Sample records for waste management installation

  1. An overview of the sustainability of solid waste management at military installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, S.; Shore, J.; Worden, H.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presentedmore » indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.« less

  2. Land Management Panel: Army’s Net Zero Installation Initiative

    DTIC Science & Technology

    2012-05-24

    same watershed so not to deplete the groundwater and surface water resources of that region in quantity or quality.  A Net Zero WASTE Installation...0.15 0.2 0.25 Assistant Secretary of the Army (Installations, Energy & Environment) Net Zero Waste A Net Zero WASTE Installation reduces, reuses...Net Zero Waste Strategy 17 Assistant Secretary of the Army (Installations, Energy & Environment) Waste Roadmaps Material flow analysis

  3. Installation Restoration Program. Phase 1 - Records Search, Elmendorf AFB, Alaska

    DTIC Science & Technology

    1983-09-01

    Installation Restoration Hazardous Waste Management Past Solid Waste Disposal Sites Ground Water Contamination 26. ABSTRACT (CO- ffew. - reev. ilde It necessar...Activity Review 4-1 Industrial Operations (Shops) 4-2 Fire Training 4-13 Fuels Management 4-15 Description of Past On-sane Disposal Methods 4-23 Waste...characteristics, potential for contaminant migration and waste management practices. The details of the rating procedure are presented in Appendix H and the

  4. Environmental Compliance Assessment System (ECAS)

    DTIC Science & Technology

    1993-09-01

    hazardous waste onsite? How and where? 8. Do satellite/offpost facilitiesminstallations (i.e., USARCs) transport hazardous wastes to the installation...Contractor ? In-house personnel_ ? 3. Is waste transported off-installation for disposal: a. In landfills? b. In incinerators? c. Transfer stations? d...Does the installation dispose of PCBs or PCB items at the installation? 4. Does the facility transport PCBs? 5. Is there a working management system

  5. GIS-based planning system for managing the flow of construction and demolition waste in Brazil.

    PubMed

    Paz, Diogo Henrique Fernandes da; Lafayette, Kalinny Patrícia Vaz; Sobral, Maria do Carmo

    2018-05-01

    The objective of this article was to plan a network for municipal management of construction and demolition waste in Brazil with the assistance of a geographic information system, using the city of Recife as a case study. The methodology was carried out in three stages. The first was to map the illegal construction and demolition of waste disposal points across Recife and classify the waste according to its recyclability. In sequence, a method for indicating suitable areas for installation of voluntary delivery points, for small waste generators, are presented. Finally, a method for indicating suitable areas for the installation of trans-shipment and waste sorting areas, developed for large generators, is presented. The results show that a geographic information system is an essential tool in the planning of municipal construction and demolition waste management, in order to facilitate the spatial analysis and control the generation, sorting, collection, transportation, and final destination of construction and demolition waste, increasing the rate of recovery and recycling of materials.

  6. A Save-Energy, Save-Money Program That Pays Off

    ERIC Educational Resources Information Center

    Embersits, John F.

    1976-01-01

    Suggested guidelines for energy saving on campus include a 3-phase plan: (1) Quick Fix--effective management of what you already have; (2) Refitting--modification of existing systems and installation of simple controls; (3) Systems Convert--installation of computerized controls, waste-heat recovery, solid-waste recovery utilization and other…

  7. 7 CFR 1470.24 - Payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... participant associated with planning, design, materials, installation, labor, management, maintenance, or..., construction, or maintenance of animal waste storage or treatment facilities or associated waste transport or...

  8. Public health assessment for waste management of Wisconsin-Brookfield, Brookfield, Waukesha County, Wisconsin, Region 5. Cerclis No. WID980901235. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-14

    The Waste Management-Brookfield Landfill was a former gravel pit used to dispose of municipal, commercial, and industrial wastes. Methane gas migration has been a problem at the site in the past. A gas extraction system was installed within the landfill. Gas probes that measure total combustible gas have also been installed on site. Continuous methane/combustible gas monitors were placed in two residential basements; relatively high levels of gas were measured in one residence in 1985. Groundwater beneath the site has been contaminated from the site. The landfill does not have a liner. Waste Management has constructed a new clay capmore » that is well vegetated and maintained regularly. The site poses an indeterminate public health hazard from inhalation exposure to contaminated indoor air migrating into the basements of nearby residences.« less

  9. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John Robin

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, andmore » MWL-SV05) are shown in Figure 1-2« less

  10. Decision Support Model for Municipal Solid Waste Management at Department of Defense Installations.

    DTIC Science & Technology

    1995-12-01

    Huang uses "Grey Dynamic Programming for Waste Management Planning Under Uncertainty." Fuzzy Dynamic Programming (FDP) is usually designed to...and Composting Programs. Washington: Island Press, 1991. Junio, D.F. Development of an Analytical Hierarchy Process ( AHP ) Model for Siting of

  11. Environmental factor(tm) system: RCRA hazardous waste handler information (on CD-ROM). Data file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    Environmental Factor(trademark) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity, and compliance history for facilities found in the EPA Research Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management, and minimization by companies who are large quantity generators; and (3) Data on the waste management practices of treatment, storage, and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action, or violation information, TSD status, generator and transporter status, and more. (2) View compliance information - dates of evaluation, violation, enforcement, and corrective action. (3) Lookup facilities by waste processing categories of marketing, transporting, processing, and energy recovery. (4) Use owner/operator information and names, titles, and telephone numbers of project managers for prospecting. (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving, and exporting.« less

  12. Waste treatability guidance program. User`s guide. Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, C.

    1995-12-21

    DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less

  13. 40 CFR Appendix D to Subpart E of... - Transport and Disposal of Asbestos Waste

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... & Waste Management Division, USEPA, Region II, 26 Federal Plaza, New York, NY 10007, (212) 264-6770... that can be locked when left unattended. Fencing should be installed around the perimeter of the...

  14. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.

  15. Environmental Factor(tm) system: RCRA hazardous waste handler information (on cd-rom). Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    Environmental Factor(tm) RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information - dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  16. Environmental Factor{trademark} system: RCRA hazardous waste handler information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-03-01

    Environmental Factor{trademark} RCRA Hazardous Waste Handler Information on CD-ROM unleashes the invaluable information found in two key EPA data sources on hazardous waste handlers and offers cradle-to-grave waste tracking. It`s easy to search and display: (1) Permit status, design capacity and compliance history for facilities found in the EPA Resource Conservation and Recovery Information System (RCRIS) program tracking database; (2) Detailed information on hazardous wastes generation, management and minimization by companies who are large quantity generators, and (3) Data on the waste management practices of treatment, storage and disposal (TSD) facilities from the EPA Biennial Reporting System which is collectedmore » every other year. Environmental Factor`s powerful database retrieval system lets you: (1) Search for RCRA facilities by permit type, SIC code, waste codes, corrective action or violation information, TSD status, generator and transporter status and more; (2) View compliance information -- dates of evaluation, violation, enforcement and corrective action; (3) Lookup facilities by waste processing categories of marketing, transporting, processing and energy recovery; (4) Use owner/operator information and names, titles and telephone numbers of project managers for prospecting; and (5) Browse detailed data on TSD facility and large quantity generators` activities such as onsite waste treatment, disposal, or recycling, offsite waste received, and waste generation and management. The product contains databases, search and retrieval software on two CD-ROMs, an installation diskette and User`s Guide. Environmental Factor has online context-sensitive help from any screen and a printed User`s Guide describing installation and step-by-step procedures for searching, retrieving and exporting. Hotline support is also available for no additional charge.« less

  17. Health-care waste management in India.

    PubMed

    Patil, A D; Shekdar, A V

    2001-10-01

    Health-care waste management in India is receiving greater attention due to recent regulations (the Biomedical Wastes (Management & Handling) Rules, 1998). The prevailing situation is analysed covering various issues like quantities and proportion of different constituents of wastes, handling, treatment and disposal methods in various health-care units (HCUs). The waste generation rate ranges between 0.5 and 2.0 kg bed-1 day-1. It is estimated that annually about 0.33 million tonnes of waste are generated in India. The solid waste from the hospitals consists of bandages, linen and other infectious waste (30-35%), plastics (7-10%), disposable syringes (0.3-0.5%), glass (3-5%) and other general wastes including food (40-45%). In general, the wastes are collected in a mixed form, transported and disposed of along with municipal solid wastes. At many places, authorities are failing to install appropriate systems for a variety of reasons, such as non-availability of appropriate technologies, inadequate financial resources and absence of professional training on waste management. Hazards associated with health-care waste management and shortcomings in the existing system are identified. The rules for management and handling of biomedical wastes are summarised, giving the categories of different wastes, suggested storage containers including colour-coding and treatment options. Existing and proposed systems of health-care waste management are described. A waste-management plan for health-care establishments is also proposed, which includes institutional arrangements, appropriate technologies, operational plans, financial management and the drawing up of appropriate staff training programmes.

  18. Characterization of industrial waste from a natural gas distribution company and management strategies: a case study of the East Azerbaijan Gas Company (Iran).

    PubMed

    Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak

    2012-10-01

    Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment.

  19. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Remedial investigation and feasibility study. Bullen Point Radar Installation, Alaska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmi, S.

    1996-03-18

    The United States Air Force (Air Force) has prepared this Remedial investigation/Feasibility Study (RI/FS) report as part of the Installation Restoration Program (IRP) to present results of RI/FS activities at five sites at the Bullen Point radar installation. The IRP provides for investigating, quantifying, and remediating environmental contamination from past waste management activities at Air Force installations throughout the United States.

  20. Installation Restoration Program. Phase 1. Records Search, Charleston AFB, South Carolina

    DTIC Science & Technology

    1983-10-01

    and plastics plants. Conducted industrial waste surveys, landfill design, and planning for plant environmental protection programs; evaluated air...management study for a major plastics manufacturing company. Responsibilitites included identification and investigation of a number of operating...61 aste Caracteristics 68 Pathways 69 Total 198 divided by 3 = 63 3ross total sc,:re B. Aooly factor for waste containment from waste manaement

  1. Total chemical management in photographic processing

    USGS Publications Warehouse

    Luden, Charles; Schultz, Ronald

    1985-01-01

    The mission of the U. S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center is to produce high-quality photographs of the earth taken from aircraft and Landsat satellite. In order to meet the criteria of producing research-quality photographs, while at the same time meeting strict environmental restrictions, a total photographic chemical management system was installed. This involved a three-part operation consisting of the design of a modern chemical analysis laboratory, the implementation of a chemical regeneration system, and the installation of a waste treatment system, including in-plant pretreatment and outside secondary waste treatment. Over the last ten years the result of this program has yielded high-quality photographs while saving approximately 30,000 per year and meeting all Environmental Protection Agency (EPA) restrictions.

  2. Process Improvement in Outpatient Installation RSUD dr. Soediran Mangun Sumarso Using Lean Hospital Approach

    NASA Astrophysics Data System (ADS)

    Sayyida, Ghany; Fahma, Fakhrina; Iftadi, Irwan

    2018-03-01

    RSUD dr. Soediran Mangun Sumarso is a public hospital in Wonogiri district which has an outpatient installation service. However, the waiting time of some services in outpatient installations exceeds the standard time set by the health minister of the Republic of Indonesia. It is known from the data waiting time in the outpatient installation. The purpose of this study is to provide improvements using lean hospital approach. Proposed improvement is done by eliminating waste that occurs in outpatient installation service. The methodology used in this study consists of four stages. The first stage is describing the service system using a cross-functional flowchart. The second stage is identifying waste using value stream mapping, observation and interview. The third stage is to determine critical waste by borda method and pareto diagram. The last stage is to provide recommendation improvement using fishbone diagram and FMEA. The result of this research is proposed improvements. The proposed improvements are adding special register counters, implementing an online reservation system, doctors schedule synchronization, adding doctors in polyclinics, fixing queue numbers, applying visual management concepts, making connecting glass in pharmacies and adding multifunction shelves in polyclinics.

  3. Underground Tank Management.

    ERIC Educational Resources Information Center

    Bednar, Barbara A.

    1990-01-01

    The harm to human health and our environment caused by leaking underground storage tanks can be devastating. Schools can meet new federal waste management standards by instituting daily inventory monitoring, selecting a reliable volumetric testing company, locating and repairing leaks promptly, and removing and installing tanks appropriately. (MLH)

  4. Environmental issues and process risks for operation of carbon capture plant

    NASA Astrophysics Data System (ADS)

    Lajnert, Radosław; Nowak, Martyna; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The scope of this publication is a presentation of environmental issues and process risks connected with operation an installation for carbon capture from waste gas. General technological assumptions, typical for demonstration plant for carbon capture from waste gas (DCCP) with application of two different solutions - 30% water solution of monoethanoloamine (MEA) and water solution with 30% AMP (2-amino-2-methyl-1-propanol) and 10% piperazine have been described. The concept of DCCP installation was made for Łaziska Power Plant in Łaziska Górne owned by TAURON Wytwarzanie S.A. Main hazardous substances, typical for such installation, which can be dangerous for human life and health or for the environment have been presented. Pollution emission to the air, noise emission, waste water and solid waste management have been described. The environmental impact of the released substances has been stated. Reference to emission standards specified in regulations for considered substances has been done. Principles of risk analysis have been presented and main hazards in carbon dioxide absorption node and regeneration node have been evaluated.

