective care) or payment reductions to doctors and hospitals. Three physician-led strategies comprise this solution: reduce (1) overuse of health services, (2) preventable complications and (3) waste within healthcare processes. These challenges know no borders.

  1. Turning waste medicines to cost savings: A pilot study on the feasibility of medication recycling as a solution to drug wastage.

    PubMed

    Toh, Ming Ren; Chew, Lita

    2017-01-01

    Unused medicines represent a major source of wastage in healthcare systems around the world. Previous studies have suggested the potential cost savings from recycling the waste medicines. However, issues of product safety and integrity often deter healthcare institutions from recycling donated medications. To evaluate the feasibility of medication recycling and to assess the actual cost savings from recycling waste medicines and whether reusability of waste medicines differed among various drug classes and donor sources. Donated medications from hospitals, private medical clinics and patients were collected and assessed using a medication recycling protocol in a hospice care setting from November 2013 through January 2014. Costs were calculated using a reference pricing list from a public hospital. A total of 244 donations, amounting to 20,759 dosage units, were collected during the study period. Most donations (90.8%) were reusable, providing a total of S$5266 in cost savings. Less than 2 h daily was spent by a single pharmacy technician on the sorting and distributing processes. Medications donated by health facilities were thrice more likely to be reusable than those by patients (odds ratio = 3.614, 95% confidence interval = 3.127, 4.176). Medications belonging to Anatomical Therapeutic Chemical class G (0.0%), H (8.2%) and L (30.0%) were the least reusable. Most donated medications were reusable. The current protocol can be further streamlined to focus on the more reusable donor sources and drug classes and validated in other settings. Overall, we opine that it is feasible to practise medication recycling on a larger scale to reduce medication wastage.

  2. Determinants of sustainability in solid waste management--the Gianyar Waste Recovery Project in Indonesia.

    PubMed

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-11-01

    According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton; Charboneau, Stacy; Olds, Erik

    2012-07-01

    successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP objectives such that feed can be supplied to the WTP when

  4. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Performance evaluation of integrated solid-liquid wastes treatment technology in palm oil industry

    NASA Astrophysics Data System (ADS)

    Amelia, J. R.; Suprihatin, S.; Indrasti, N. S.; Hasanudin, U.; Fujie, K.

    2017-05-01

    The oil palm industry significantly contributes to environmental degradation if without waste management properly. The newest alternative waste management that might be developed is by utilizing the effluent of POME anaerobic digestion with EFB through integrated anaerobic decomposition process. The aim of this research was to examine and evaluate the integrated solid-liquid waste treatment technology in the view point of greenhouse gasses emission, compost, and biogas production. POME was treated in anaerobic digester with loading rate about 1.65 gCOD/L/day. Treated POME with dosis of 15 and 20 L/day was sprayed to the anaerobic digester that was filled of 25 kg of EFB. The results of research showed that after 60 days, the C/N ratio of EFB decreased to 12.67 and 10.96 for dosis of treated POME 15 and 20 L/day, respectively. In case of 60 day decomposition, the integrated waste treatment technology could produce 51.01 and 34.34 m3/Ton FFB which was equivalent with 636,44 and 466,58 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively. The results of research also showed that integrated solid-liquid wastes treatment technology could reduce GHG emission about 421.20 and 251.34 kgCO2e/ton FFB for dosis of treated POME 15 and 20 L/day, respectively.

  6. Integrated waste management as a climate change stabilization wedge.

    PubMed

    Bahor, Brian; Van Brunt, Michael; Stovall, Jeff; Blue, Katherine

    2009-11-01

    Anthropogenic sources of greenhouse gas emissions are known to contribute to global increases in greenhouse gas concentrations and are widely believed to contribute to climate change. A reference carbon dioxide concentration of 383 ppm for 2007 is projected to increase to a nominal 500 ppm in less than 50 years according to business as usual models. This concentration change is equivalent to an increase of 7 billion tonnes of carbon per year (7 Gt C year(-1)). The concept of a stabilization wedge was introduced by Pacala and Socolow (Science, 305, 968-972, 2004) to break the 7 Gt C year(- 1) into more manageable 1 Gt C year(- 1) reductions that would be achievable with current technology. A total of fifteen possible 'wedges' were identified; however, an integrated municipal solid waste (MSW) management system based on the European Union's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage of MSW is allocated to recycling, waste to energy and landfilling in descending order in lieu of existing 'business-as-usual' practices with each option using modern technology and best practices, the system would reduce greenhouse gas emissions by more than 1 Gt C year( -1). This integrated waste management system reduces CO(2) by displacing fossil electrical generation and avoiding manufacturing energy consumption and methane emissions from landfills.

  7. Using the Triad Approach to Improve the Cost-effectiveness of Hazardous Waste Site Cleanups

    EPA Pesticide Factsheets

    U.S. EPA's Office of Solid Waste and Emergency Response is promoting more effective strategies for characterizing, monitoring, and cleaning up hazardous waste sites. In particular, a paradigm based on using an integrated triad of systematic planning...

  8. Cost comparison between private and public collection of residual household waste: Multiple case studies in the Flemish region of Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, R., E-mail: ray.jacobsen@ugent.be; Buysse, J., E-mail: j.buysse@ugent.be; Gellynck, X., E-mail: xavier.gellynck@ugent.be

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The goal is to compare collection costs for residual household waste. Black-Right-Pointing-Pointer We have clustered all municipalities in order to find mutual comparable pairs. Black-Right-Pointing-Pointer Each pair consists of one private and one public operating waste collection program. Black-Right-Pointing-Pointer All cases show that private service has lower costs than public service. Black-Right-Pointing-Pointer Municipalities were contacted to identify the deeper causes for the waste management program. - Abstract: The rising pressure in terms of cost efficiency on public services pushes governments to transfer part of those services to the private sector. A trend towards more privatizing can be noticedmore » in the collection of municipal household waste. This paper reports the findings of a research project aiming to compare the cost between the service of private and public collection of residual household waste. Multiple case studies of municipalities about the Flemish region of Belgium were conducted. Data concerning the year 2009 were gathered through in-depth interviews in 2010. In total 12 municipalities were investigated, divided into three mutual comparable pairs with a weekly and three mutual comparable pairs with a fortnightly residual waste collection. The results give a rough indication that in all cases the cost of private service is lower than public service in the collection of household waste. Albeit that there is an interest in establishing whether there are differences in the costs and service levels between public and private waste collection services, there are clear difficulties in establishing comparisons that can be made without having to rely on a large number of assumptions and corrections. However, given the cost difference, it remains the responsibility of the municipalities to decide upon the service they offer their citizens, regardless the cost efficiency: public or private.« less

  9. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach. [Delaware coast and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Wang, H.

    1975-01-01

    The author has identified the following significant results. An inexpensive, integrated drogue-aircraft-satellite approach was developed which is based on the Lagrangian technique and employs remotely tracked drogues and dyes together with satellite observation of natural tracers, such as suspended sediment. Results include current circulation studies in Delaware Bay in support of an oil slick movement model; investigations of the dispersion and movement of acid wastes dumped 40 miles off the Delaware coast; and coastal current circulation. In each case, the integrated drogue-aircraft-satellite approach compares favorably with other techniques on the basis of accuracy, cost effectiveness, and performance under severe weather conditions.

  11. Interim waste storage for the Integral Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less

  12. Cost-Effectiveness Analysis of Health Care Waste Treatment Facilities in Iran Hospitals; a Provider Perspective

    PubMed Central

    RASHIDIAN, Arash; ALINIA, Cyrus; MAJDZADEH, Reza

    2015-01-01

    Background: Our aim was to make right and informative decision about choosing the most cost-effectiveness heterogeneous infectious waste treatment methods and devices. Methods: In this descriptive study, decision tree analysis, with 10-yr time horizon in bottom-up approach was used to estimate the costs and effectiveness criteria of the employed devices at provider perspective in Iranian hospitals. We used the one-way and scenario sensitivity analysis to measure the effects of variables with uncertainty. The resources of data were national Environmental and Occupational Health Center Survey (EOHCS) in 2012, field observation and completing questionnaire by relevant authorities in mentioned centers. Results: Devices called Saray 2, Autoclave based, and Newster 10, Hydroclave based, with 92032.4 (±12005) and 6786322.9 (±826453) Dollars had the lowest and highest costs respectively in studied time period and given the 5–10% discount rate. Depending on effectiveness factor type, Newster 10 with Ecodas products and Saray products respectively had the highest and lowest effectiveness. In most considered scenarios, Caspian-Alborz device was the most cost-effectiveness alternative, so for the treatment of each adjusted unit of volume and weight of infectious waste in a 10 year period and in different conditions, between 39.4 (±5.1) to 915 (±111.4) dollars must be spent. Conclusion: The findings indicate the inefficiency and waste of resources, so in order to efficient resource allocation and to encourage further cost containment in infectious waste management we introduce policy recommendation that be taken in three levels. PMID:25905078

  13. Valorization of winery waste vs. the costs of not recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devesa-Rey, R., E-mail: rosa.devesa.rey@uvigo.es; Vecino, X.; Varela-Alende, J.L.

    Graphical abstract: Highlights: > Lactic acid, biosurfactants, xylitol or ethanol may be obtained from wine residues. > By-products valorization turns wine wastes into products with industrial applications. > The costs of waste disposal enhances the search of economically viable solutions for valorizing residues. - Abstract: Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimesmore » also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income.« less

  14. Colleges Struggle to Dispose of Hazardous Wastes in Face of Rising Costs and Increased Regulation.

    ERIC Educational Resources Information Center

    Magner, Denise K.

    1989-01-01

    After years of being ignored by federal regulators because of the low volume of hazardous waste in question, colleges and universities are facing increased enforcement of environmental laws concerning waste disposal and storage, at great cost in money, facilities, and personnel. (MSE)

  15. Room Service Improves Nutritional Intake and Increases Patient Satisfaction While Decreasing Food Waste and Cost.

    PubMed

    McCray, Sally; Maunder, Kirsty; Krikowa, Renee; MacKenzie-Shalders, Kristen

    2018-02-01

    Room service is a foodservice model that has been increasingly implemented across health care facilities in an effort to improve patient satisfaction and reduce food waste. In 2013, Mater Private Hospital Brisbane, Australia, was the first hospital in Australia to implement room service, with the aim of improving patient nutrition care and reducing costs. The aim of this study was to comprehensively evaluate the nutritional intake, plate waste, patient satisfaction, and patient meal costs of room service compared to a traditional foodservice model. A retrospective analysis of quality-assurance data audits was undertaken to assess patient nutritional intake between a facility utilizing a traditional foodservice model and a facility utilizing room service and in a pre-post study design to assess plate waste, patient satisfaction, and patient meal costs before and after the room service implementation. Audit data were collected for eligible adult inpatients in Mater Private Hospital Brisbane and Mater Hospital Brisbane, Australia, between July 2012 and May 2015. The primary outcome measures were nutritional intake, plate waste, patient satisfaction, and patient meal costs. Independent samples t-tests and χ 2 analyses were conducted between pre and post data for continuous data and categorical data, respectively. Pearson χ 2 analysis of count data for sex and reasons for plate waste for data with counts more than five was used to determine asymptotic (two-sided) significance and n-1 χ 2 used for the plate waste analysis. Significance was assessed at P<0.05. This study reported an increased nutritional intake, improved patient satisfaction, and reduced plate waste and patient meal costs with room service compared to a traditional foodservice model. Comparison of nutritional intake between a traditional foodservice model (n=85) and room service (n=63) showed statistically significant increases with room service in both energy (1,306 kcal/day vs 1,588 kcal/day; P=0

  16. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  17. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the

  18. Improving waste segregation while reducing costs in a tertiary-care hospital in a lower-middle-income country in Central America.

    PubMed

    Johnson, Kyle M; González, Miriam L; Dueñas, Lourdes; Gamero, Mario; Relyea, George; Luque, Laura E; Caniza, Miguela A

    2013-07-01

    Healthcare waste (HCW) management and segregation are essential to ensure safety, environmental protection and cost control. Poor HCW management increase risks and costs for healthcare institutions. On-going surveillance and training are important to maintain good HCW practices. Our objectives were to evaluate and improve HCW practices at Hospital Bloom, San Salvador, El Salvador. We studied HCW disposal practices by observing waste containers, re-segregating waste placed in biohazardous waste bags, and administering a seven-itemsknowledge survey before and after training in waste management at Hospital Bloom. The training was based on national and international standards. We followed total biohazardous waste production before and after the training. The hospital staff was knowledgeable about waste segregation practices, but had poor compliance with national policies. Re-segregating waste in biohazardous waste bags showed that 61% of this waste was common waste, suggesting that the staff was possibly unaware of the cost of mis-segregating healthcare waste. After staff training in HCW management, the correct responses increased by 44% and biohazardous waste disposal at the hospital reduced by 48%. Better segregation of biohazardous waste and important savings can be obtained by HCW management education of hospital staff. Hospitals can benefit from maximising the use of available resources by sustaining best practices of HCW, especially those in hospitals in lower-middle-income countries.

  19. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch; Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net; Ashadi, Henki, E-mail: henki@eng.ui.ac.id

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environmentmore » is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.« less

  1. Cost-Effectiveness of Integrating Tobacco Cessation Into Post-Traumatic Stress Disorder Treatment

    PubMed Central

    Jeffers, Abra; Smith, Mark W.; Chow, Bruce K.; McFall, Miles; Saxon, Andrew J.

    2016-01-01

    Abstract Introduction: We examined the cost-effectiveness of smoking cessation integrated with treatment for post-traumatic stress disorder (PTSD). Methods: Smoking veterans receiving care for PTSD ( N = 943) were randomized to care integrated with smoking cessation versus referral to a smoking cessation clinic. Smoking cessation services, health care cost and utilization, quality of life, and biochemically-verified abstinence from cigarettes were assessed over 18-months of follow-up. Clinical outcomes were combined with literature on changes in smoking status and the effect of smoking on health care cost, mortality, and quality of life in a Markov model of cost-effectiveness over a lifetime horizon. We discounted cost and outcomes at 3% per year and report costs in 2010 US dollars. Results: The mean of smoking cessation services cost was $1286 in those randomized to integrated care and $551 in those receiving standard care ( P < .001). There were no significant differences in the cost of mental health services or other care. After 12 months, prolonged biochemically verified abstinence was observed in 8.9% of those randomized to integrated care and 4.5% of those randomized to standard care ( P = .004). The model projected that Integrated Care added $836 in lifetime cost and generated 0.0259 quality adjusted life years (QALYs), an incremental cost-effectiveness ratio of $32 257 per QALY. It was 86.0% likely to be cost-effective compared to a threshold of $100 000/QALY. Conclusions: Smoking cessation integrated with treatment for PTSD was cost-effective, within a broad confidence region, but less cost-effective than most other smoking cessation programs reported in the literature. PMID:25943761

  2. The promise--and peril--of integrated cost systems.

    PubMed

    Cooper, R; Kaplan, R S

    1998-01-01

    Recent advances in managerial accounting have helped executives get the information they need to make good strategic decisions. But today's enterprise resource planning systems promise even greater benefits--the chance to integrate activity-based costing, operational-control, and financial reporting systems. But managers need to approach integration very thoughtfully, or they could end up with a system that drives decision making in the wrong direction. Operational-control and ABC systems have fundamentally different purposes. Their requirements for accuracy, timeliness, and aggregation are so different that no single, fully integrated approach can be adequate for both purposes. If an integrated system used real-time cost data instead of standard rates in its ABC subsystem, for example, the result would be dangerously distorted messages about individual product profitability--and that's precisely the problem ABC systems were originally designed to address. Proper linkage and feedback between the two systems is possible, however. Through activity-based budgeting, the ABC system is linked directly to operations control: managers can determine the supply and practical capacity of resources in forthcoming periods. Linking operational control to ABC is also possible. The activity-based portion of an operational control system collects information that, while it mustn't be fed directly into the activity-based strategic cost system, can be extremely useful once it's been properly analyzed. Finally, ABC and operational control can be linked to financial reporting to generate cost of goods sold and inventory valuations--but again, with precautions.

  3. Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, Matt R.; Wilson, Robert A.

    Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less

  4. Developing a holistic strategy for integrated waste management within municipal planning: challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction.

    PubMed

    Zotos, G; Karagiannidis, A; Zampetoglou, S; Malamakis, A; Antonopoulos, I-S; Kontogianni, S; Tchobanoglous, G

    2009-05-01

    The present position paper addresses contemporary waste management options, weaknesses and opportunities faced by Hellenic local authorities. It focuses on state-of-the-art, tested as well as innovative, environmental management tools on a municipal scale and identifies a range of different collaboration schemes between local authorities and related service providers. Currently, a policy implementation gap is still experienced among Hellenic local authorities; it appears that administration at the local level is inadequate to manage and implement many of the general policies proposed; identify, collect, monitor and assess relevant data; and safeguard efficient and effective implementation of MSWM practices in the framework of integrated environmental management as well. This shortfall is partly due to the decentralisation of waste management issues to local authorities without a parallel substantial budgetary and capacity support, thus resulting in local activity remaining often disoriented and isolated from national strategies, therefore yielding significant planning and implementation problems and delays against pressing issues at hand as well as loss or poor use of available funds. This paper develops a systemic approach for MSWM at both the household and the non-household level, summarizes state-of-the-art available tools and compiles a set of guidelines for developing waste management master plans at the municipal level. It aims to provide a framework in the MSWM field for municipalities in Greece as well as other countries facing similar problems under often comparable socioeconomic settings.

  5. Distribution Grid Integration Costs Under High PV Penetrations Workshop |

    Science.gov Websites

    grids. These distribution grid integration costs are one component of a complete cost-benefit analysis . Engaging stakeholders to coalesce around transparent and mutually acceptable frameworks for cost-benefit -voltage only). In particular, there was be a focus on methods most appropriate for cost-benefit analysis

  6. Integrated analysis considered mitigation cost, damage cost and adaptation cost in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Lee, D. K.; Kim, H. G.; Sung, S.; Jung, T. Y.

    2015-12-01

    Various studies show that raising the temperature as well as storms, cold snap, raining and drought caused by climate change. And variety disasters have had a damage to mankind. The world risk report(2012, The Nature Conservancy) and UNU-EHS (the United Nations University Institute for Environment and Human Security) reported that more and more people are exposed to abnormal weather such as floods, drought, earthquakes, typhoons and hurricanes over the world. In particular, the case of Korea, we influenced by various pollutants which are occurred in Northeast Asian countries, China and Japan, due to geographical meteorological characteristics. These contaminants have had a significant impact on air quality with the pollutants generated in Korea. Recently, around the world continued their effort to reduce greenhouse gas and to improve air quality in conjunction with the national or regional development goals priority. China is also working on various efforts in accordance with the international flows to cope with climate change and air pollution. In the future, effect of climate change and air quality in Korea and Northeast Asia will be change greatly according to China's growth and mitigation policies. The purpose of this study is to minimize the damage caused by climate change on the Korean peninsula through an integrated approach taking into account the mitigation and adaptation plan. This study will suggest a climate change strategy at the national level by means of a comprehensive economic analysis of the impacts and mitigation of climate change. In order to quantify the impact and damage cost caused by climate change scenarios in a regional scale, it should be priority variables selected in accordance with impact assessment of climate change. The sectoral impact assessment was carried out on the basis of selected variables and through this, to derive the methodology how to estimate damage cost and adaptation cost. And then, the methodology was applied in Korea

  7. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    PubMed

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  8. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  9. Cost-Effectiveness of Integrating Tobacco Cessation Into Post-Traumatic Stress Disorder Treatment.

    PubMed

    Barnett, Paul G; Jeffers, Abra; Smith, Mark W; Chow, Bruce K; McFall, Miles; Saxon, Andrew J

    2016-03-01

    We examined the cost-effectiveness of smoking cessation integrated with treatment for post-traumatic stress disorder (PTSD). Smoking veterans receiving care for PTSD (N = 943) were randomized to care integrated with smoking cessation versus referral to a smoking cessation clinic. Smoking cessation services, health care cost and utilization, quality of life, and biochemically-verified abstinence from cigarettes were assessed over 18-months of follow-up. Clinical outcomes were combined with literature on changes in smoking status and the effect of smoking on health care cost, mortality, and quality of life in a Markov model of cost-effectiveness over a lifetime horizon. We discounted cost and outcomes at 3% per year and report costs in 2010 US dollars. The mean of smoking cessation services cost was $1286 in those randomized to integrated care and $551 in those receiving standard care (P < .001). There were no significant differences in the cost of mental health services or other care. After 12 months, prolonged biochemically verified abstinence was observed in 8.9% of those randomized to integrated care and 4.5% of those randomized to standard care (P = .004). The model projected that Integrated Care added $836 in lifetime cost and generated 0.0259 quality adjusted life years (QALYs), an incremental cost-effectiveness ratio of $32 257 per QALY. It was 86.0% likely to be cost-effective compared to a threshold of $100 000/QALY. Smoking cessation integrated with treatment for PTSD was cost-effective, within a broad confidence region, but less cost-effective than most other smoking cessation programs reported in the literature. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  11. Anaerobic digestion of food waste - Challenges and opportunities.

    PubMed

    Xu, Fuqing; Li, Yangyang; Ge, Xumeng; Yang, Liangcheng; Li, Yebo

    2018-01-01

    The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The construction and operation of a low-cost poultry waste digester.

    PubMed

    Steinsberger, S C; Shih, J C

    1984-05-01

    A simple and low-cost poultry waste digester (PWD) was constructed to treat the waste from 4000 caged laying hens on University Research Unit No. 2 at North Carolina State University. The system was built basically of a plastic lining with insulation, a heating system, a hot-water tank, and other metering equipment. It was operated at 50 degrees C and pH 7.5-8.0. The initiation of methane production was achieved using the indigenous microflora in the poultry waste. At an optimal loading rate (7.5 kg volatile solids/m(3) day), the PWD produced biogas (55% methane) at a rate of 4.0 m(3)/m(3) day. The PWD was biologically stable and able to tolerate temporary overloads and shutdowns. A higher loading rate failed to maintain a high gas production rate and caused drops in methane content and pH value. Under optimal conditions, a positive energy balance was demonstrated with a net surplus of 50.6% of the gross energy. For methane production, the PWD system was proved to be technically feasible. The simple design and inexpensive materials used for this model could significantly reduce the cost of digestion compared to more conventional systems. More studies are needed to determine the durability, the required maintenance of the system, and the most economical method of biogas and solid residue utilization.

  13. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  15. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  16. A Subject Reference: Benefit-Cost Analysis of Toxic Substances, Hazardous Materials and Solid Waste Control (1977)

    EPA Pesticide Factsheets

    Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control

  17. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.

    PubMed

    Ayalon, O; Avnimelech, Y; Shechter, M

    2001-05-01

    The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.

  18. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to

  19. Search for a new economic optimum in the management of household waste in Tiaret city (western Algeria).

    PubMed

    Asnoune, M; Abdelmalek, F; Djelloul, A; Mesghouni, K; Addou, A

    2016-11-01

    In household waste matters, the objective is always to conceive an optimal integrated system of management, where the terms 'optimal' and 'integrated' refer generally to a combination between the waste and the techniques of treatment, valorization and elimination, which often aim at the lowest possible cost. The management optimization of household waste using operational methodologies has not yet been applied in any Algerian district. We proposed an optimization of the valorization of household waste in Tiaret city in order to lower the total management cost. The methodology is modelled by non-linear mathematical equations using 28 variables of decision and aims to assign optimally the seven components of household waste (i.e. plastic, cardboard paper, glass, metals, textiles, organic matter and others) among four centres of treatment [i.e. waste to energy (WTE) or incineration, composting (CM), anaerobic digestion (ANB) or methanization and landfilling (LF)]. The analysis of the obtained results shows that the variation of total cost is mainly due to the assignment of waste among the treatment centres and that certain treatment cannot be applied to household waste in Tiaret city. On the other hand, certain techniques of valorization have been favoured by the optimization. In this work, four scenarios have been proposed to optimize the system cost, where the modelling shows that the mixed scenario (the three treatment centres CM, ANB, LF) suggests a better combination of technologies of waste treatment, with an optimal solution for the system (cost and profit). © The Author(s) 2016.

  20. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    PubMed Central

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  1. Integrated solid waste management in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.

  2. Integrated pneumatic transporter-incinerator-afterburner subsystem development. [for spacecraft waste disposal

    NASA Technical Reports Server (NTRS)

    Manning, J. R.

    1974-01-01

    The design and fabrication of a prototype automatic transport system to move wastes to an incinerator onboard a spacecraft are described. The commode and debris collector, subsystems to treat noncondensible gases, oxygen supply to incinerator and afterburner, and removal and ash collection from the incinerator are considered, as well as a zero gravity condenser. In-depth performance testing of a totally integrated incineration system and autoclaving as a waste treatment method are included.

  3. Projection of Big Cities Waste Management and Cost Based on Economic and Demographic Factors in Indonesia

    NASA Astrophysics Data System (ADS)

    Prajati, Gita; Padmi, Tri; Benno Rahardyan, dan

    2017-12-01

    Nowadays, solid waste management continues to be a major challenge in urban areas, especially in developing country. It is triggered by population growth, economic growth, industrialization and urbanization. Indonesia itselfs categorized into developing country. Indonesia's government has many program in order to increase the economic growth. One of them is MP3EI (Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia. This program should be suppported by right waste management system. If Indonesia's waste management system can't afford the economic growth, it will trigger health and environmental problems. This study's purpose is to develop the socio-economic-environment model that can be used as a basis planning for the facility and cost of waste management systems. In this paper we used the development of Khajuria model test method. This method used six variables, which are GDP, population, population density, illiteracy, school's period and economic growth. The result showed that development of Khajuria test could explained the influence of economic and demographic factors to waste generation, 65.6%. The projection of waste generation shows that Pangkalpinang, Pekanbaru and Serang are the cities with the highest waste generation for the next five years. The number of dump truck and TPS in DKI Jakarata is the highest within another city, which is 39.37%. For the next five years, the waste management system in our study areas cost maximum 0.8% from GDP (Gross Domestic Products).

  4. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  5. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  6. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities.

    PubMed

    Maalouf, Amani; El-Fadel, Mutasem

    2017-11-01

    In this study, the carbon footprint of introducing a food waste disposer (FWD) policy was examined in the context of its implications on solid waste and wastewater management with economic assessment of environmental externalities emphasizing potential carbon credit and increased sludge generation. For this purpose, a model adopting a life cycle inventory approach was developed to integrate solid waste and wastewater management processes under a single framework and test scenarios for a waste with high organic food content typical of developing economies. For such a waste composition, the results show that a FWD policy can reduce emissions by nearly ∼42% depending on market penetration, fraction of food waste ground, as well as solid waste and wastewater management schemes, including potential energy recovery. In comparison to baseline, equivalent economic gains can reach ∼28% when environmental externalities including sludge management and emissions variations are considered. The sensitivity analyses on processes with a wide range in costs showed an equivalent economic impact thus emphasizing the viability of a FWD policy although the variation in the cost of sludge management exhibited a significant impact on savings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    PubMed

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  9. HIV, tuberculosis, and noncommunicable diseases: what is known about the costs, effects, and cost-effectiveness of integrated care?

    PubMed

    Hyle, Emily P; Naidoo, Kogieleum; Su, Amanda E; El-Sadr, Wafaa M; Freedberg, Kenneth A

    2014-09-01

    Unprecedented investments in health systems in low- and middle-income countries (LMICs) have resulted in more than 8 million individuals on antiretroviral therapy. Such individuals experience dramatically increased survival but are increasingly at risk of developing common noncommunicable diseases (NCDs). Integrating clinical care for HIV, other infectious diseases, and NCDs could make health services more effective and provide greater value. Cost-effectiveness analysis is a method to evaluate the clinical benefits and costs associated with different health care interventions and offers guidance for prioritization of investments and scale-up, especially as resources are increasingly constrained. We first examine tuberculosis and HIV as 1 example of integrated care already successfully implemented in several LMICs; we then review the published literature regarding cervical cancer and depression as 2 examples of NCDs for which integrating care with HIV services could offer excellent value. Direct evidence of the benefits of integrated services generally remains scarce; however, data suggest that improved effectiveness and reduced costs may be attained by integrating additional services with existing HIV clinical care. Further investigation into clinical outcomes and costs of care for NCDs among people living with HIV in LMICs will help to prioritize specific health care services by contributing to an understanding of the affordability and implementation of an integrated approach.