  5. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less

  6. Recommended methods for the disposal of sanitary wastes from temporary field medical facilities.

    PubMed

    Reed, R A; Dean, P T

    1994-12-01

    Emergency field medical facilities constructed after a disaster are frequently managed by medical staff even though many of the day-to-day problems of hospital management are unrelated to medicine. In this paper we discuss the short-term management of one of these problems, namely the control and disposal of sanitary wastes. It is aimed at persons in the medical profession who may find themselves responsible for a temporary hospital and have little or no previous experience of managing such situations. The wastes commonly generated are excreta, sullage and refuse. In addition, surface water must also be considered because its inadequate disposal is a potential health hazard. The paper concentrates on short-term measures appropriate for the first six months of the hospital or clinic's existence. Facilities expected to last longer are recommended to install conventional waste management systems appropriate to the local community and conditions. In most situations, wastes should be disposed of underground either by burial (for solids) or infiltration (for liquids). The design, construction and management of appropriate disposal systems are described.

  7. Sustainable waste management in the UK: the public health role.

    PubMed

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues.

  8. Installation Restoration Program. Phase 1. Records Search, England AFB, Louisiana

    DTIC Science & Technology

    1983-05-01

    compound shown on Figure 4.3. No herbicides, expired DDT or other pesticides were stored at this site. Some battery acid was stored in plastic boxes...Union Carbide Corporation, Chemicals and Plastics Divi- sion, Environomental Engineering Department. As a pro- cess/project engineer performed...paper mill waste treatment facility. Project Manager on Solid and Hazardous Waste study for a diverse chemicals and plastics production facility

  9. Reducing Waste from Military Facility Programs...Shed Those Ugly Tons

    DTIC Science & Technology

    2011-05-01

    USACE guidance 5 BUILDING STRONG® Sustainability Drivers • Net Zero Waste – Assistant Secretary of the Army for Installations, Energy and Environment...Garrison Grafenwoehr, Germany.  Fort Bliss and Carson (energy, water, waste)  “A net zero waste installation is an installation that reduces

  10. Extra-Territorial Siting of Nuclear Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Thomas E.; Morris, Frederic A.

    2009-10-07

    Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/politicalmore » frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.« less

  11. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  13. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for elimination of methane production and acceleration of waste decomposition. In the first phase of this project a 12-acre module that contains a 9.5-acre anaerobic cell and a 2.5-acre aerobic cell has been constructed and filled with over 220,000 tons of municipal solid waste. Water and leachate addition began in April 2002 and to date less than 200,000 gallons of liquid has been added to the 3.5-acre anaerobic cell. The waste filling phase of the aerobic cell was completed in June of 2002 and a 12-inches soil cover and 12-inches of greenwaste compost cover was placed on top of the cell. A vacuum will be applied to the piping within the waste to draw air through the landfill. Instrumentations have been installed to monitor the following parameters: waste temperature, moisture, leachate volumes, leachate hydraulic head over the primary liner, leachate composition, gas volumes and composition. A supervisory Control and Data Acquisition (SCADA) system has been installed to monitor and control the operation of the bioreactor cells. Waste samples were taken from each cell for laboratory testing in early June 2002.

  14. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece.

    PubMed

    Economopoulou, M A; Economopoulou, A A; Economopoulos, A P

    2013-11-01

    The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 milliont/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...

  16. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...

  17. 76 FR 76625 - Association of State and Territorial Solid Waste Management Officials; Denial of Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... luminous exit signs do not require electricity or batteries, and are commonly installed in areas where... tritium exit signs are returned to the manufacturer for recycling or disposed of as low-level radioactive...

  18. U.S. Department of Energy worker health risk evaluation methodology for assessing risks associated with environmental restoration and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, B.P.; Legg, J.; Travis, C.C.

    1995-06-01

    This document describes a worker health risk evaluation methodology for assessing risks associated with Environmental Restoration (ER) and Waste Management (WM). The methodology is appropriate for estimating worker risks across the Department of Energy (DOE) Complex at both programmatic and site-specific levels. This document supports the worker health risk methodology used to perform the human health risk assessment portion of the DOE Programmatic Environmental Impact Statement (PEIS) although it has applications beyond the PEIS, such as installation-wide worker risk assessments, screening-level assessments, and site-specific assessments.

  19. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  20. Newly emerging resource efficiency manager programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.; Howell, C.

    1997-12-31

    Many facilities in the northwest such as K--12 schools, community colleges, and military installations are implementing resource-efficiency awareness programs. These programs are generally referred to as resource efficiency manager (REM) or resource conservation manager (RCM) programs. Resource efficiency management is a systems approach to managing a facility`s energy, water, and solid waste. Its aim is to reduce utility budgets by focusing on behavioral changes, maintenance and operation procedures, resource accounting, education and training, and a comprehensive awareness campaign that involves everyone in the organization.

  1. Contaminated waste incinerator modification study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, F.

    1995-08-01

    An explosive waste incinerator (EWI) can be installed in the existing Badger AAP Contaminated Waste Processor (CWP). An engineering evaluation of installing a rotary kiln furnace to dispose of waste energetic material has shown the installation to be possible. An extensive literature search was completed to develop the known proven methods of energetic waste disposal. Current incineration practice including thermal treatment alternatives was investigated. Existing and new equipment was reviewed for adequacy. Current CWP operations and hazardous waste to be disposed of were determined. Comparisons were made with other AAP`s EWI.

  2. Adverse birth outcomes in the vicinity of industrial installations in Spain 2004-2008.

    PubMed

    Castelló, Adela; Río, Isabel; García-Pérez, Javier; Fernández-Navarro, Pablo; Waller, Lance A; Clennon, Julie A; Bolúmar, Francisco; López-Abente, Gonzalo

    2013-07-01

    Industrial activity is one of the main sources of ambient pollution in developed countries. However, research analyzing its effect on birth outcomes is inconclusive. We analyzed the association between proximity of mother's municipality of residence to industries from 24 different activity groups and risk of very (VPTB) and moderate (MPTB) preterm birth, very (VLBW) and moderate (MLBW) low birth weight, and small for gestational age (SGA) in Spain, 2004-2008. An ecological study was defined, and a "near vs. far" analysis (3.5 km threshold) was carried out using Hierarchical Bayesian models implemented via Integrated Nested Laplace Approximation. VPTB risk was higher for mothers living near pharmaceutical companies. Proximity to galvanization and hazardous waste management industries increased the risk of MPTB. Risk of VLBW was higher for mothers residing near pharmaceutical and non-hazardous or animal waste management industries. For MLBW many associations were found, being notable the proximity to mining, biocides and animal waste management plants. The strongest association for SGA was found with proximity to management animal waste plants. These results highlight the importance of further research on the relationship between proximity to industrial sites and the occurrence of adverse birth outcomes especially for the case of pharmaceutical and animal waste management activities.

  3. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management datamore » such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered. Establishment of the calculation formula for dismantling of each kind of equipment makes it possible to evaluate manpower for dismantling the whole facility. However, it is not easy to prepare calculation formula for all kinds of equipment that exist in the facility. Therefore, a simpler evaluation method was considered to calculate manpower based on facility characteristics. The results showed promise for evaluating dismantling manpower with respect to each chemical process. For dismantling of contaminated equipment, a GH has been used for protection of the spread of contamination. The use of a GH increases manpower for installation and removal of GH etc. Moreover, structural materials of the GH such as plastic sheets, adhesive tape become a burnable secondary waste. To create an effective dismantling plan, it is necessary to carefully consider use of a GH preliminarily. Thus, an evaluation method of project management data such as manpower and secondary waste generation was considered. The results showed promise for evaluating project management data of GH by using established calculation formula. (authors)« less

  4. Preliminary safety concept for disposal of the very low level radioactive waste in Romania.

    PubMed

    Niculae, O; Andrei, V; Ionita, G; Duliu, O G

    2009-05-01

    In Romania, there are certain nuclear installations in operation or under decommissioning, all of them representing an important source of very low level waste (VLLW). This paper presents an overview on the approach of the VLLW management in Romania, focused on those resulted from the nuclear power plants decommissioning. At the same time, the basic elements of safety concept, together with some safety evaluations concerning VLLW repository are presented and discussed too.

  5. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  6. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  7. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  8. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P., E-mail: eco@otenet.gr

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/ormore » wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 million t/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin.« less

  9. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  10. Evaluation of municipal solid waste management in egyptian rural areas.

    PubMed

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation in solid waste management through the composting of organic matter and using of food waste as an animal feed are considered strength points. However, throwing of solid waste on the banks of water streams, open dumping and uncontrolled burning of solid waste are environmental damaging behaviors that need to be changed. Integrated solid waste management in the Egyptian rural areas is not yet among the priorities of the Egyptian government.

  11. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  12. Identification and analysis the illegal dumping spot of solid waste at Ciliwung segment 5 riverbanks

    NASA Astrophysics Data System (ADS)

    Indrawati, D.; Purwaningrum, P.

    2018-01-01

    Ciliwung River is the main river in the area of Jakarta that is divided into six segments across West Java and Jakarta. The study focuses on the fifth segment which is 30 km long, covering from Kelapa Dua Depok to Manggarai, South Jakarta. The survey of the river consists of 3 sub-segments: Lenteng Agung, Pejaten Timur and Manggarai. Objectives of the study are to describe the characteristics and typology of the residential surrounding the Ciliwung Segment 5 Riverbank, to identification the illegal dumping spot of solid waste, to measure the volume and composition of solid waste in the riverbank, to decide solid waste management for residential area surrounding river banks to control the river pollution. The study shows that there are 11 illegal dumping spot of solid waste consisting of 4.37 m3 solid waste volume. The average composition of solid waste consists of 44% organic, 14% woods, 12% papers, 11% plastics, 3% rubbers, 1% metals and 2% others. To control the river pollution efforts are restoring the function of riverbanks to become green open space area, installing the trash rack into the river, to manage domestic solid waste based on 3R (Reduce, Reuse, Recycle) concept.

  13. Study of Polyolefines Waste Thermo-Destruction in Large Laboratory and in Industrial Installations

    DTIC Science & Technology

    2014-12-15

    coke ”–waste after thermo-destruction carried out on the module No 2 showed an content to 46.1% of ash [20]. This ash content indicates a very large... coke (post-production waste) from the wastes thermo-destruction on 2 modules of vertical modular installation for thermo-destruction of used polymer...of receivedwaste water, the quantity of received coke , the quantity of gaseous product in periods of carrying out installation work before (first

  14. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of thismore » paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.« less

  15. Waste Receiving and Processing (WRAP) Facility PMS Test Report For Data Management System (DMS) Security Test DMS-Y2K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PALMER, M.E.

    1999-09-21

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This document shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems.

  16. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  17. Revolutionary advances in medical waste management. The Sanitec system.

    PubMed

    Edlich, Richard F; Borel, Lise; Jensen, H Gordon; Winters, Kathryne L; Long, William B; Gubler, K Dean; Buschbacher, Ralph M; Becker, Daniel G; Chang, Dillon E; Korngold, Jonathan; Chitwood, W Randolph; Lin, Kant Y; Nichter, Larry S; Berenson, Susan; Britt, L D; Tafel, John A

    2006-01-01

    It is the purpose of this collective review to provide a detailed outline of a revolutionary medical waste disposal system that should be used in all medical centers in the world to prevent pollution of our planet from medical waste. The Sanitec medical waste disposal system consists of the following seven components: (1) an all-weather steel enclosure of the waste management system, allowing it to be used inside or outside of the hospital center; (2) an automatic mechanical lift-and-load system that protects the workers from devastating back injuries; (3) a sophisticated shredding system designed for medical waste; (4) a series of air filters including the High Efficiency Particulate Air (HEPA) filter; (5) microwave disinfection of the medical waste material; (6) a waste compactor or dumpster; and (7) an onboard microprocessor. It must be emphasized that this waste management system can be used either inside or outside the hospital. From start to finish, the Sanitec Microwave Disinfection system is designed to provide process and engineering controls that assure complete disinfection and destruction, while minimizing the operator's exposure to risk. There are numerous technologic benefits to the Sanitec systems, including environmental, operational, physical, and disinfection efficiency as well as waste residue disinfection. Wastes treated through the Sanitec system are thoroughly disinfected, unrecognizable, and reduced in volume by approximately 80% (saving valuable landfill space and reducing hauling requirements and costs). They are acceptable in any municipal solid waste program. Sanitec's Zero Pollution Advantage is augmented by a complete range of services, including installation, startup, testing, training, maintenance, and repair, over the life of this system. The Sanitec waste management system has essentially been designed to provide the best overall solution to the customer, when that customer actually looks at the total cost of dealing with the medical waste issue. The Sanitec system is the right choice for healthcare and medical waste professionals around the world.

  18. Organic Waste Diversion Guidance for U.S. Army Installations

    DTIC Science & Technology

    2016-11-01

    Windrow temperature ; Windrow moisture content (lab test) stated as a percentage; Windrow pH level; Windrow oxygen content stated as a percentage...much higher turbidity (>999 nephelometric turbidity units [NTU] versus 30 NTU), less dis- solved oxygen (6.32 mg/L versus 7.59 mg/L), higher temperature ... effective ." A Net Zero Waste installation is an installation that reduces, reuses, and recovers waste streams, converting them to valuable

  19. Prerequisite programs at schools: diagnosis and economic evaluation.

    PubMed

    Lockis, Victor R; Cruz, Adriano G; Walter, Eduardo H M; Faria, Jose A F; Granato, Daniel; Sant'Ana, Anderson S

    2011-02-01

    In this study, 20 Brazilian public schools have been assessed regarding good manufacturing practices and standard sanitation operating procedures implementation. We used a checklist comprised of 10 parts (facilities and installations, water supply, equipments and tools, pest control, waste management, personal hygiene, sanitation, storage, documentation, and training), making a total of 69 questions. The implementing modification cost to the found nonconformities was also determined so that it could work with technical data as a based decision-making prioritization. The average nonconformity percentage at schools concerning to prerequisite program was 36%, from which 66% of them own inadequate installations, 65% waste management, 44% regarding documentation, and 35% water supply and sanitation. The initial estimated cost for changing has been U.S.$24,438 and monthly investments of 1.55% on the currently needed invested values. This would result in U.S.$0.015 increase on each served meal cost over the investment replacement within a year. Thus, we have concluded that such modifications are economically feasible and will be considered on technical requirements when prerequisite program implementation priorities are established.

  20. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1997-11-24

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack ofmore » installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report.« less

  1. Pilot installation for the thermo-chemical characterisation of solid wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marculescu, C.; Antonini, G.; Badea, A.

    The increasing production and the large variety of wastes require operators of thermal treatment units to continuously adapt the installations or the functioning parameters to the different physical and chemical properties of the wastes. Usually, the treated waste is encountered in the form of heterogeneous mixtures. The classical tests such as thermogravimetry and calorimetric bomb operate component by component, separately. In addition to this, they can analyse only small quantities of waste at a time (a few grams). These common tests are necessary but insufficient in the global waste analysis in the view further thermal treatment. This paper presents anmore » experimental installation, which was designed and built at the CNRS Science Division, Department of Industrial Methods, Compiegne University of Technology, France. It allows the determination of waste thermal and chemical properties by means of thermal treatment. Also, it is capable of continuously analysing significant quantities of waste (up to 50 kg/h) as compared to the classical tests and it can work under various conditions: {center_dot}oxidant or reductive atmosphere (on choice); {center_dot}variable temperature between 400 and 1000 deg. C; {center_dot}independently set residence time of treated sample in the installation and flow conditions. The installation reproduces the process conditions from incinerators or pyrolysis reactors. It also provides complete information on the kinetics of the waste thermal degradation and on the pollutant emissions. Using different mixtures of components present in the municipal solid waste and also in the reconstituted MSW samples, we defined a series of criteria for characterising waste behaviour during the stages of the main treatment process such as: feeding, devolatilisation/oxidation, advancement, solid residue evacuation, and pollutants emission.« less

  2. Final Environmental Assessment for the Airfield Safety Zone Vegetation Clearing at Joint Base McGuire-Dix-Lakehurst

    DTIC Science & Technology

    2011-10-01

    JBMDL’s flying mission. Installation Restoration Program (IRP), Hazardous Materials and Waste Management There are several IRP sites within the...McGuire airfield area; however, none are expected to impact the Proposed Action. Negligible impacts on hazardous materials management during tree clearing...would be expected as only minor quantities of hazardous materials are likely to be used. BMPs would be followed to minimize the possibility of a

  3. A spatial analysis of hierarchical waste transport structures under growing demand.

    PubMed

    Tanguy, Audrey; Glaus, Mathias; Laforest, Valérie; Villot, Jonathan; Hausler, Robert

    2016-10-01

    The design of waste management systems rarely accounts for the spatio-temporal evolution of the demand. However, recent studies suggest that this evolution affects the planning of waste management activities like the choice and location of treatment facilities. As a result, the transport structure could also be affected by these changes. The objective of this paper is to study the influence of the spatio-temporal evolution of the demand on the strategic planning of a waste transport structure. More particularly this study aims at evaluating the effect of varying spatial parameters on the economic performance of hierarchical structures (with one transfer station). To this end, three consecutive generations of three different spatial distributions were tested for hierarchical and non-hierarchical transport structures based on costs minimization. Results showed that a hierarchical structure is economically viable for large and clustered spatial distributions. The distance parameter was decisive but the loading ratio of trucks and the formation of clusters of sources also impacted the attractiveness of the transfer station. Thus the territories' morphology should influence strategies as regards to the installation of transfer stations. The use of spatial-explicit tools such as the transport model presented in this work that take into account the territory's evolution are needed to help waste managers in the strategic planning of waste transport structures. © The Author(s) 2016.

  4. Save Energy Now Assessment Helps Expand Energy Management Program at Shaw Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Shaw Industries carpet manufacturing plant #20 in Dalton, Georgia, optimized boiler operation and installed waste heat exchangers on two processes in the dye house and an economizer on one boiler, for a payback of 1.7 years. These results prompted plant #4, also located in Dalton, to participate in an assessment.

  5. 76 FR 30700 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... prevention and waste management data, including recycling information, for such chemicals. 42 U.S.C. 13106..., install, and utilize technology and systems for the purposes of collecting, validating, and verifying... (Part I: Sec. 5, 5.1) with a check box that reads ``No U.S. Parent Company (for TRI Reporting purposes...

  6. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  7. Validation of Autoclave Protocols for Successful Decontamination of Category A Medical Waste Generated from Care of Patients with Serious Communicable Diseases

    PubMed Central

    Reimers, Mallory; Ernst, Neysa; Bova, Gregory; Nowakowski, Elaine; Bukowski, James; Ellis, Brandon C.; Smith, Chris; Sauer, Lauren; Dionne, Kim; Carroll, Karen C.; Maragakis, Lisa L.; Parrish, Nicole M.

    2016-01-01

    ABSTRACT In response to the Ebola outbreak in 2014, many hospitals designated specific areas to care for patients with Ebola and other highly infectious diseases. The safe handling of category A infectious substances is a unique challenge in this environment. One solution is on-site waste treatment with a steam sterilizer or autoclave. The Johns Hopkins Hospital (JHH) installed two pass-through autoclaves in its biocontainment unit (BCU). The JHH BCU and The Johns Hopkins biosafety level 3 (BSL-3) clinical microbiology laboratory designed and validated waste-handling protocols with simulated patient trash to ensure adequate sterilization. The results of the validation process revealed that autoclave factory default settings are potentially ineffective for certain types of medical waste and highlighted the critical role of waste packaging in successful sterilization. The lessons learned from the JHH validation process can inform the design of waste management protocols to ensure effective treatment of highly infectious medical waste. PMID:27927920

  8. Validation of Autoclave Protocols for Successful Decontamination of Category A Medical Waste Generated from Care of Patients with Serious Communicable Diseases.

    PubMed

    Garibaldi, Brian T; Reimers, Mallory; Ernst, Neysa; Bova, Gregory; Nowakowski, Elaine; Bukowski, James; Ellis, Brandon C; Smith, Chris; Sauer, Lauren; Dionne, Kim; Carroll, Karen C; Maragakis, Lisa L; Parrish, Nicole M

    2017-02-01

    In response to the Ebola outbreak in 2014, many hospitals designated specific areas to care for patients with Ebola and other highly infectious diseases. The safe handling of category A infectious substances is a unique challenge in this environment. One solution is on-site waste treatment with a steam sterilizer or autoclave. The Johns Hopkins Hospital (JHH) installed two pass-through autoclaves in its biocontainment unit (BCU). The JHH BCU and The Johns Hopkins biosafety level 3 (BSL-3) clinical microbiology laboratory designed and validated waste-handling protocols with simulated patient trash to ensure adequate sterilization. The results of the validation process revealed that autoclave factory default settings are potentially ineffective for certain types of medical waste and highlighted the critical role of waste packaging in successful sterilization. The lessons learned from the JHH validation process can inform the design of waste management protocols to ensure effective treatment of highly infectious medical waste. Copyright © 2017 American Society for Microbiology.

  9. Food waste disposal units in UK households: the need for policy intervention.

    PubMed

    Iacovidou, Eleni; Ohandja, Dieudonne-Guy; Voulvoulis, Nikolaos

    2012-04-15

    The EU Landfill Directive requires Member States to reduce the amount of biodegradable waste disposed of to landfill. This has been a key driver for the establishment of new waste management options, particularly in the UK, which in the past relied heavily on landfill for the disposal of municipal solid waste (MSW). MSW in the UK is managed by Local Authorities, some of which in a less conventional way have been encouraging the installation and use of household food waste disposal units (FWDs) as an option to divert food waste from landfill. This study aimed to evaluate the additional burden to water industry operations in the UK associated with this option, compared with the benefits and related savings from the subsequent reductions in MSW collection and disposal. A simple economic analysis was undertaken for different FWD uptake scenarios, using the Anglian Region as a case study. Results demonstrated that the significant savings from waste collection arising from a large-scale uptake of FWDs would outweigh the costs associated with the impacts to the water industry. However, in the case of a low uptake, such savings would not be enough to cover the increased costs associated with the wastewater provision. As a result, this study highlights the need for policy intervention in terms of regulating the use of FWDs, either promoting them as an alternative to landfill to increase savings from waste management, or banning them as a threat to wastewater operations to reduce potential costs to the water industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Carole; Leroy, Christine

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the productionmore » schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)« less

  11. Application of risk management techniques for the remediation of an old mining site in Greece.

    PubMed

    Panagopoulos, I; Karayannis, A; Adam, K; Aravossis, K

    2009-05-01

    This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.

  12. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.

    PubMed

    Smol, Marzena; Kulczycka, Joanna; Kowalski, Zygmunt

    2016-12-15

    The aim of this research is to present the possibility of using the sewage sludge ash (SSA) generated in incineration plants as a secondary source of phosphorus (P). The importance of issues related to P recovery from waste materials results from European Union (UE) legislation, which indicated phosphorus as a critical raw material (CRM). Due to the risks of a shortage of supply and its impact on the economy, which is greater than other raw materials, the proper management of phosphorus resources is required in order to achieve global P security. Based on available databases and literature, an analysis of the potential use of SSA for P-recovery in Poland was conducted. Currently, approx. 43,000 Mg/year of SSA is produced in large and small incineration plants and according to in the Polish National Waste Management Plan 2014 (NWMP) further steady growth is predicted. This indicates a great potential to recycle phosphorus from SSA and to reintroduce it again into the value chain as a component of fertilisers which can be applied directly on fields. The amount of SSA generated in installations, both large and small, varies and this contributes to the fact that new and different P recovery technology solutions must be developed and put into use in the years to come (e.g. mobile/stationary P recovery installations). The creation of a database focused on the collection and sharing of data about the amount of P recovered in EU and Polish installations is identified as a helpful tool in the development of an efficient P management model for Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Identification of Cellulose Breaking Bacteria in Landfill Samples for Organic Waste Management

    NASA Astrophysics Data System (ADS)

    Chan, P. M.; Leung, F. C.

    2015-12-01

    According to the Hong Kong Environmental Protection Department, the citizens of Hong Kong disposes 13,500 tonnes of waste to the landfill everyday. Out of the 13,500 tonnes, 3600 tonnes consist of organic waste. Furthermore, due to the limited supply of land for landfills in Hong Kong, it is estimated that landfills will be full by about 2020. Currently, organic wastes at landfills undergo anaerobic respiration, where methane gas, one of the most harmful green house gases, will be released. The management of such waste is a pressing issue, as possible solutions must be presented in this crucial period of time. The Independent Schools Foundation Academy introduced their very own method to manage the waste produced by the students. With an approximate of 1500 students on campus, the school produces 27 metric tonnes of food waste each academic year. The installation of the rocket food composter provides an alternate method of disposable of organic waste the school produces, for the aerobic environment allows for different by-products to be produced, namely compost that can be used for organic farming by the primary school students and subsequently carbon dioxide, a less harmful greenhouse gas. This research is an extension on the current work, as another natural factor is considered. It evaluates the microorganism community present in leachate samples collected from the North East New Territories Landfill, for the bacteria in the area exhibits special characteristics in the process of decomposition. Through the sequencing and analysis of the genome of the bacteria, the identification of the bacteria might lead to a break through on the current issue. Some bacteria demonstrate the ability to degrade lignin cellulose, or assist in the production of methane gas in aerobic respirations. These characteristics can hopefully be utilized in the future in waste managements across the globe.

  14. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    DTIC Science & Technology

    2012-06-01

    installations for Energy, Waste, and Water. This means Fort Bliss will strive to become Net Zero Energy, Net Zero Waste , and Net Zero Water in the coming...years. Net Zero Energy requires Fort Bliss to produce as much energy on-installation as it consumes annually. Net Zero Waste aims to reduce, reuse...become Net Zero Energy and Net Zero Waste by 2020. A WtE facility actually goes well beyond Fort Bliss’ Net Zero Energy mission. That mission

  15. [Nationwide survey on radioactive waste management related to positron emission tomography in Japan].

    PubMed

    Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji

    2009-12-20

    A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.

  16. Distributed Waste to Energy Conversion: A Piece of the DOD’s Renewable Energy Puzzle

    DTIC Science & Technology

    2011-11-30

    FOR A CHANGING WORLD GEM Downdraft Gasification in a Nutshell Air Feed Waste or Biomass Feed Air Feed Air Feed Producer Gas Inert Ash Removal Solid...that is well-suited to provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating...provide distributed power to installations using local waste and biomass . Under ESTCP funding, Infoscitex is demonstrating the technology at a DoD

  17. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    PubMed

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  18. Alteration of municipal and industrial slags under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in content of soluble minerals, like halite, in comparison to the output samples was noted. These phases where probably dissolved and washed out from the samples. After 12 months of atmospheric exposure in municipal slags only slight changes in weight (1 wt%) were observed, whereas in industrial slags slightly above 10 wt% of the material was removed. After 12 months of atmospheric exposure more significant changes are expected such as changes in chemical and mineral compositions and changes in heavy metals and toxic elements concentrations due to leaching.