  10. Shelterwood-planted northern red oaks: integrated costs and options

    Treesearch

    Martin A. Spetich; Daniel Dey; Paul Johnson

    2009-01-01

    Tree biology, environmental site conditions, relative monetary costs, management options, and the competitive struggle between planted trees and other vegetation were integrated when underplanting northern red oak (Quercus rubra L.) seedlings in Boston Mountain shelterwoods. This approach provides insight into the collective costs (...

  11. Comparative cost analysis of inpatient integrative medicine-Results of a pilot study.

    PubMed

    Ostermann, Thomas; Lauche, Romy; Cramer, Holger; Dobos, Gustav

    2017-06-01

    Costs of integrative treatment alone and in comparison with other treatment approaches have scarcely been reported in the past. This study presents results of a comparative cost analysis of an inpatient integrative medicine treatment costs. Data from 2006 for inpatients referred to a Department of Integrative Medicine in Germany were used. Case-related treatment costs were calculated, and transformed into Casemix-Indices and revenues per DRG. Costs were compared between departments at the same hospital and between different hospitals using univariate statistics and Chi-Square tests. In total 1253 inpatients (81.4% female, 61.1±14.4years) were included in the current analysis. Most patients were treated for diseases of the musculoskeletal system (57.2%), followed by diseases of the digestive system (11.4%), and diseases of the nervous system (10.4%). The department received an additional payment for most of the patients (88.0%), which led to an effective appreciation of 10.8% per case compared to the standardized Casemix-Index. In-house comparisons with other departments found the department in close vicinity to the departments of Internal medicine with regards to CMI and mean revenue, however the Patient Clinical Complexity Level was significantly lower in the Integrative medicine department. The interhospital comparison revealed comparable Casemix-Index and DRG-revenue, however the additional payment increased the mean revenue significantly. Modern integrative in-patient treatment is mostly cost-equivalent to conventional treatment. Cost effectiveness studies should be considered to further investigate the potential of integrative in patient treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dealing with electronic waste: modeling the costs and environmental benefits of computer monitor disposal.

    PubMed

    Macauley, Molly; Palmer, Karen; Shih, Jhih-Shyang

    2003-05-01

    The importance of information technology to the world economy has brought about a surge in demand for electronic equipment. With rapid technological change, a growing fraction of the increasing stock of many types of electronics becomes obsolete each year. We model the costs and benefits of policies to manage 'e-waste' by focusing on a large component of the electronic waste stream-computer monitors-and the environmental concerns associated with disposal of the lead embodied in cathode ray tubes (CRTs) used in most monitors. We find that the benefits of avoiding health effects associated with CRT disposal appear far outweighed by the costs for a wide range of policies. For the stock of monitors disposed of in the United States in 1998, we find that policies restricting or banning some popular disposal options would increase disposal costs from about US dollar 1 per monitor to between US dollars 3 and US dollars 20 per monitor. Policies to promote a modest amount of recycling of monitor parts, including lead, can be less expensive. In all cases, however, the costs of the policies exceed the value of the avoided health effects of CRT disposal.

  13. Integrated bioethanol and biomanure production from potato waste.

    PubMed

    Chintagunta, Anjani Devi; Jacob, Samuel; Banerjee, Rintu

    2016-03-01

    Disposal of potato processing waste and the problem of pollution associated with it is a vital issue that is being faced by the potato processing plants. The conventional peeling methods presently followed in the processing plants for removing the potato peel, also result in the loss of some portion of the mash which is rich in starch. Indiscriminate discharge of the waste causes detrimental effects in the environment, so this problem can be resolved by successful utilization of the waste for the generation of value added products. Hence, the present work focuses on integrated production of bioethanol and biomanure to utilize the waste completely leading to zero waste generation. The first part of the work describes a comparative study of ethanol production from potato peel and mash wastes by employing co-culture of Aspergillus niger and Saccharomyces cerevisiae at various incubation time (24-120 h) instead of application of enzymes. The solid state fermentation of potato peel and mash inoculated with co-culture, resulted in bioethanol production of 6.18% (v/v) and 9.30% (v/v) respectively. In the second part of the work, the residue obtained after ethanol production was inoculated with seven different microorganisms (Nostoc muscorum, Fischerella muscicola, Anabaena variabilis, Aulosira fertilissima, Cylindrospermum muscicola, Azospirillium lipoferum, Azotobacter chroococcum) and mixture of all the organisms in equal ratio for nitrogen (N), phosphorous (P) and potassium (K) enrichment. Among them, A. variabilis was found to enrich N, P and K content of the residue by nearly 7.66, 21.66 and 15 fold than that of the initial content, ultimately leading to improved N:P:K ratio of approximately 2:1:1. The application of simultaneous saccharification and fermentation (SSF) for the conversion of potato waste to ethanol and enrichment of residue obtained after ethanol production with microorganisms to be used as manure envisages environmental sustainability. Copyright

  14. Integrated cost-effectiveness analysis of agri-environmental measures for water quality.

    PubMed

    Balana, Bedru B; Jackson-Blake, Leah; Martin-Ortega, Julia; Dunn, Sarah

    2015-09-15

    This paper presents an application of integrated methodological approach for identifying cost-effective combinations of agri-environmental measures to achieve water quality targets. The methodological approach involves linking hydro-chemical modelling with economic costs of mitigation measures. The utility of the approach was explored for the River Dee catchment in North East Scotland, examining the cost-effectiveness of mitigation measures for nitrogen (N) and phosphorus (P) pollutants. In-stream nitrate concentration was modelled using the STREAM-N and phosphorus using INCA-P model. Both models were first run for baseline conditions and then their effectiveness for changes in land management was simulated. Costs were based on farm income foregone, capital and operational expenditures. The costs and effects data were integrated using 'Risk Solver Platform' optimization in excel to produce the most cost-effective combination of measures by which target nutrient reductions could be attained at a minimum economic cost. The analysis identified different combination of measures as most cost-effective for the two pollutants. An important aspect of this paper is integration of model-based effectiveness estimates with economic cost of measures for cost-effectiveness analysis of land and water management options. The methodological approach developed is not limited to the two pollutants and the selected agri-environmental measures considered in the paper; the approach can be adapted to the cost-effectiveness analysis of any catchment-scale environmental management options. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A multi-objective approach to solid waste management.

    PubMed

    Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico

    2010-01-01

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.

  16. A multi-objective approach to solid waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario

    2010-08-15

    The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less

  17. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  18. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  19. Integrated Undergraduate Management Education: An Informal Benefit/Cost Analysis

    ERIC Educational Resources Information Center

    Casey, William L., Jr.

    2005-01-01

    This paper seeks to contribute to the literature of management education by evaluating assessment data on Babson College's integrated undergraduate management core program (IMC). Transitions from functionally isolated curricula to more integrated alternatives involve both benefits and costs, accruing to faculty, students and sponsoring…

  20. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  1. Economic and environmental optimization of waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Münster, M.; Ravn, H.; Hedegaard, K.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less

  2. An Overview of Opportunities for Waste Heat Recovery and Thermal Integration in the Primary Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Nowicki, Cassandre; Gosselin, Louis

    2012-08-01

    Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.

  3. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based

  4. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: process and cost-benefit analysis.

    PubMed

    Hosseini Koupaie, E; Barrantes Leiva, M; Eskicioglu, C; Dutil, C

    2014-01-01

    The feasibility of anaerobic co-digestion of two juice-based beverage industrial wastes, screen cake (SC) and thickened waste activated sludge (TWAS), along with municipal sludge cake (MC) was investigated. Experiments were conducted in twenty mesophilic batch 160 ml serum bottles with no inhibition occurred. The statistical analysis proved that the substrate type had statistically significant effect on both ultimate biogas and methane yields (P=0.0003<0.05). The maximum and minimum ultimate cumulative methane yields were 890.90 and 308.34 mL/g-VSremoved from the digesters containing only TWAS and SC as substrate. First-order reaction model well described VS utilization in all digesters. The first 2-day and 10-day specific biodegradation rate constants were statistically higher in the digesters containing SC (P=0.004<0.05) and MC (P=0.0005<0.05), respectively. The cost-benefit analysis showed that the capital, operating and total costs can be decreased by 21.5%, 29.8% and 27.6%, respectively using a co-digester rather than two separate digesters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Integrated Passive Biological Treatment System/ Mine Waste Technology Program Report #16

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 16, Integrated, Passive Biological Treatment System, funded by the United States Environmental Protection Agency (EPA) and jointly administered by EPA and the United States Depar...

  6. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  7. Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulett, David T.; Nosbisch, Michael R.

    This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost,more » and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution

  8. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seong-Rin; Schoenung, Julie M., E-mail: jmschoenung@ucdavis.ed

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancermore » potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones.« less

  9. Toxicity potentials from waste cellular phones, and a waste management policy integrating consumer, corporate, and government responsibilities.

    PubMed

    Lim, Seong-Rin; Schoenung, Julie M

    2010-01-01

    Cellular phones have high environmental impact potentials because of their heavy metal content and current consumer attitudes toward purchasing new phones with higher functionality and neglecting to return waste phones into proper take-back systems. This study evaluates human health and ecological toxicity potentials from waste cellular phones; highlights consumer, corporate, and government responsibilities for effective waste management; and identifies key elements needed for an effective waste management strategy. The toxicity potentials are evaluated by using heavy metal content, respective characterization factors, and a pathway and impact model for heavy metals that considers end-of-life disposal in landfills or by incineration. Cancer potentials derive primarily from Pb and As; non-cancer potentials primarily from Cu and Pb; and ecotoxicity potentials primarily from Cu and Hg. These results are not completely in agreement with previous work in which leachability thresholds were the metric used to establish priority, thereby indicating the need for multiple or revised metrics. The triple bottom line of consumer, corporate, and government responsibilities is emphasized in terms of consumer attitudes, design for environment (DfE), and establishment and implementation of waste management systems including recycling streams, respectively. The key strategic elements for effective waste management include environmental taxation and a deposit-refund system to motivate consumer responsibility, which is linked and integrated with corporate and government responsibilities. The results of this study can contribute to DfE and waste management policy for cellular phones. 2010 Elsevier Ltd. All rights reserved.

  10. Asbestos Utilization Costs on the Example of Functioning Landfill of Hazardous Waste

    NASA Astrophysics Data System (ADS)

    Polek, Daria

    2017-12-01

    Asbestos is a trademark of mineral fibres, which are the natural minerals found in nature. Products containing asbestos fibres, in accordance with the national and EU legislation, are covered by the production prohibition and forced to be removed. In Poland, the asbestos removal process started with the adaptation of the EU law by the Council of Ministers Treatment Program of the National Asbestos for the years 2009-2032. The purpose of the dissertation was to analyse the costs associated with the disposal of the costs of collection, transport and disposal of waste. Methodology consisted in obtaining information on the raw materials needed to produce asbestos sheets. The analysis allowed us to determine the asbestos removal cost and include state subsidies in the calculations.

  11. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. System for decision analysis support on complex waste management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shropshire, D.E.

    1997-10-01

    A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less

  13. Transport of hydraulic fracturing waste from Pennsylvania wells: A county-level analysis of road use and associated road repair costs

    USGS Publications Warehouse

    Patterson, Lauren A.; Maloney, Kelly O.

    2016-01-01

    Pennsylvania’s rapid unconventional oil and gas (UOG) development—from a single well in 2004 to more than 6700 wells in 2013—has dramatically increased UOG waste transport by heavy trucks. This study quantified the amount of UOG waste and the distance it traveled between wells and disposal facilities on each type of road in each county between July 2010 and December 2013. In addition, the study estimated the associated financial costs to each county’s road infrastructure over that period. We found that UOG wells produced a median wastewater volume of 1294 m3 and a median of 89,267 kg of solid waste. The median number of waste-transport truck trips per well was 122. UOG wells existed in 38 Pennsylvania counties, but we estimated trucks transporting well waste traveled through 132 counties, including counties in West Virginia, Ohio, and New York. Median travel distance varied by disposal type, from 106 km to centralized treatment facilities up to 237 km to injection wells. Local roads experienced the greatest amount of truck traffic and associated costs ($1.1–6.5 M) and interstates, the least ($0.3–1.6 M). Counties with oil and gas development experienced the most truck traffic and incurred the highest associated roadway costs. However, many counties outside the active development area also incurred roadway repair costs, highlighting the extension of UOG development’s spatial footprint beyond the active development area. An online data visualization tool is available here: www.nicholasinstitute.duke.edu/transportation-of-hydraulic-fracturing-waste.

  14. Improving integrated waste management at the regional level: the case of Lombardia.

    PubMed

    Rigamonti, Lucia; Falbo, Alida; Grosso, Mario

    2013-09-01

    The article summarises the main results of the 'Gestione Rifiuti in Lombardia: Analisi del ciclo di vita' (Waste management in Lombardia region: Life cycle assessment; GERLA) project. Life cycle assessment (LCA) has been selected by Regione Lombardia as a strategic decision support tool in the drafting of its new waste management programme. The goal was to use the life cycle thinking approach to assess the current regional situation and thus to give useful strategic indications for the future waste management. The first phase of the study consisted of the LCA of the current management of municipal waste in the Lombardia region (reference year: 2009). The interpretation of such results has allowed the definition of four possible waste management scenarios for the year 2020, with the final goal being to improve the environmental performance of the regional system. The results showed that the current integrated waste management of Lombardia region is already characterised by good energy and environmental performances. However, there is still room for further improvement: actions based, on the one hand, on a further increase in recycling rates and, on the other hand, on a series of technological modifications, especially in food waste and residual waste management, can be undertaken to improve the overall system.

  15. In itinere strategic environmental assessment of an integrated provincial waste system.

    PubMed

    Federico, Giovanna; Rizzo, Gianfranco; Traverso, Marzia

    2009-06-01

    In the paper, the practical problem of analysing in an integrated way the performance of provincial waste systems is approached, in the framework of the Strategic Environmental Assessment (SEA). In particular, the in itinere phase of SEA is analysed herein. After separating out a proper group of ambits, to which the waste system is supposed to determine relevant impacts, pertinent sets of single indicators are proposed. Through the adoption of such indicators the time trend of the system is investigated, and the suitability of each indicator is critically revised. The structure of the evaluation scheme, which is essentially based on the use of ambit issues and analytical indicators, calls for the application of the method of the Dashboard of Sustainability for the integrated evaluation of the whole system. The suitability of this method is shown through the paper, together with the possibility of a comparative analysis of different scenarios of interventions. Of course, the reliability of the proposed method strongly relies on the availability of a detailed set of territorial data. The method appears to represent a useful tool for public administration in the process of optimizing the policy actions aimed at minimizing the increasing problem represented by waste production in urban areas.

  16. Low-cost integrated-optic fiber couplers

    NASA Astrophysics Data System (ADS)

    Sheem, Sang K.; Zhang, Feng; Choi, Jong-Ho; Lee, Yong-Woo; Low, Sarah; Lu, Shih-Yau

    1997-04-01

    In an effort to lower the cost of fiber optic couplers, integrated optic channel waveguide circuits are made of a UV-curable polymer using a molding technique, and then a novel fiber-to-channel connecting approach is employed in which UV light radiating from an optical fiber core cures the polymer in the channel, thus accomplishing a 'touchdown' of the core-extension waveguide onto the walls of the channel waveguide.

  17. Costing improvement of remanufacturing crankshaft by integrating Mahalanobis-Taguchi System and Activity based Costing

    NASA Astrophysics Data System (ADS)

    Abu, M. Y.; Nor, E. E. Mohd; Rahman, M. S. Abd

    2018-04-01

    Integration between quality and costing system is very crucial in order to achieve an accurate product cost and profit. Current practice by most of remanufacturers, there are still lacking on optimization during the remanufacturing process which contributed to incorrect variables consideration to the costing system. Meanwhile, traditional costing accounting being practice has distortion in the cost unit which lead to inaccurate cost of product. The aim of this work is to identify the critical and non-critical variables during remanufacturing process using Mahalanobis-Taguchi System and simultaneously estimate the cost using Activity Based Costing method. The orthogonal array was applied to indicate the contribution of variables in the factorial effect graph and the critical variables were considered with overhead costs that are actually demanding the activities. This work improved the quality inspection together with costing system to produce an accurate profitability information. As a result, the cost per unit of remanufactured crankshaft of MAN engine model with 5 critical crankpins is MYR609.50 while Detroit engine model with 4 critical crankpins is MYR1254.80. The significant of output demonstrated through promoting green by reducing re-melting process of damaged parts to ensure consistent benefit of return cores.

  18. The benefits of integrating cost-benefit analysis and risk assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, K.; Clarke-Whistler, K.

    1995-12-31

    It has increasingly been recognized that knowledge of risks in the absence of benefits and costs cannot dictate appropriate public policy choices. Recent evidence of this recognition includes the proposed EPA Risk Assessment and Cost-Benefit Analysis Act of 1995, a number of legislative changes in Canada and the US, and the increasing demand for field studies combining measures of impacts, risks, costs and benefits. Failure to consider relative environmental and human health risks, benefits, and costs in making public policy decisions has resulted in allocating scarce resources away from areas offering the highest levels of risk reduction and improvements inmore » health and safety. The authors discuss the implications of not taking costs and benefits into account in addressing environmental risks, drawing on examples from both Canada and the US. The authors also present the results of their recent field work demonstrating the advantages of considering costs and benefits in making public policy and site remediation decisions, including a study on the benefits and costs of prevention, remediation and monitoring techniques applied to groundwater contamination; the benefits and costs of banning the use of chlorine; and the benefits and costs of Canada`s concept of disposing of high-level nuclear waste. The authors conclude that a properly conducted Cost-Benefit Analysis can provide critical input to a Risk Assessment and can ensure that risk management decisions are efficient, cost-effective and maximize improvement to environmental and human health.« less

  19. Transport of hydraulic fracturing waste from Pennsylvania wells: A county-level analysis of road use and associated road repair costs.

    PubMed

    Patterson, Lauren A; Maloney, Kelly O

    2016-10-01

    Pennsylvania's rapid unconventional oil and gas (UOG) development-from a single well in 2004 to more than 6700 wells in 2013-has dramatically increased UOG waste transport by heavy trucks. This study quantified the amount of UOG waste and the distance it traveled between wells and disposal facilities on each type of road in each county between July 2010 and December 2013. In addition, the study estimated the associated financial costs to each county's road infrastructure over that period. We found that UOG wells produced a median wastewater volume of 1294 m(3) and a median of 89,267 kg of solid waste. The median number of waste-transport truck trips per well was 122. UOG wells existed in 38 Pennsylvania counties, but we estimated trucks transporting well waste traveled through 132 counties, including counties in West Virginia, Ohio, and New York. Median travel distance varied by disposal type, from 106 km to centralized treatment facilities up to 237 km to injection wells. Local roads experienced the greatest amount of truck traffic and associated costs ($1.1-6.5 M) and interstates, the least ($0.3-1.6 M). Counties with oil and gas development experienced the most truck traffic and incurred the highest associated roadway costs. However, many counties outside the active development area also incurred roadway repair costs, highlighting the extension of UOG development's spatial footprint beyond the active development area. An online data visualization tool is available here: www.nicholasinstitute.duke.edu/transportation-of-hydraulic-fracturing-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to- Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mac Dougall, James

    2016-02-05

    Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less

  1. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the 60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  2. 'Wasteaware' benchmark indicators for integrated sustainable waste management in cities.

    PubMed

    Wilson, David C; Rodic, Ljiljana; Cowing, Michael J; Velis, Costas A; Whiteman, Andrew D; Scheinberg, Anne; Vilches, Recaredo; Masterson, Darragh; Stretz, Joachim; Oelz, Barbara

    2015-01-01

    This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The paper presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city's performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat's solid waste management in the World's cities. The comprehensive analytical framework of a city's solid waste management system is divided into two overlapping 'triangles' - one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised 'Wasteaware' set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both 'hard' physical components and 'soft' governance aspects; and in prioritising 'next steps' in developing a city's solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran.

    PubMed

    Saeid, Nazemi; Roudbari, Aliakbar; Yaghmaeian, Kamyar

    2014-01-14

    The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.

  4. Food Waste in the Food-Energy-Water Nexus: Energy and Water Footprints of Wasted Food

    NASA Astrophysics Data System (ADS)

    Kibler, K. M.; Sarker, T.; Reinhart, D.

    2016-12-01

    The impact of wasted food to the food-energy-water (FEW) nexus is not well conceptualized or quantified, and is thus poorly understood. While improved understanding of water and energy requirements for food production may be applied to estimate costs associated with production of wasted food, the post-disposal costs of food waste to energy and water sectors are unknown. We apply both theoretical methods and direct observation of landfill leachate composition to quantify the net energy and water impact of food waste that is disposed in landfills. We characterize necessary energy inputs and biogas production to compute net impact to the energy sector. With respect to water, we quantify the volumes of water needed to attain permitted discharge concentrations of treated leachate, as well as the gray water footprint necessary for waste assimilation to the ambient regulatory standard. We find that approximately three times the energy produced as biogas (4.6E+8 kWh) is consumed in managing food waste and treating contamination from wasted food (1.3E+9 kWh). This energy requirement represents around 3% of the energy consumed in food production. The water requirement for leachate treatment and assimilation may exceed the amount of water needed to produce food. While not a consumptive use, the existence and replenishment of sufficient quantities of water in the environment for waste assimilation is an ecosystem service of the hydrosphere. This type of analysis may be applied to create water quality-based standards for necessary instream flows to perform the ecosystem service of waste assimilation. Clearer perception of wasted food as a source/sink for energy and water within the FEW nexus could be a powerful approach towards reducing the quantities of wasted food and more efficiently managing food that is wasted. For instance, comparative analysis of FEW impact across waste management strategies (e.g. landfilling, composting, anaerobic digestion) may assist local governments

  5. Open pit mining profit maximization considering selling stage and waste rehabilitation cost

    NASA Astrophysics Data System (ADS)

    Muttaqin, B. I. A.; Rosyidi, C. N.

    2017-11-01

    In open pit mining activities, determination of the cut-off grade becomes crucial for the company since the cut-off grade affects how much profit will be earned for the mining company. In this study, we developed a cut-off grade determination mode for the open pit mining industry considering the cost of mining, waste removal (rehabilitation) cost, processing cost, fixed cost, and selling stage cost. The main goal of this study is to develop a model of cut-off grade determination to get the maximum total profit. Secondly, this study is also developed to observe the model of sensitivity based on changes in the cost components. The optimization results show that the models can help mining company managers to determine the optimal cut-off grade and also estimate how much profit that can be earned by the mining company. To illustrate the application of the models, a numerical example and a set of sensitivity analysis are presented. From the results of sensitivity analysis, we conclude that the changes in the sales price greatly affects the optimal cut-off value and the total profit.

  6. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.

    PubMed

    Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P

    2012-01-01

    Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.

  7. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    PubMed

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Measuring treatment costs of typical waste electrical and electronic equipment: A pre-research for Chinese policy making.

    PubMed

    Li, Jinhui; Dong, Qingyin; Liu, Lili; Song, Qingbin

    2016-11-01

    Waste Electrical and Electronic Equipment (WEEE) volume is increasing, worldwide. In 2011, the Chinese government issued new regulations on WEEE recycling and disposal, establishing a WEEE treatment subsidy funded by a levy on producers of electrical and electronic equipment. In order to evaluate WEEE recycling treatment costs and revenue possibilities under the new regulations, and to propose suggestions for cost-effective WEEE management, a comprehensive revenue-expenditure model (REM), were established for this study, including 7 types of costs, 4 types of fees, and one type of revenue. Since TV sets dominated the volume of WEEE treated from 2013 to 2014, with a contribution rate of 87.3%, TV sets were taken as a representative case. Results showed that the treatment cost varied from 46.4RMB/unit to 82.5RMB/unit, with a treatment quantity of 130,000 units to 1,200,000 units per year in China. Collection cost accounted for the largest portion (about 70.0%), while taxes and fees (about 11.0 %) and labor cost (about 7.0 %) contributed less. The average costs for disposal, sales, and taxes had no influence on treatment quantity (TQ). TQ might have an adverse effect on average labor and management costs; while average collection and purchase fees, and financing costs, would vary with purchase price, and the average sales fees and taxes would vary with the sales of dismantled materials and other recycled products. Recycling enterprises could reduce their costs by setting up online and offline collection platforms, cooperating with individual collectors, creating door-to-door collection channels, improving production efficiency and reducing administrative expenditures. The government could provide economic incentives-such as subsidies, low-cost loans, tax cuts and credits-and could also raise public awareness of waste management and environmental protection, in order to capture some of the WEEE currently discarded into the general waste stream. Foreign companies with

  9. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  10. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  11. Benefit-Cost Analysis of Integrated Paratransit Systems : Volume 1. Executive Summary.

    DOT National Transportation Integrated Search

    1979-09-01

    Integrated Paratransit (IP) is a concept which involves the integration of conventional fixed-route transit with flexibly routed paratransit services to provide the most effective area-wide transit coverage. The report estimates the benefits and cost...

  12. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran

    PubMed Central

    2014-01-01

    Background The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Results Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Conclusion Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems. PMID:24423020

  13. New biofuel alternatives: integrating waste management and single cell oil production.

    PubMed

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  14. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    PubMed Central

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  15. Development of an integrated transuranic waste management system for a large research facility: NUCEF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao

    1997-03-01

    The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less

  16. From Physical Process to Economic Cost - Integrated Approaches of Landslide Risk Assessment

    NASA Astrophysics Data System (ADS)

    Klose, M.; Damm, B.

    2014-12-01

    The nature of landslides is complex in many respects, with landslide hazard and impact being dependent on a variety of factors. This obviously requires an integrated assessment for fundamental understanding of landslide risk. Integrated risk assessment, according to the approach presented in this contribution, implies combining prediction of future landslide occurrence with analysis of landslide impact in the past. A critical step for assessing landslide risk in integrated perspective is to analyze what types of landslide damage affected people and property in which way and how people contributed and responded to these damage types. In integrated risk assessment, the focus is on systematic identification and monetization of landslide damage, and analytical tools that allow deriving economic costs from physical landslide processes are at the heart of this approach. The broad spectrum of landslide types and process mechanisms as well as nonlinearity between landslide magnitude, damage intensity, and direct costs are some main factors explaining recent challenges in risk assessment. The two prevailing approaches for assessing the impact of landslides in economic terms are cost survey (ex-post) and risk analysis (ex-ante). Both approaches are able to complement each other, but yet a combination of them has not been realized so far. It is common practice today to derive landslide risk without considering landslide process-based cause-effect relationships, since integrated concepts or new modeling tools expanding conventional methods are still widely missing. The approach introduced in this contribution is based on a systematic framework that combines cost survey and GIS-based tools for hazard or cost modeling with methods to assess interactions between land use practices and landslides in historical perspective. Fundamental understanding of landslide risk also requires knowledge about the economic and fiscal relevance of landslide losses, wherefore analysis of their

  17. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    PubMed

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the

  18. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs: Cost Assessment of Manufacturing/Design Concepts

    NASA Technical Reports Server (NTRS)

    Metschan, S.

    2000-01-01

    The objective of the Integral Airframe Structures (IAS) program was to demonstrate, for an integrally stiffened structural concept, performance and weight equal to "built-up" structure with lower manufacturing cost. This report presents results of the cost assessment for several design configuration/manufacturing method combinations. The attributes of various cost analysis models were evaluated and COSTRAN selected for this study. A process/design cost evaluation matrix was developed based on material, forming, machining, and assembly of structural sub-elements and assembled structure. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current built-up technology baseline. This would correspond to a total cost reduction of $1.7 million per ship set for a 777-sized airplane. However, there are important outstanding issues with regard to the cost of capacity of high technology machinery, and the ability to cost-effectively provide surface finish acceptable to the commercial aircraft industry. The projected high raw material cost of large extrusions also played an important role in the trade-off between plate and extruded concepts.

  19. The cost of integrating a physical activity counselor in the primary health care team.

    PubMed

    Hogg, William E; Zhao, Xue; Angus, Douglas; Fortier, Michelle; Zhong, Jianwei; O'Sullivan, Tracey; Sigal, Ronald J; Blanchard, Chris

    2012-01-01

    This article assesses direct costs of integrating a physical activity counselor (PAC) into primary health care teams to improve physical activity levels of inactive patients. A monthly cost analysis was conducted using data from 120 inactive patients, aged 18 to 69 years, who were recruited from a community-based family medicine practice. Relevant cost items for the intensive counseling group included (1) office expenses; (2) equipment purchases; (3) operating costs; (4) costs of training the PAC; and (5) labor costs. Physical and human capital were amortized over a 5-year horizon at a discount rate of 5%. Integrating a PAC into the primary health care team incurred an estimated one-time cost of CA$91.43 per participant per month. Results were very sensitive to the number of patients counseled. The costs associated with the intervention are lower than many other intervention studies attempting to improve population physical activity levels. Demonstrating this competitive cost base should encourage additional research to assess the effectiveness of integrating a PAC into primary health care teams to promote active living among patients who do not meet recommended physical activity levels.

  20. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  1. Tank waste remediation system multi-year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less

  2. Prioritization Risk Integration Simulation Model (PRISM) For Environmental Remediation and Waste Management - 12097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentz, David L.; Stoll, Ralph H.; Greeves, John T.

    2012-07-01

    The PRISM (Prioritization Risk Integration Simulation Model), a computer model was developed to support the Department of Energy's Office of Environmental Management (DOE-EM) in its mission to clean up the environmental legacy from the Nation's nuclear weapons materials production complex. PRISM provides a comprehensive, fully integrated planning tool that can tie together DOE-EM's projects. It is designed to help DOE managers develop sound, risk-informed business practices and defend program decisions. It provides a better ability to understand and manage programmatic risks. The underlying concept for PRISM is that DOE-EM 'owns' a portfolio of environmental legacy obligations (ELOs), and that itsmore » mission is to transform the ELOs from their current conditions to acceptable conditions, in the most effective way possible. There are many types of ELOs - - contaminated soils and groundwater plumes, disused facilities awaiting D and D, and various types of wastes waiting for processing or disposal. For a given suite of planned activities, PRISM simulates the outcomes as they play out over time, allowing for all key identified uncertainties and risk factors. Each contaminated building, land area and waste stream is tracked from cradle to grave, and all of the linkages affecting different waste streams are captured. The progression of the activities is fully dynamic, reflecting DOE-EM's prioritization approaches, precedence requirements, available funding, and the consequences of risks and uncertainties. The top level of PRISM is the end-user interface that allows rapid evaluation of alternative scenarios and viewing the results in a variety of useful ways. PRISM is a fully probabilistic model, allowing the user to specify uncertainties in input data (such as the magnitude of an existing groundwater plume, or the total cost to complete a planned activity) as well as specific risk events that might occur. PRISM is based on the GoldSim software that is widely used

  3. Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; DiPrete, D. P.

    2016-12-12

    This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dosemore » associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.« less

  4. Developing Tribal Integrated Waste Management Plans

    EPA Pesticide Factsheets

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  5. Integrated water and waste management system for future spacecraft

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  6. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    PubMed

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  7. The cost benefit and efficiency of waste water treatment using domestic ponds—the ultimate solution in Southern Africa

    NASA Astrophysics Data System (ADS)

    Ntengwe, F. W.

    Wastewater treatment has become a challenge to most countries in Southern Africa because of the fluctuating economies that have been hit by high levels of debts. The treatment of domestic wastewater using ponds, if carefully utilized, as has been observed in most countries in the world, is the most cost effective means of handling wastewaters. When compared to the conventional use of treatment plants, the ponds have been observed to be the ultimate solution for the countries in Southern Africa especially those that are classified as Highly Indebted Poor Countries (HIPC) because of little or no operating costs associated with the treatment. The study conducted on Kitwe Waste Water Treatment Ponds to evaluate the cost benefit and efficiencies has revealed low levels of operating cost and high removal efficiencies of oxygen demanding wastes (BOD removal of 86% and TSS removal of 75%), pH values ranged from 7 to 8 indicating an increasing alkalinity from facultative to maturation ponds while other parameters such as nitrates, phosphates and temperature were found to be within acceptable levels thereby releasing effluent that makes the environment sustainable. The overall social benefit was found to be much higher than the operating costs.

  8. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  9. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less

  10. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  11. Trade study for water and waste management concepts. Task 7: Support special analysis. [cost analysis of life support systems for waste utilization during space missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.

  12. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  13. Emergy analysis of the recycling options for construction and demolition waste.

    PubMed

    Yuan, Fang; Shen, Li-yin; Li, Qi-ming

    2011-12-01

    Construction and demolition (C&D) waste is becoming a major contributor to environmental pollution. In Shanghai, China, the quantity of C&D waste is 2.11E+07 t/yr, which accounts for 45% of the total quantity of solid waste. There has been a growing promotion of recycling C&D waste as an effective way to solve this waste problem. However, the evaluation of the efficiency of recycling C&D waste as a potential source of resources is largely based on traditional economic analysis. The economic analysis emphasizes money instead of the harmony between economic benefit and environmental effects. There is a need for a new strategic approach to investigate the efficiency of recycling C&D waste to achieve the integration between economic, social and environmental effects. Emergy theory can be employed to analyze different recycling options for C&D waste. With reference to the Chinese construction industry, this paper demonstrates that the close-loop recycling option is better than the open-loop recycling option for C&D waste in terms of the integration of social, environmental and sustainable aspects. To evaluate different technology solutions for C&D waste recycling, the emergy theory and method is not limited to a cost-benefit balance but can include economic, social, environmental and sustainable effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  15. Integrated Power Adapter: Isolated Converter with Integrated Passives and Low Material Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    ADEPT Project: CPES at Virginia Tech is developing an extremely efficient power converter that could be used in power adapters for small, lightweight laptops and other types of mobile electronic devices. Power adapters convert electrical energy into useable power for an electronic device, and they currently waste a lot of energy when they are plugged into an outlet to power up. CPES at Virginia Tech is integrating high-density capacitors, new magnetic materials, high-frequency integrated circuits, and a constant-flux transformer to create its efficient power converter. The high-density capacitors enable the power adapter to store more energy. The new magnetic materialsmore » also increase energy storage, and they can be precisely dispensed using a low-cost ink-jet printer which keeps costs down. The high-frequency integrated circuits can handle more power, and they can handle it more efficiently. And, the constant-flux transformer processes a consistent flow of electrical current, which makes the converter more efficient.« less

  16. Waste in the U.S. Health Care System: A Conceptual Framework

    PubMed Central

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-01-01

    Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983

  17. Waste in the U.S. Health care system: a conceptual framework.

    PubMed

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-12-01

    Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.

  18. Process-Based Cost Modeling of Photonics Manufacture: The Cost Competitiveness of Monolithic Integration of a 1550-nm DFB Laser and an Electroabsorptive Modulator on an InP Platform

    NASA Astrophysics Data System (ADS)

    Fuchs, Erica R. H.; Bruce, E. J.; Ram, R. J.; Kirchain, Randolph E.

    2006-08-01

    The monolithic integration of components holds promise to increase network functionality and reduce packaging expense. Integration also drives down yield due to manufacturing complexity and the compounding of failures across devices. Consensus is lacking on the economically preferred extent of integration. Previous studies on the cost feasibility of integration have used high-level estimation methods. This study instead focuses on accurate-to-industry detail, basing a process-based cost model of device manufacture on data collected from 20 firms across the optoelectronics supply chain. The model presented allows for the definition of process organization, including testing, as well as processing conditions, operational characteristics, and level of automation at each step. This study focuses on the cost implications of integration of a 1550-nm DFB laser with an electroabsorptive modulator on an InP platform. Results show the monolithically integrated design to be more cost competitive over discrete component options regardless of production scale. Dominant cost drivers are packaging, testing, and assembly. Leveraging the technical detail underlying model projections, component alignment, bonding, and metal-organic chemical vapor deposition (MOCVD) are identified as processes where technical improvements are most critical to lowering costs. Such results should encourage exploration of the cost advantages of further integration and focus cost-driven technology development.

  19. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however

  20. Waste-to-methanol: Process and economics assessment.

    PubMed

    Iaquaniello, Gaetano; Centi, Gabriele; Salladini, Annarita; Palo, Emma; Perathoner, Siglinda; Spadaccini, Luca

    2017-11-01

    The waste-to-methanol (WtM) process and related economics are assessed to evidence that WtM is a valuable solution both from economic, strategic and environmental perspectives. Bio-methanol from Refuse-derived-fuels (RdF) has an estimated cost of production of about 110€/t for a new WtM 300t/d plant. With respect to waste-to-energy (WtE) approach, this solution allows various advantages. In considering the average market cost of methanol and the premium as biofuel, the WtM approach results in a ROI (Return of Investment) of about 29%, e.g. a payback time of about 4years. In a hybrid scheme of integration with an existing methanol plant from natural gas, the cost of production becomes a profit even without considering the cap for bio-methanol production. The WtM process allows to produce methanol with about 40% and 30-35% reduction in greenhouse gas emissions with respect to methanol production from fossil fuels and bio-resources, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, G.; Venkataraman, S.

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveragingmore » the results of WWSIS Phase 1 study.« less

  2. Managing healthcare costs within an integrated framework.

    PubMed

    Fernandes, Rudy

    2002-01-01

    Laupacis, Anderson and O'Brien's comprehensive diagnosis of the illness affecting the Canadian healthcare system is very insightful. In addition, their call for improving the quality of drug evidence and outcomes is a laudable goal. However, their prognosis of the negative impact on healthcare due to escalating drug costs appears to be rather pessimistic, as they fail to view drugs within an integrated framework. In part, their prescription for the perceived malady is rather impractical. Their recommendation for mandatory head-to-head randomized studies, as a prerequisite for achieving new drug listing in benefit formularies, suffers from many drawbacks. Such studies would be highly time-consuming, extremely costly, and given the fact that the choice of a drug comparator is a "moving target," the end result may not achieve the original intent. Growing anxieties about the rising healthcare costs in Canada, now forecast to reach C$100 billion in 2002, have led to implementation ofa variety of reforms aimed at cost-cutting. Shifts in drug utilization, demographics and prescribing have contributed to the authors' understandable concern about the rapid rise in drug plan expenditure, which has undeniably outpaced the increases of other healthcare components. However, drug plan costs represent only 7.7% of total provincial/territorial healthcare expenditures. Innovative medicines have played a significant role in reducing the burden of illness and overall healthcare costs. Drugs prevent, treat and cure disease, improve quality of life, control pain/suffering and save lives. Despite their great value, spending on drugs has received particular scrutiny from policy-makers, and pharmaceuticals have become the primary cost-containment target. The authors' goal-oriented concept of creating a clinical milieu that encourages cost-effective prescribing via "optimum" drug use is very attractive. One such approach is Disease Management, which relies on evidence-based, outcome

  3. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Gioannis, G.; Diaz, L.F.; Muntoni, A.

    2008-07-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilicmore » conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.« less

  4. Systematic process synthesis and design methods for cost effective waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.

    We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.

  5. Waste biorefineries: Enabling circular economies in developing countries.

    PubMed

    Nizami, A S; Rehan, M; Waqas, M; Naqvi, M; Ouda, O K M; Shahzad, K; Miandad, R; Khan, M Z; Syamsiro, M; Ismail, I M I; Pant, Deepak

    2017-10-01

    This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation.

    PubMed

    Chen, Yong; Sun, Li-Ping; Liu, Zhi-Hui; Martin, Greg; Sun, Zheng

    2017-11-27

    Managing waste is an increasing problem globally. Microalgae have the potential to help remove contaminants from a range of waste streams and convert them into useful biomass. This article presents a critical review of recent technological developments in the production of chemicals and other materials from microalgae grown using different types of waste. A range of novel approaches are examined for efficiently capturing CO 2 in flue gas via photosynthetic microalgal cultivation. Strategies for using microalgae to assimilate nitrogen, organic carbon, phosphorus, and metal ions from wastewater are considered in relation to modes of production. Generally, more economical open cultivation systems such as raceway ponds are better suited for waste conversion than more expensive closed photobioreactor systems, which might have use for higher-value products. The effect of cultivation methods and the properties of the waste streams on the composition the microalgal biomass is discussed relative to its utilization. Possibilities include the production of biodiesel via lipid extraction, biocrude from hydrothermal liquefaction, and bioethanol or biogas from microbial conversion. Microalgal biomass produced from wastes may also find use in higher-value applications including protein feeds or for the production of bioactive compounds such as astaxanthin or omega-3 fatty acids. However, for some waste streams, further consideration of how to manage potential microbial and chemical contaminants is needed for food or health applications. The use of microalgae for waste valorization holds promise. Widespread implementation of the available technologies will likely follow from further improvements to reduce costs, as well as the increasing pressure to effectively manage waste.

  7. G189A analytical simulation of the RITE Integrated Waste Management-Water System

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Clonts, S. E.

    1974-01-01

    This paper discusses the computer simulation of the Integrated Waste Management-Water System Using Radioisotopes for Thermal Energy (RITE) and applications of the simulation. Variations in the system temperature and flows due to particular operating conditions and variations in equipment heating loads imposed on the system were investigated with the computer program. The results were assessed from the standpoint of the computed dynamic characteristics of the system and the potential applications of the simulation to system development and vehicle integration.

  8. Preliminary Comparison of Radioactive Waste Disposal Cost for Fusion and Fission Reactors

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Aoki, Isao; Yamano, Naoki; Tabara, Takashi

    1997-09-01

    The environmental and economic impact of radioactive waste (radwaste) generated from fusion power reactors using five types of structural materials and a fission reactor has been evaluated and compared. Possible radwaste disposal scenario of fusion radwaste in Japan is considered. The exposure doses were evaluated for the skyshine of gamma-ray during the disposal operation, groundwater migration scenario during the institutional control period of 300 years and future site use scenario after the institutional period. The radwaste generated from a typical light water fission reactor was evaluated using the same methodology as for the fusion reactors. It is found that radwaste from the fusion reactors using F82H and SiC/SiC composites without impurities could be disposed by the shallow land disposal presently applied to the low level waste in Japan. The disposal cost of radwaste from five fusion power reactors and a typical light water reactor were roughly evaluated and compared.

  9. On the relationship between hurricane cost and the integrated wind profile

    NASA Astrophysics Data System (ADS)

    Wang, S.; Toumi, R.

    2016-11-01

    It is challenging to identify metrics that best capture hurricane destructive potential and costs. Although it has been found that the sea surface temperature and vertical wind shear can both make considerable changes to the hurricane destructive potential metrics, it is still unknown which plays a more important role. Here we present a new method to reconstruct the historical wind structure of hurricanes that allows us, for the first time, to calculate the correlation of damage with integrated power dissipation and integrated kinetic energy of all hurricanes at landfall since 1988. We find that those metrics, which include the horizontal wind structure, rather than just maximum intensity, are much better correlated with the hurricane cost. The vertical wind shear over the main development region of hurricanes plays a more dominant role than the sea surface temperature in controlling these metrics and therefore also ultimately the cost of hurricanes.

  10. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost.

    PubMed

    Carballa, Marta; Duran, Cecilia; Hospido, Almudena

    2011-12-15

    Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage.

  11. A menu with prices: Annual per person costs of programs addressing community integration.

    PubMed

    Leff, H Stephen; Cichocki, Ben; Chow, Clifton; Salzer, Mark; Wieman, Dow

    2016-02-01

    Information on costs of programs addressing community integration for persons with serious mental illness in the United States, essential for program planning and evaluation, is largely lacking. To address this knowledge gap, community integration programs identified through directories and snowball sampling were sent an online survey addressing program costs and organizational attributes. 64 Responses were received for which annual per person costs (APPC) could be computed. Programs were categorized by type of services provided. Program types differed in median APPCs, though median APPCs identified were consistent with the ranges identified in the limited literature available. Multiple regression was used to identify organizational variables underlying APPCs such as psychosocial rehabilitation program type, provision of EBPs, number of volunteers, and percentage of budget spent on direct care staff, though effects sizes were moderate at best. This study adds tentative prices to the menu of community integration programs, and the implications of these findings for choosing, designing and evaluating programs addressing community integration are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Towards Zero Waste in emerging countries - A South African experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matete, Ntlibi; Trois, Cristina

    2008-07-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management , which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selectedmore » as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.« less

  13. Towards a coherent European approach for taxation of combustible waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, Maarten, E-mail: maarten.dubois@kuleuven.be

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims tomore » create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.« less

  14. Cost and Systems Analysis of Innovative Fuel Resources Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Byers, M.

    Economically recovered uranium from seawater can have a transformative effect on the way policy makers view the long-term viability of uranium based fuel cycles. Seawater uranium, even when estimated to cost more than terrestrially mined uranium, is integral in establishing an economic backstop, thus reducing uncertainty in future nuclear power costs. While a passive recovery scheme relying on a field of polymer adsorbents prepared via radiation induced grafting has long been considered the leading technology for full scale deployment, non-trivial cost and logistical barriers persist. Consequently, university partners of the nation-wide consortium for seawater uranium recovery have developed variants ofmore » this technology, each aiming to address a substantial weakness. The focus of this NEUP project is the economic impacts of the proposed variant technologies. The team at University of Alabama has pursued an adsorbent synthesis method that replaces the synthetic fiber backbone with a natural waste product. Chitin fibers suitable for ligand grafting have been prepared from shrimp shell waste. These environmental benefits could be realized at a comparable cost to the reference fiber so long as the uptake can be increased or the chemical consumption cost decreased.« less

  15. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  16. Waste-to-energy: A review of life cycle assessment and its extension methods.

    PubMed

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  17. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David C., E-mail: waste@davidcwilson.com; Rodic, Ljiljana; Cowing, Michael J.

    Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The papermore » presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM

  18. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  19. Alternative strategies for energy recovery from municipal solid waste Part B: Emission and cost estimates.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from Municipal Solid Waste (MSW) by dedicated Waste-To-Energy (WTE) plants. In strategy 1, the residue of Material Recovery (MR) is fed directly to a grate combustor, while in strategy 2 the grate combustor comes downstream of light mechanical treatment. In strategies 3 and 4, the MR residue is converted into Refuse Derived Fuel (RDF), in a fluidized cumbuster bed. The results of Part A, devoted to mass and energy balances, clearly show that pre-treating the MR residue in order to increase the heating value of the feedstock fed to the WTE plant has marginal effects on the energy efficiency of the WTE plant. When considering the efficiency of the whole strategy of waste management, the energy balances show that the more thorough the pre-treatment, the smaller the amount of energy recovered per unit of MR residue. Starting from the heat/mass balances illustrated in Part A, Part B examines the environmental impacts and economics of the various strategies by means of a Life Cycle Assessment (LCA). Results show that treating the MR residues ahead of the WTE plant does not provide environmental or economic benefits. RDF production worsens almost all impact indicators because it reduces net electricity production and thus the displacement of power plant emissions; it also increases costs, because the benefits of improving the quality of the material fed to the WTE plant do not compensate the cost of such improvement.

  20. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  1. An integrated radar model solution for mission level performance and cost trades

    NASA Astrophysics Data System (ADS)

    Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia

    2017-05-01

    A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.

  2. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  4. A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.

    PubMed

    Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay

    2018-03-06

    Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.

  5. Integration of National Laboratory and Low-Activity Waste Pre-Treatment System Technology Service Providers - 16435

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Karthik H.; Thien, Michael G.; Wellman, Dawn M.

    The National Laboratories are a critical partner and provide expertise in numerous aspects of the successful execution of the Direct-Feed Low Activity Waste Program. The National Laboratories are maturing the technologies of the Low-Activity Waste Pre-Treatment System (LAWPS) consistent with DOE Order 413.3B “Program and Project Management for the Acquisition of Capital Assets” expectations. The National Laboratories continue to mature waste forms, i.e. glass and secondary waste grout, for formulations and predictions of long-term performance as inputs to performance assessments. The working processes with the National Laboratories have been developed in procurements, communications, and reporting to support the necessary delivery-basedmore » technology support. The relationship continues to evolve from planning and technology development to support of ongoing operations and integration of multiple highly coordinated facilities.« less

  6. Waste collection multi objective model with real time traceability data.

    PubMed

    Faccio, Maurizio; Persona, Alessandro; Zanin, Giorgia

    2011-12-01

    Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems, plus it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel, maintenances) and environmental costs (i.e. emissions, noise and traffic congestions). Modern traceability devices, like volumetric sensors, identification RFID (Radio Frequency Identification) systems, GPRS (General Packet Radio Service) and GPS (Global Positioning System) technology, permit to obtain data in real time, which is fundamental to implement an efficient and innovative waste collection routing model. The basic idea is that knowing the real time data of each vehicle and the real time replenishment level at each bin makes it possible to decide, in function of the waste generation pattern, what bin should be emptied and what should not, optimizing different aspects like the total covered distance, the necessary number of vehicles and the environmental impact. This paper describes a framework about the traceability technology available in the optimization of solid waste collection, and introduces an innovative vehicle routing model integrated with the real time traceability data, starting the application in an Italian city of about 100,000 inhabitants. The model is tested and validated using simulation and an economical feasibility study is reported at the end of the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. GHG emission control and solid waste management for megacities with inexact inputs: a case study in Beijing, China.

    PubMed

    Lu, Hongwei; Sun, Shichao; Ren, Lixia; He, Li

    2015-03-02

    This study advances an integrated MSW management model under inexact input information for the city of Beijing, China. The model is capable of simultaneously generating MSW management policies, performing GHG emission control, and addressing system uncertainty. Results suggest that: (1) a management strategy with minimal system cost can be obtained even when suspension of certain facilities becomes unavoidable through specific increments of the remaining ones; (2) expansion of facilities depends only on actual needs, rather than enabling the full usage of existing facilities, although it may prove to be a costly proposition; (3) adjustment of waste-stream diversion ratio directly leads to a change in GHG emissions from different disposal facilities. Results are also obtained from the comparison of the model with a conventional one without GHG emissions consideration. It is indicated that (1) the model would reduce the net system cost by [45, 61]% (i.e., [3173, 3520] million dollars) and mitigate GHG emissions by [141, 179]% (i.e., [76, 81] million tons); (2) increased waste would be diverted to integrated waste management facilities to prevent overmuch CH4 emission from the landfills. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Systems engineering and integration: Cost estimation and benefits analysis

    NASA Technical Reports Server (NTRS)

    Dean, ED; Fridge, Ernie; Hamaker, Joe

    1990-01-01

    Space Transportation Avionics hardware and software cost has traditionally been estimated in Phase A and B using cost techniques which predict cost as a function of various cost predictive variables such as weight, lines of code, functions to be performed, quantities of test hardware, quantities of flight hardware, design and development heritage, complexity, etc. The output of such analyses has been life cycle costs, economic benefits and related data. The major objectives of Cost Estimation and Benefits analysis are twofold: (1) to play a role in the evaluation of potential new space transportation avionics technologies, and (2) to benefit from emerging technological innovations. Both aspects of cost estimation and technology are discussed here. The role of cost analysis in the evaluation of potential technologies should be one of offering additional quantitative and qualitative information to aid decision-making. The cost analyses process needs to be fully integrated into the design process in such a way that cost trades, optimizations and sensitivities are understood. Current hardware cost models tend to primarily use weights, functional specifications, quantities, design heritage and complexity as metrics to predict cost. Software models mostly use functionality, volume of code, heritage and complexity as cost descriptive variables. Basic research needs to be initiated to develop metrics more responsive to the trades which are required for future launch vehicle avionics systems. These would include cost estimating capabilities that are sensitive to technological innovations such as improved materials and fabrication processes, computer aided design and manufacturing, self checkout and many others. In addition to basic cost estimating improvements, the process must be sensitive to the fact that no cost estimate can be quoted without also quoting a confidence associated with the estimate. In order to achieve this, better cost risk evaluation techniques are

  9. Sustainable solid waste management: an integrated approach for Asian countries.

    PubMed

    Shekdar, Ashok V

    2009-04-01

    Solid waste management (SWM) has been an integral part of every human society. The approaches for SWM should be compatible with the nature of a given society, and, in this regard, Asian countries are no exception. In keeping with global trends, the systems are being oriented to concentrate on sustainability issues; mainly through the incorporation of 3R (reduce, reuse and recycle) technologies. However, degree and nature of improvements toward sustainability are varying and depend on the economic status of a country. High-income countries like Japan and South Korea can afford to spend more to incorporate 3R technologies. Most of the latest efforts focus on "Zero Waste" and/or "Zero Landfilling" which is certainly expensive for weaker economies such as those of India or Indonesia. There is a need to pragmatically assess the expectations of SWM systems in Asian countries. Hence, in this paper, we analyze the situation in different Asian countries, and explore future trends. We conceptually evaluate issues surrounding the sustainability of SWM. We propose a multi-pronged integrated approach for improvement that achieves sustainable SWM in the context of national policy and legal frameworks, institutional arrangement, appropriate technology, operational and financial management, and public awareness and participation. In keeping with this approach, a generic action plan has been proposed that could be tailored to suit a situation in a particular country. Our proposed concept and action plan framework would be useful across a variety of country-specific scenarios.

  10. Scaling up integrated prevention campaigns for global health: costs and cost-effectiveness in 70 countries

    PubMed Central

    Marseille, Elliot; Jiwani, Aliya; Raut, Abhishek; Verguet, Stéphane; Walson, Judd; Kahn, James G

    2014-01-01

    Objective This study estimated the health impact, cost and cost-effectiveness of an integrated prevention campaign (IPC) focused on diarrhoea, malaria and HIV in 70 countries ranked by per capita disability-adjusted life-year (DALY) burden for the three diseases. Methods We constructed a deterministic cost-effectiveness model portraying an IPC combining counselling and testing, cotrimoxazole prophylaxis, referral to treatment and condom distribution for HIV prevention; bed nets for malaria prevention; and provision of household water filters for diarrhoea prevention. We developed a mix of empirical and modelled cost and health impact estimates applied to all 70 countries. One-way, multiway and scenario sensitivity analyses were conducted to document the strength of our findings. We used a healthcare payer's perspective, discounted costs and DALYs at 3% per year and denominated cost in 2012 US dollars. Primary and secondary outcomes The primary outcome was cost-effectiveness expressed as net cost per DALY averted. Other outcomes included cost of the IPC; net IPC costs adjusted for averted and additional medical costs and DALYs averted. Results Implementation of the IPC in the 10 most cost-effective countries at 15% population coverage would cost US$583 million over 3 years (adjusted costs of US$398 million), averting 8.0 million DALYs. Extending IPC programmes to all 70 of the identified high-burden countries at 15% coverage would cost an adjusted US$51.3 billion and avert 78.7 million DALYs. Incremental cost-effectiveness ranged from US$49 per DALY averted for the 10 countries with the most favourable cost-effectiveness to US$119, US$181, US$335, US$1692 and US$8340 per DALY averted as each successive group of 10 countries is added ordered by decreasing cost-effectiveness. Conclusions IPC appears cost-effective in many settings, and has the potential to substantially reduce the burden of disease in resource-poor countries. This study increases confidence that IPC

  11. Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device

    NASA Astrophysics Data System (ADS)

    Duperron, Matthieu; Carroll, Lee; Rensing, Marc; Collins, Sean; Zhao, Yan; Li, Yanlu; Baets, Roel; O'Brien, Peter

    2017-02-01

    The cost-effective integration of laser sources on Silicon Photonic Integrated Circuits (Si-PICs) is a key challenge to realizing the full potential of on-chip photonic solutions for telecommunication and medical applications. Hybrid integration can offer a route to high-yield solutions, using only known-good laser-chips, and simple freespace micro-optics to transport light from a discrete laser-diode to a grating-coupler on the Si-PIC. In this work, we describe a passively assembled micro-optical bench (MOB) for the hybrid integration of a 1550nm 20MHz linewidth laser-diode on a Si-PIC, developed for an on-chip interferometer based medical device. A dual-lens MOB design minimizes aberrations in the laser spot transported to the standard grating-coupler (15 μm x 12 μm) on the Si-PIC, and facilitates the inclusion of a sub-millimeter latched-garnet optical-isolator. The 20dB suppression from the isolator helps ensure the high-frequency stability of the laser-diode, while the high thermal conductivity of the AlN submount (300/W=m.°C), and the close integration of a micro-bead thermistor, ensure the stable and efficient thermo-electric cooling of the laser-diode, which helps minimise low-frequency drift during the approximately 15s of operation needed for the point-of-care measurement. The dual-lens MOB is compatible with cost-effective passively-aligned mass-production, and can be optimised for alternative PIC-based applications.