  19. Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vliet, James A.

    2012-07-01

    During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facilitymore » consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)« less

  20. Management of low-level radioactive waste in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabtai, B.; Brenner, S.; Ne`eman, E.

    1995-12-31

    Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less

  1. The Spanish General Radioactive Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, J.M.; Abreu, A.

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and othersmore » are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is based on the generation of funds up front, during the operating lifetime of the facilities, through the application of fees established by Statutory provisions. Finally, a mandatory mechanism of annual revision for both technical issues and economic and financial aspects, allows to have updated all the courses of action. (authors)« less

  2. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    USGS Publications Warehouse

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  3. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  4. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  5. Treatment and disposal alternatives for health-care waste in developing countries--a case study in Istanbul, Turkey.

    PubMed

    Alagöz, B Aylin Zeren; Kocasoy, Günay

    2007-02-01

    Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.

  6. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance ofmore » the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.« less

  7. Feasibility Study of Food Waste Co-Digestion at U.S. Army Installations

    EPA Science Inventory

    Net Zero is a comprehensive approach to preserve natural resources by focusing on energy, water, and waste. Fort Huachuca, Arizona, is a strong advocate and participant in the Army Net Zero program. The Fort has installed energy saving and renewable energy generating systems, an...

  8. Wind turbine blade waste in 2050.

    PubMed

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Comparison of costs for three hypothetical alternative kitchen waste management systems.

    PubMed

    Schiettecatte, Wim; Tize, Ronald; De Wever, Heleen

    2014-11-01

    Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option. © The Author(s) 2014.

  10. 40 CFR 265.442 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...

  11. Used Solvent Testing and Reclamation. Volume 2. Vapor Degreasing and Precision Cleaning Solvents

    DTIC Science & Technology

    1988-12-01

    of 5 to 500 ppm in halogenated solvents using Karl - Fischer reagent. Arbitrary criteria to identify a spent solvent have evolved in various industries... methods of managing waste solvent. Some DOD installations are reclaiming used solvents rather than discarding them. Reclamation is feasible because the...most E E CT E reliable methods for testing solvent quality. Further testing isnecessary for chlorinated solvents to determine the inhibitor con- FEB 24

  12. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  13. Household food waste separation behavior and the importance of convenience.

    PubMed

    Bernstad, Anna

    2014-07-01

    Two different strategies aiming at increasing household source-separation of food waste were assessed through a case-study in a Swedish residential area (a) use of written information, distributed as leaflets amongst households and (b) installation of equipment for source-segregation of waste with the aim of increasing convenience food waste sorting in kitchens. Weightings of separately collected food waste before and after distribution of written information suggest that this resulted in neither a significant increased amount of separately collected food waste, nor an increased source-separation ratio. After installation of sorting equipment in households, both the amount of separately collected food waste as well as the source-separation ratio increased vastly. Long-term monitoring shows that results where longstanding. Results emphasize the importance of convenience and existence of infrastructure necessary for source-segregation of waste as important factors for household waste recycling, but also highlight the need of addressing these aspects where waste is generated, i.e. already inside the household. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 40 CFR 264.572 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads § 264.572 Design...

  15. Systematic Evaluation and Uncertainty Analysis of the Refuse-Derived Fuel Process in Taiwan.

    PubMed

    Chang, Ying-Hsi; Chang, Ni-Bin; Chen, W C

    1998-06-01

    In the last few years, Taiwan has set a bold agenda in solid waste recycling and incineration programs. Not only were the recycling activities and incineration projects promoted by government agencies, but the related laws and regulations were continuously promulgated by the Legislative Yen. The solid waste presorting process that is to be considered prior to the existing incineration facilities has received wide attention. This paper illustrates a thorough evaluation for the first refuse-derived fuel pilot process from both quantitative and qualitative aspects. The process is to be installed and integrated with a large-scale municipal incinerator. This pilot process, developed by an engineering firm in Tainan County, consists of standard unit operations of shredding, magnetic separation, trommel screening, and air classification. A series of sampling and analyses were initialized in order to characterize its potentials in the solid waste management system. The probabilistic modeling for various types o f waste pro perties derived in this analysis may provide a basic understanding of system reliability.

  16. Environmental Assessment of Proposed Mixed-Use Business Park on an Enchanced Use Lease at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2014-04-01

    remediate past environmental contamination on Air Force installations. Past procedures for managing and disposing wastes, although accepted at the...time, resulted in contamination of the environment. The ERP has established a process to evaluate past disposal sites, control the migration of... contaminants , identify potential hazards to human health and the environment, and remediate the sites. 3.5.2 Existing Conditions GFAFB is a

  17. Leachate pollution management to overcome global climate change impact in Piyungan Landfill, Indonesia

    NASA Astrophysics Data System (ADS)

    Harjito; Suntoro; Gunawan, T.; Maskuri, M.

    2018-03-01

    Environmental problems associated with the landfill system are generated by domestic waste landfills, especially those with open dumping systems. In these systems, waste degrades and produces some gases, namely methane gas (CH4) and carbon dioxide (CO2), which can cause global climate change. This research aimed at identifying the areas that experience groundwater pollution and the spread pattern of leachate movement to the vicinity as well as to develop a leachate management model. The Electricity Resistivity Tomography (ERT) survey is deployed to assess the distribution of electrical resistivity in the polluted areas. In this study, the groundwater contamination is at a very low in the aquifer zone, i.e., 3-9 Ωm. It is caused by the downward migration of leachate to water table that raises the ion concentration of groundwater. These ions will increase the electrical conductivity (EC), i.e., up to 1,284 μmhos/cm, and decrease the electrical resistivity. The leachate spreads westward and northward at a depth of 6-17 m (aquifer) with a thickness of pollution between 4 and11 m.The recommended landfill management model involves the installation of rainwater drainage, use of cover and baseliner made of waterproof materials, and massive waste treatment.

  18. Management of atmospheric pollutants from waste incineration processes: the case of Bozen.

    PubMed

    Ragazzi, Marco; Tirler, Werner; Angelucci, Giulio; Zardi, Dino; Rada, Elena Cristina

    2013-03-01

    This article presents the case study of a waste incinerator located in a region rich in natural and environmental resources, and close to the city of Bozen, where there are about 100,000 inhabitants. Local authorities paid special attention to the effect of the plant on human health and the surrounding environment. Indeed, among the measures adopted to control the emissions, in 2003 an automatic sampling system was installed specifically to monitor polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions during the complete operation time of the plant. The continuous sampling system was coupled directly to aerosol spectrometers for the determination of fine and ultra-fine particles in the emissions of the plant. The measurement results suggest that the waste incineration plant of Bozen is not a significant source of PCDD/F, or fine and ultra-fine particles. Immission measurements from other monitoring systems confirmed these results.

  19. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...

  20. 10 CFR 72.120 - General considerations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...

  1. FIELD STUDIES OF GEOMEMBRANE INSTALLATION TECHNIQUES

    EPA Science Inventory

    Fourteen construction sites where geomembranes were being installed were visited to observe subgrade preparation and liner installation techniques. These sites were visited during a study conducted for the U.S. EPA, Solid and Hazardous Waste Research Division. The sites included ...

  2. Installation Restoration Program. Phase I. Records. Loring AFB, Maine.

    DTIC Science & Technology

    1984-01-01

    forest, mixed forest, forested bogs, streams, and ponds. Managed timber lands total 4,635 acres on Loring AFB. Major harvested tree species include...Habitat 111-22 2. Threatened and Endangered Species 111-23 IV. FINDINGS IV-1 A. Activity Review IV-l 1. Industrial Waste Disposal Practices IV-1 2...Site No. 13, the BX Service Station, a number of cedar trees in the area of the fuel-saturated soil appear to have been dead for several years. 3

  3. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    DTIC Science & Technology

    2016-06-01

    Allan Robichaux, DPW PWD GTMO and the management and staff of the GTMO on site contractor , Centerra. Page Intentionally Left Blank ii Table of...operations and maintenance contractor to ensure that data transfers are completed as required. Figure 4 shows the location of the ORC installation on MUSE...this issue with telephone support from CRM’s controls contractor (Winn-Marion, W-M); however, the problem remained unresolved as of Sept. 1 when

  4. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    USDA-ARS?s Scientific Manuscript database

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  5. On-site or off-site treatment of medical waste: a challenge

    PubMed Central

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145

  6. Flood resilience urban territories. Flood resilience urban territories.

    NASA Astrophysics Data System (ADS)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    The flood's impact during the last twenty years on French territory reveals our lack of preparation towards large-extended floods which might cause the stopping of companies' activity, services, or lead to housing unavailability during several months. New Orleans' case has to exemplify us: four years after the disaster, the city still couldn't get back its dynamism. In France, more than 300 towns are flood-exposed. While these towns are the mainspring of territory's development, it is likely that the majority of them couldn't get up quickly after a large-extended flood. Therefore, to understand and improve the urban territory's resilience facing floods is a real stake for territory's development. Urban technical networks supply, unify and irrigate all urban territories' constituents. Characterizing their flood resilience can be interesting to understand better urban resilience. In this context, waste management during and after floods is completely crucial. During a flood, the waste management network can become dysfunctional (roads cut, waste storage installations or waste treatment flooded). How can the mayor respect his obligation to guarantee salubrity and security in his city? In post flood the question is even more problematic. The waste management network presents a real stake for territory's restart. After a flood, building materials, lopped-of branches, furniture, business stocks, farm stocks, mud, rubbles, animal cadavers are wet, mixed, even polluted by hydrocarbons or toxic substances. The waste's volume can be significant. Sanitary and environmental risks can be crucial. In view of this situation, waste's management in post crisis period raises a real problem. What to make of this waste? How to collect it? Where to stock it? How to process it? Who is responsible? Answering these questions is all the more strategic since this waste is the mark of disaster. Thus, cleaning will be the first population's and local actor's reflex in order to forget the flood but also to restart as fast as possible (for example, the clearing of roads is a prerequisite for electricity's restoration which is a vital network for territory's functioning). While the waste management is a main stage of post crisis, these questions are still without answer. The extend of this network influence also leads us to think about the means to prevent from waste production and service's dysfunction. How to develop the territory to limit the floods' impact on the waste management network? Are there techniques or equipments allowing stakeholders to limit these impacts? How to increase population's, entrepreneur's or farmer's awareness to get ready to face floods, to limit the waste production, but also to react well during and after the floods? Throughout means of prevention and thanks to actor's technical and organizational adaptations towards the waste network, or by raising population's awareness and preparation, economic and institutional actors of urban territories might improve the waste's network flood resilience, and thus, cities' flood resilience. Through experience feedbacks about countries recently affected by large-extended floods and field reflection with local actors, the stakes of this PhD research are thus to think about means (1) to maintain the activity out of flood plains during a flood, (2) to increase the waste management network's activity in post crisis period in order to be able to deal with a new waste production both by its quality and its quantity, but also (3) to study the means to prevent this new production. This work will use the concept of urban system to describe urban territory because it allows us to study both its behaviour and functioning. The interest of this methodological choice is to take into account the impacts of the disruption of waste management networks on cities' functioning, and thus, on cities' flood resilience.

  7. Performance Monitoring of Residential Hot Water Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purposemore » of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.« less

  8. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. Thismore » assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.« less

  9. On evaluation of assessments of accruals of future dismantling costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labor, Bea; Lindskog, Staffan

    A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely withmore » the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder's values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based on current survey data retrieved from 667 personal interviews in one town in Poland and one town in Slovakia with a near 100 % response rate. The main conclusions from this field study may be summarised as follows: - Sustainable energy sources are prioritised. - Around one quarter of the respondents regards nuclear power as a future semi-sustainable commercial energy production mode subject to that the waste is managed in a sustainable, environmental friendly and safe way - The values are to a significant degree positioned on health, safety and environmental (HSE) attributes. - The polluter pays principle is honoured. - There are doubts regarding the compliance with these principles due to risks for delays in the implementation phase of repositories for disposal of the nuclear residues. - 1/5. of the respondents expressed an openness to reprocessing (which is linked to the concept of 'new nuclear power'). (authors)« less

  10. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueth, Joachim

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less

  11. WASTE MINIMIZATION AUDIT REPORT: CASE STUDIES OF MINIMIZATION OF SOLVENT WASTES AND ELECTROPLATING WASTES AT A DOD (DEPARTMENT OF DEFENSE) INSTALLATION

    EPA Science Inventory

    The report results of a waste minimization audit carried out in 1987 at a tank reconditioning facility operated by the DOD. The audit team developed recommendations for reducing the generation FOO6 wastewater treatment sludge, and FOO2, and FOO4 solvent wastes. In addition to det...

  12. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2018-05-23

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  13. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  14. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  15. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  16. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  17. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  18. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not limited to: (1) The installation of conservation structures to address soil, water, and related... shelter belt purposes; (3) The installation of water conservation measures; (4) The installation of waste... 7 Agriculture 7 2012-01-01 2012-01-01 false Conservation loan uses. 764.231 Section 764.231...