  12. Nuclear Waste: Defense Waste Processing Facility-Cost, Schedule, and Technical Issues.

    DTIC Science & Technology

    1992-06-17

    gallons of high-level radioactive waste stored in underground tanks at the savannah major facility involved Is the Defense Waste Processing Facility ( DwPF ...As a result of concerns about potential problems with the DWPF and delays in its scheduled start-up, the Chairman of the Environment, Energy, and...Natural Resources Subcommittee, House Committee on Government Operations, asked GAO to review the status of the DWPF and other facilities. This report

  13. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  14. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting frommore » various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary

  15. The cost of preventing undernutrition: cost, cost-efficiency and cost-effectiveness of three cash-based interventions on nutrition outcomes in Dadu, Pakistan.

    PubMed

    Trenouth, Lani; Colbourn, Timothy; Fenn, Bridget; Pietzsch, Silke; Myatt, Mark; Puett, Chloe

    2018-07-01

    Cash-based interventions (CBIs) increasingly are being used to deliver humanitarian assistance and there is growing interest in the cost-effectiveness of cash transfers for preventing undernutrition in emergency contexts. The objectives of this study were to assess the costs, cost-efficiency and cost-effectiveness in achieving nutrition outcomes of three CBIs in southern Pakistan: a 'double cash' (DC) transfer, a 'standard cash' (SC) transfer and a 'fresh food voucher' (FFV) transfer. Cash and FFVs were provided to poor households with children aged 6-48 months for 6 months in 2015. The SC and FFV interventions provided $14 monthly and the DC provided $28 monthly. Cost data were collected via institutional accounting records, interviews, programme observation, document review and household survey. Cost-effectiveness was assessed as cost per case of wasting, stunting and disability-adjusted life year (DALY) averted. Beneficiary costs were higher for the cash groups than the voucher group. Net total cost transfer ratios (TCTRs) were estimated as 1.82 for DC, 2.82 for SC and 2.73 for FFV. Yet, despite the higher operational costs, the FFV TCTR was lower than the SC TCTR when incorporating the participation cost to households, demonstrating the relevance of including beneficiary costs in cost-efficiency estimations. The DC intervention achieved a reduction in wasting, at $4865 per case averted; neither the SC nor the FFV interventions reduced wasting. The cost per case of stunting averted was $1290 for DC, $882 for SC and $883 for FFV. The cost per DALY averted was $641 for DC, $434 for SC and $563 for FFV without discounting or age weighting. These interventions are highly cost-effective by international thresholds. While it is debatable whether these resource requirements represent a feasible or sustainable investment given low health expenditures in Pakistan, these findings may provide justification for continuing Pakistan's investment in national social safety

  16. Cost-effectiveness of integrated analysis/design systems /IPAD/ An executive summary. II. [for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Hansen, S. D.; Redhed, D. D.; Southall, J. W.; Kawaguchi, A. S.

    1974-01-01

    Evaluation of the cost-effectiveness of integrated analysis/design systems with particular attention to Integrated Program for Aerospace-Vehicle Design (IPAD) project. An analysis of all the ingredients of IPAD indicates the feasibility of a significant cost and flowtime reduction in the product design process involved. It is also concluded that an IPAD-supported design process will provide a framework for configuration control, whereby the engineering costs for design, analysis and testing can be controlled during the air vehicle development cycle.

  17. Nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less

  18. Grid connected integrated community energy system. Phase II: final state 2 report. Cost benefit analysis, operating costs and computer simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-22

    A grid-connected Integrated Community Energy System (ICES) with a coal-burning power plant located on the University of Minnesota campus is planned. The cost benefit analysis performed for this ICES, the cost accounting methods used, and a computer simulation of the operation of the power plant are described. (LCL)

  19. Development of tools for evaluating integrated municipal waste management using life-cycle management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorneloe, S.; Weitz, K.; Nishtala, S.

    1998-08-01

    Municipal solid waste (MSW) management increasingly is based on integrated systems. The US initiated research in 1994 through funding by the US Environmental Protection Agency and the US Department of Energy to develop (1) a decision support tool; (2) a database; and (3) case studies. This paper provides an overview of the research that is in process.

  20. Cost of Community Integrated Prevention Campaign for Malaria, HIV, and Diarrhea in Rural Kenya

    PubMed Central

    2011-01-01

    Background Delivery of community-based prevention services for HIV, malaria, and diarrhea is a major priority and challenge in rural Africa. Integrated delivery campaigns may offer a mechanism to achieve high coverage and efficiency. Methods We quantified the resources and costs to implement a large-scale integrated prevention campaign in Lurambi Division, Western Province, Kenya that reached 47,133 individuals (and 83% of eligible adults) in 7 days. The campaign provided HIV testing, condoms, and prevention education materials; a long-lasting insecticide-treated bed net; and a water filter. Data were obtained primarily from logistical and expenditure data maintained by implementing partners. We estimated the projected cost of a Scaled-Up Replication (SUR), assuming reliance on local managers, potential efficiencies of scale, and other adjustments. Results The cost per person served was $41.66 for the initial campaign and was projected at $31.98 for the SUR. The SUR cost included 67% for commodities (mainly water filters and bed nets) and 20% for personnel. The SUR projected unit cost per person served, by disease, was $6.27 for malaria (nets and training), $15.80 for diarrhea (filters and training), and $9.91 for HIV (test kits, counseling, condoms, and CD4 testing at each site). Conclusions A large-scale, rapidly implemented, integrated health campaign provided services to 80% of a rural Kenyan population with relatively low cost. Scaling up this design may provide similar services to larger populations at lower cost per person. PMID:22189090

  1. Outcomes and Cost-Effectiveness of Integrating HIV and Nutrition Service Delivery: Pilots in Malawi and Mozambique.

    PubMed

    Bergmann, Julie N; Legins, Kenneth; Sint, Tin Tin; Snidal, Sarah; Amor, Yanis Ben; McCord, Gordon C

    2017-03-01

    This paper provides the first estimates of impact and cost-effectiveness for integrated HIV and nutrition service delivery in sub-Saharan Africa. HIV and undernutrition are synergistic co-epidemics impacting millions of children throughout the region. To alleviate this co-epidemic, UNICEF supported small-scale pilot programs in Malawi and Mozambique that integrated HIV and nutrition service delivery. We use trends from integration sites and comparison sites to estimate the number of lives saved, infections averted and/or undernutrition cases cured due to programmatic activities, and to estimate cost-effectiveness. Results suggest that Malawi's program had a cost-effectiveness of $11-29/DALY, while Mozambique's was $16-59/DALY. Some components were more effective than others ($1-4/DALY for Malawi's Male motivators vs. $179/DALY for Mozambique's One stop shops). These results suggest that integrating HIV and nutrition programming leads to a positive impact on health outcomes and should motivate additional work to evaluate impact and determine cost-effectiveness using an appropriate research design.

  2. A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thien, Mike G.; Barnes, Steve M.

    2013-07-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broadmore » spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)« less

  3. An integrated biohydrogen refinery: synergy of photofermentation, extractive fermentation and hydrothermal hydrolysis of food wastes.

    PubMed

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-09-01

    An Integrated Biohydrogen Refinery (IBHR) and experimental net energy analysis are reported. The IBHR converts biomass to electricity using hydrothermal hydrolysis, extractive biohydrogen fermentation and photobiological hydrogen fermentation for electricity generation in a fuel cell. An extractive fermentation, developed previously, is applied to waste-derived substrates following hydrothermal pre-treatment, achieving 83-99% biowaste destruction. The selective separation of organic acids from waste-fed fermentations provided suitable substrate for photofermentative hydrogen production, which enhanced the gross energy generation up to 11-fold. Therefore, electrodialysis provides the key link in an IBHR for 'waste to energy'. The IBHR compares favourably to 'renewables' (photovoltaics, on-shore wind, crop-derived biofuels) and also emerging biotechnological options (microbial electrolysis) and anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  6. Integrated Surveys of Neglected Tropical Diseases in Southern Sudan: How Much Do They Cost and Can They Be Refined?

    PubMed Central

    Kolaczinski, Jan H.; Hanson, Kara; Robinson, Emily; Picon, Diana; Sabasio, Anthony; Mpakateni, Martin; Lado, Mounir; Moore, Stephen; Petty, Nora; Brooker, Simon

    2010-01-01

    Background Increasing emphasis on integrated control of neglected tropical diseases (NTDs) requires identification of co-endemic areas. Integrated surveys for lymphatic filariasis (LF), schistosomiasis and soil-transmitted helminth (STH) infection have been recommended for this purpose. Integrated survey designs inevitably involve balancing the costs of surveys against accuracy of classifying areas for treatment, so-called implementation units (IUs). This requires an understanding of the main cost drivers and of how operating procedures may affect both cost and accuracy of surveys. Here we report a detailed cost analysis of the first round of integrated NTD surveys in Southern Sudan. Methods and Findings Financial and economic costs were estimated from financial expenditure records and interviews with survey staff using an ingredients approach. The main outcome was cost per IU surveyed. Uncertain variables were subjected to univariate sensitivity analysis and the effects of modifying standard operating procedures were explored. The average economic cost per IU surveyed was USD 40,206 or USD 9,573, depending on the size of the IU. The major cost drivers were two key categories of recurrent costs: i) survey consumables, and ii) personnel. Conclusion The cost of integrated surveys in Southern Sudan could be reduced by surveying larger administrative areas for LF. If this approach was taken, the estimated economic cost of completing LF, schistosomiasis and STH mapping in Southern Sudan would amount to USD 1.6 million. The methodological detail and costing template provided here could be used to generate cost estimates in other settings and readily compare these to the present study, and may help budget for integrated and single NTDs surveys elsewhere. PMID:20644619

  7. The effect of inflation rate on the cost of medical waste management system

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-11-01

    This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).

  8. Scaling up integrated prevention campaigns for global health: costs and cost-effectiveness in 70 countries.

    PubMed

    Marseille, Elliot; Jiwani, Aliya; Raut, Abhishek; Verguet, Stéphane; Walson, Judd; Kahn, James G

    2014-06-26

    This study estimated the health impact, cost and cost-effectiveness of an integrated prevention campaign (IPC) focused on diarrhoea, malaria and HIV in 70 countries ranked by per capita disability-adjusted life-year (DALY) burden for the three diseases. We constructed a deterministic cost-effectiveness model portraying an IPC combining counselling and testing, cotrimoxazole prophylaxis, referral to treatment and condom distribution for HIV prevention; bed nets for malaria prevention; and provision of household water filters for diarrhoea prevention. We developed a mix of empirical and modelled cost and health impact estimates applied to all 70 countries. One-way, multiway and scenario sensitivity analyses were conducted to document the strength of our findings. We used a healthcare payer's perspective, discounted costs and DALYs at 3% per year and denominated cost in 2012 US dollars. The primary outcome was cost-effectiveness expressed as net cost per DALY averted. Other outcomes included cost of the IPC; net IPC costs adjusted for averted and additional medical costs and DALYs averted. Implementation of the IPC in the 10 most cost-effective countries at 15% population coverage would cost US$583 million over 3 years (adjusted costs of US$398 million), averting 8.0 million DALYs. Extending IPC programmes to all 70 of the identified high-burden countries at 15% coverage would cost an adjusted US$51.3 billion and avert 78.7 million DALYs. Incremental cost-effectiveness ranged from US$49 per DALY averted for the 10 countries with the most favourable cost-effectiveness to US$119, US$181, US$335, US$1692 and US$8340 per DALY averted as each successive group of 10 countries is added ordered by decreasing cost-effectiveness. IPC appears cost-effective in many settings, and has the potential to substantially reduce the burden of disease in resource-poor countries. This study increases confidence that IPC can be an important new approach for enhancing global health

  9. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.

    PubMed

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-11-01

    Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques-mechanical treatments used to recover valuable metals, including copper-are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.

  10. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.

    PubMed

    Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B

    2016-01-01

    The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test

  11. Sustainable solid waste management: An integrated approach for Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekdar, Ashok V.

    2009-04-15

    Solid waste management (SWM) has been an integral part of every human society. The approaches for SWM should be compatible with the nature of a given society, and, in this regard, Asian countries are no exception. In keeping with global trends, the systems are being oriented to concentrate on sustainability issues; mainly through the incorporation of 3R (reduce, reuse and recycle) technologies. However, degree and nature of improvements toward sustainability are varying and depend on the economic status of a country. High-income countries like Japan and South Korea can afford to spend more to incorporate 3R technologies. Most of themore » latest efforts focus on 'Zero Waste' and/or 'Zero Landfilling' which is certainly expensive for weaker economies such as those of India or Indonesia. There is a need to pragmatically assess the expectations of SWM systems in Asian countries. Hence, in this paper, we analyze the situation in different Asian countries, and explore future trends. We conceptually evaluate issues surrounding the sustainability of SWM. We propose a multi-pronged integrated approach for improvement that achieves sustainable SWM in the context of national policy and legal frameworks, institutional arrangement, appropriate technology, operational and financial management, and public awareness and participation. In keeping with this approach, a generic action plan has been proposed that could be tailored to suit a situation in a particular country. Our proposed concept and action plan framework would be useful across a variety of country-specific scenarios.« less

  12. Fundamentals of fuel cell system integration

    NASA Astrophysics Data System (ADS)

    Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.

    1994-04-01

    Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.

  13. Impact of Sterile Compounding Batch Frequency on Pharmaceutical Waste.

    PubMed

    Abbasi, Ghalib; Gay, Evan

    2017-01-01

    Purpose: To measure the impact of increasing sterile compounding batch frequency on pharmaceutical waste as it relates to cost and quantity. Methods: Pharmaceutical IV waste at a tertiary care hospital was observed and recorded for 7 days. The batching frequency of compounded sterile products (CSPs) was then increased from twice daily to 4 times daily. After a washout period, pharmaceutical IV waste was then recorded for another 7 days. The quantity of units wasted and the cost were compared between both phases to determine the impact that batching frequency has on IV waste, specifically among high- and low-cost drugs. Results: Patient days increased from 2,459 during phase 1 to 2,617 during phase 2. The total number of CSPs wasted decreased from 3.6 to 2.7 doses per 100 patient days. Overall cost was reduced from $4,585.36 in phase 1 to $4,453.88 in phase 2. The value of wasted high-cost drugs per 100 patient days increased from $146 in phase 1 to $149 in phase 2 ( p > .05). The value of wasted low cost drugs per 100 patient days decreased from $41 in phase 1 to $21 in phase 2 ( p < .05). Conclusion: Lean batch IV methodology reduced overall waste quantity and cost. The highest impact of the intervention was observed among low-cost CSPs.

  14. Cost effectiveness analysis of effluent limitations guidelines and standards for the centralized waste treament industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, W.

    1998-12-01

    EPA has proposed effluent limitations guidelines and standards for the centralized waste treatment (CWT) industry. This report investigates the cost-effectiveness of all possible combinations of proposed control options for the three subcategories of CWT operations. EPA considered three control options for metals, two for oils and two for organics, with 12 possible combinations of these options. The report measures cost-effectiveness through a comparison of compliance costs to the quantity of pollutants removed under each combination of control options. The effectiveness of the regulations is measured in terms of reductions in the pounds of pollutants discharged to surface waters, weighted tomore » account for the pollutants` toxicity. Some pollutants removed are specifically addressed by the regulation, while others and not directly regulated but are removed incidentally as a result of controlling for other pollutants.« less

  15. Integrated application of river water quality modelling and cost-benefit analysis to optimize the environmental economical value based on various aquatic waste load reduction strategies

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Yu; Fan, Chihhao

    2017-04-01

    To assure the river water quality, the Taiwan government establishes many pollution control strategies and expends huge monetary investment. Despite all these efforts, many rivers still suffer from severe pollution because of massive discharges of domestic and industrial wastewater without proper treatment. A comprehensive evaluation tool seems required to assess the suitability of water pollution control strategies. Therefore, the purpose of this study is to quantify the potential strategic benefits by applying the water quality modelling integrated with cost-benefit analysis to simulating scenarios based on regional development planning. The Erhjen Creek is selected as the study example because it is a major river in southern Taiwan, and its riverine environment impacts a great deal to the neighboring people. For strategy assessment, we established QUAL2k model of Erhjen Creek and conducted the cost-benefit analyses according the proposed strategies. In the water quality simulation, HEC-RAS was employed to calculate the hydraulic parameters and dilution impact of tidal effect in the downstream section. Daily pollution loadings were obtained from the Water Pollution Control Information System maintained by Taiwan EPA, and the wastewater delivery ratios were calculated by comparing the occurrence of pollution loadings with the monitoring data. In the cost-benefit analysis, we adopted the market valuation method, setting a period of 65 years for analysis and discount rate at 2.59%. Capital investments were the costs of design, construction, operation and maintenance for each project in Erhjen Creek catchment. In model calibration and model verification, the mean absolute percentage errors (MAPEs) were calculated to be 21.4% and 25.5%, respectively, which met the prescribed acceptable criteria of 50%. This model was applied to simulating water quality based on implementing various pollution control policies and engineering projects in the Erhjen Creek. The overall

  16. Cost savings associated with an alternative payment model for integrating behavioral health in primary care.

    PubMed

    Ross, Kaile M; Gilchrist, Emma C; Melek, Stephen P; Gordon, Patrick D; Ruland, Sandra L; Miller, Benjamin F

    2018-05-23

    Financially supporting and sustaining behavioral health services integrated into primary care settings remains a major barrier to widespread implementation. Sustaining Healthcare Across Integrated Primary Care Efforts (SHAPE) was a demonstration project designed to prospectively examine the cost savings associated with utilizing an alternative payment methodology to support behavioral health services in primary care practices with integrated behavioral health services. Six primary care practices in Colorado participated in this project. Each practice had at least one on-site behavioral health clinician providing integrated behavioral health services. Three practices received non-fee-for-service payments (i.e., SHAPE payment) to support provision of behavioral health services for 18 months. Three practices did not receive the SHAPE payment and served as control practices for comparison purposes. Assignment to condition was nonrandom. Patient claims data were collected for 9 months before the start of the SHAPE demonstration project (pre-period) and for 18 months during the SHAPE project (post-period) to evaluate cost savings. During the 18-month post-period, analysis of the practices' claims data demonstrated that practices receiving the SHAPE payment generated approximately $1.08 million in net cost savings for their public payer population (i.e., Medicare, Medicaid, and Dual Eligible; N = 9,042). The cost savings were primarily achieved through reduction in downstream utilization (e.g., hospitalizations). The SHAPE demonstration project found that non-fee-for-service payments for behavioral health integrated into primary care may be associated with significant cost savings for public payers, which could have implications on future delivery and payment work in public programs (e.g., Medicaid).

  17. Incident Waste Decision Support Tool - Waste Materials ...

    EPA Pesticide Factsheets

    Report This is the technical documentation to the waste materials estimator module of I-WASTE. This document outlines the methodology and data used to develop the Waste Materials Estimator (WME) contained in the Incident Waste Decision Support Tool (I-WASTE DST). Specifically, this document reflects version 6.4 of the I-WASTE DST. The WME is one of four primary features of the I-WASTE DST. The WME is both a standalone calculator that generates waste estimates in terms of broad waste categories, and is also integrated into the Incident Planning and Response section of the tool where default inventories of specific waste items are provided in addition to the estimates for the broader waste categories. The WME can generate waste estimates for both common materials found in open spaces (soil, vegetation, concrete, and asphalt) and for a vast array of items and materials found in common structures.

  18. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  19. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  20. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  1. Upgrading and extended testing of the MSC integrated water and waste management hardware

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.

    1972-01-01

    The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.

  2. Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method

    NASA Technical Reports Server (NTRS)

    Kowal, Michael T.

    1997-01-01

    The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.

  3. The cost of preventing undernutrition: cost, cost-efficiency and cost-effectiveness of three cash-based interventions on nutrition outcomes in Dadu, Pakistan

    PubMed Central

    Trenouth, Lani; Colbourn, Timothy; Fenn, Bridget; Pietzsch, Silke; Myatt, Mark; Puett, Chloe

    2018-01-01

    Abstract Cash-based interventions (CBIs) increasingly are being used to deliver humanitarian assistance and there is growing interest in the cost-effectiveness of cash transfers for preventing undernutrition in emergency contexts. The objectives of this study were to assess the costs, cost-efficiency and cost-effectiveness in achieving nutrition outcomes of three CBIs in southern Pakistan: a ‘double cash’ (DC) transfer, a ‘standard cash’ (SC) transfer and a ‘fresh food voucher’ (FFV) transfer. Cash and FFVs were provided to poor households with children aged 6–48 months for 6 months in 2015. The SC and FFV interventions provided $14 monthly and the DC provided $28 monthly. Cost data were collected via institutional accounting records, interviews, programme observation, document review and household survey. Cost-effectiveness was assessed as cost per case of wasting, stunting and disability-adjusted life year (DALY) averted. Beneficiary costs were higher for the cash groups than the voucher group. Net total cost transfer ratios (TCTRs) were estimated as 1.82 for DC, 2.82 for SC and 2.73 for FFV. Yet, despite the higher operational costs, the FFV TCTR was lower than the SC TCTR when incorporating the participation cost to households, demonstrating the relevance of including beneficiary costs in cost-efficiency estimations. The DC intervention achieved a reduction in wasting, at $4865 per case averted; neither the SC nor the FFV interventions reduced wasting. The cost per case of stunting averted was $1290 for DC, $882 for SC and $883 for FFV. The cost per DALY averted was $641 for DC, $434 for SC and $563 for FFV without discounting or age weighting. These interventions are highly cost-effective by international thresholds. While it is debatable whether these resource requirements represent a feasible or sustainable investment given low health expenditures in Pakistan, these findings may provide justification for continuing Pakistan’s investment in

  4. Towards zero waste in emerging countries - a South African experience.

    PubMed

    Matete, Ntlibi; Trois, Cristina

    2008-01-01

    The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management [DEAT, 2001. Department of Environmental Affairs and Tourism, Government of South Africa. Polokwane Declaration. Drafted by Government, Civil Society and the Business Community. National Waste Summit, Polokwane, 26-28 September 2001], which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.

  5. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  6. Integral recycling of municipal solid waste incineration (MSWI) bottom ash fines (0-2mm) and industrial powder wastes by cold-bonding pelletization.

    PubMed

    Tang, P; Brouwers, H J H

    2017-04-01

    The cold-bonding pelletizing technique is applied in this study as an integrated method to recycle municipal solid waste incineration (MSWI) bottom ash fines (BAF, 0-2mm) and several other industrial powder wastes. Artificial lightweight aggregates are produced successfully based on the combination of these solid wastes, and the properties of these artificial aggregates are investigated and then compared with others' results reported in literature. Additionally, methods for improving the aggregate properties are suggested, and the corresponding experimental results show that increasing the BAF amount, higher binder content and addition of polypropylene fibres can improve the pellet properties (bulk density, crushing resistance, etc.). The mechanisms regarding to the improvement of the pellet properties are discussed. Furthermore, the leaching behaviours of contaminants from the produced aggregates are investigated and compared with Dutch environmental legislation. The application of these produced artificial lightweight aggregates are proposed according to their properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Benefit-Cost Analysis of Integrated Paratransit Systems : Volume 3. Scenario Analysis.

    DOT National Transportation Integrated Search

    1979-09-01

    This is the third volume of a six-volume report documenting the results of a study entitled "Benefit-Cost Analysis of Integrated Paratransit Systems." This volume provides detailed results of a series of scenario analyses designed to determine the im...

  8. Cost analysis of an integrated vaccine-preventable disease surveillance system in Costa Rica✩

    PubMed Central

    Toscano, C.M.; Vijayaraghavan, M.; Salazar-Bolaños, H.M.; Bolaños-Acuña, H.M.; Ruiz-González, A.I.; Barrantes-Solis, T.; Fernández-Vargas, I.; Panero, M.S.; de Oliveira, L.H.; Hyde, T.B.

    2015-01-01

    Introduction Following World Health Organization recommendations set forth in the Global Framework for Immunization Monitoring and Surveillance, Costa Rica in 2009 became the first country to implement integrated vaccine-preventable disease (iVPD) surveillance, with support from the U.S. Centers for Disease Control and Prevention (CDC) and the Pan American Health Organization (PAHO). As surveillance for diseases prevented by new vaccines is integrated into existing surveillance systems, these systems could cost more than routine surveillance for VPDs targeted by the Expanded Program on Immunization. Objectives We estimate the costs associated with establishing and subsequently operating the iVPD surveillance system at a pilot site in Costa Rica. Methods We retrospectively collected data on costs incurred by the institutions supporting iVPD surveillance during the preparatory (January 2007 through August 2009) and implementation (September 2009 through August 2010) phases of the iVPD surveillance project in Costa Rica. These data were used to estimate costs for personnel, meetings, infrastructure, office equipment and supplies, transportation, and laboratory facilities. Costs incurred by each of the collaborating institutions were also estimated. Results During the preparatory phase, the estimated total cost was 128,000 U.S. dollars (US$), including 64% for personnel costs. The preparatory phase was supported by CDC and PAHO. The estimated cost for 1 year of implementation was US$ 420,000, including 58% for personnel costs, 28% for laboratory costs, and 14% for meeting, infrastructure, office, and transportation costs combined. The national reference laboratory and the PAHO Costa Rica office incurred 64% of total costs, and other local institutions supporting iVPD surveillance incurred the remaining 36%. Conclusions Countries planning to implement iVPD surveillance will require adequate investments in human resources, laboratories, data management, reporting, and

  9. Cost analysis of an integrated vaccine-preventable disease surveillance system in Costa Rica.

    PubMed

    Toscano, C M; Vijayaraghavan, M; Salazar-Bolaños, H M; Bolaños-Acuña, H M; Ruiz-González, A I; Barrantes-Solis, T; Fernández-Vargas, I; Panero, M S; de Oliveira, L H; Hyde, T B

    2013-07-02

    Following World Health Organization recommendations set forth in the Global Framework for Immunization Monitoring and Surveillance, Costa Rica in 2009 became the first country to implement integrated vaccine-preventable disease (iVPD) surveillance, with support from the U.S. Centers for Disease Control and Prevention (CDC) and the Pan American Health Organization (PAHO). As surveillance for diseases prevented by new vaccines is integrated into existing surveillance systems, these systems could cost more than routine surveillance for VPDs targeted by the Expanded Program on Immunization. We estimate the costs associated with establishing and subsequently operating the iVPD surveillance system at a pilot site in Costa Rica. We retrospectively collected data on costs incurred by the institutions supporting iVPD surveillance during the preparatory (January 2007 through August 2009) and implementation (September 2009 through August 2010) phases of the iVPD surveillance project in Costa Rica. These data were used to estimate costs for personnel, meetings, infrastructure, office equipment and supplies, transportation, and laboratory facilities. Costs incurred by each of the collaborating institutions were also estimated. During the preparatory phase, the estimated total cost was 128,000 U.S. dollars (US$), including 64% for personnel costs. The preparatory phase was supported by CDC and PAHO. The estimated cost for 1 year of implementation was US$ 420,000, including 58% for personnel costs, 28% for laboratory costs, and 14% for meeting, infrastructure, office, and transportation costs combined. The national reference laboratory and the PAHO Costa Rica office incurred 64% of total costs, and other local institutions supporting iVPD surveillance incurred the remaining 36%. Countries planning to implement iVPD surveillance will require adequate investments in human resources, laboratories, data management, reporting, and investigation. Our findings will be valuable for

  10. USING A LIFE-CYCLE APPROACH TO ACHIEVE SUSTAINABLE MUNICIPAL SOLID WASTE MANAGEMENT STRATEGIES IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a computer-based decision support tool that has been developed to assist local governments in evaluating the cost and environmental performance of integrated municipal solid waste (MSW) managment systems. ongoing case studies of the tool at the local level are...