  19. Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.

    2010-08-30

    Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to whichmore » this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNL’s established renewable resource assessment methodology.« less

  20. Basis for a Waste Management Public Communication Policy: Actual Situation Analysis and Implementation of Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolivet, L. A.; Maset, E. R.

    2002-02-28

    Argentina will require new sites for the location of radioactive waste final disposal systems. It is currently mandatory to have social and political consensus to obtain the corresponding agreements. The experience obtained with the cancellation of the project ''Feasibility Study and Engineering Project--Repository for High Level Radioactive Waste'', reinforces even more the necessity to count with the acceptance of the public to carry out projects of this kind. The first phase of the former was developed in the 80's: geological, geophysical and hydrogeological studies were performed in a compact granitic rock located in Sierra del Medio, Chubut province. This projectmore » had to be called off in the early 90's due to strong social rejection. This decision was closely related to the poor attention given to social communication issues. The governmental decision-makers in charge underwent a lot of pressure from social groups claiming for the cancellation of the project due to the lack of information and the fear it triggered. Thus, the lesson learnt: ''social communication activities must be carefully undertaken in order to achieve the appropriate management of the radioactive waste produced in our country.'' The same as in other countries, the specific National Law demands the formulation of a Strategic Plan which will not only include the research into radioactive waste, but the design of a Social Communication Programme as well. The latter will be in charge of informing the population clearly and objectively about the latest scientific and technological advances in the issue. A tentative perception-attitude pattern of the Argentine society about the overall nuclear issue is outlined in this paper. It is meant to contribute to the understanding of the public's adverse reaction to this kind of project. A communication programme is also presented. Its objective is to install the waste management topic in the public's opinion with a positive real outlook.« less

  1. Engineering report for simulated riser installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  2. Waste incineration, Part I: Technology.

    PubMed

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  3. Economic Feasibility of Installing an Anaerobic Digester on a Department of Defense Installation

    DTIC Science & Technology

    2010-03-01

    permits anaerobic bacteria and enzymes to affect more waste than a lagoon does, as well as preventing a film or layer of scum forming on top of the waste...temperature classifications for anaerobic digestion. The three classes listed are: psychrophilic (4- 20 C), mesophilic (20-45 C), and thermophilic (45-60...operated at 55º C, 30 focusing on an optimum temperature for thermophilic bacteria. Despite previously discussed percentages for total solids in

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondaro, Manuel

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available formore » unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and national politicians and technical groups. Greenfield is the final end state objective. The total cost of this project, including a 20% contingency as estimated in 2003 is 135 Meuros. This figure does not include the management of the plant spent fuel, which has constituted an independent project that has been completed in 2009 (35 Meuros). Enresa, with 15 staff on site are managing a team of ∼250 workers, 40 of whom belong to the previous operator. The spent fuel is On-Site prior to the final destination in the future Spain Centralized Spent Fuel Installation. (authors)« less

  5. Installation Restoration Program Records Search for Des Moines Air National Guard Installation, Iowa

    DTIC Science & Technology

    1983-09-01

    installation. Low-lying drainageways on the site are underlain by soils of the Gravity series and of the Wabash -Gravity-Nodaway complex. These soils...Shop The electric shop is located in Facility No. 100. Wastes generated from this area include nickel- -- ’ cadmium batteries (24/year) and sulfuric

  6. Decision support system for the optimal location of electrical and electronic waste treatment plants: a case study in greece.

    PubMed

    Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, Nu; Banias, G

    2010-05-01

    Environmentally sound end-of-life management of Electrical and Electronic Equipment has been realised as a top priority issue internationally, both due to the waste stream's continuously increasing quantities, as well as its content in valuable and also hazardous materials. In an effort to manage Waste Electrical and Electronic Equipment (WEEE), adequate infrastructure in treatment and recycling facilities is considered a prerequisite. A critical number of such plants are mandatory to be installed in order: (i) to accommodate legislative needs, (ii) decrease transportation cost, and (iii) expand reverse logistics network and cover more areas. However, WEEE recycling infrastructures require high expenditures and therefore the decision maker need to be most precautious. In this context, special care should be given on the viability of infrastructure which is heavily dependent on facilities' location. To this end, a methodology aiming towards optimal location of Units of Treatment and Recycling is developed, taking into consideration economical together with social criteria, in an effort to interlace local acceptance and financial viability. For the decision support system's needs, ELECTRE III is adopted as a multicriteria analysis technique. The methodology's applicability is demonstrated with a real-world case study in Greece. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. 75 FR 62759 - Notice of Proposed Change to Section IV of the Virginia State Technical Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ..., Roof Runoff Structure; 600, Terrace; 620, Underground Outlet; 313, Waste Storage Facility; 359, Waste Treatment Lagoon; 633, Waste Utilization; 638, Water and Sediment Control Basin. These practices will be used to plan and install conservation practices on cropland, pastureland, woodland, and wildlife land...

  8. The munitions provisions of the Federal Facility Compliance Act

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmell, T.A.; Green, D.R.; Queen, R.

    1994-03-01

    The Federal Facility Compliance Act (FFCA) was signed by President Bush on October 6, 1992. This Act amends the Resource Conservation and Recovery Act (RCRA), the primary law governing hazardous waste management in the US The most significant provision of the FFCA was the waiver of sovereign immunity. This waiver subjects Federal facilities to the same ``incentives`` as the private sector for compliance. While the waiver has broad implications for all Federal facilities, other provisions of the FFCA impact specific sectors of the Federal complex. The focus of this paper is the FFCA Munitions Provisions, which have the potential tomore » change some aspects of the structure of munitions management within the military. The Munitions Provisions, contained in Section 107 of the FFCA, modifies Section 3004 of RCRA by adding a new subsection (y) on Munitions. Section 107 requires the Environmental Protection Agency (EPA) to develop, after consultation with the Department of Defense (DOD) and appropriate State officials, regulations identifying when military munitions (including conventional and chemical munitions) become hazardous waste, and to provide for the safe transportation and storage of such waste. The FFCA requires EPA to promulgate the final ``Munitions Rule`` by October 6, 1994. These are the only provisions of the FFCA that require a new rulemaking. It is clear that the Munitions Rule could have a significant effect on the way in which DOD manages munitions. Demilitarization, range management, training activities, and emergency response actions may be affected. It is important for DOD, the Services, and individual installations, to be aware of potential impacts of the FFCA on munitions management operations. The purpose of this paper is to review several important munitions Rule issues, and to discuss potential impacts of these issues.« less

  9. Demonstration of close-coupled barriers for subsurface containment of buried waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less

  10. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  11. Cancer mortality in towns in the vicinity of incinerators and installations for the recovery or disposal of hazardous waste.

    PubMed

    García-Pérez, Javier; Fernández-Navarro, Pablo; Castelló, Adela; López-Cima, María Felicitas; Ramis, Rebeca; Boldo, Elena; López-Abente, Gonzalo

    2013-01-01

    Waste treatment plants release toxic emissions into the environment which affect neighboring towns. To investigate whether there might be excess cancer mortality in towns situated in the vicinity of Spanish-based incinerators and installations for the recovery or disposal of hazardous waste, according to the different categories of industrial activity. An ecologic study was designed to examine municipal mortality due to 33 types of cancer, across the period 1997-2006. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. Using Besag-York-Mollié (BYM) regression models with Integrated Nested Laplace approximations for Bayesian inference, and Mixed Poisson regression models, we assessed the risk of dying from cancer in a 5-kilometer zone around installations, analyzed the effect of category of industrial activity, and conducted individual analyses within a 50-kilometer radius of each installation. Excess cancer mortality (BYM model: relative risk, 95% credible interval) was detected in the total population residing in the vicinity of these installations as a whole (1.06, 1.04-1.09), and, principally, in the vicinity of incinerators (1.09, 1.01-1.18) and scrap metal/end-of-life vehicle handling facilities, in particular (1.04, 1.00-1.09). Special mention should be made of the results for tumors of the pleura (1.71, 1.34-2.14), stomach (1.18, 1.10-1.27), liver (1.18, 1.06-1.30), kidney (1.14, 1.04-1.23), ovary (1.14, 1.05-1.23), lung (1.10, 1.05-1.15), leukemia (1.10, 1.03-1.17), colon-rectum (1.08, 1.03-1.13) and bladder (1.08, 1.01-1.16) in the vicinity of all such installations. Our results support the hypothesis of a statistically significant increase in the risk of dying from cancer in towns near incinerators and installations for the recovery or disposal of hazardous waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. 76 FR 5505 - Airworthiness Directives; The Boeing Company Model 777-200 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... management units (ZMU) OPS, and the cabin system management unit (CSMU) OPS; installing OPS for the CSCP... require installing a new CSCP; installing a new cabin management system (CMS) CDB; and installing new OPS...), the zone management unit (ZMU) OPS, and the cabin system management unit (CSMU) OPS. Installing CSCP...

  13. Digital Automation and Real-Time Monitoring of an Original Installation for "Wet Combustion" of Organic Wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Saltykov, Mikhail; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    2016-07-01

    An original method for "wet combustion" of organic wastes, which is being developed at the IBP SB RAS, is a very promising approach for regeneration of nutrient solutions for plants in future spacecraft closed Bioregenerative Life Support Systems (BLSS). The method is quick, ecofriendly, does not require special conditions such as high pressure and temperature, and the resulting nitrogen stays in forms easy for further preparation of the fertilizer. An experimental testbed of a new-generation closed ecosystem is being currently run at the IBP SB RAS to examine compatibility of the latest technologies for accelerating the cycling. Integration of "wet combustion" of organic wastes into the information system of closed ecosystem experimental testbed has been studied as part of preparatory work. Digital automation and real-time monitoring of original "wet combustion" installation operation parameters have been implemented. The new system enabled remotely controlled or automatic work of the installation. Data are stored in standard easily processed formats, allowing further mathematical processing where necessary. During ongoing experiments on improving "wet combustion" of organic wastes, automatic monitoring can notice slight changes in process parameters and record them in more detail. The ultimate goal of the study is to include the "wet combustion" installation into future full-scale experiment with humans, thus reducing the time spent by the crew on life support issues while living in the BLSS. The work was carried out with the financial support of the Russian Scientific Foundation (project 14-14-00599).

  14. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  15. Evaluation of a buried vertical well leachate recirculation system for municipal solid waste landfills.

    PubMed

    Kadambala, Ravi; Powell, Jon; Singh, Karamjit; Townsend, Timothy G

    2016-12-01

    Vertical liquids addition systems have been used at municipal landfills as a leachate management method and to enhance biostabilization of waste. Drawbacks of these systems include a limitation on pressurized injection and the occurrence of seepage. A novel vertical well system that employed buried wells constructed below a lift of compacted waste was operated for 153 days at a landfill in Florida, USA. The system included 54 wells installed in six clusters of nine wells connected with a horizontally-oriented manifold system. A cumulative volume of 8430 m 3 of leachate was added intermittently into the well clusters over the duration of the project with no incidence of surface seeps. Achievable average flow rates ranged from 9.3 × 10 -4 m 3 s -1 to 14.2 × 10 -4 m 3 s -1 , which was similar to or greater than flow rates achieved in a previous study using traditional vertical wells at the same landfill site. The results demonstrated that pressurized liquids addition in vertical wells at municipal solid waste landfills can be achieved while avoiding typical operational and maintenance issues associated with seeps. © The Author(s) 2016.

  16. Impact of RCRA (PL 94-580) on the use or disposal of solid wastes from Texas lignite-fired utility boilers: a literature survey. Final report. [Flue gas desulfurization sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.L.

    A literature survey was conducted in order to determine the amount of information available to the public concerning the impact of the Resource Conservation and Recovery Act of 1976 (RCRA) on the use or disposal of solid wastes from Texas lignite-fired utility boilers. The utility power plants of ALCOA, Big Brown, Martin Lake, Monticello and San Miguel are the only facilities currently using Texas lignite as fuel. RCRA is a comprehensive federal law which provides for the management of hazardous waste from generation to ultimate disposal. Utility solid wastes such as fly ash and flue gas desulfurization (FGD) sludge aremore » currently classified as excluded wastes (wastes exempt from hazardous classification) pending further information regarding these high-volume, low risk wastes. RCRA also provides for the increased need of recovered materials in Subtitle F - Federal Procurement. The lignite deposits of Texas occur in belts that stretch diagonally across the state from Laredo to Texarkana. The sulfur content and Btu value of Texas lignite combined requires that sulfur scrubbers be installed on new power plant units. The utility solid wastes occur in large quantities and leachate from some of these wastes contained detectable amounts of chromium and selenium. However, the concentration of these elements in the leachate was not sufficient to classify any of the utility wastes in this study as hazardous per current RCRA guidelines. In general, fly ash and FGD sludge are classified as Class II wastes and disposed of in an environmentally acceptable manner. Considerable amounts of bottom ash and fly ash are utilized but, thus far, FGD sludge has been landfilled, usually in combination with fly ash.« less

  17. Pollution Prevention Case Studies: Implications for Army Institutional Processes

    DTIC Science & Technology

    1994-06-01

    waste (FAMC), Optical Fabrication by switching from glass to Laboratory (OFL) plastiC lens production Fort Lewis FORSCOM Develop installation...Role of Compliance Pressures ...................................................................................... 51 6.8 Waste and Recyclables ...Anny Depot AMC Reduce chromium waste (CCAD) through change in Aluminum coating process Fitzsimmons Anny Medical Center HSC Decrease heavy metal

  18. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  19. Financial Responsibility and Installer Certification - 2005 Energy Policy Act

    EPA Pesticide Factsheets

    Grant guidelines to implement the financial responsibility and installer certification provision in Section 9003(i) of the Solid Waste Disposal Act, enacted by the Underground Storage Tank Compliance Act, part of the Energy Policy Act of 2005.