  11. The (cost-)effectiveness of preventive, integrated care for community-dwelling frail older people: A systematic review.

    PubMed

    Looman, Wilhelmina Mijntje; Huijsman, Robbert; Fabbricotti, Isabelle Natalina

    2018-04-17

    Integrated care is increasingly promoted as an effective and cost-effective way to organise care for community-dwelling frail older people with complex problems but the question remains whether high expectations are justified. Our study aims to systematically review the empirical evidence for the effectiveness and cost-effectiveness of preventive, integrated care for community-dwelling frail older people and close attention is paid to the elements and levels of integration of the interventions. We searched nine databases for eligible studies until May 2016 with a comparison group and reporting at least one outcome regarding effectiveness or cost-effectiveness. We identified 2,998 unique records and, after exclusions, selected 46 studies on 29 interventions. We assessed the quality of the included studies with the Effective Practice and Organization of Care risk-of-bias tool. The interventions were described following Rainbow Model of Integrated Care framework by Valentijn. Our systematic review reveals that the majority of the reported outcomes in the studies on preventive, integrated care show no effects. In terms of health outcomes, effectiveness is demonstrated most often for seldom-reported outcomes such as well-being. Outcomes regarding informal caregivers and professionals are rarely considered and negligible. Most promising are the care process outcomes that did improve for preventive, integrated care interventions as compared to usual care. Healthcare utilisation was the most reported outcome but we found mixed results. Evidence for cost-effectiveness is limited. High expectations should be tempered given this limited and fragmented evidence for the effectiveness and cost-effectiveness of preventive, integrated care for frail older people. Future research should focus on unravelling the heterogeneity of frailty and on exploring what outcomes among frail older people may realistically be expected. © 2018 The Authors. Health and Social Care in the Community

  12. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M.; Williams, Kent Alan; Jarrell, Joshua J.

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  13. Integration of safety engineering into a cost optimized development program.

    NASA Technical Reports Server (NTRS)

    Ball, L. W.

    1972-01-01

    A six-segment management model is presented, each segment of which represents a major area in a new product development program. The first segment of the model covers integration of specialist engineers into 'systems requirement definition' or the system engineering documentation process. The second covers preparation of five basic types of 'development program plans.' The third segment covers integration of system requirements, scheduling, and funding of specialist engineering activities into 'work breakdown structures,' 'cost accounts,' and 'work packages.' The fourth covers 'requirement communication' by line organizations. The fifth covers 'performance measurement' based on work package data. The sixth covers 'baseline requirements achievement tracking.'

  14. The integrated supplier: key to cost management and multi-franchise capitation contracting.

    PubMed

    Schuweiler, R C

    1996-05-01

    Capitation...most healthcare providers do not work under it, comprehend it, or even want it, yet supply capitation contracting seminars are popping up everywhere creating the feeling that the bandwagon is leaving, and it might be time to get on board. Not true. Supply capitation is not for all organizations. Capitation contracting is not easy and there are not many successful models to help the uninitiated. If a panacea is sought for reducing supply costs, capitation is only one component of a systematic strategy to reduce materiel costs. This article suggests a direction using the Group Health Materiel Management (Group Health Cooperative of Puget Sound, WA) experience as a point of reference. It advocates a systematic approach that focuses on expense reduction in: cost of goods, holding cost of inventory, labor cost associated with all materiel processes, distribution cost (transportation and par stock pick, pack, and replenishment), product utilization, variation in product standards, and waste stream byproducts. At Group Health (GH) these issues are primarily addressed through the use of: information systems, supplier certification/selection processes, group purchasing compliance, supply channel management, supply capitation contracting programs, standardization, and utilization management. Because of managed care organizational structure, Group Health Cooperative supply capitation contracting, as performed at GH, is discussed not as a quick fix solution but in the spirit of sharing our experience with others who may be considering it as a cost savings tactic in the context of a broad-based materiel management strategy. This article highlights the experiences of GH beginning with materiel management's business process assumptions toward multiple-franchise supply capitation.

  15. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    PubMed

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  16. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  17. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  18. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip

    PubMed Central

    Yeh, Erh-Chia; Fu, Chi-Cheng; Hu, Lucy; Thakur, Rohan; Feng, Jeffrey; Lee, Luke P.

    2017-01-01

    Portable, low-cost, and quantitative nucleic acid detection is desirable for point-of-care diagnostics; however, current polymerase chain reaction testing often requires time-consuming multiple steps and costly equipment. We report an integrated microfluidic diagnostic device capable of on-site quantitative nucleic acid detection directly from the blood without separate sample preparation steps. First, we prepatterned the amplification initiator [magnesium acetate (MgOAc)] on the chip to enable digital nucleic acid amplification. Second, a simplified sample preparation step is demonstrated, where the plasma is separated autonomously into 224 microwells (100 nl per well) without any hemolysis. Furthermore, self-powered microfluidic pumping without any external pumps, controllers, or power sources is accomplished by an integrated vacuum battery on the chip. This simple chip allows rapid quantitative digital nucleic acid detection directly from human blood samples (10 to 105 copies of methicillin-resistant Staphylococcus aureus DNA per microliter, ~30 min, via isothermal recombinase polymerase amplification). These autonomous, portable, lab-on-chip technologies provide promising foundations for future low-cost molecular diagnostic assays. PMID:28345028

  19. Enhancing rock phosphate integration rate for fast bio-transformation of cow-dung waste-paper mixtures to organic fertilizer.

    PubMed

    Unuofin, F O; Siswana, M; Cishe, E N

    2016-01-01

    Rock phosphate (RP) addition in cow-dung waste-paper mixtures at rates above 2% P has been reported to increase the rate of bio-transformation and humification of organic waste mixtures during vermicomposting to produce organic fertilizer for organic farming. However, the optimization of RP for vermicomposting was not established. The objective of this study was to determine the optimal amount of RP integration rates for effective bio-transformation of cow-dung waste-paper mixtures. Arrays of RP integration degrees (0, 0.5, 1, 1.5, 2, and 4% P as RP) were thoroughly mixed with cow- dung waste-paper mixtures to achieve an optimized C:N ratio of 30 and allowed to vermidegrade following the introduction of earthworms at a stocking mass of 12.5 g-worms kg -1 . The bio-transformation of the waste mixtures was examined by measuring C:N ratios and humification index (HI) and per cent ash and volatile solids. Application of 1% P as RP resulted in fast bio-transformation and maturation of cow-dung waste-paper mixtures. A scanning electron microscopy (SEM) was used to evaluate the morphological properties of the different vermicomposts affected by rates of RP showing the degree of degradation of initial compacted aggregates of cellulose and protein fibres in the mixtures at maturity. A germination test was used to further determine phytotoxicity of the final composts and microbial biomass assessment. The final vermicompost (organic fertilizer) had a C:N ratio of 7, MBC of 900 mg kg -1 and HI of 27.1%. The RP incorporation rate of 1% P of RP investigated is therefore, recommended for efficient vermidegradation and humification of cow-dung waste-paper mixtures. However, higher rates of RP incorporation should be considered where greater P enrichment of the final vermicompost (organic fertilizer) is desired.

  20. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  1. Cost and quality impact of Intermountain's mental health integration program.

    PubMed

    Reiss-Brennan, Brenda; Briot, Pascal C; Savitz, Lucy A; Cannon, Wayne; Staheli, Russ

    2010-01-01

    Most patients with mental health (MH) conditions, such as depression, receive care for their conditions from a primary care physician (PCP) in their health/medical home. Providing MH care, however, presents many challenges for the PCP, including (1) the difficulty of getting needed consultation from an MH specialist; (2) the time constraints of a busy PCP practice; (3) the complicated nature of recognizing depression, which may be described with only somatic complaints; (4) the barriers to reimbursement and compensation; and (5) associated medical and social comorbidities. Practice managers, emergency departments, and health plans are stretched to provide care for complex patients with unmet MH needs. At the same time, payment reform linked to accountable care organizations and/or episodic bundle payments, MH parity rules, and increasing MH costs to large employers and payers all highlight the critical need to identify high-quality, efficient, integrated MH care delivery practices. Over the past ten years, Intermountain Healthcare has developed a team-based approach-known as mental health integration (MHI)-for caring for these patients and their families. The team includes the PCPs and their staff, and they, in turn, are integrated with MH professionals, community resources, care management, and the patient and his or her family. The integration model goes far beyond co-location in its team-based approach; it is operationalized at the clinic, thereby improving both physician and staff satisfaction. Patients treated in MHI clinics also show improved satisfaction, lower costs, and better quality outcomes. The MHI program is financially sustainable in routinized clinics without subsidies. MHI is a successful approach to improving care for patients with MH conditions in primary care health homes.

  2. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less

  3. Integrated delivery systems: the cure for fragmentation.

    PubMed

    Enthoven, Alain C

    2009-12-01

    Our healthcare system is fragmented, with a misalignment of incentives, or lack of coordination, that spawns inefficient allocation of resources. Fragmentation adversely impacts quality, cost, and outcomes. Eliminating waste from unnecessary, unsafe care is crucial for improving quality and reducing costs--and making the system financially sustainable. Many believe this can be achieved through greater integration of healthcare delivery, more specifically via integrated delivery systems (IDSs). An IDS is an organized, coordinated, and collaborative network that links various healthcare providers to provide a coordinated, vertical continuum of services to a particular patient population or community. It is also accountable, both clinically and fiscally, for the clinical outcomes and health status of the population or community served, and has systems in place to manage and improve them. The marketplace already contains numerous styles and degrees of integration, ranging from Kaiser Permanente-style full integration, to more loosely organized individual practice associations, to public-private partnerships. Evidence suggests that IDSs can improve healthcare quality, improve outcomes, and reduce costs--especially for patients with complex needs--if properly implemented and coordinated. No single approach or public policy will fix the fragmented healthcare system, but IDSs represent an important step in the right direction.

  4. Towards a coherent European approach for taxation of combustible waste.

    PubMed

    Dubois, Maarten

    2013-08-01

    Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO(x) emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovland, V.

    2004-12-01

    Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less

  6. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Land Application of Wastes: An Educational Program. Treatment Systems, Effluent Qualities, and Costs - Module 4, Objectives, Script, and Booklet.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module describes the following conventional treatment systems and evaluates their use as pretreatment steps for land application: preliminary, primary, secondary, disinfection, and advanced waste treatment. Effluent qualities are summarized, a brief discussion of application systems is given, and cost comparisons are discussed in some detail.…

  8. Simultaneous personnel and vehicle shift scheduling in the waste management sector.

    PubMed

    Ghiani, Gianpaolo; Guerriero, Emanuela; Manni, Andrea; Manni, Emanuele; Potenza, Agostino

    2013-07-01

    Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the definition of shift schedules for both personnel and vehicles. This activity has a great incidence on the tactical and operational cost for companies. In this paper, we propose an integer programming model to find an optimal solution to the integrated problem. The aim is to determine optimal schedules at minimum cost. Moreover, we design a fast and effective heuristic to face large-size problems. Both approaches are tested on data from a real-world case in Southern Italy and compared to the current practice utilized by the company managing the service, showing that simultaneously solving these problems can lead to significant monetary savings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Whatever the cost? Information integration in memory-based inferences depends on cognitive effort.

    PubMed

    Hilbig, Benjamin E; Michalkiewicz, Martha; Castela, Marta; Pohl, Rüdiger F; Erdfelder, Edgar

    2015-05-01

    One of the most prominent models of probabilistic inferences from memory is the simple recognition heuristic (RH). The RH theory assumes that judgments are based on recognition in isolation, such that other information is ignored. However, some prior research has shown that available knowledge is not generally ignored. In line with the notion of adaptive strategy selection--and, thus, a trade-off between accuracy and effort--we hypothesized that information integration crucially depends on how easily accessible information beyond recognition is, how much confidence decision makers have in this information, and how (cognitively) costly it is to acquire it. In three experiments, we thus manipulated (a) the availability of information beyond recognition, (b) the subjective usefulness of this information, and (c) the cognitive costs associated with acquiring this information. In line with the predictions, we found that RH use decreased substantially, the more easily and confidently information beyond recognition could be integrated, and increased substantially with increasing cognitive costs.

  10. Tracking Costs

    ERIC Educational Resources Information Center

    Erickson, Paul W.

    2010-01-01

    Even though there's been a slight reprieve in energy costs, the reality is that the cost of non-renewable energy is increasing, and state education budgets are shrinking. One way to keep energy and operations costs from overshadowing education budgets is to develop a 10-year energy audit plan to eliminate waste. First, facility managers should…

  11. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  12. Closing the Loop: Exploring Integrated Waste Management and Resource Conservation, Kindergarten through Grade Six. 2000 Edition.

    ERIC Educational Resources Information Center

    Clymire, Olga

    This document is designed to teach concepts of source reduction, recycling, composting, and integrated waste management to kindergarten through grade six students. The lessons correlate to grade level and include sections on the lesson's concepts, purpose, overview, correlations to California's content standards and frameworks, scientific thinking…

  13. Environmental Education: Compendium for Integrated Waste Management.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    This compendium is a tool for bringing waste management education into classrooms. Curriculum materials gathered from across the country were reviewed by California's top environmental educators, both for correlation with the state's educational frameworks and for accuracy and completeness of waste management information. Materials that cover…

  14. Hughes integrated synthetic aperture radar: High performance at low cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8more » figs.« less

  15. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.

    PubMed

    Ikhlayel, Mahdi

    2017-10-01

    This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Operating room waste: disposable supply utilization in neurointerventional procedures.

    PubMed

    Rigante, Luigi; Moudrous, Walid; de Vries, Joost; Grotenhuis, André J; Boogaarts, Hieronymus D

    2017-12-01

    Operating rooms account for 70% of hospital waste, increasing healthcare costs and creating environmental hazards. Endovascular treatment of cerebrovascular pathologies has become prominent, and associated products highly impact the total cost of care. We investigated the costs of endovascular surgical waste at our institution. Data from 53 consecutive endovascular procedures at the Radboud UMC Nijmegen from May to December 2016 were collected. "Unused disposable supply" was defined as one-time use items opened but not used during the procedure. Two observers cataloged the unused disposable supply for each case. The cost of each item was determined from the center supply catalog, and these costs were summed to determine the total cost of unused supply per case. Thirteen diagnostic cerebral digital subtraction angiographies (DSA) (24.5%) and 40 endovascular procedures (75.5%) were analyzed. Total interventional waste was 27,299.53 € (mean 515.09 € per procedure). While total costs of unused disposable supply were almost irrelevant for DSAs, they were consistent for interventional procedures (mean 676.49 € per case). Aneurysm standard coiling had the highest impact on total interventional waste (mean 1061.55 €). Disposable interventional products had a very high impact on the surgical waste costs in the series of the neurointerventional procedures (95% of total waste). This study shows the impact of neurointerventional waste on the total care costs for cerebrovascular patients. This might reflect the tendency to anticipate needs and emergencies in neurointervention. Responsible use of disposable material can be achieved by educating operators and nurses and creating operator preference cards.

  18. Liquid secondary waste. Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less

  19. [Estimation of cost-saving for reducing radioactive waste from nuclear medicine facilities by implementing decay in storage (DIS) in Japan].

    PubMed

    Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi

    2012-01-01

    DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year.

  20. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  1. A facility location model for municipal solid waste management system under uncertain environment.

    PubMed

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Costs of Delivering Integrated HIV and Sexual Reproductive Health Services in Limited Resource Settings

    PubMed Central

    Obure, Carol Dayo; Sweeney, Sedona; Darsamo, Vanessa; Michaels-Igbokwe, Christine; Guinness, Lorna; Terris-Prestholt, Fern; Muketo, Esther; Nhlabatsi, Zelda; Warren, Charlotte E.; Mayhew, Susannah; Watts, Charlotte; Vassall, Anna

    2015-01-01

    Objective To present evidence on the total costs and unit costs of delivering six integrated sexual reproductive health and HIV services in a high and medium HIV prevalence setting, in order to support policy makers and planners scaling up these essential services. Design A retrospective facility based costing study conducted in 40 non-government organization and public health facilities in Kenya and Swaziland. Methods Economic and financial costs were collected retrospectively for the year 2010/11, from each study site with an aim to estimate the cost per visit of six integrated HIV and SRH services. A full cost analysis using a combination of bottom-up and step-down costing methods was conducted from the health provider’s perspective. The main unit of analysis is the economic unit cost per visit for each service. Costs are converted to 2013 International dollars. Results The mean cost per visit for the HIV/SRH services ranged from $Int 14.23 (PNC visit) to $Int 74.21 (HIV treatment visit). We found considerable variation in the unit costs per visit across settings with family planning services exhibiting the least variation ($Int 6.71-52.24) and STI treatment and HIV treatment visits exhibiting the highest variation in unit cost ranging from ($Int 5.44-281.85) and ($Int 0.83-314.95), respectively. Unit costs of visits were driven by fixed costs while variability in visit costs across facilities was explained mainly by technology used and service maturity. Conclusion For all services, variability in unit costs and cost components suggest that potential exists to reduce costs through better use of both human and capital resources, despite the high proportion of expenditure on drugs and medical supplies. Further work is required to explore the key drivers of efficiency and interventions that may facilitate efficiency improvements. PMID:25933414

  3. The Costs of Delivering Integrated HIV and Sexual Reproductive Health Services in Limited Resource Settings.

    PubMed

    Obure, Carol Dayo; Sweeney, Sedona; Darsamo, Vanessa; Michaels-Igbokwe, Christine; Guinness, Lorna; Terris-Prestholt, Fern; Muketo, Esther; Nhlabatsi, Zelda; Warren, Charlotte E; Mayhew, Susannah; Watts, Charlotte; Vassall, Anna

    2015-01-01

    To present evidence on the total costs and unit costs of delivering six integrated sexual reproductive health and HIV services in a high and medium HIV prevalence setting, in order to support policy makers and planners scaling up these essential services. A retrospective facility based costing study conducted in 40 non-government organization and public health facilities in Kenya and Swaziland. Economic and financial costs were collected retrospectively for the year 2010/11, from each study site with an aim to estimate the cost per visit of six integrated HIV and SRH services. A full cost analysis using a combination of bottom-up and step-down costing methods was conducted from the health provider's perspective. The main unit of analysis is the economic unit cost per visit for each service. Costs are converted to 2013 International dollars. The mean cost per visit for the HIV/SRH services ranged from $Int 14.23 (PNC visit) to $Int 74.21 (HIV treatment visit). We found considerable variation in the unit costs per visit across settings with family planning services exhibiting the least variation ($Int 6.71-52.24) and STI treatment and HIV treatment visits exhibiting the highest variation in unit cost ranging from ($Int 5.44-281.85) and ($Int 0.83-314.95), respectively. Unit costs of visits were driven by fixed costs while variability in visit costs across facilities was explained mainly by technology used and service maturity. For all services, variability in unit costs and cost components suggest that potential exists to reduce costs through better use of both human and capital resources, despite the high proportion of expenditure on drugs and medical supplies. Further work is required to explore the key drivers of efficiency and interventions that may facilitate efficiency improvements.

  4. Development of a Cost Estimation Process for Human Systems Integration Practitioners During the Analysis of Alternatives

    DTIC Science & Technology

    2010-12-01

    processes. Novice estimators must often use of these complicated cost estimation tools (e.g., ACEIT , SEER-H, SEER-S, PRICE-H, PRICE-S, etc.) until...However, the thesis will leverage the processes embedded in cost estimation tools such as the Automated Cost Estimating Integration Tool ( ACEIT ) and the

  5. Comparison of Actual Costs to Integrate Commercial Buildings with the Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piette, Mary Ann; Black, Doug; Yin, Rongxin

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This paper discusses the impact factors that contribute to the costs of automated DR systems, with a focus on OpenADR 1.0 and 2.0 systems. In addition, this report comparesmore » cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. In summary, median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude greater or less than median. Costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total such costs.« less

  6. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion.

    PubMed

    Xin, Xiaodong; Ma, Yingqun; Liu, Yu

    2018-05-01

    A food waste resourceful process was developed by integrating the ultra-fast hydrolysis and microbial fuel cells (MFCs) for energy and resource recovery. Food waste was first ultra-fast hydrolyzed by fungal mash rich in hydrolytic enzymes in-situ produced from food waste. After which, the separated solids were readily converted to biofertilizer, while the liquid was fed to MFCs for direct electricity generation with a conversion efficiency of 0.245 kWh/kg food waste. It was estimated that about 192.5 million kWh of electricity could be produced from the food waste annually generated in Singapore, together with 74,390 tonnes of dry biofertilizer. Compared to anaerobic digestion, the proposed approach was more environmentally friendly and economically viable in terms of both electricity conversion and process cost. It is expected that this study may lead to the paradigm shift in food waste management towards ultra-fast concurrent recovery of resource and electricity with zero-solid discharge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Waste treatment integration in space

    NASA Technical Reports Server (NTRS)

    Baresi, L.; Kern, R.

    1991-01-01

    The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.

  8. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  9. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    PubMed

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  10. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, A.; Smith, R.; Hill, D.

    2009-08-15

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found tomore » be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.« less

  11. Integrated system links cost data, patient satisfaction scores for the first time.

    PubMed

    1999-10-01

    Linking cost data, patient satisfaction scores. HBS International and The Picker Institute have joined forces to make integrated data available that directly links operational efficiency and patient satisfaction. Find out how the systems lets providers know when reducing expenses compromises care.

  12. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.

    PubMed

    Huang, Haibo; Singh, Vijay; Qureshi, Nasib

    2015-01-01

    Waste is currently a major problem in the world, both in the developing and the developed countries. Efficient utilization of food waste for fuel and chemical production can positively influence both the energy and environmental sustainability. This study investigated using food waste to produce acetone, butanol, and ethanol (ABE) by Clostridium beijerinckii P260. In control fermentation, 40.5 g/L of glucose (initial glucose 56.7 g/L) was used to produce 14.2 g/L of ABE with a fermentation productivity and a yield of 0.22 g/L/h and 0.35 g/g, respectively. In a similar fermentation 81 g/L of food waste (containing equivalent glucose of 60.1 g/L) was used as substrate, and the culture produced 18.9 g/L ABE with a high ABE productivity of 0.46 g/L/h and a yield of 0.38 g/g. Fermentation of food waste at higher concentrations (129, 181 and 228 g/L) did not remarkably increase ABE production but resulted in high residual glucose due to the culture butanol inhibition. An integrated vacuum stripping system was designed and applied to recover butanol from the fermentation broth simultaneously to relieve the culture butanol inhibition, thereby allowing the fermentation of food waste at high concentrations. ABE fermentation integrated with vacuum stripping successfully recovered the ABE from the fermentation broth and controlled the ABE concentrations below 10 g/L during fermentation when 129 g/L food waste was used. The ABE productivity with vacuum fermentation was 0.49 g/L/h, which was 109 % higher than the control fermentation (glucose based). More importantly, ABE vacuum recovery and fermentation allowed near-complete utilization of the sugars (~98 %) in the broth. In these studies it was demonstrated that food waste is a superior feedstock for producing butanol using Clostridium beijerinckii. Compared to costly glucose, ABE fermentation of food waste has several advantages including lower feedstock cost, higher productivity, and less residual sugars.

  13. Low cost, small form factor, and integration as the key features for the optical component industry takeoff

    NASA Astrophysics Data System (ADS)

    Schiattone, Francesco; Bonino, Stefano; Gobbi, Luigi; Groppi, Angelamaria; Marazzi, Marco; Musio, Maurizio

    2003-04-01

    In the past the optical component market has been mainly driven by performances. Today, as the number of competitors has drastically increased, the system integrators have a wide range of possible suppliers and solutions giving them the possibility to be more focused on cost and also on footprint reduction. So, if performances are still essential, low cost and Small Form Factor issues are becoming more and more crucial in selecting components. Another evolution in the market is the current request of the optical system companies to simplify the supply chain in order to reduce the assembling and testing steps at system level. This corresponds to a growing demand in providing subassemblies, modules or hybrid integrated components: that means also Integration will be an issue in which all the optical component companies will compete to gain market shares. As we can see looking several examples offered by electronic market, to combine low cost and SFF is a very challenging task but Integration can help in achieving both features. In this work we present how these issues could be approached giving examples of some advanced solutions applied to LiNbO3 modulators. In particular we describe the progress made on automation, new materials and low cost fabrication methods for the parts. We also introduce an approach in integrating optical and electrical functionality on LiNbO3 modulators including RF driver, bias control loop, attenuator and photodiode integrated in a single device.

  14. Analysing the Costs of Integrated Care: A Case on Model Selection for Chronic Care Purposes

    PubMed Central

    Sánchez-Pérez, Inma; Ibern, Pere; Coderch, Jordi; Inoriza, José María

    2016-01-01

    Background: The objective of this study is to investigate whether the algorithm proposed by Manning and Mullahy, a consolidated health economics procedure, can also be used to estimate individual costs for different groups of healthcare services in the context of integrated care. Methods: A cross-sectional study focused on the population of the Baix Empordà (Catalonia-Spain) for the year 2012 (N = 92,498 individuals). A set of individual cost models as a function of sex, age and morbidity burden were adjusted and individual healthcare costs were calculated using a retrospective full-costing system. The individual morbidity burden was inferred using the Clinical Risk Groups (CRG) patient classification system. Results: Depending on the characteristics of the data, and according to the algorithm criteria, the choice of model was a linear model on the log of costs or a generalized linear model with a log link. We checked for goodness of fit, accuracy, linear structure and heteroscedasticity for the models obtained. Conclusion: The proposed algorithm identified a set of suitable cost models for the distinct groups of services integrated care entails. The individual morbidity burden was found to be indispensable when allocating appropriate resources to targeted individuals. PMID:28316542

  15. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids.

    PubMed

    Li, Chenlin; Liang, Ling; Sun, Ning; Thompson, Vicki S; Xu, Feng; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R; Simmons, Blake A; Singh, Seema

    2017-01-01

    Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water

  16. The combined hybrid system: A symbiotic thermal reactor/fast reactor system for power generation and radioactive waste toxicity reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollaway, W.R.

    1991-08-01

    If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less

  17. Cost analysis of an integrated care model in the management of acute exacerbations of chronic obstructive pulmonary disease.

    PubMed

    Bakerly, Nawar Diar; Davies, C; Dyer, M; Dhillon, P

    2009-01-01

    Home treatment models for acute exacerbations of chronic obstructive pulmonary disease (AECOPD) proved to be a safe alternative to hospitalization. These models have the potential to free up resources; however, in the United Kingdom, it remains unclear to whether they provide cost savings compared with hospital treatment. Over a 12-month period from August 2003, 130 patients were selected for the integrated care group (total admissions with AECOPD = 546). These patients were compared with 95 retrospective controls in the hospital treatment group. Controls were selected from admissions during the previous 12 months (total of 662 admissions) to match the integrated care group in age, sex, and postal code. Resource use data were collected for both groups and compared using National Health Service (NHS) perspective for cost minimization analysis. In the integrated care group (130 patients), 107 (82%) patients received home support with average length of stay 3.3 (SD 3.9) days compared with 10.4 (SD 7.7) in the hospital group (95 patients). Average number of visits per patients in the integrated care group was 3.08 (SD = 0.95; 95% CI = 2.9-3.2). Cost per patient in the integrated care group was pound1653 (95% CI, pound1521-1802) compared with pound2256 (95% CI, pound2126- 2407) in the hospital group. The integrated care group resulted in cost saving of approximately pound600 (P < 0.001) per patient. This integrated care model for the management of patients with AECOPD offered cost savings of pound600 per patient over the conventional hospital treatment model using the new NHS tariff from an acute trust provider perspective.

  18. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  19. Integrated Cost Accounting System.

    DTIC Science & Technology

    1992-07-27

    D., Srikant M. Datar, and Sunder Kekre . "Relevant Costs, Congestion, and Stochasticity in Production Environments." unpublished working paper...School, 1984. 113 Kekre , Sunder . "Strategic Consideration of Order Flexibility, Costs, and Delivery in Long-Term Contracts." Unpublished Working Paper

  20. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  1. Lean-Six Sigma: tools for rapid cycle cost reduction.

    PubMed

    Caldwell, Chip

    2006-10-01

    Organizational costs can be grouped as process cost, cost of quality, and cost of poor quality. Providers should train managers in the theory and application of Lean-Six Sigma, including the seven categories of waste and how to remove them. Healthcare financial executives should work with managers in eliminating waste to improve service and reduce costs.

  2. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  3. Cost-effective monolithic and hybrid integration for metro and long-haul applications

    NASA Astrophysics Data System (ADS)

    Clayton, Rick; Carter, Andy; Betty, Ian; Simmons, Timothy

    2003-12-01

    Today's telecommunication market is characterized by conservative business practices: tight management of costs, low risk investing and incremental upgrades, rather than the more freewheeling approach taken a few years ago. Optimizing optical components for the current and near term market involves substantial integration, but within particular bounds. The emphasis on evolution, in particular, has led to increased standardization of functions and so created extensive opportunities for integrated product offerings. The same standardization that enables commercially successful integrated functions also changes the competitive environment, and changes the emphasis for component development; shifting the innovation priority from raw performance to delivering the most effective integrated products. This paper will discuss, with specific examples from our transmitter, receiver and passives product families, our understanding of the issues based on extensive experience in delivering high end integrated products to the market, and the direction it drives optical components.

  4. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    NASA Astrophysics Data System (ADS)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  5. Integrating Cost as an Independent Variable Analysis with Evolutionary Acquisition - A Multiattribute Design Evaluation Approach

    DTIC Science & Technology

    2003-03-01

    within the Automated Cost Estimating Integrated Tools ( ACEIT ) software suite (version 5.x). With this capability, one can set cost targets or time...not allow the user to vary more than one decision variable. This limitation of the ACEIT approach thus hinders a holistic view when attempting to

  6. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation

  7. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater

  8. Systematic exploration of efficient strategies to manage solid waste in U.S. municipalities: perspectives from the solid waste optimization life-cycle framework (SWOLF).

    PubMed

    Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji

    2014-04-01

    Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.

  9. Integrating economic and biophysical data in assessing cost-effectiveness of buffer strip placement.

    PubMed

    Balana, Bedru Babulo; Lago, Manuel; Baggaley, Nikki; Castellazzi, Marie; Sample, James; Stutter, Marc; Slee, Bill; Vinten, Andy

    2012-01-01

    The European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-effective mitigation measures to achieve "good status" in all waters. However, costs and effectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. The aim of this study was to develop a cost-effectiveness analysis framework for integrating estimates of phosphorus (P) losses from land-based sources, potential abatement using riparian buffers, and the economic implications of buffers. Estimates of field-by-field P exports and routing were based on crop risk and field slope classes. Buffer P trapping efficiencies were based on literature metadata analysis. Costs of placing buffers were based on foregone farm gross margins. An integrated optimization model of cost minimization was developed and solved for different P reduction targets to the Rescobie Loch catchment in eastern Scotland. A target mean annual P load reduction of 376 kg to the loch to achieve good status was identified. Assuming all the riparian fields initially have the 2-m buffer strip required by the General Binding Rules (part of the WFD in Scotland), the model gave good predictions of P loads (345-481 kg P). The modeling results show that riparian buffers alone cannot achieve the required P load reduction (up to 54% P can be removed). In the medium P input scenario, average costs vary from £38 to £176 kg P at 10% and 54% P reduction, respectively. The framework demonstrates a useful tool for exploring cost-effective targeting of environmental measures. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. An optimal policy for a single-vendor and a single-buyer integrated system with setup cost reduction and process-quality improvement

    NASA Astrophysics Data System (ADS)

    Shu, Hui; Zhou, Xideng

    2014-05-01

    The single-vendor single-buyer integrated production inventory system has been an object of study for a long time, but little is known about the effect of investing in reducing setup cost reduction and process-quality improvement for an integrated inventory system in which the products are sold with free minimal repair warranty. The purpose of this article is to minimise the integrated cost by optimising simultaneously the number of shipments and the shipment quantity, the setup cost, and the process quality. An efficient algorithm procedure is proposed for determining the optimal decision variables. A numerical example is presented to illustrate the results of the proposed models graphically. Sensitivity analysis of the model with respect to key parameters of the system is carried out. The paper shows that the proposed integrated model can result in significant savings in the integrated cost.

  11. Integrating cost information with health management support system: an enhanced methodology to assess health care quality drivers.

    PubMed

    Kohli, R; Tan, J K; Piontek, F A; Ziege, D E; Groot, H

    1999-08-01

    Changes in health care delivery, reimbursement schemes, and organizational structure have required health organizations to manage the costs of providing patient care while maintaining high levels of clinical and patient satisfaction outcomes. Today, cost information, clinical outcomes, and patient satisfaction results must become more fully integrated if strategic competitiveness and benefits are to be realized in health management decision making, especially in multi-entity organizational settings. Unfortunately, traditional administrative and financial systems are not well equipped to cater to such information needs. This article presents a framework for the acquisition, generation, analysis, and reporting of cost information with clinical outcomes and patient satisfaction in the context of evolving health management and decision-support system technology. More specifically, the article focuses on an enhanced costing methodology for determining and producing improved, integrated cost-outcomes information. Implementation issues and areas for future research in cost-information management and decision-support domains are also discussed.

  12. Comparison of fermented animal feed and mushroom growth media as two value-added options for waste Cassava pulp management.

    PubMed

    Trakulvichean, Sivalee; Chaiprasert, Pawinee; Otmakhova, Julia; Songkasiri, Warinthorn

    2017-12-01

    Cassava is one of the main processed crops in Thailand, but this generates large amounts (7.3 million tons in 2015) of waste cassava pulp (WCP). The solid WCP is sold directly to farmers or pulp-drying companies at a low cost to reduce the burden of on-site waste storage. Using an integrated direct and environmental cost model, fermented animal feed and mushroom growth media were compared as added-value waste management alternatives for WCP to mitigate environmental problems. Primary and secondary data were collected from the literature, field data, and case studies. Data boundaries were restricted to a gate-to-gate scenario with a receiving capacity of 500 t WCP/d, and based on a new production unit being set up at the starch factory. The total production cost of each WCP utilization option was analyzed from the economic and environmental costs. Fermented animal feed was an economically attractive scenario, giving a higher net present value (NPV), lower investment cost and environmental impact, and a shorter payback period for the 10-year operational period. The selling price of mushrooms was the most sensitive parameter regarding the NPV, while the NPV for the price of fermented animal feed had the highest value in the best-case scenario.

  13. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites. FY 1992 year-end progress report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemicalmore » Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ``60`s Pits`` area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP.« less

  14. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  15. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  16. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  17. 40 CFR 261.142 - Cost estimate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE Financial Requirements for Management of Excluded Hazardous Secondary... hazardous waste, and the potential cost of closing the facility as a treatment, storage, and disposal...

  18. Waste Form Release Calculations for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  19. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia.

    PubMed

    Hadidi, Laith A; Omer, Mohamed Mahmoud

    2017-01-01

    Municipal Solid Waste (MSW) generation in Saudi Arabia is increasingly growing at a fast rate, as it hurtles towards ever increasing urban development coupled with rapid developments and expanding population. Saudi Arabia's energy demands are also rising at a faster rate. Therefore, the importance of an integrated waste management system in Saudi Arabia is increasingly rising and introducing Waste to Energy (WTE) facilities is becoming an absolute necessity. This paper analyzes the current situation of MSW management in Saudi Arabia and proposes a financial model to assess the viability of WTE investments in Saudi Arabia in order to address its waste management challenges and meet its forecasted energy demands. The research develops a financial model to investigate the financial viability of WTE plants utilizing gasification and Anaerobic Digestion (AD) conversion technologies. The financial model provides a cost estimate of establishing both gasification and anaerobic digestion WTE plants in Saudi Arabia through a set of financial indicators, i.e. net present value (NPV), internal rate of return (IRR), modified internal rate of return (MIRR), profitability index (PI), payback period, discounted payback period, Levelized Cost of Electricity (LCOE) and Levelized Cost of Waste (LCOW). Finally, the analysis of the financial model reveals the main affecting factors of the gasification plants investment decision, namely: facility generation capacity, generated electricity revenue, and the capacity factor. Similarly, the paper also identifies facility waste capacity and the capacity factor as the main affecting factors on the AD plants' investment decision. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Environmental analysis Waste Isolation Pilot Plant (WIPP) cost reduction proposals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States government. The facility is planned to be developed in bedded salt at the Los Medanos site in southeastern New Mexico. The environmental consequences of contruction and operation of the WIPP facility are documented in ''Final Environmental Impact Statement, Waste Isolation Pilot Plant''. The proposed action addressed by this environmental analysis is to simplify and reduce the scope of the WIPP facility as it is currently designed. The proposed changesmore » to the existing WIPP design are: limit the waste storage rate to 500,000 cubic feet per year; eliminate one shaft and revise the underground ventilation system; eliminate the underground conveyor system; combine the Administration Building, the Underground Personnel Building and the Waste Handling Building office area; simplify the central monitoring system; simplify the security control systems; modify the Waste Handling Building; simplify the storage exhaust system; modify the above ground salt handling logistics; simplify the power system; reduce overall site features; simplify the Warehouse/Shops Building and eliminate the Vehicle Maintenance Building; and allow resource recovery in Control Zone IV.« less

  1. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Harris R.; Blink, James A.; Halsey, William G.

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less

  2. Intervention and societal costs of residential community reintegration for patients with acquired brain injury: a cost-analysis of the Brain Integration Programme.

    PubMed

    van Heugten, Caroline M; Geurtsen, Gert J; Derksen, R Elze; Martina, Juan D; Geurts, Alexander C H; Evers, Silvia M A A

    2011-06-01

    The objective of this study was to examine the intervention costs of a residential community reintegration programme for patients with acquired brain injury and to compare the societal costs before and after treatment. A cost-analysis was performed identifying costs of healthcare, informal care, and productivity losses. The costs in the year before the Brain Integration Programme (BIP) were compared with the costs in the year after the BIP using the following cost categories: care consumption, caregiver support, productivity losses. Dutch guidelines were used for cost valuation. Thirty-three cases participated (72% response). Mean age was 29.8 years, 59% traumatic brain injury. The BIP costs were €68,400. The informal care and productivity losses reduced significantly after BIP (p < 0.05), while healthcare consumption increased significantly (p < 0.05). The societal costs per patient were €48,449. After BIP these costs were €39,773; a significant reduction (p < 0.05). Assuming a stable situation the break-even point is after 8 years. The reduction in societal costs after the BIP advocates the allocation of resources and, from an economic perspective, favours reimbursement of the BIP costs by healthcare insurance companies. However, this cost-analysis is limited as it does not relate costs to clinical effectiveness. :

  3. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  4. An integrated lean-methods approach to hospital facilities redesign.

    PubMed

    Nicholas, John

    2012-01-01

    Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.

  5. Destroying chemical wastes in commercial-scale incinerators. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.W.; Cunningham, N.J.; Harris, J.C.

    1976-12-01

    Tests were conducted at Zimpro, Inc., Rothschild, Wisconsin, to determine the effectiveness of wet air oxidation for destruction of two selected aqueous industrial wastes: coke plant waste and Amiben (herbicide) manufacturing waste. A pilot scale facility was tested for the coke plant waste with less than 6g/1 total solids and 5.5 g/1 Biological Oxygen Demand (BOD5), chemical compounds such as cyanides, phenols and cresols were 99% destroyed; BOD5 and Chemical Oxygen Demand (COD) were reduced by about 90%. The concentration of quinoline was reduced by only 66%. Estimated costs for treating 2,120 cu m/day of coke waste were: $12.3 MMmore » capital investment and $9.90/cu m total operating cost. For the Amiben waste, with 55 g/1 total solids and 31 g/1 BOD5, the test showed greater than 99% destruction of the major organic waste components, dichloronitrobenzoic acids, with about 10% conversion to an intermediate degradation product, dichloronitrobenzene. The BOD5 and COD were reduced by 90% and 82%, respectively. Estimated costs for treating 151 cu m/day of Amiben waste were: $2.2 MM capital investment and $18.00/cu m total operating cost.« less

  6. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    PubMed

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The integration of a Podiatrist into an orthopaedic department: a cost-consequences analysis.

    PubMed

    Walsh, Tom P; Ferris, Linda R; Cullen, Nancy C; Brown, Christopher H; Loughry, Cathy J; McCaffrey, Nikki M

    2017-01-01

    The aim of this study was to evaluate the cost-consequences of a podiatry-led triage clinic provided in an orthopaedic department relative to usual care for non-urgent foot and ankle complaints in an Australian tertiary care hospital. All new, non-urgent foot and ankle patients seen in an outpatient orthopaedic department were included in this study. The patients seen between 2014 and 2015 by Orthopaedic Surgeons were considered 'usual care', the patients seen between 2015 and 2016 by a Podiatrist were considered the 'Podiatry Triage Clinic'. Data on new and review patient appointments; the number of new patients / session; the number of appointments / patient; the number of patients discharged; the surgical conversion rate; staff time; and imaging use were collected. A cost-consequences analysis, undertaken from a healthcare provider perspective (hospital) estimated the incremental resource use, costs and effects of the Podiatry Triage Clinic relative to usual care over a 12-month period. The Orthopaedic Surgeons and Podiatrist consulted with 72 and 212 new patients during the usual care and triage periods, respectively. The Podiatrist consulted with more new patients / session, mean (SD) of 3.6 (1.0) versus 0.7 (0.8), p  < 0.001 and utilised less appointments / patient than the Orthopaedic Surgeons, mean (SD) of 1.3 (0.6) versus 1.9 (1.1), p  < 0.001. The percentage of patients discharged without surgery was similar in the Podiatry Triage Clinic and usual care, 80.3% and 87.5% p  = 0.135, respectively, but the surgical conversion rate was higher in the Podiatry Triage Clinic, 76.1% versus 12.5% p  < 0.001. The total integrated appointment cost for the 12-month usual care period was $32,744, which represented a cost of $454.78 / patient. The total appointment and imaging cost during the triage period was $19,999, representing $94.34 / patient. Further analysis, suggests that the projected annual saving of integrating a Podiatry Triage Clinic versus an

  8. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils.

    PubMed

    Preczeski, Karina P; Kamanski, Angela B; Scapini, Thamarys; Camargo, Aline F; Modkoski, Tatiani A; Rossetto, Vanusa; Venturin, Bruno; Mulinari, Jéssica; Golunski, Simone M; Mossi, Altemir J; Treichel, Helen

    2018-06-01

    In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.

  9. Waste minimization/pollution prevention study of high-priority waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broadmore » categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.« less

  10. Preventable drug waste among anesthesia providers: opportunities for efficiency.

    PubMed

    Atcheson, Carrie Leigh Hamby; Spivack, John; Williams, Robert; Bryson, Ethan O

    2016-05-01

    Health care service bundling experiments at the state and regional levels have showed reduced costs by providing a single lump-sum reimbursement for anesthesia services, surgery, and postoperative care. Potential for cost savings related to the provision of anesthesia care has the potential to significantly impact sustainability. This study defines and quantifies routine and preventable anesthetic drug waste and the patient, procedure, and anesthesia provider characteristics associated with increased waste. Over a 12-month period, the type and quantity of clean drugs prepared by the anesthesia team for the first case of the day were recorded. The amount of each drug administered was obtained from the computerized anesthesia record, and data were analyzed to determine the incidence and cost of routine and preventable drug waste. The monthly and yearly cost of preventable waste, including the cost of pharmacy tech labor and materials where applicable, was estimated based on surgical case volume at the study institution. All analyses were performed using SAS software v9.2. Anesthetic drugs prepared for 543 separate surgical cases were observed. Less than 20% of cases generated routine waste. Preventable waste was generated most frequently for ephedrine (59.5% of cases), succinylcholine (33.7%), and lidocaine (25.1%), and least frequently for ondansetron (1.3%), phenylephrine (2.6%), and dexamethasone (2.8%). The estimated yearly cost of preventable anesthetic drug waste was $185,250. Significant potential savings with little impact on clinically significant availability may be achieved through the use of prefilled syringes for some commonly used anesthetic drugs. An intelligently implemented switch to prefilled syringes for select drugs is a potential cost saving measure, but savings might be diminished by disposal of prefilled syringes when they expire, hidden costs in the hospital pharmacy, and inability to supply some medications in prefilled syringes due to

  11. Optimization of municipal solid waste collection and transportation routes.

    PubMed

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  14. The excess health care costs of KardioPro, an integrated care program for coronary heart disease prevention.

    PubMed

    Becker, Christian; Holle, Rolf; Stollenwerk, Björn

    2015-06-01

    Coronary heart disease (CHD) is a major cause of death and important driver of health care costs. Recent German health care reforms have promoted integrated care contracts allowing statutory health insurance providers more room to organize health care provision. One provider offers KardioPro, an integrated primary care-based CHD prevention program. As insurance providers should be aware of the financial consequences when developing optional programs, this study aims to analyze the costs associated with KardioPro participation. 13,264 KardioPro participants were compared with a propensity score-matched control group. Post-enrollment health care costs were calculated based on routine data over a follow-up period of up to 4 years. For those people who incurred costs, KardioPro participation was significantly associated with increased physician costs (by 33%), reduced hospital costs (by 19%), and reduced pharmaceutical costs (by 16%). Overall costs were increased by 4%, but this was not significant. Total excess costs per observation year were €131 per person (95% confidence interval: [€-36.5; €296]). Overall, KardioPro likely affected treatment as the program increased costs of physician services and reduced costs of hospital services. Further effects of substituting potential inpatient care with increased outpatient care might become fully apparent only over a longer time horizon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  16. Centralized treatment of industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.

    1982-08-01

    A low-cost and effective alternative to on-site treatment of industrial wastes which can be used by firms in many areas of the country is described. Under the CWT approach, firms send their wastes to a common processing plant. In the right situations and with the proper kind of inexpensive retrofitting measures, CWT can drastically reduce the cost of treating industrial wastewater because of economies of scale. As well as saving money, CWT has several environmental advantages. First, these facilities are operated by professional waste handlers who should be able to treat and manage the waste more effectively than the generatingmore » firms. Second, the CWT can dramatically increase the potential for recovery of chemicals, which not only reduces the firm's wastewater costs but also the burdens of sludge handling and disposal. EPA, consultants, and local communities have been working on this concept for the last three years. During that time, they have been studying the feasibility of several CWT alternatives already in use in foreign countries for treating electroplating wastewater. In addition to waste treatment, CWT can also provide cogeneration of power, common laboratory facilities and, probably a bulk purchasing cooperative. 3 figures. (JMT)« less

  17. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  18. How you spend your pennies ... factors affecting the efficiency of human waste disposal systems (re-usable and disposable) and their cost.

    PubMed

    Rollnick, M

    1991-05-01

    Both re-usable and disposable systems have their merits and problems. The disposable system, being fully integrated, appears to be steadily gaining market share compared with the re-usable system. Since its introduction, the success of the re-usable system has been limited by the use of pans not designed for automatic processing. Where the 'perfection' pan has been superseded by 'open' shaped receptacles and those used in commode chairs, cleaning effectiveness can be improved by a factor of 10. For this and other reasons, nursing involvement in the re-usable system can be high while the 'perfection' pan is in use. A work study exercise to compare nursing involvement in re-usable and disposable systems is under way. When selecting a human waste disposal system for any site, it is vital that all disciplines discuss and decide objectives. The equipment usage, space, site conditions, availability and quality of supplies (eg water, electricity), the costs of maintenance, nursing time and other expenditure must be considered. The disposable system is capable of high process rates (more than double that of the fastest re-usable system). Its capital cost is currently about 1,000 pounds less than an average re-usable system, but in the busiest wards, revenue costs may be higher. In such wards the space for disposable receptacle storage can be as much as five to ten times machine volume. The design of macerators is generally simpler (having less components) than washer-disinfectors. Monitoring and maintenance involvement are likewise expected to be lower, particularly in hospitals with modern drainage systems.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Integrated risk/cost planning models for the US Air Traffic system

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.; Zenios, S. A.

    1985-01-01

    A prototype network planning model for the U.S. Air Traffic control system is described. The model encompasses the dual objectives of managing collision risks and transportation costs where traffic flows can be related to these objectives. The underlying structure is a network graph with nonseparable convex costs; the model is solved efficiently by capitalizing on its intrinsic characteristics. Two specialized algorithms for solving the resulting problems are described: (1) truncated Newton, and (2) simplicial decomposition. The feasibility of the approach is demonstrated using data collected from a control center in the Midwest. Computational results with different computer systems are presented, including a vector supercomputer (CRAY-XMP). The risk/cost model has two primary uses: (1) as a strategic planning tool using aggregate flight information, and (2) as an integrated operational system for forecasting congestion and monitoring (controlling) flow throughout the U.S. In the latter case, access to a supercomputer is required due to the model's enormous size.

  20. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925...

  1. Cost effectiveness of recycling: A systems model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu; Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000; Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have alsomore » found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.« less

  2. Performance measurement: integrating quality management and activity-based cost management.

    PubMed

    McKeon, T

    1996-04-01

    The development of an activity-based management system provides a framework for developing performance measures integral to quality and cost management. Performance measures that cross operational boundaries and embrace core processes provide a mechanism to evaluate operational results related to strategic intention and internal and external customers. The author discusses this measurement process that allows managers to evaluate where they are and where they want to be, and to set a course of action that closes the gap between the two.

  3. Breast Cancer Integrative Oncology Care and Its Costs

    PubMed Central

    Standish, Leanna J.; Dowd, Fred; Sweet, Erin; Dale, Linda; Weaver, Morgan; Osborne, Barbara; Andersen, M. Robyn

    2016-01-01

    Background. Naturopathic oncology in conjunction with conventional treatment is commonly referred to as integrative oncology (IO). Clinics directed by oncology board certified NDs (Fellows of the American Board of Naturopathic Oncology or FABNOs) provide high-quality data for describing IO therapies, their costs and measuring clinical outcomes. Purpose. To describe the types of IO therapies prescribed to breast cancer patients by ND FABNO physicians. Study participants (n = 324). Women who sought care at 1 of 6 naturopathic oncology clinics in Washington State were asked to enroll in a prospective 5 year observational outcomes study. Methods. Medical records were abstracted to collect treatment recommendations and cost data. Results. More than 72 oral or topical, nutritional, botanical, fungal and bacterial-based medicines were prescribed to the cohort during their first year of IO care. Trametes versicolor was prescribed to 63% of the women. Mind-body therapy was recommended to 45% of patients, and 49% received acupuncture. Also, 26% were prescribed injectable therapy, including mistletoe, vitamin B complex (12%), IV ascorbate (12%), IV artesunate (7%), and IV nutrition and hydration (4%). Costs ranged from $1594/year for early-stage breast cancer to $6200/year for stage 4 breast cancer patients. Of the total amount billed for IO care for 1 year for breast cancer patients, 21% was out-of-pocket. Conclusions. IO care for women with breast cancer consists of botanical and mushroom oral therapies, parenteral botanical and nutrient therapy, mind-body medicine and acupuncture. IO clinic visits and acupuncture are partially paid for by medical insurance companies. PMID:27230757

  4. Bioprocessing preservative-treated waste wood

    Treesearch

    Barbara L. Illman; Vina W. Yang; Les Ferge

    2000-01-01

    Disposal of preservative-treated waste wood is a growing problem worldwide. Bioprocessing the treated wood offers one approach to waste management under certain conditions. One goal is to use wood decay fungi to reduce the volume of waste with an easily managed system in a cost-effective manner. Wood decay fungi were obtained from culture collections in the Mycology...

  5. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  6. The evolution of honest communication: integrating social and physiological costs of ornamentation.

    PubMed

    Tibbetts, Elizabeth A

    2014-10-01

    Much research on animal communication has addressed how costs such as social costs or physiological costs favor the accuracy of signals. Previous work has largely considered these costs separately, but we may be missing essential connections by studying costs in isolation. After all, social interactions produce rapid changes in hormone titers which can then affect individual behavior and physiology. As a result, social costs are likely to have widespread physiological consequences. Here, I present a new perspective on the factors that maintain honest signals by describing how the interplay between social costs and physiological costs may maintain an accurate link between an animal's abilities and ornament elaboration. I outline three specific mechanisms by which the interaction between social behavior and hormones could favor honest signals and present specific predictions for each of the three models. Then, I review how ornaments alter agonistic behavior, agonistic behavior influences hormones, and how these hormonal effects influence fitness. I also describe the few previous studies that have directly tested how ornaments influence hormones. Finally, opportunities for future work are discussed. Considering the interaction between social behavior and physiology may address some challenges associated with both social and physiological models of costs. Understanding the dynamic feedbacks between physiology and social costs has potential to transform our understanding of the stability of animals' communication systems. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Transparency to Reduce Surgical Implant Waste.

    PubMed

    Pfefferle, Kiel J; Dilisio, Matthew F; Patti, Brianna; Fening, Stephen D; Junko, Jeffrey T

    2015-06-01

    Rising health care costs and emphasis on value have placed the onus of reducing healthcare costs on the surgeon. Financial data from 3,973 hip, knee, and shoulder arthroplasties performed at a physician owned orthopedic hospital was retrospectively reviewed over a two-year period. A wasted implant financial report was posted starting the second year of the study. Each surgeon's performance could be identified by his peers. After posting of the financial report, 1.11% of all hip and knee arthroplasty cases had a waste event compared to 1.50% during the control year. Shoulder arthroplasty waste events occurred twice as often than that observed in hip and knee arthroplasty during the study period. A decrease in waste events was observed but was not statistically significant (p = 0.30). Posting a non-blinded wasted implant data sheet was associated with a reduction in the number of wasted orthopedic surgical implants in this series, although the reduction was not statistically significant.

  8. Processing of basalt fiber production waste

    NASA Astrophysics Data System (ADS)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  9. Bringing together integration technologies in GaAs, InP and Si to deliver low-cost high performance DWDM optoelectronic components and solutions

    NASA Astrophysics Data System (ADS)

    Carter, Andrew C.; Wale, Michael J.; Simmons, T.; Whitbread, Neil; Asghari, M.

    2003-06-01

    A key attribute emerging in the optoelectronic component supply industry is the ability to deliver 'solution level' products rather than discrete optical components to equipment manufacturers. This approach is primarily aimed at reducing cost for the equipment manufacturer both in engineering and assembly. Such 'solutions' must be designed to be cost effective - offering costs substantially below discrete components - and must be compatible with subcontract board manufacture without the traditional and expensive skills of fibre handling, splicing and management. Examples of 'solutions' in this context may be the core of a multifunctional OADM or a DWDM laser transmitter subsystem, with modulation, wavelength and power management all included in a simple to use module. Essential to the cost effective production of such solutions is a high degree of optical/optoelectronic integration. Co-packaging of discrete components and electronics into modules will not deliver the cost reduction demanded. At Bookham Technology we have brought together what we believe to be the three key integration technologies - InP for monolithic tunable sources, GaAs for high performance integrated modulation and ASOC for smart passives and hybrid platforms - which can deliver this cost reduction, together with performance enhancement, over a wide range of applications. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to achieve with discrete components. In the paper we will demonstrate and compare our above integration approaches with the competing alternatives and seek to show how the power of integration is finally being harnessed in optoelectronics, delivering radical cost reduction as well as enabling system concepts virtually impossible to

  10. Greening the Grid: Advances in Production Cost Modeling for India Renewable Energy Grid Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, Jaquelin; Palchak, David

    The Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid study uses advanced weather and power system modeling to explore the operational impacts of meeting India's 2022 renewable energy targets and identify actions that may be favorable for integrating high levels of renewable energy into the Indian grid. The study relies primarily on a production cost model that simulates optimal scheduling and dispatch of available generation in a future year (2022) by minimizing total production costs subject to physical, operational, and market constraints. This fact sheet provides a detailed look at each of thesemore » models, including their common assumptions and the insights provided by each.« less

  11. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.