  20. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  1. Installation restoration program. Site investigation report, IRP sites No. 1, No. 2, and No. 3. 106th Civil Engineering Flight, New York Air National Guard, Roslyn Air National Guard Station, Roslyn, New York. Volume 1. Site Investigation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    This report presents the results of the Site Investigation (SI) conducted at IRP Sites No. 1, No. 2, and No. 3 at the 106th Civil Engineering Flight (CEF) located at Roslyn Air National Guard Station (ANGS), Roslyn, Long Island, New York. A Preliminary Assessment (PA) (AD-A238 847) of the 106th CEF resulted in the identification of two potentially contaminated waste holding areas and a waste sludge application site. These sites were identified as IRP Site No. 1 (Access Road to Aerospace Ground Equipment `AGE` Shop), IRP Site No. 2 (Old Waste Holding Area No. 1), and IRP Site No. 3more » (Old Waste Holding Area No. 2) and recommended for further investigation under the Installation Restoration Program (IRP).« less

  2. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-01

    and purification of methane -rich biogas was conducted at the US Air Force Academy. Cost and performance of the technology with respect to renewable...SUBJECT TERMS Food waste, FOG, solid waste, anaerobic digestion, methane , biogas, biomethane, biogas purification, vehicle fuel, renewable energy...The project demonstrated the ability to digest these wastes in a controlled and predictable manner to maximize the generation of biogas, a methane

  3. Enabling VOLTTRON: Energy Management of Commercial Buildings at the University of Maryland

    NASA Astrophysics Data System (ADS)

    Ebhojiaye, Itohan Omisi

    Buildings waste approximately 30% of energy they consume due to inefficient HVAC and lighting operation. Building Automation Systems (BAS) can aid in reducing such wasted energy, but 90% of U.S. commercial buildings lack a BAS due to their high capital costs. This thesis demonstrates how VOLTTRON, an open source operating system developed by Pacific Northwest National Laboratory, was used to disable the mechanical cooling of a rooftop unit (RTU) during unoccupied hours, on a building without a BAS. With cooling off, the RTU's electricity dropped from 18 kW to 7kW. These results indicate 450 to 550 can be saved on the monthly electric bill of the building during the summer, compared to when the RTU operated in cooling mode continuously. The installation cost of the equipment that enabled the RTU to be controlled via VOLTTRON was $6,400, thus the project has a payback period of 13 months.

  4. Translations on Environmental Quality, Number 176

    DTIC Science & Technology

    1978-08-21

    impurities, which considerably reduces the production areas occupied by purification installations as a result of the compactness of the flotation ...industrial wastes such as [phosphogin], pyrite gas, ash from thermal electric power stations, slag from nonferrous and ferrous metallurgy and wastes

  5. Installation report : rubber modified asphalt mix.

    DOT National Transportation Integrated Search

    1983-01-01

    This report describes the design of an asphalt mix containing up to 3.0% closed cell waste rubber and a field installation of the mix. The Marshall design procedure was used to determine the asphalt content for the mix containing 3.0% rubber as well ...

  6. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less

  7. 40 CFR 280.22 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 280.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.22 Notification... to notify the designated state or local agency in accordance with the Hazardous and Solid Waste...

  8. 40 CFR 280.22 - Notification requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 280.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.22 Notification... to notify the designated state or local agency in accordance with the Hazardous and Solid Waste...

  9. 40 CFR 280.22 - Notification requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 280.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.22 Notification... to notify the designated state or local agency in accordance with the Hazardous and Solid Waste...

  10. 40 CFR 280.22 - Notification requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 280.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.22 Notification... to notify the designated state or local agency in accordance with the Hazardous and Solid Waste...

  11. 40 CFR 280.22 - Notification requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 280.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... STORAGE TANKS (UST) UST Systems: Design, Construction, Installation and Notification § 280.22 Notification... to notify the designated state or local agency in accordance with the Hazardous and Solid Waste...

  12. Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste

    DTIC Science & Technology

    2015-09-01

    plastic) containers or reusable drink containers (such as thermoses) can reduce the amount of metals in the waste stream. Foun- tain drink loyalty ...alternatives are needed to give customers outlets to safely dispose of unwanted HHHW. Periodic turn-in days can be valuable for this pur- pose... restaurants , schools, hospitals, and dining halls) and family housing areas where food waste is continually generated. ERDC/CERL TR-15-21 24

  13. Miscellaneous chemical basin expedited site characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riha, B.D.; Pemberton, B.E.; Rossabi, J.

    1996-12-01

    A total of twenty nine cone penetrometer test (CPT) pushes in three weeks were conducted for vadose zone characterization of the Miscellaneous Chemical Basin (MCB) waste unit at the Savannah River Site. The shallow, unlined basin received liquid chemical wastes over an 18 year period beginning in 1956. This characterization was initiated to determine the vertical and lateral extent of contamination in the vadose zone and to install vadose zone wells for remediation by barometric pumping or active vapor extraction to help prevent further contamination of groundwater. The CPT locations within the waste site were selected based on results frommore » previous shallow soil gas surveys, groundwater contamination data, and the suspected basin center. Geophysical data and soil gas samples were collected at twenty five locations and twenty five vadose zone wells were installed. The wells were screened to target the clay zones and areas of higher soil gas concentrations. The well construction diagrams are provided in Appendix B. Baro-Ball{trademark} valves for enhanced barometric pumping were installed on each well upon completion to immediately begin the remediation treatability study at the site.« less

  14. Installation-Restoration Program Preliminary Assessment, Naknek Recreational Camps, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Naknek Recreational Camps, Alaska, DoD policy is to identify and fully evaluate suspected problems associated with past hazardous-material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. Past installation operations involved the use and disposal of materials and wastes that were subsequently categorized as hazardous. The major operations of Naknek Camp I and Camp II did not use or disposemore » of HM/HW; however, these camps were used by the Air Force as dump areas and landfills. Waste oils, fuels, and polychlorinated biphenyls (PCBs) were among the wastes disposed of during these dumping activities. Information obtained through interviews, records, and field observations resulted in the identification of three sites that are potentially contaminated with HM/HW. At each of the identified sites, the potential exists for contamination of surface water, soils, and/or ground water and subsequent contaminant migration.« less

  15. WASTE INFORMATION MODELING (WIM) FOR CONSTRUCTION OF THE BUILT ENVIRONMENT

    EPA Science Inventory

    The outcomes will include the construction of full-scale building prototypes. As full-scale pieces are constructed they will be installed throughout the community, and could potentially be used as installations within the local community to demonstrate the use of recycled prod...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, Mitchell S.

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  17. 78 FR 56944 - Pacific Gas and Electric Company; Humboldt Bay Independent Spent Fuel Storage Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Class C (GTCC) process waste at the Humboldt Bay ISFSI. PG&E submitted its license amendment request by... proposed amendment to License No. SNM-2514 to allow storage of GTCC process waste at the Humboldt Bay ISFSI... fuel and is authorized by NRC, under License No. SNM-2514, to also store GTCC activated metal waste at...

  18. Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management.

    PubMed

    Wen, Zongguo; Hu, Shuhan; De Clercq, Djavan; Beck, M Bruce; Zhang, Hua; Zhang, Huanan; Fei, Fan; Liu, Jianguo

    2018-03-01

    Catering companies around the world generate tremendous amounts of waste; those in China are no exception. The paper discusses the design, implementation, and evaluation of a sensor-based Internet of Things (IoT) network technology for improving the management of restaurant food waste (RFW) in the city of Suzhou, China. This IoT-based system encompasses the generation, collection, transportation and final disposal of RFW. The Suzhou case study comprised four steps: (1) examination of the required functionality of an IoT-enabled system in the specific context of Suzhou; (2) configuration of the system architecture, both software and hardware components, according to the identified functionality; (3) installation of the components of the IoT system at the facilities of the stakeholders across the RFW generation-collection-transportation-disposal value chain; and (4) evaluation of the performance of the entire system, based on data from three years of operation. The results show that the system had a strong impact. Positive results include: (1) better management of RFW generation, as evidenced by a 20.5% increase in RFW collected via official channels and a 207% increase in the number of RFW generators under official contract; (2) better law enforcement in response to RFW malpractice, enabled by the monitoring capabilities of the IoT system; and (3) an overall reduction in illicit RFW activities and better process optimization across the RFW value chain. Negative results include: (1) Radio-frequency identification (RFID) tags need to be renewed often due to the frequent handling of waste bins, thus increasing operating costs; (2) dynamic/automatic weight sensors had a higher degree of error than the more time-consuming static/manual weighing method; and (3) there were disagreements between the city's government agencies about how to interpret data from the IoT system, which led to some inefficiencies in management. In sum, the Suzhou IoT system enabled data-driven management of RFW and had a net positive impact for the stakeholders involved. Copyright © 2017. Published by Elsevier Ltd.

  19. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  20. 46 CFR 11.470 - Officer endorsements as offshore installation manager.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officer endorsements as offshore installation manager... Officer endorsements as offshore installation manager. (a) Officer endorsements as offshore installation manager (OIM) include: (1) OIM Unrestricted; (2) OIM Surface Units on Location; (3) OIM Surface Units...

  1. QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES. Project Summary

    EPA Science Inventory

    It is generally agreed that both quality assurance (QA) and quality control (QC) are essential to the proper installation and eventual performance of environmentally safe and secure waste containment systems. Even further, there are both manufacturing and construction aspects to...

  2. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  3. Acquisition of Raman Spectrometer and High Temperature and Pressure Reactor for Synthesis and Characterization of Carbon Based Hybrid Nanoparticles from Waste Wood

    DTIC Science & Technology

    2015-04-27

    from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon materials...corporation). These tools were fully installed and operational. We have also synthesized carbon materials from waste biomass using these two high...materials from waste biomass using these two high temperature reactors. We have extensively used a Raman spectrometer to analyse as synthesized carbon

  4. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  5. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  6. Identification and estimation of socioeconomic impacts resulting from perceived risks and changing images; An annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieves, L.A.; Wernette, D.R.; Hemphill, R.C.

    1990-02-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to initiate the process of choosing a location to permanently store high-level nuclear waste from the designated Yucca Mountain, Nevada, as the only location to be studied as a candidate site for such a repository. The original acts and its amendments had established the grant mechanism by which the state of Nevada could finance an investigation of the potential socioeconomic impacts that could result from the installation and operation of this facility. Over the past three years, the Office of Civilian Radioactive Waste Management (OCRWM or RW) in themore » US Department of Energy (DOE) has approved grant requests by Nevada to perform this investigation. This report is intended to update and enhance a literature review conducted by the Human Affairs Research Center (HARC) for the Basalt Waste Isolation Project that dealt with the psychological and sociological processes underlying risk perception. It provides addition information on the HARC work, covers a subsequent step in the impact-estimation process, and translates risk perception into decisions and behaviors with economic consequences. It also covers recently developed techniques for assessing the nature and magnitude of impacts caused by environmental changes focusing on those impacts caused by changes in perceived risks.« less

  7. The ManureEcoMine pilot installation: advanced integration of technologies for the management of organics and nutrients in livestock waste.

    PubMed

    Pintucci, Cristina; Carballa, Marta; Varga, Sam; Sarli, Jimena; Peng, Lai; Bousek, Johannes; Pedizzi, Chiara; Ruscalleda, Maël; Tarragó, Elena; Prat, Delphine; Colica, Giovanni; Picavet, Merijn; Colsen, Joop; Benito, Oscar; Balaguer, Marilos; Puig, Sebastià; Lema, Juan M; Colprim, Jesús; Fuchs, Werner; Vlaeminck, Siegfried E

    2017-03-01

    Manure represents an exquisite mining opportunity for nutrient recovery (nitrogen and phosphorus), and for their reuse as renewable fertilisers. The ManureEcoMine proposes an integrated approach of technologies, operated in a pilot-scale installation treating swine manure (83.7%) and Ecofrit ® (16.3%), a mix of vegetable residues. Thermophilic anaerobic digestion was performed for 150 days, the final organic loading rate was 4.6 kgCOD m -3 d -1 , with a biogas production rate of 1.4 Nm 3 m -3 d -1 . The digester was coupled to an ammonia side-stream stripping column and a scrubbing unit for free ammonia inhibition reduction in the digester, and nitrogen recovery as ammonium sulphate. The stripped digestate was recirculated daily in the digester for 15 days (68% of the digester volume), increasing the gas production rate by 27%. Following a decanter centrifuge, the digestate liquid fraction was treated with an ultrafiltration membrane. The filtrate was fed into a struvite reactor, with a phosphorus recovery efficiency of 83% (as orthophosphate). Acidification of digestate could increment the soluble orthophosphate concentration up to four times, enhancing phosphorus enrichment in the liquid fraction and its recovery via struvite. A synergistic combination of manure processing steps was demonstrated to be technologically feasible to upgrade livestock waste into refined, concentrated fertilisers.