    PubMed

    Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua

    2017-11-01

    In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6  t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3  t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.

  12. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    ERIC Educational Resources Information Center

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  13. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  14. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors.

    PubMed

    Townsend, Aaron K; Webber, Michael E

    2012-07-01

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  16. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  17. 40 CFR 267.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...

  18. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production.

    PubMed

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad; Ali, Nadeem; Ali, Shahid; Rashid, Muhammad Imtiaz; Ismail, Iqbal Mohammad Ibrahim; Koller, Martin

    2017-09-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Working on Waste.

    ERIC Educational Resources Information Center

    Thomas, Sue; Moen, Dave

    This guide provides background information and youth activities for youth leaders and classroom teachers interested in integrating waste management issues into current educational programming. Five parts suggest ideas for action that youth can take at home, in their group, or in the community to solve waste management problems. Part 1 introduces…

  20. Waste-to-energy plants face costly emissions-control upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlvaine, R.W.

    1995-06-01

    One treatment method of municipal solid waste, incineration, has fallen in and out of public favor. In the 1970s, emerging consciousness of the threat to groundwater posed by leaking landfills made incineration an attractive option. Prompted by disrupted energy supplies and steeply rising prices, more than 100 municipalities began to generate electricity from the heat produced by burning trash. In the 1990s, the pendulum of public enthusiasm has swung away from incineration. Energy prices have declined dramatically, and safety and siting concerns complicate new projects. A recent Supreme Court decision ruled that municipal incinerator ash must be tested as hazardousmore » waste and disposed accordingly if levels of such pollutants as cadmium and lead exceed Resource Conservation and Recovery Act limits. So-called flow control regulations, which allowed municipalities to apportion garbage disposal to ensure steady supplies to incinerators, also have been struck down. EPA is tackling the issue of air emissions from waste-to-energy and non-energy-producing municipal waste combustors. Emissions guidelines for MWCs and new-source performance standards for new units, proposed Sept. 20 under Sec. 129 of the Clean Air Act Amendments of 1990, are the culmination of a stalled and litigated initiative dating back to the CAA Amendments of 1977.« less

  1. Gaseous emissions from waste combustion.

    PubMed

    Werther, Joachim

    2007-06-18

    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.

  2. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided inmore » companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.« less

  3. Integrated HIV testing, malaria, and diarrhea prevention campaign in Kenya: modeled health impact and cost-effectiveness.

    PubMed

    Kahn, James G; Muraguri, Nicholas; Harris, Brian; Lugada, Eric; Clasen, Thomas; Grabowsky, Mark; Mermin, Jonathan; Shariff, Shahnaaz

    2012-01-01

    Efficiently delivered interventions to reduce HIV, malaria, and diarrhea are essential to accelerating global health efforts. A 2008 community integrated prevention campaign in Western Province, Kenya, reached 47,000 individuals over 7 days, providing HIV testing and counseling, water filters, insecticide-treated bed nets, condoms, and for HIV-infected individuals cotrimoxazole prophylaxis and referral for ongoing care. We modeled the potential cost-effectiveness of a scaled-up integrated prevention campaign. We estimated averted deaths and disability-adjusted life years (DALYs) based on published data on baseline mortality and morbidity and on the protective effect of interventions, including antiretroviral therapy. We incorporate a previously estimated scaled-up campaign cost. We used published costs of medical care to estimate savings from averted illness (for all three diseases) and the added costs of initiating treatment earlier in the course of HIV disease. Per 1000 participants, projected reductions in cases of diarrhea, malaria, and HIV infection avert an estimated 16.3 deaths, 359 DALYs and $85,113 in medical care costs. Earlier care for HIV-infected persons adds an estimated 82 DALYs averted (to a total of 442), at a cost of $37,097 (reducing total averted costs to $48,015). Accounting for the estimated campaign cost of $32,000, the campaign saves an estimated $16,015 per 1000 participants. In multivariate sensitivity analyses, 83% of simulations result in net savings, and 93% in a cost per DALY averted of less than $20. A mass, rapidly implemented campaign for HIV testing, safe water, and malaria control appears economically attractive.

  4. Data Package for Secondary Waste Form Down-Selection—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Westsik, Joseph H.

    2011-09-05

    Available literature on Cast Stone and Saltstone was reviewed with an emphasis on determining how Cast Stone and related grout waste forms performed in relationship to various criteria that will be used to decide whether a specific type of waste form meets acceptance criteria for disposal in the Integrated Disposal Facility (IDF) at Hanford. After the critical review of the Cast Stone/Saltstone literature, we conclude that Cast Stone is a good candidate waste form for further consideration. Cast stone meets the target IDF acceptance criteria for compressive strength, no free liquids, TCLP leachate are below the UTS permissible concentrations andmore » leach rates for Na and Tc-99 are suiteably low. The cost of starting ingredients and equipment necessary to generate Cast Stone waste forms with secondary waste streams are low and the Cast Stone dry blend formulation can be tailored to accommodate variations in liquid waste stream compositions. The database for Cast Stone short-term performance is quite extensive compared to the other three candidate waste solidification processes. The solidification of liquid wastes in Cast Stone is a mature process in comparison to the other three candidates. Successful production of Cast Stone or Saltstone has been demonstrated from lab-scale monoliths with volumes of cm3 through m3 sized blocks to 210-liter sized drums all the way to the large pours into vaults at Savannah River. To date over 9 million gallons of low activity liquid waste has been solidified and disposed in concrete vaults at Savannah River.« less

  5. [Cost-effectiveness and cost-benefit analysis on the integrated schistosomiasis control strategies with emphasis on infection source in Poyang Lake region].

    PubMed

    Lin, Dan-Dan; Zeng, Xiao-Jun; Chen, Hong-Gen; Hong, Xian-Lin; Tao, Bo; Li, Yi-Feng; Xiong, Ji-Jie; Zhou, Xiao-Nong

    2009-08-01

    To evaluate the cost-effectiveness and cost-benefit on the integrated schistosomiasis control strategies with emphasis on infection source, and provide scientific basis for the improvement of schistosomiasis control strategy. Aiguo and Xinhe villages in Jinxian County were selected as intervention group where the new comprehensive strategy was implemented, while Ximiao and Zuxi villages in Xinzi County served as control where routine control program was implemented. New strategy of interventions included removing cattle from snail-infested grasslands and providing farmers with farm machinery, improving sanitation by supplying tap water and building lavatories and methane gas tanks, and implementing an intensive health education program. Routine interventions were carried out in the control villages including diagnosis and treatment for human and cattle, health education, and focal mollusciciding. Data were collected from retrospective investigation and field survey for the analysis and comparison of cost-effectiveness and cost-benefit between intervention and control groups. The control effect of the intervention group was better than that of the control. The cost for 1% decrease of infection rate per 100 people, 100 cattle, and 100 snails in intervention group was 480.01, 6 851.24, and 683.63 Yuan, respectively, which were about 2.70, 4.37 and 20.25 times as those in the control respectively. The total cost/benefit ratio (BCR) was lower than 1 (0.94 in intervention group and 0.08 in the control). But the total benefit of intervention group was higher than that of the control from 2005 to 2008. The forecasting analysis indicated that the total BCR in intervention group would be 1.13 at the 4th year and all cost could be recalled. Sensitivity analysis revealed that the BCR in intervention group changed in the range around 1.0 and that of the control ranged blow 0.5. The cost-benefit of intervention group was evidently higher than that of the control. The integrated

  6. Cost-effectiveness of integrated COPD care: the RECODE cluster randomised trial

    PubMed Central

    Boland, Melinde R S; Kruis, Annemarije L; Tsiachristas, Apostolos; Assendelft, Willem J J; Gussekloo, Jacobijn; Blom, Coert M G; Chavannes, Niels H; Rutten-van Mölken, Maureen P M H

    2015-01-01

    Objectives To investigate the cost-effectiveness of a chronic obstructive pulmonary disease (COPD) disease management (COPD-DM) programme in primary care, called RECODE, compared to usual care. Design A 2-year cluster-randomised controlled trial. Setting 40 general practices in the western part of the Netherlands. Participants 1086 patients with COPD according to GOLD (Global Initiative for COPD) criteria. Exclusion criteria were terminal illness, cognitive impairment, alcohol or drug misuse and inability to fill in Dutch questionnaires. Practices were included if they were willing to create a multidisciplinary COPD team. Interventions A multidisciplinary team of caregivers was trained in motivational interviewing, setting up individual care plans, exacerbation management, implementing clinical guidelines and redesigning the care process. In addition, clinical decision-making was supported by feedback reports provided by an ICT programme. Main outcome measures We investigated the impact on health outcomes (quality-adjusted life years (QALYs), Clinical COPD Questionnaire, St. George's Respiratory Questionnaire and exacerbations) and costs (healthcare and societal perspective). Results The intervention costs were €324 per patient. Excluding these costs, the intervention group had €584 (95% CI €86 to €1046) higher healthcare costs than did the usual care group and €645 (95% CI €28 to €1190) higher costs from the societal perspective. Health outcomes were similar in both groups, except for 0.04 (95% CI −0.07 to −0.01) less QALYs in the intervention group. Conclusions This integrated care programme for patients with COPD that mainly included professionally directed interventions was not cost-effective in primary care. Trial registration number Netherlands Trial Register NTR2268. PMID:26525419

  7. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids

    DOE PAGES

    Li, Chenlin; Liang, Ling; Sun, Ning; ...

    2017-01-05

    The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less

  8. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chenlin; Liang, Ling; Sun, Ning

    The study presents the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6L vs 0.2L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts towards developing a cost-effective IL based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and ILmore » recycling. Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.« less

  9. Fuzzy adaptive integration scheme for low-cost SINS/GPS navigation system

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Hossein; Keighobadi, Jafar

    2018-01-01

    Due to weak stand-alone accuracy as well as poor run-to-run stability of micro-electro mechanical system (MEMS)-based inertial sensors, special approaches are required to integrate low-cost strap-down inertial navigation system (SINS) with global positioning system (GPS), particularly in long-term applications. This paper aims to enhance long-term performance of conventional SINS/GPS navigation systems using a fuzzy adaptive integration scheme. The main concept behind the proposed adaptive integration is the good performance of attitude-heading reference system (AHRS) in low-accelerated motions and its degradation in maneuvered or accelerated motions. Depending on vehicle maneuvers, gravity-based attitude angles can be intelligently utilized to improve orientation estimation in the SINS. Knowledge-based fuzzy inference system is developed for decision-making between the AHRS and the SINS according to vehicle maneuvering conditions. Inertial measurements are the main input data of the fuzzy system to determine the maneuvering level during the vehicle motions. Accordingly, appropriate weighting coefficients are produced to combine the SINS/GPS and the AHRS, efficiently. The assessment of the proposed integrated navigation system is conducted via real data in airborne tests.

  10. Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. Erratum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Gary L.

    2016-09-06

    This report refers to or contains K g values for glasses LAWA44, LAWB45 and LAWC22 affected by calculations errors as identified by Papathanassiu et al. (2011). The corrected K g values are reported in an erratum included in the revised version of the original report. The revised report can be referenced as follows: Pierce E. M. et al. (2004) Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment. PNNL-14805 Rev. 0 Erratum. Pacific Northwest National Laboratory, Richland, WA, USA.

  11. A low-cost GPS/INS integrated vehicle heading angle measurement system

    NASA Astrophysics Data System (ADS)

    Wu, Ye; Gao, Tongyue; Ding, Yi

    2018-04-01

    GPS can provide continuous heading information, but the accuracy is easily affected by the velocity and shelter from buildings or trees. For vehicle systems, we propose a low-cost heading angle update algorithm. Based on the GPS/INS integrated navigation kalman filter, we add the GPS heading angle to the measurement vector, and establish its error model. The experiment results show that this algorithm can effectively improve the accuracy of GPS heading angle.

  12. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  13. Study of component technologies for fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Lee, W. D.; Mathias, S.

    1980-01-01

    Heating, ventilation and air conditioning equipment are integrated with three types of fuel cells. System design and computer simulations are developed to utilize the thermal energy discharge of the fuel in the most cost effective manner. The fuel provides all of the electric needs and a loss of load probability analysis is used to ensure adequate power plant reliability. Equipment cost is estimated for each of the systems analyzed. A levelized annual cost reflecting owning and operating costs including the cost of money was used to select the most promising integrated system configurations. Cash flows are presented for the most promising 16 systems. Several systems for the 96 unit apartment complex (a retail store was also studied) were cost competitive with both gas and electric based conventional systems. Thermal storage is shown to be beneficial and the optimum absorption chiller sizing (waste heat recovery) in connection with electric chillers are developed. Battery storage was analyzed since the system is not electric grid connected. Advanced absorption chillers were analyzed as well. Recommendations covering financing, technical development, and policy issues are given to accelerate the commercialization of the fuel cell for on-site power generation in buildings.

  14. Cost savings through implementation of an integrated home-based record: a case study in Vietnam.

    PubMed

    Aiga, Hirotsugu; Pham Huy, Tuan Kiet; Nguyen, Vinh Duc

    2018-03-01

    In Vietnam, there are three major home-based records (HBRs) for maternal and child health (MCH) that have been already nationally scaled up, i.e., Maternal and Child Health Handbook (MCH Handbook), Child Vaccination Handbook, and Child Growth Monitoring Chart. The MCH Handbook covers all the essential recording items that are included in the other two. This overlapping of recording items between the HBRs is likely to result in inefficient use of both financial and human resources. This study is aimed at estimating the magnitude of cost savings that are expected to be realized through implementing exclusively the MCH Handbook by terminating the other two. Secondary data collection and analyses on HBR production and distribution costs and health workers' opportunity costs. Through multiplying the unit costs by their respective quantity multipliers, recurrent costs of operations of three HBRs were estimated. Moreover, magnitude of cost savings likely to be realized was estimated, by calculating recurrent costs overlapping between the three HBRs. It was estimated that implementing exclusively the MCH Handbook would lead to cost savings of United States dollar 3.01 million per annum. The amount estimated is minimum cost savings because only recurrent cost elements (HBR production and distribution costs and health workers' opportunity costs) were incorporated into the estimation. Further indirect cost savings could be expected through reductions in health expenditures, as the use of the MCH Handbook would contribute to prevention of maternal and child illnesses by increasing antenatal care visits and breastfeeding practices. To avoid wasting financial and human resources, the MCH Handbook should be exclusively implemented by abolishing the other two HBRs. This study is globally an initial attempt to estimate cost savings to be realized through avoiding overlapping operations between multiple HBRs for MCH. Copyright © 2017 The Royal Society for Public Health. Published

  15. Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon

    2016-03-18

    adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less

  16. Is bigger better? An empirical analysis of waste management in New South Wales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, Pedro, E-mail: pedrotcc@gmail.com; CESUR – Center for Urban and Regional Systems, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon; Marques, Rui Cunha, E-mail: rui.marques@tecnico.ulisboa.pt

    Highlights: • We search for the most efficient cost structure for NSW household waste services. • We found that larger services are no longer efficient. • We found an optimal size for the range 12,000–20,000 inhabitants. • We found significant economies of output density for household waste collection. • We found economies of scope in joint provision of unsorted and recycling services. - Abstract: Across the world, rising demand for municipal solid waste services has seen an ongoing increase in the costs of providing these services. Moreover, municipal waste services have typically been provided through natural or legal monopolies, wheremore » few incentives exist to reduce costs. It is thus vital to examine empirically the cost structure of these services in order to develop effective public policies which can make these services more cost efficient. Accordingly, this paper considers economies of size and economies of output density in the municipal waste collection sector in the New South Wales (NSW) local government system in an effort to identify the optimal size of utilities from the perspective of cost efficiency. Our results show that – as presently constituted – NSW municipal waste services are not efficient in terms of costs, thereby demonstrating that ‘bigger is not better.’ The optimal size of waste utilities is estimated to fall in the range 12,000–20,000 inhabitants. However, significant economies of output density for unsorted (residual) municipal waste collection and recycling waste collection were found, which means it is advantageous to increase the amount of waste collected, but maintaining constant the number of customers and the intervention area.« less

  17. A cost effectiveness study of integrated care in health services delivery: a diabetes program in Australia

    PubMed Central

    McRae, Ian S; Butler, James RG; Sibthorpe, Beverly M; Ruscoe, Warwick; Snow, Jill; Rubiano, Dhigna; Gardner, Karen L

    2008-01-01

    Background Type 2 diabetes is rapidly growing as a proportion of the disease burden in Australia as elsewhere. This study addresses the cost effectiveness of an integrated approach to assisting general practitioners (GPs) with diabetes management. This approach uses a centralized database of clinical data of an Australian Division of General Practice (a network of GPs) to co-ordinate care according to national guidelines. Methods Long term outcomes for patients in the program were derived using clinical parameters after 5 years of program participation, and the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model, to project outcomes for 40 years from the time of diagnosis and from 5 years post-diagnosis. Cost information was obtained from a range of sources. While program costs are directly available, and costs of complications can be estimated from the UKPDS model, other costs are estimated by comparing costs in the Division with average costs across the state or the nation. The outcome and cost measures are used derive incremental cost-effectiveness ratios. Results The clinical data show that the program is effective in the short term, with improvement or no statistical difference in most clinical measures over 5 years. Average HbA1c levels increased by less than expected over the 5 year period. While the program is estimated to generate treatment cost savings, overall net costs are positive. However, the program led to projected improvements in expected life years and Quality Adjusted Life Expectancy (QALE), with incremental cost effectiveness ratios of $A8,106 per life-year saved and $A9,730 per year of QALE gained. Conclusions The combination of an established model of diabetes progression and generally available data has provided an opportunity to establish robust methods of testing the cost effectiveness of a program for which a formal control group was not available. Based on this methodology, integrated health care delivery provided by a

  18. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.

    PubMed

    Parkes, Olga; Lettieri, Paola; Bogle, I David L

    2015-06-01

    This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The MIST /MIUS Integration and Subsystems Test/ laboratory - A testbed for the MIUS /Modular Integrated Utility System/ program

    NASA Technical Reports Server (NTRS)

    Beckham, W. S., Jr.; Keune, F. A.

    1974-01-01

    The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.

  20. Packaging waste recycling in Europe: Is the industry paying for it?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowedmore » the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging

  1. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  2. Childhood mortality impact and costs of integrating vitamin A supplementation into immunization campaigns.

    PubMed Central

    Ching, P; Birmingham, M; Goodman, T; Sutter, R; Loevinsohn, B

    2000-01-01

    Country-specific activity and coverage data were used to estimate the childhood mortality impact (deaths averted) and costs of integrating vitamin A supplements into immunization campaigns conducted in 1998 and 1999. More than 94 million doses of vitamin A were administered in 41 countries in 1998, helping to avert nearly 169,000 deaths. During 1999, delivery of more than 97 million doses in 50 countries helped avert an estimated 242,000 deaths. The estimated incremental cost per death averted was US$72 (range: 36-142) in 1998 and US$64 (range: 32-126) in 1999. The estimated average total cost of providing supplementation per death averted was US$310 (range: 157-609) in 1998 and US$276 (range: 139-540) in 1999. Costs per death averted varied by campaign, depending on the number and proportion of the child population reached, number of doses received per child, and child mortality rates. PMID:11029982

  3. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repositorymore » designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that

  4. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  5. Cost-effectiveness of integrated COPD care: the RECODE cluster randomised trial.

    PubMed

    Boland, Melinde R S; Kruis, Annemarije L; Tsiachristas, Apostolos; Assendelft, Willem J J; Gussekloo, Jacobijn; Blom, Coert M G; Chavannes, Niels H; Rutten-van Mölken, Maureen P M H

    2015-11-01

    To investigate the cost-effectiveness of a chronic obstructive pulmonary disease (COPD) disease management (COPD-DM) programme in primary care, called RECODE, compared to usual care. A 2-year cluster-randomised controlled trial. 40 general practices in the western part of the Netherlands. 1086 patients with COPD according to GOLD (Global Initiative for COPD) criteria. Exclusion criteria were terminal illness, cognitive impairment, alcohol or drug misuse and inability to fill in Dutch questionnaires. Practices were included if they were willing to create a multidisciplinary COPD team. A multidisciplinary team of caregivers was trained in motivational interviewing, setting up individual care plans, exacerbation management, implementing clinical guidelines and redesigning the care process. In addition, clinical decision-making was supported by feedback reports provided by an ICT programme. We investigated the impact on health outcomes (quality-adjusted life years (QALYs), Clinical COPD Questionnaire, St. George's Respiratory Questionnaire and exacerbations) and costs (healthcare and societal perspective). The intervention costs were €324 per patient. Excluding these costs, the intervention group had €584 (95% CI €86 to €1046) higher healthcare costs than did the usual care group and €645 (95% CI €28 to €1190) higher costs from the societal perspective. Health outcomes were similar in both groups, except for 0.04 (95% CI -0.07 to -0.01) less QALYs in the intervention group. This integrated care programme for patients with COPD that mainly included professionally directed interventions was not cost-effective in primary care. Netherlands Trial Register NTR2268. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Data analytics approach to create waste generation profiles for waste management and collection.

    PubMed

    Niska, Harri; Serkkola, Ari

    2018-04-30

    Extensive monitoring data on waste generation is increasingly collected in order to implement cost-efficient and sustainable waste management operations. In addition, geospatial data from different registries of the society are opening for free usage. Novel data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. In this paper, a data-based approach based on the self-organizing map (SOM) and the k-means algorithm is developed for creating a set of waste generation type profiles. The approach is demonstrated using the extensive container-level waste weighting data collected in the metropolitan area of Helsinki, Finland. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information e.g. for the basis of tailored feedback services for waste producers and the planning and optimization of waste collection and recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John; Smutzer, Chad; Sinha, Jayanti

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less

  9. Operating room waste: disposable supply utilization in neurosurgical procedures.

    PubMed

    Zygourakis, Corinna C; Yoon, Seungwon; Valencia, Victoria; Boscardin, Christy; Moriates, Christopher; Gonzales, Ralph; Lawton, Michael T

    2017-02-01

    OBJECTIVE Disposable supplies constitute a large portion of operating room (OR) costs and are often left over at the end of a surgical case. Despite financial and environmental implications of such waste, there has been little evaluation of OR supply utilization. The goal of this study was to quantify the utilization of disposable supplies and the costs associated with opened but unused items (i.e., "waste") in neurosurgical procedures. METHODS Every disposable supply that was unused at the end of surgery was quantified through direct observation of 58 neurosurgical cases at the University of California, San Francisco, in August 2015. Item costs (in US dollars) were determined from the authors' supply catalog, and statistical analyses were performed. RESULTS Across 58 procedures (36 cranial, 22 spinal), the average cost of unused supplies was $653 (range $89-$3640, median $448, interquartile range $230-$810), or 13.1% of total surgical supply cost. Univariate analyses revealed that case type (cranial versus spinal), case category (vascular, tumor, functional, instrumented, and noninstrumented spine), and surgeon were important predictors of the percentage of unused surgical supply cost. Case length and years of surgical training did not affect the percentage of unused supply cost. Accounting for the different case distribution in the 58 selected cases, the authors estimate approximately $968 of OR waste per case, $242,968 per month, and $2.9 million per year, for their neurosurgical department. CONCLUSIONS This study shows a large variation and significant magnitude of OR waste in neurosurgical procedures. At the authors' institution, they recommend price transparency, education about OR waste to surgeons and nurses, preference card reviews, and clarification of supplies that should be opened versus available as needed to reduce waste.

  10. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  11. Polyhydroxyalkanoates production from waste biomass

    NASA Astrophysics Data System (ADS)

    Nor Aslan, A. K. H.; Ali, M. D. Muhd; Morad, N. A.; Tamunaidu, P.

    2016-06-01

    Polyhydroxyalkanoates (PHAs) is a group of biopolymers that are extensively researched for such purpose due to the biocompatibility with mammal tissue and similar properties with conventional plastic. However, commercialization of PHA is impended by its high total production cost, which half of it are from the cost of pure carbon source feedstock. Thus, cheap and sustainable feedstocks are preferred where waste materials from various industries are looked into. This paper will highlight recent studies done on PHA production by utilizing crop and agro waste material and review its potential as alternative feedstock.

  12. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, BE

    2003-10-07

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach tomore » waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E

  13. A transition from using multi‐step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies

    PubMed Central

    Leblond, Veronique; Ouzegdouh, Maya; Button, Paul

    2017-01-01

    Abstract Introduction The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos® CELLEX® fully integrated system in 2012. This report summarizes our single‐center experience of transitioning from the use of multi‐step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. Materials and Methods The total number of ECP procedures performed 2011–2015 was derived from department records. The time taken to complete a single ECP treatment using a multi‐step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time‐driven activity‐based costing methods were applied to provide a cost comparison. Results The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi‐step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per‐session cost of performing ECP using the multi‐step procedure was greater than with the CELLEX® system (€1,429.37 and €1,264.70 per treatment, respectively). Conclusions For hospitals considering a transition from multi‐step procedures to fully integrated methods for ECP where cost may be a barrier, time‐driven activity‐based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX® allow for more patient treatments per year. PMID:28419561

  14. Packaging waste recycling in Europe: is the industry paying for it?

    PubMed

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  15. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  16. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.

  17. Photochemical oxidation: A solution for the mixed waste dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposedmore » of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.« less

  18. Is Municipal Solid Waste Recycling Economically Efficient?

    NASA Astrophysics Data System (ADS)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  19. Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.

    PubMed

    Talens Peiró, Laura; Villalba Méndez, Gara; Gabarrell i Durany, Xavier

    2008-07-01

    Used cooking oil (UCO) is a domestic waste generated daily by food industries, restaurants, and households. It is estimated that in Europe 5 kg of UCO are generated per inhabitant, totalling 2.5 million metric tons per year. Recovering UCO for the production of biodiesel offers a way of minimizing and avoiding this waste and related pollution. An exergy analysis of the integrated waste management (IWM) scheme for UCO is used to evaluate such a possibility by accounting for inputs and outputs in each stage, calculating the exergy loss and the resource input and quantifying the possible improvements. The IWM includes the collection, pretreatment, and delivery of UCO and the production of biodiesel. The results show that the greatest exergy loss occurs during the transport stages (57%). Such exergy loss can be minimized to 20% by exploiting the full capacity of collecting vans and using biodiesel in the transport stages. Further, the cumulative exergy consumption helps study how the exergy consumption of biodiesel can be further reduced by using methanol obtained from biogas in the transesterification stage. Finally, the paper discusses how increasing the collection of UCO helps minimize uncontrolled used oil disposal and consequently provides a sustainable process for biodiesel production.

  20. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringel, Steven

    This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of ourmore » recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the

  1. An innovative national health care waste management system in Kyrgyzstan.

    PubMed

    Toktobaev, Nurjan; Emmanuel, Jorge; Djumalieva, Gulmira; Kravtsov, Alexei; Schüth, Tobias

    2015-02-01

    A novel low-cost health care waste management system was implemented in all rural hospitals in Kyrgyzstan. The components of the Kyrgyz model include mechanical needle removers, segregation using autoclavable containers, safe transport and storage, autoclave treatment, documentation, recycling of sterilized plastic and metal parts, cement pits for anatomical waste, composting of garden wastes, training, equipment maintenance, and management by safety and quality committees. The gravity-displacement autoclaves were fitted with filters to remove pathogens from the air exhaust. Operating parameters for the autoclaves were determined by thermal and biological tests. A hospital survey showed an average 33% annual cost savings compared to previous costs for waste management. All general hospitals with >25 beds except in the capital Bishkek use the new system, corresponding to 67.3% of all hospital beds. The investment amounted to US$0.61 per capita covered. Acceptance of the new system by the staff, cost savings, revenues from recycled materials, documented improvements in occupational safety, capacity building, and institutionalization enhance the sustainability of the Kyrgyz health care waste management system. © The Author(s) 2015.