  8. A study of the feasibility of pneumatic transport of municipal solid waste and recyclables in Manhattan using existing transportation infrastructure.

    DOT National Transportation Integrated Search

    2013-07-01

    This study explored possibilities for using existing transportation infrastructure for the cost-effective : installation of pneumatic waste-collection technology in Manhattan. If shown to be economically and : operationally feasible, reducing the num...

  9. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less

  10. Automated baseline change detection -- Phases 1 and 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, E.

    1997-10-31

    The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrelmore » and on feature recognition in images. The ABCD image processing software was installed on a robotic vehicle developed under a related DOE/FETC contract DE-AC21-92MC29112 Intelligent Mobile Sensor System (IMSS) and integrated with the electronics and software. This vehicle was designed especially to navigate in DOE Waste Storage Facilities. Initial system testing was performed at Fernald in June 1996. After some further development and more extensive integration the prototype integrated system was installed and tested at the Radioactive Waste Management Facility (RWMC) at INEEL beginning in April 1997 through the present (November 1997). The integrated system, composed of ABCD imaging software and IMSS mobility base, is called MISS EVE (Mobile Intelligent Sensor System--Environmental Validation Expert). Evaluation of the integrated system in RWMC Building 628, containing approximately 10,000 drums, demonstrated an easy to use system with the ability to properly navigate through the facility, image all the defined drums, and process the results into a report delivered to the operator on a GUI interface and on hard copy. Further work is needed to make the brassboard system more operationally robust.« less

  11. Installation Restoration Program Records Search for Davis-Monthan Air Force Base, Arizona.

    DTIC Science & Technology

    1982-08-01

    inspection labs, and corrosion -2- control shops. These industrial operations generate varying quantities of waste oils , fuels , *solvents, and cleaners. The...standard procedures for the disposition of the majority of the waste oils , fuels , solvents, and cleaners has been (1) fire department training...and corrosion control shops. These industrial operations generate varying quantities of waste oils , fuels , solvents, and cleaners. The total quantity

  12. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    DTIC Science & Technology

    2016-06-08

    specific commercial product, process, or service by trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Food waste generation...and disposal is a significant source of greenhouse gas emissions and lost opportunity for energy recovery. Anaerobic digestion of food waste and

  13. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  14. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  15. Sustainable water management in rural and peri-urban areas: what technology do we need to meet the UN millennium development goals?

    PubMed

    Wilderer, P A

    2005-01-01

    Installation of advanced urban water management systems is one of the most important first steps in the attempt to overcome poverty on earth, outbreak of diseases, crime and even terrorism. Because world wide application of traditional water supply, sewerage and wastewater treatment technology requires financial resources which are basically not available within a reasonable short time frame novel solutions must be found, developed and implemented. The combination of high-tech on-site treatment of the various waste streams generated in households, enterprises and industrial sites, and reuse of the valuable materials obtained from the treatment plants, including the purified water, is one of the options which is investigated by various groups of researchers and technology developers, nowadays. This concept may help meeting the UN Millennium Development Goals, provided people are ready to accept this new way of dealing with household wastes. Education is necessary to build up the foundation which modern water technology can be based upon. In parallel, tailored modifications are to be considered to satisfy the specific demands of local communities. In this context, female participation appears to be extremely important in the decision making process.

  16. Future landfill emissions and the effect of final cover installation--a case study.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2011-07-01

    Municipal solid waste (MSW) landfills are potential long-term sources of emissions. Hence, they need to be managed after closure until they do not pose a threat to humans or the environment. The case study on the Breitenau MSW landfill was performed to evaluate future emission levels for this site and to illustrate the effect of final cover installation with respect to long-term environmental risks. The methodology was based on a comprehensive assessment of the state of the landfill and included analysis of monitoring data, investigations of landfilled waste, and an evaluation of containment systems. A model to estimate future emission levels was established and site-specific predictions of leachate emissions were presented based on scenario analysis. The results are used to evaluate the future pollution potential of the landfill and to compare different aftercare concepts in view of long-term emissions. As some leachable substances became available for water flow during cover construction due to a change in the water flow pattern of the waste, a substantial increase in leachate concentrations could be observed at the site (e.g. concentrations of chloride increased from 200 to 800 mg/l and of ammonia-nitrogen from 140 to about 500 mg/l). A period of intensive flushing before the final cover installation could have reduced the amount of leachable substances within the landfill body and rapidly decreased the leachate concentrations to 11 mg Cl/l and 79 mg NH(4)-N/l within 50 years. Contrarily, the minimization of water infiltration is associated with leachate concentrations in a high range for centuries (above 400 mg Cl/l and 200 mg NH(4)-N/l) with low concomitant annual emission loads (below 12 kg/year of Cl or 9 kg/year of NH(4)-N, respectively). However, an expected gradual decrease of barrier efficiency over time would be associated with higher emission loads of 50 kg of chloride and 30 kg of ammonia-nitrogen at the maximum, but a faster decrease of leachate concentration levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  18. Feasibility Study of Food Waste Co-Digestion at U.S. Army Installations

    DTIC Science & Technology

    2017-03-01

    sludge and food these, waste materials can create energy in the form of electric power for the plant. The extra heat and power generated from this... formed at Fort Huachuca provided detailed analyses of the waste stream, primary generators of each waste component, and a measured sample from the...tanks. The second tank will be the current first tank, where the majority of methane will be formed , and the last tank will remain as the final rest

  19. Electroplating wastes in marine environments: A case history at Quonset Point, Rhode Island

    USGS Publications Warehouse

    Eisler, Ronald; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    All U.S. Navy electroplating and metal-finishing wastes are now required to pass through industrial-wastewater treatment plants and other treatment facilities for the removal of heavy metals and other potentially hazardous materials. In 1984 a total of 235,191 metric tons (t) of electroplating and metal-finishing wastes from 70 U.S. Navy installations - primarily shipyards, aviation depots, air stations, and weapons plants - were treated.1 Electroplating wastes were not always fully treated.

  20. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  1. Fiscal Year 2005 Solid Waste Pollution Prevention Annual Data Summary, (SW P2ADS) Guide (User’s Guide)

    DTIC Science & Technology

    2005-09-01

    services were procured? 19. IS YOUR INSTALLATION USING GREEN CLEANING PRODUCTS OR SERVICES? Enter “yes” or “no.” Return to Page 1, GPP INFO Tab...X___ If yes, please explain. 19. IS YOUR INSTALLATION USING GREEN CLEANING PRODUCTS OR SERVICES? (Check one) Yes _X__ No...Yes ____ No ____ If yes, please explain 19. IS YOUR INSTALLATION USING GREEN CLEANING PRODUCTS OR SERVICES? (Check

  2. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  3. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not Been Modified or... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an... construction or installation of the collection and control system. Complete on-site construction means that all...

  4. 40 CFR 62.14351 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not Been Modified or... construction on the horizontal or vertical expansion. Municipal solid waste landfill or MSW landfill means an... construction or installation of the collection and control system. Complete on-site construction means that all...

  5. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  6. KSC-2014-2027

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. - Chuck Dovale, at left, deputy program manager of Launch Services, and Nancy Bray, director of Center Operations, cut a ribbon officially opening the new fitness trail next to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The one-mile-long track will provide employees with a safe place off Kennedy's roadways to walk or run. The more than 6 tons of green waste removed to create the trail's footprint will be mulched and used for cover at Kennedy's landfill. Approximately 1,594 tons of crawler fines -- ground-up crawler rock removed from the crawlerway in the Launch Complex 39 area -- was used for the foundation of the trail. Fitness equipment has been ordered and will be installed on a concrete slab at the trail's west end. After the equipment has been installed, the slab will be coated to provide a rubberized exercise pad. At Kennedy Space Center, the health and safety of every employee is paramount. To learn more about Kennedy, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Frankie Martin

  7. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  8. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical

  9. Hazardous Waste Surveys of Two Army Installations and an Army Hospital.

    DTIC Science & Technology

    1980-08-01

    232 Nickel-63 Uranium-238 Plutonium-239 Polonium - 210 6 Army Medical Treatment Facilities: General Administration Army Regulation (AR) 40-2, 42A peren...Categories 10 2 Waste Matrix 14 3 Search Format 16 4 Field Sanitation Unit Personal Health Supplies 19 5 Company Vehicle Maintenance Supplies...increasing industrialization of society, coupled with an equally increasing environmental and health safety awareness, has created a long list of wastes

  10. Preliminary assessment report for Bee Caves Armory (former Nike BG-80 Fire Control Facility), Installation 48055, Austin, Texas. Installation Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, C.

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (ARNG) property in Austin, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing, preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining, site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment.more » This PA satisfies, for the Bee Caves Armory property, the requirements of the Department of Defense Installation Restoration Program. Of concern is the potential for hazardous waste to be present on the property as a result of the former Nike Missile Base operations or in the form of original construction materials. Environmentally sensitive operations associated with the property from that period include (1) underground fuel storage, (2) hazardous materials storage/use, (3) disposal of hazardous waste and (4) release of hazardous waste water.« less

  11. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  12. Non-composted municipal solid waste byproduct influences soil and plant nutrients five years after soil reclamation

    USDA-ARS?s Scientific Manuscript database

    Concerns for the mounting supply of municipal solid waste being generated combined with decreasing landfill space have compelled military installations to evaluate alternative methods for disposal. One approach to reduce landfilling is the use of a new garbage-processing technology that sterilizes a...

  13. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  14. 40 CFR 60.2165 - What monitoring equipment must I install and what parameters must I monitor?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... installed in each baghouse compartment or cell. For negative pressure or induced air fabric filters, the bag... test. (g) For waste-burning kilns not equipped with a wet scrubber, in place of hydrogen chloride..., maintain, and operate a continuous emission monitoring system for monitoring hydrogen chloride emissions...

  15. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  16. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  17. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring systems for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  18. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate... emission monitoring system for sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the...

  19. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  20. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  1. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part 60. (c) You must monitor the oxygen (or carbon dioxide) concentration at each location where you..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I municipal waste combustion unit, also install, calibrate...

  2. How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies.

    PubMed

    Bertanza, Giorgio; Papa, Matteo; Canato, Matteo; Collivignarelli, Maria Cristina; Pedrazzani, Roberta

    2014-05-01

    A key issue in biological Waste Water Treatment Plants (WWTPs) operation is represented by the sludge management. Mechanical dewatering is a crucial stage for sludge volume reduction; though, being a costly operation, its optimization is required. We developed an original experimental methodology to evaluate the technical (dewatering efficiency) and financial (total treatment costs) performance of dewatering devices, which might be used as a DSS (Decision Support System) for WWTP managers. This tool was then applied to two real case studies for comparing, respectively, three industrial size centrifuges, and two different operation modes of the same machine (fixed installation vs. outsourcing service). In both the cases, the best option was identified, based jointly on economic and (site-specific) technical evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Global capacity, potentials and trends of solid waste research and management.

    PubMed

    Nwachukwu, Michael A; Ronald, Mersky; Feng, Huan

    2017-09-01

    In this study, United States, China, India, United Kingdom, Nigeria, Egypt, Brazil, Italy, Germany, Taiwan, Australia, Canada and Mexico were selected to represent the global community. This enabled an overview of solid waste management worldwide and between developed and developing countries. These are countries that feature most in the International Conference on Solid Waste Technology and Management (ICSW) over the past 20 years. A total of 1452 articles directly on solid waste management and technology were reviewed and credited to their original country of research. Results show significant solid waste research potentials globally, with the United States leading by 373 articles, followed by India with 230 articles. The rest of the countries are ranked in the order of: UK > Taiwan > Brazil > Nigeria > Italy > Japan > China > Canada > Germany >Mexico > Egypt > Australia. Global capacity in solid waste management options is in the order of: Waste characterisation-management > waste biotech/composting > waste to landfill > waste recovery/reduction > waste in construction > waste recycling > waste treatment-reuse-storage > waste to energy > waste dumping > waste education/public participation/policy. It is observed that the solid waste research potential is not a measure of solid waste management capacity. The results show more significant research impacts on solid waste management in developed countries than in developing countries where economy, technology and society factors are not strong. This article is targeted to motivate similar study in each country, using solid waste research articles from other streamed databases to measure research impacts on solid waste management.

  4. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less

  5. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  6. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  7. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  8. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  9. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  10. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  11. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  12. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  13. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  14. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...

  15. Correlates of domestic waste management and related health outcomes in Sunyani, Ghana: a protocol towards enhancing policy.

    PubMed

    Addo, Henry O; Dun-Dery, Elvis J; Afoakwa, Eugenia; Elizabeth, Addai; Ellen, Amposah; Rebecca, Mwinfaug

    2017-07-03

    Domestic waste generation has contributed significantly to hampering national waste management efforts. It poses serious threat to national development and requires proper treatment and management within and outside households. The problem of improper waste management has always been a challenge in Ghana, compelling several national surveys to report on the practice of waste management. However, little is known about how much waste is generated and managed within households and there is a serious dearth of information for national policy and planning. This paper seeks to document the handling and practice of waste management, including collection, storage, transportation and disposal along with the types and amount of waste generated by Households and their related health outcome. The study was a descriptive cross-sectional study and used a multi-stage sampling technique to sample 700 households. The study was planned and implemented from January to May 2015. It involved the use of structured questionnaires in the data collection over the period. Factors such as demographic characteristics, amount of waste generated, types of waste bins used within households, waste recycling, cost of disposing waste, and distance to dumpsite were all assessed. The paper shows that each surveyed household generated 0.002 t of waste per day, of which 29% are both organic and inorganic. Though more than half of the respondents (53.6%) had positive attitude towards waste management, only 29.1% practiced waste management. The study reveals that there is no proper management of domestic waste except in few households that segregate waste. The study identified several elements as determinants of waste management practice. Female respondents were less likely to practice waste management (AOR 0.45; 95% Cl 0.29, 0.79), household size also determined respondents practice (AOR 0.26; Cl 0.09, 0.77). Practice of recycling (AOR 0.03; Cl 0.02, 0.08), distance to dumpsite (AOR 0.45; Cl 0.20, 0.99), were all significant predictors of waste management practice. Cholera which is a hygiene related disease was three times more likely to determine households' waste management practice (AOR 3.22; Cl 1.33, 7.84). Considering the low waste management practice among households, there is the need for improved policy and enhanced education on proper waste management practice among households.