  2. The Integration of Production-Distribution on Newspapers Supply Chain for Cost Minimization using Analytic Models: Case Study

    NASA Astrophysics Data System (ADS)

    Febriana Aqidawati, Era; Sutopo, Wahyudi; Hisjam, Muh.

    2018-03-01

    Newspapers are products with special characteristics which are perishable, have a shorter range of time between the production and distribution, zero inventory, and decreasing sales value along with increasing in time. Generally, the problem of production and distribution in the paper supply chain is the integration of production planning and distribution to minimize the total cost. The approach used in this article to solve the problem is using an analytical model. In this article, several parameters and constraints have been considered in the calculation of the total cost of the integration of production and distribution of newspapers during the determined time horizon. This model can be used by production and marketing managers as decision support in determining the optimal quantity of production and distribution in order to obtain minimum cost so that company's competitiveness level can be increased.

  3. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  4. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.

    PubMed

    Zhao, Wei; Huppes, Gjalt; van der Voet, Ester

    2011-06-01

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of industrial wastes. 35.925... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a) costs...

  6. Integrated corridor management initiative : demonstration phase evaluation – San Diego benefit-cost analysis test plan.

    DOT National Transportation Integrated Search

    2012-08-01

    This report presents the test plan for conducting the Benefit-Cost Analysis (BCA) for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM project...

  7. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint.

    PubMed

    Xu, Zhitao; Elomri, Adel; Pokharel, Shaligram; Zhang, Qin; Ming, X G; Liu, Wenjie

    2017-06-01

    The emergence of concerns over environmental protection, resource conservation as well as the development of logistics operations and manufacturing technology has led several countries to implement formal collection and recycling systems of solid waste. Such recycling system has the benefits of reducing environmental pollution, boosting the economy by creating new jobs, and generating income from trading the recyclable materials. This leads to the formation of a global reverse supply chain (GRSC) of solid waste. In this paper, we investigate the design of such a GRSC with a special emphasis on three aspects; (1) uncertainty of waste collection levels, (2) associated carbon emissions, and (3) challenges posed by the supply chain's global aspect, particularly the maritime transportation costs and currency exchange rates. To the best of our knowledge, this paper is the first attempt to integrate the three above-mentioned important aspects in the design of a GRSC. We have used mixed integer-linear programming method along with robust optimization to develop the model which is validated using a sample case study of e-waste management. Our results show that using a robust model by taking the complex interactions characterizing global reverse supply chain networks into account, we can create a better GRSC. The effect of uncertainties and carbon constraints on decisions to reduce costs and emissions are also shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microbial keratinases: industrial enzymes with waste management potential.

    PubMed

    Verma, Amit; Singh, Hukum; Anwar, Shahbaz; Chattopadhyay, Anirudha; Tiwari, Kapil K; Kaur, Surinder; Dhilon, Gurpreet Singh

    2017-06-01

    Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze "hard to degrade" keratinous wastes. This new class of proteases is known as "keratinases". Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.

  9. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  10. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE PAGES

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...

    2016-09-05

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  11. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  12. Process Waste Assessment - Paint Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are mademore » for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.« less

  13. Solid state anaerobic co-digestion of yard waste and food waste for biogas production.

    PubMed

    Brown, Dan; Li, Yebo

    2013-01-01

    Food and yard wastes are available year round at low cost and have the potential to complement each other for SS-AD. The goal of this study was to determine optimal feedstock/effluent (F/E) and food waste/yard waste mixing ratios for optimal biogas production. Co-digestion of yard and food waste was carried out at F/E ratios of 1, 2, and 3. For each F/E ratio, food waste percentages of 0%, 10%, and 20%, based on dry volatile solids, were evaluated. Results showed increased methane yields and volumetric productivities as the percentage of food waste was increased to 10% and 20% of the substrate at F/E ratios of 2 and 1, respectively. This study showed that co-digestion of food waste with yard waste at specific ratios can improve digester operating characteristics and end performance metrics over SS-AD of yard waste alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A transition from using multi-step procedures to a fully integrated system for performing extracorporeal photopheresis: A comparison of costs and efficiencies.

    PubMed

    Azar, Nabih; Leblond, Veronique; Ouzegdouh, Maya; Button, Paul

    2017-12-01

    The Pitié Salpêtrière Hospital Hemobiotherapy Department, Paris, France, has been providing extracorporeal photopheresis (ECP) since November 2011, and started using the Therakos ® CELLEX ® fully integrated system in 2012. This report summarizes our single-center experience of transitioning from the use of multi-step ECP procedures to the fully integrated ECP system, considering the capacity and cost implications. The total number of ECP procedures performed 2011-2015 was derived from department records. The time taken to complete a single ECP treatment using a multi-step technique and the fully integrated system at our department was assessed. Resource costs (2014€) were obtained for materials and calculated for personnel time required. Time-driven activity-based costing methods were applied to provide a cost comparison. The number of ECP treatments per year increased from 225 (2012) to 727 (2015). The single multi-step procedure took 270 min compared to 120 min for the fully integrated system. The total calculated per-session cost of performing ECP using the multi-step procedure was greater than with the CELLEX ® system (€1,429.37 and €1,264.70 per treatment, respectively). For hospitals considering a transition from multi-step procedures to fully integrated methods for ECP where cost may be a barrier, time-driven activity-based costing should be utilized to gain a more comprehensive understanding the full benefit that such a transition offers. The example from our department confirmed that there were not just cost and time savings, but that the time efficiencies gained with CELLEX ® allow for more patient treatments per year. © 2017 The Authors Journal of Clinical Apheresis Published by Wiley Periodicals, Inc.

  15. Integration of Kinect and Low-Cost Gnss for Outdoor Navigation

    NASA Astrophysics Data System (ADS)

    Pagliaria, D.; Pinto, L.; Reguzzoni, M.; Rossi, L.

    2016-06-01

    Since its launch on the market, Microsoft Kinect sensor has represented a great revolution in the field of low cost navigation, especially for indoor robotic applications. In fact, this system is endowed with a depth camera, as well as a visual RGB camera, at a cost of about 200. The characteristics and the potentiality of the Kinect sensor have been widely studied for indoor applications. The second generation of this sensor has been announced to be capable of acquiring data even outdoors, under direct sunlight. The task of navigating passing from an indoor to an outdoor environment (and vice versa) is very demanding because the sensors that work properly in one environment are typically unsuitable in the other one. In this sense the Kinect could represent an interesting device allowing bridging the navigation solution between outdoor and indoor. In this work the accuracy and the field of application of the new generation of Kinect sensor have been tested outdoor, considering different lighting conditions and the reflective properties of the emitted ray on different materials. Moreover, an integrated system with a low cost GNSS receiver has been studied, with the aim of taking advantage of the GNSS positioning when the satellite visibility conditions are good enough. A kinematic test has been performed outdoor by using a Kinect sensor and a GNSS receiver and it is here presented.

  16. Integrative Approach for Producing Hydrogen and Polyhydroxyalkanoate from Mixed Wastes of Biological Origin.

    PubMed

    Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2016-09-01

    In this study, an integrative approach to produce biohydrogen (H2) and polyhydroxyalkanoates (PHA) from the wastes of biological origin was investigated. A defined set of mixed cultures was used for hydrolysis and the hydrolysates were used to produce H2. The effluent from H2 production stage was used for PHA production. Under batch culture, a maximum of 62 l H2/kg of pure potato peels (Total solid, TS 2 %, w/v) and 54 l H2/kg of mixed biowastes (MBW1) was recorded. Using effluent from the H2 production stage of biowaste mixture (MBW1), Bacillus cereus EGU43 could produce 195 mg PHA/l and 15.6 % (w/w). Further, supplementation of GM-2 medium (0.1×) and glucose (0.5 %) in H2 production stage effluents, resulted in significant improvements of up to 11 and 41.7 % of PHA contents, respectively. An improvement of 3.9- and 17-fold in PHA yields as compared to with and without integrative H2 production from the MBW1 has been recorded. This integrative approach seems to be a suitable process to improve the yields of H2 and PHA by mixing biowastes.

  17. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  18. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. PLANNING AND ASSESSMENT MEASURES TO UPDATING RESOURCES RECYCLING EQUIPMENTS IN COLLABORATION WITH SEWAGE TREATMENT PLANTS AND WASTE INCINERATION PLANTS

    NASA Astrophysics Data System (ADS)

    Nakakubo, Toyohiko; Tokai, Akihiro; Ohno, Koichi

    This study aims to assess two biomass utilization policies: the integration of food waste treatment in a sewerage treatment plant with an anaerobic digestion tank, and the pruned branch usage as heat source for drying sludge. We focused on two points in our analysis that the impact of the increase of dewatered sludge on sludge treatment processes after digestion and the improvement of the efficiency of waste power generation plants. A developed model was applied to the case study in Kobe city and evaluated the impact until 2030 by four indicators: energy consumption, greenhouse gas (GHG) emission, phosphorus-recovery, and cost. The results showed that case 3-C, which introducing the combined sludge and food waste digestion system, pyrolysis gasification with gas engine and wood-chip boiler, could supply additional 452 TJ/y of energy, recovery 93 t-P/y of phosphorus, and reduce 38 kt-CO2eq./y of GHG while shrinking the cost by 88 million yen/y compared to business as usual types-update case.

  20. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  1. Integrated least-cost lumber grade-mix solver

    Treesearch

    U. Buehlmann; R. Buck; R.E. Thomas

    2011-01-01

    Hardwood lumber costs account for up to 70 percent of the total product costs of U.S. secondary wood products producers. Reducing these costs is difficult and often requires substantial capital investments. However, lumber-purchasing costs can be minimized by buying the least-cost lumber grade-mix that satisfies a company's component needs. Price differentials...

  2. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    NASA Technical Reports Server (NTRS)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  3. Material and energy recovery in integrated waste management systems: project overview and main results.

    PubMed

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Ragazzi, Marco; Saccani, Cesare

    2011-01-01

    This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Municipal solid waste management in Lahore City District, Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batool, Syeda Adila; Muhammad Nawaz Ch

    2009-06-15

    This study deals with generation, composition, collection, transportation, and disposal, as well as the present cost of the waste management on the basis of 60% collection of the total waste and the cost of proposed improved system of management on the basis of 100% waste collection using the IWM-2 LCI model. A GIS map of Data Ganj Bakhsh Town (DGBT) of Lahore City District showing communal storage facilities is also provided. DGBT has a population of 1,624,169 living in 232,024 dwellings. The total waste generated per year is 500,000 tons, or 0.84/kg/cap/day. Presently 60% of the MSW is collected andmore » disposed in open dumps, while 40% is not collected and lies along roadsides, streets railway lines, depressions, vacant plots, drains, storm drains and open sewers. In DGBT, 129 containers of 5-m{sup 3} capacity, 120 containers of 10-m{sup 3} capacity and 380 skips of 2.5-m{sup 3} capacity are placed for waste collection. The overall collection and disposal cost of the MSW of DGBT is $3,177,900/yr, which is $10.29/ton. Modeling was conducted using the IWM-2 model for improved collection and disposal on the basis of 100% service, compared to the current 60% service. The modelled cost is $8.3/per ton, which is 20% less than the present cost, but the overall cost of 100% collection and disposal increases to $4,155,737/yr.« less

  5. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    PubMed

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  6. A conceptual framework for negotiating public involvement in municipal waste management decision-making in the UK.

    PubMed

    Garnett, Kenisha; Cooper, Tim; Longhurst, Philip; Jude, Simon; Tyrrel, Sean

    2017-08-01

    The technical expertise that politicians relied on in the past to produce cost-effective and environmentally sound solutions no longer provides sufficient justification to approve waste facilities. Local authorities need to find more effective ways to involve stakeholders and communities in decision-making since public acceptance of municipal waste facilities is integral to delivering effective waste strategies. This paper presents findings from a research project that explored attitudes towards greater levels of public involvement in UK waste management decision-making. The study addressed questions of perception, interests, the decision context, the means of engagement and the necessary resources and capacity for adopting a participatory decision process. Adopting a mixed methods approach, the research produced an empirical framework for negotiating the mode and level of public involvement in waste management decision-making. The framework captures and builds on theories of public involvement and the experiences of practitioners, and offers guidance for integrating analysis and deliberation with public groups in different waste management decision contexts. Principles in the framework operate on the premise that the decision about 'more' and 'better' forms of public involvement can be negotiated, based on the nature of the waste problem and wider social context of decision-making. The collection of opinions from the wide range of stakeholders involved in the study has produced new insights for the design of public engagement processes that are context-dependent and 'fit-for-purpose'; these suggest a need for greater inclusivity in the case of contentious technologies and high levels of uncertainty regarding decision outcomes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Technoeconomic aspects of alternative municipal solid wastes treatment methods.

    PubMed

    Economopoulos, Alexander P

    2010-04-01

    This paper considers selected treatment technologies for comingled domestic and similar wastes and provides technoeconomic data and information, useful for the development of strategic management plans. For this purpose, treatment technologies of interest are reviewed and representative flow diagrams, along with material and energy balances, are presented for the typical composition of wastes in Greece; possible difficulties in the use of treatment products, along with their management implications, are discussed, and; cost functions are developed, allowing assessment of the initial capital investment and annual operating costs. Based on the latter, cost functions are developed for predicting the normalized treatment costs of alternative methods (in euro/t of MSW treated), as function of the quantity of MSW processed by plants built and operated (a) by municipality associations, and (b) by private enterprises. Finally, the alternative technologies considered are evaluated on the basis of their cost aspects, product utilization and compatibility with the EU waste framework Directive 2008/98. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  9. Examples of Disposition Alternatives for WTP Solid Secondary Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, R.

    The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.

  10. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  11. Efficacy and Cost-Effectiveness Analysis of Evidence-Based Nursing Interventions to Maintain Tissue Integrity to Prevent Pressure Ulcers and Incontinence-Associated Dermatitis.

    PubMed

    Avşar, Pınar; Karadağ, Ayişe

    2018-02-01

    A reduction in tissue tolerance promotes the development of pressure ulcers (PUs) and incontinence-associated dermatitis (IAD). To determine the cost-effectiveness and efficacy of evidence-based (EB) nursing interventions on increasing tissue tolerance by maintaining tissue integrity. The study involved 154 patients in two intensive care units (77 patients, control group; 77 patients, intervention group). Data were collected using the following: patient characteristics form, Braden PU risk assessment scale, tissue integrity monitoring form, PU identification form, IAD and severity scale, and a cost table of the interventions. Patients in the intervention group were cared for by nurses trained in the use of the data collection tools and in EB practices to improve tissue tolerance. Routine nursing care was given to the patients in the control group. The researcher observed all patients in terms of tissue integrity and recorded the care-related costs. Deterioration of tissue integrity was observed in 18.2% patients in the intervention group compared to 54.5% in the control group (p < .05). The average cost to increase tissue tolerance prevention in the intervention and control groups was X¯ = $204.34 ± 41.07 and X¯ = $138.90 ± 1.70, respectively. It is recommended that EB policies and procedures are developed to improve tissue tolerance by maintaining tissue integrity. Although the cost of EB preventive initiatives is relatively high compared to those that are not EB, the former provide a significant reduction in the prevalence of tissue integrity deterioration. © 2017 Sigma Theta Tau International.

  12. Logistical management and private sector involvement in reducing the cost of municipal solid waste collection service in the Tubas area of the West Bank.

    PubMed

    El-Hamouz, Amer M

    2008-01-01

    This paper addresses the problems of the municipal solid waste (MSW) collection system in the Tubas district of Palestine. More specifically, it addresses the often-voiced concerns pertaining to low efficiency as well as environmental problems. This was carried out through a systematic methodological approach. The paper illustrates how a private company applied a logistical management strategy, by rescheduling the MSW collection system, reallocating street solid waste containers and minimizing vehicle routing. The way in which the MSW collection timetable was rescheduled decreased the operating expenses and thus reduced MSW collection costs. All data needed to reschedule the collection timetable and optimize vehicle routing were based on actual field measurements. The new MSW collection timetable introduced by a private company was monitored for a period of a month. The new system resulted in an improvement in the MSW collection system by reducing the collection cost to a level that is socially acceptable (US dollars 3.75/family/month), as well as economically and environmentally sound.

  13. Shared responsibility for managing electronic waste: a case study of Maine, USA.

    PubMed

    Wagner, Travis P

    2009-12-01

    Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.

  14. Office of River Protection Integrated Safety Management System Description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CLARK, D.L.

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting themore » waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.« less

  15. Waste Separations and Pretreatment Workshop report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.; Harrington, R.A.; Quadrel, M.J.

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities.

  16. Detailed costing document for the centralized waste treatment industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    In this document, EPA presents the costs estimated for compliance with the proposed CWT effluent limitations guidelines and standards. Section 1 provides a general description of how the individual treatment technology and regulatory option costs were developed. In Sections 2 through 4, EPA describes the development of costs for each of the wastewater and sludge treatment technologies. In Section 5, EPA presents additional compliance costs to be incurred by facilities, which are not technology specific. These additional items are retrofit costs, monitoring costs, RCRA permit modification costs, and land costs.

  17. Tapping Resources in Municipal Solid Waste

    ERIC Educational Resources Information Center

    Blum, S. L.

    1976-01-01

    Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…

  18. Preliminary economic assessment of the use of waste frying oils for biodiesel production in Beirut, Lebanon.

    PubMed

    Fawaz, Elyssa G; Salam, Darine A

    2018-05-15

    In this study, a method for assessing the costs of biodiesel production from waste frying oils in Beirut, Lebanon, was investigated with the aim of developing an economic evaluation of this alternative. A hundred restaurant and hotel enterprises in Beirut were surveyed for promoting them in participating in the biodiesel supply chain, and for data collection on waste frying oils generation, disposal methods and frequency, and acquisition cost. Also, waste frying oils were collected and converted into biodiesel using a one-step base catalyzed transesterification process. Physicochemical characteristics of the produced biodiesel were conforming to international standards. Data produced from laboratory scale conversion of waste frying oils to biodiesel, as well as data collected from the only biodiesel plant in Lebanon was used to determine the production cost of biodiesel. Geographic Information System was used to propose a real-time vehicle routing model to establish the logistics costs associated with waste frying oils collection. Comparing scenarios of the configuration collection network of waste frying oils, and using medium-duty commercial vehicles for collection, a logistics cost of US$/L 0.08 was optimally reached. For the calculation of the total cost of biodiesel production, the minimum, average, and maximum values for the non-fixed cost variables were considered emerging 81 scenarios for possible biodiesel costs. These were compared with information on the commercialization of diesel in Lebanon for the years 2011 through 2017. Although competitive with petroleum diesel for years 2011 to 2014, the total biodiesel cost presented less tolerance to declining diesel prices in the recent years. Sensitivity analysis demonstrated that the acquisition cost of waste frying oils is the key factor affecting the overall cost of biodiesel production. The results of this study validate the economic feasibility of waste frying oils' biodiesel production in the studied

  19. Sensitivities of projected 1980 photovoltaic system costs to major system cost drivers

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. W.; Smith, J. L.

    1984-01-01

    The sensitivity of projected 1990 photovoltaic (PV) system costs to major system cost drivers was examined. It includes: (1) module costs and module efficiencies; (2) area related balance of system (BOS) costs; (3) inverter costs and efficiencies; and (4) module marketing and distribution markups and system integration fees. Recent PV system cost experiences and the high costs of electricity from the systems are reviewed. The 1990 system costs are projected for five classes of PV systems, including four ground mounted 5-MWp systems and one residential 5-kWp system. System cost projections are derived by first projecting costs and efficiencies for all subsystems and components. Sensitivity analyses reveal that reductions in module cost and engineering and system integration fees seem to have the greatest potential for contributing to system cost reduction. Although module cost is clearly the prime candidate for fruitful PV research and development activities, engineering and system integration fees seem to be more amenable to reduction through appropriate choice of system size and market strategy. Increases in inverter and module efficiency yield significant benefits, especially for systems with high area related costs.

  20. FREE INVENTORY PLATFORM MANAGES CHEMICAL RISKS, ADDRESSES CHEMICAL ACCOUNTABILITY, AND MEASURES COST-EFFECTIVENESS

    PubMed Central

    D’Souza, Malcolm J.; Roeske, Kristopher P.; Neff, Lily S.

    2017-01-01

    To develop best practices for laboratory safety and for chemical product and supplies management accountability, the freely-available online platform, Quartzy, was integrated within an interdisciplinary science department at a small Mid-Atlantic liberal-arts college. This was done to ensure the accuracy of purchase records, the appropriate use of storage and handling protocols, and for a continually updated chemical inventory system. Quartzy also facilitated the digital tracking and dispersal of the College’s hazardous waste inventory. Since the implementation of the Quartzy platform, the science department achieved significant cost-savings during the procurement of laboratory supplies and equipment, and it developed a sense of ownership towards the common goal of lowering the College's environmental impact as it relates to its managing of laboratory-generated hazardous wastes. PMID:29251298

  1. Waste Minimization Study on Pyrochemical Reprocessing Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-07-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluoridesmore » previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an

  2. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    NASA Astrophysics Data System (ADS)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  3. Evaluating Opportunities for Achieving Cost Efficiencies Through the Introduction of PrePex Device Male Circumcision in Adult VMMC Programs in Zambia and Zimbabwe.

    PubMed

    Vandament, Lyndsey; Chintu, Naminga; Yano, Nanako; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Mpasela, Felton; Muguza, Edward; Mangono, Tichakunda; Madidi, Ngonidzashe; Samona, Alick; Tagar, Elva; Hatzold, Karin

    2016-06-01

    Results from recent costing studies have put into question potential Voluntary Medical Male Circumcision (VMMC) cost savings with the introduction of the PrePex device. We evaluated the cost drivers and the overall unit cost of VMMC for a variety of service delivery models providing either surgical VMMC or both PrePex and surgery using current program data in Zimbabwe and Zambia. In Zimbabwe, 3 hypothetical PrePex only models were also included. For all models, clients aged 18 years and older were assumed to be medically eligible for PrePex and uptake was based on current program data from sites providing both methods. Direct costs included costs for consumables, including surgical VMMC kits for the forceps-guided method, device (US $12), human resources, demand creation, supply chain, waste management, training, and transport. Results for both countries suggest limited potential for PrePex to generate cost savings when adding the device to current surgical service delivery models. However, results for the hypothetical rural Integrated PrePex model in Zimbabwe suggest the potential for material unit cost savings (US $35 per VMMC vs. US $65-69 for existing surgical models). This analysis illustrates that models designed to leverage PrePex's advantages, namely the potential for integrating services in rural clinics and less stringent infrastructure requirements, may present opportunities for improved cost efficiency and service integration. Countries seeking to scale up VMMC in rural settings might consider integrating PrePex only MC services at the primary health care level to reduce costs while also increasing VMMC access and coverage.

  4. Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, Nick; Kowalczyk, Joseph

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality

  5. Cost-effective water quality assessment through the integration of monitoring data and modeling results

    NASA Astrophysics Data System (ADS)

    Lobuglio, Joseph N.; Characklis, Gregory W.; Serre, Marc L.

    2007-03-01

    Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks

  6. Annual waste reduction activities report. Issue 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-03-18

    This report discusses the waste minimization activities for the Pinellas Plant. The Pinellas Plant deals with low-level radioactive wastes, solvents, scrap metals and various other hazardous materials. This program has realized cost savings through recycling and reuse of materials.

  7. Integrating Cost-effective Rollover Protective Structure Installation in High School Agricultural Mechanics: A Feasibility Study.

    PubMed

    Mazur, Joan; Vincent, Stacy; Watson, Jennifer; Westneat, Susan

    2015-01-01

    This study with three Appalachian county agricultural education programs examined the feasibility, effectiveness, and impact of integrating a cost-effective rollover protective structure (CROPS) project into high school agricultural mechanics classes. The project aimed to (1) reduce the exposure to tractor overturn hazards in three rural counties through the installation of CROPS on seven tractors within the Cumberland Plateau in the east region; (2) increase awareness in the targeted rural communities of cost-effective ROPS designs developed by the National Institution for Occupational Safety and Health (NIOSH) to encourage ROPS installations that decrease the costs of a retrofit; (3) test the feasibility of integration of CROPS construction and installations procedures into the required agricultural mechanics classes in these agricultural education programs; and (4) explore barriers to the implementation of this project in high school agricultural education programs. Eighty-two rural students and three agricultural educators participated in assembly and installation instruction. Data included hazard exposure demographic data, knowledge and awareness of CROPS plans, and pre-post knowledge of construction and assessment of final CROPS installation. Findings demonstrated the feasibility and utility of a CROPS education program in a professionally supervised secondary educational setting. The project promoted farm safety and awareness of availability and interest in the NIOSH Cost-effective ROPS plans. Seven CROPS were constructed and installed. New curriculum and knowledge measures also resulted from the work. Lessons learned and recommendations for a phase 2 implementation and further research are included.

  8. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  9. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  10. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages

  11. Valorization of winery waste vs. the costs of not recycling.

    PubMed

    Devesa-Rey, R; Vecino, X; Varela-Alende, J L; Barral, M T; Cruz, J M; Moldes, A B

    2011-11-01

    Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimes also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  13. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less

  14. Waste to energy – key element for sustainable waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less

  15. Transboundary movements of hazardous wastes: the case of toxic waste dumping in Africa.

    PubMed

    Anyinam, C A

    1991-01-01

    Developed and developing countries are in the throes of environmental crisis. The planet earth is increasingly being literally choked by the waste by-products of development. Of major concern, especially to industrialized countries, is the problem of what to do with the millions of tons of waste materials produced each year. Owing to mounting pressure from environmental groups, the "not-in-mu-backyard" movement, the close monitoring of the activities of waste management agents, an increasing paucity of repositories for waste, and the high cost of waste treatment, the search for dumping sites for waste disposal has, in recent years, extended beyond regional and national boundaries. The 1980s have seen several attempts to export hazardous wastes to third world countries. Africa, for example, is gradually becoming the prime hunting ground for waste disposal companies. This article seeks to examine, in the context of the African continent, the sources and destinations of this form of relocation-diffusion of pollution, factors that have contributed to international trade in hazardous wastes between developed and developing countries, the potential problems such exports would bring to African countries, and measures being taken to abolish this form of international trade.

  16. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  17. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  18. Social cost considerations and legal constraints in implementing modular integrated utility systems

    NASA Technical Reports Server (NTRS)

    Lede, N. W.; Dixon, H. W.; King, O.; Hill, D. K.

    1974-01-01

    Social costs associated with the design, demonstration, and implementation of the Modular Integrated Utility System are considered including the social climate of communities, leadership patterns, conflicts and cleavages, specific developmental values, MIUS utility goal assessment, and the suitability of certian alternative options for use in a program of implementation. General considerations are discussed in the field of socio-technological planning. These include guidelines for understanding the conflict and diversity; some relevant goal choices and ideas useful to planners of the MIUS facility.

  19. Shared responsibility for managing electronic waste: A case study of Maine, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Travis P., E-mail: twagner@usm.maine.ed

    2009-12-15

    Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste wasmore » collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.« less

  20. Performing Economic Evaluation of Integrated Care: Highway to Hell or Stairway to Heaven?

    PubMed Central

    Stein, K. Viktoria; Evers, Silvia; Rutten-van Mölken, Maureen

    2016-01-01

    Health economists are increasingly interested in integrated care in order to support decision-makers to find cost-effective solutions able to tackle the threat that chronic diseases pose on population health and health and social care budgets. However, economic evaluation in integrated care is still in its early years, facing several difficulties. The aim of this paper is to describe the unique nature of integrated care as a topic for economic evaluation, explore the obstacles to perform economic evaluation, discuss methods and techniques that can be used to address them, and set the basis to develop a research agenda for health economics in integrated care. The paper joins the voices that call health economists to pay more attention to integrated care and argues that there should be no more time wasted for doing it. PMID:28316543