  16. Geological repository for nuclear high level waste in France from feasibility to design within a legal framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voizard, Patrice; Mayer, Stefan; Ouzounian, Gerald

    Over the past 15 years, the French program on deep geologic disposal of high level and long-lived radioactive waste has benefited from a clear legal framework as the result of the December 30, 1991 French Waste Act. To fulfil its obligations stipulated in this law, ANDRA has submitted the 'Dossier 2005 Argile' (clay) and 'Dossier 2005 Granite' to the French Government. The first of those reports presents a concept for the underground disposal of nuclear waste at a specific clay site and focuses on a feasibility study. Knowledge of the host rock characteristics is based on the investigations carried outmore » at the Meuse/Haute Marne Underground Research Laboratory. The repository concept addresses various issues, the most important of which relates to the large amount of waste, the clay host rock and the reversibility requirement. This phase has ended upon review and evaluation of the 'Dossier 2005' made by different organisations including the National Review Board, the National Safety Authority and the NEA International Review Team. By passing the 'new', June 28, 2006 Planning Act on the sustainable management of radioactive materials and waste, the French parliament has further defined a clear legal framework for future work. This June 28 Planning Act thus sets a schedule and defines the objectives for the next phase of repository design in requesting the submission of a construction authorization application by 2015. The law calls for the repository program to be in a position to commission disposal installations by 2025. (authors)« less

  17. Superfund record of decision (EPA Region 9): Aircraft Control and Warning Site, Mather Air Force Base, CA, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This decision document, a Record of Decision (ROD), presents the selected remedial action for the AC W Site, Installation Restoration Program (IRP) Site 12, at Mather Air Force Base (AFB), Sacramento County, California. Reports indicate that from 1958 to 1966 waste solvents and transformer oils were disposed in a waste disposal pipe in the AC W area. Investigations conducted as part of the Air Force Installation Restoration Program (IRP) failed to locate the waste disposal pipe but did find trichloroethylene (TCE) contamination in the shallow water bearing zone (SWBZ) in the AC W area. The SWBZ is classified as amore » potential source of drinking water by the State of California, although it is not currently used in the AC W area. The selected remedy will address the potential threat to human health posed by TCE contamination in groundwater (primarily in the SWBZ).« less

  18. On-line remote monitoring of radioactive waste repositories

    NASA Astrophysics Data System (ADS)

    Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria

    2014-12-01

    A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.

  19. Integrated Baseline System (IBS). Version 1.03, System Management Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.R.; Bailey, S.; Bower, J.C.

    This IBS System Management Guide explains how to install or upgrade the Integrated Baseline System (IBS) software package. The IBS is an emergency management planning and analysis tool that was developed under the direction of the Federal Emergency Management Agency (FEMA). This guide includes detailed instructions for installing the IBS software package on a Digital Equipment Corporation (DEC) VAX computer from the IBS distribution tapes. The installation instructions include procedures for both first-time installations and upgrades to existing IBS installations. To ensure that the system manager has the background necessary for successful installation of the IBS package, this guide alsomore » includes information on IBS computer requirements, software organization, and the generation of IBS distribution tapes. When special utility programs are used during IBS installation and setups, this guide refers you to the IBS Utilities Guide for specific instructions. This guide also refers you to the IBS Data Management Guide for detailed descriptions of some IBS data files and structures. Any special requirements for installation are not documented here but should be included in a set of installation notes that come with the distribution tapes.« less

  20. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  1. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  2. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  3. 40 CFR 260.23 - Petitions to amend 40 CFR part 273 to include additional hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking... appropriate for the waste or category of waste; will improve management practices for the waste or category of... waste or category of waste, will improve management practices for the waste or category of waste, and...

  4. Infectious waste management in Japan: A revised regulation and a management process in medical institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, M.; Une, H.

    In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reductionmore » of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.« less

  5. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  6. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  7. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  8. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  9. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.52 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Universal Waste Transporters § 273.52 Waste management. (a) A universal waste transporter must comply with all applicable U.S. Department of...

  10. Concept of sustainable waste management in the city of Zagreb: Towards the implementation of circular economy approach.

    PubMed

    Ribić, Bojan; Voća, Neven; Ilakovac, Branka

    2017-02-01

    Improvement of the current waste management is one of the main challenges for most municipalities in Croatia, mainly due to legal obligations set in different European Union (EU) directives regarding waste management, such as reduction of waste generation and landfilling, or increase of separately collected waste and recycling rates. This paper highlights the current waste management in the city of Zagreb by analyzing the waste generation, collection, and disposal scenario along with the regulatory and institutional framework. Since the present waste management system mainly depends upon landfilling, with the rate of separate waste collection and recycling far from being adequate, it is necessary to introduce a new system that will take into account the current situation in the city as well as the obligations imposed by the EU. Namely, in the coming years, the Waste Framework and Landfill Directives of the European Union will be a significant driver of change in waste management practices and governance of the city of Zagreb. At present, the yearly separate waste collection makes somewhat less than 5 kg per capita of various waste fractions, i.e., far below the average value for the (28) capital cities of the EU, which is 108 kg per capita. This is possible to achieve only by better and sustainable planning of future activities and facilities, taking into account of environmental, economic, and social aspects of waste management. This means that the city of Zagreb not only will have to invest in new infrastructure to meet the targets, but also will have to enhance public awareness in diverting this waste at the household level. The solution for the new waste management proposed in this paper will certainly be a way of implementing circular economy approach to current waste management practice in the city of Zagreb. Municipal waste management in the developing countries in the EU (new eastern EU members) is often characterized by its limited utilization of recycling activities, inadequate management of nonindustrial hazardous waste, and inadequate landfill disposal. Many cities in Eastern Europe and Zagreb as well are facing serious problems in managing municipal wastes due to the existing solid waste management system that is found to be highly inefficient. The proposed scenario for city of Zagreb in the paper is an innovative upgrading of municipal waste management based on the waste management hierarchy and circular economy approach.

  11. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no...

  12. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  13. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  14. Installation Restoration Program. Phase 1. Records Search. Air Force Plant Number 3, Tulsa, Oklahoma

    DTIC Science & Technology

    1983-12-01

    treatment plant was designed for cyanide and chromium treat- ment. Wastes are collected in two separate sewer systems; acid-chrome, and alkali cyanide...reduction of hexavalent chrome to trivalent chrome with sulfur dioxide. After the oxidation and reduction are accomplished separately, the wastes are...uses of the water. CCNVEPSI N COATING WASTE: Acidic solution containinq chromium . 0COOLANT: An oil-water mixture used for coolina metal parts durirq

  15. Integrated models for solid waste management in tourism regions: Langkawi Island, Malaysia.

    PubMed

    Shamshiry, Elmira; Nadi, Behzad; Mokhtar, Mazlin Bin; Komoo, Ibrahim; Hashim, Halimaton Saadiah; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island.

  16. Integrated Models for Solid Waste Management in Tourism Regions: Langkawi Island, Malaysia

    PubMed Central

    Shamshiry, Elmira; Nadi, Behzad; Bin Mokhtar, Mazlin; Komoo, Ibrahim; Saadiah Hashim, Halimaton; Yahaya, Nadzri

    2011-01-01

    The population growth, changing consumption patterns, and rapid urbanization contribute significantly to the growing volumes of solid waste that are generated in urban settings. As the rate of urbanization increases, demand on the services of solid waste management increases. The rapid urban growth in Langkawi Island, Malaysia, combined with the increasing rates of solid waste production has provided evidence that the traditional solid waste management practices, particularly the methods of waste collection and disposal, are inefficient and quite nonsustainable. Accordingly, municipal managers and planners in Langkawi need to look for and adopt a model for solid waste management that emphasizes an efficient and sustainable management of solid wastes in Langkawi Island. This study presents the current practices of solid waste management in Langkawi Island, describes the composition of the solid waste generated in that area, and presents views of local residents and tourist on issues related to solid waste management like the aesthetic value of the island environment. The most important issue of this paper is that it is the first time that integrated solid waste management is investigated in the Langkawi Island. PMID:21904559

  17. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  18. SEASONAL EMISSIONS OF AMMONIA AND METHANE FROM A HOG WASTE LAGOON WITH BIOACTIVE COVER

    EPA Science Inventory

    The paper discusses the use of plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) to measure the flux of ammonia and methane from a hog waste lagoon before and after the installation of a bioactive cover. A computed tomography algorithm using a smoo...

  19. Mobile site safety review for the transuranic (TRU) waste characterization program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1996-11-01

    This Safety Review Document (SRD) applies to the Active/Passive Neutron Examination and Assay (APNEA) system installed on a Lockheed Martin Specialty Components, Inc., (Specialty Components) trailer. The APNEA is designed to perform nuclear waste drum assay. The purpose of this document is to describe the safety features of the APNEA system.

  20. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  1. E-waste Management and Refurbishment Prediction (EMARP) Model for Refurbishment Industries.

    PubMed

    Resmi, N G; Fasila, K A

    2017-10-01

    This paper proposes a novel algorithm for establishing a standard methodology to manage and refurbish e-waste called E-waste Management And Refurbishment Prediction (EMARP), which can be adapted by refurbishing industries in order to improve their performance. Waste management, particularly, e-waste management is a serious issue nowadays. Computerization has been into waste management in different ways. Much of the computerization has happened in planning the waste collection, recycling and disposal process and also managing documents and reports related to waste management. This paper proposes a computerized model to make predictions for e-waste refurbishment. All possibilities for reusing the common components among the collected e-waste samples are predicted, thus minimizing the wastage. Simulation of the model has been done to analyse the accuracy in the predictions made by the system. The model can be scaled to accommodate the real-world scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. © The Author(s) 2014.

  3. Comparison of municipal solid waste management systems in Canada and Ghana: A case study of the cities of London, Ontario, and Kumasi, Ghana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asase, Mizpah; Yanful, Ernest K.; Mensah, Moses

    2009-10-15

    Integrated waste management has been accepted as a sustainable approach to solid waste management in any region. It can be applied in both developed and developing countries. The difference is the approach taken to develop the integrated waste management system. This review looks at the integrated waste management system operating in the city of London, Ontario-Canada and how lessons can be drawn from the system's development and operation that will help implement a sustainable waste management system in the city of Kumasi, Ghana. The waste management system in London is designed such that all waste generated in the city ismore » handled and disposed of appropriately. The responsibility of each sector handling waste is clearly defined and monitored. All major services are provided and delivered by a combination of public and private sector forces. The sustainability of the waste management in the city of London is attributed to the continuous improvement strategy framework adopted by the city based on the principles of integrated waste management. It is perceived that adopting a strategic framework based on the principles of integrated waste management with a strong political and social will, can transform the current waste management in Kumasi and other cities in developing countries in the bid for finding lasting solutions to the problems that have plagued the waste management system in these cities.« less

  4. Criteria for Evaluating United States Marine Corps Installation Strategic Management

    DTIC Science & Technology

    2001-12-01

    STATES MARINE CORPS INSTALLATION STRATEGIC MANAGEMENT by James E. Leighty December 2001 Thesis Advisor: Joseph San Miguel Report...Marine Corps Installation Strategic Management Contract Number Grant Number Program Element Number Author(s) Leighty, James Project Number Task...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Criteria For Evaluating United States Marine Corps Installation Strategic

  5. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  6. 40 CFR 281.30 - New UST system design, construction, installation, and notification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New UST system design, construction, installation, and notification. 281.30 Section 281.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVAL OF STATE UNDERGROUND STORAGE TANK PROGRAMS Criteria for No-Less-Stringent § 281.30 New UST...

  7. Analysis on 3RWB model (Reduce, reuse, recycle, and waste bank) in comprehensive waste management toward community-based zero waste

    NASA Astrophysics Data System (ADS)

    Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi

    2017-06-01

    Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.

  8. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  9. Healthcare waste management research: A structured analysis and review (2005-2014).

    PubMed

    Thakur, Vikas; Ramesh, A

    2015-10-01

    The importance of healthcare waste management in preserving the environment and protecting the public cannot be denied. Past research has dealt with various issues in healthcare waste management and disposal, which spreads over various journals, pipeline research disciplines and research communities. Hence, this article analyses this scattered knowledge in a systematic manner, considering the period between January 2005 and July 2014. The purpose of this study is to: (i) identify the trends in healthcare waste management literature regarding journals published; (ii) main topics of research in healthcare waste management; (iii) methodologies used in healthcare waste management research; (iv) areas most frequently researched by researchers; and (v) determine the scope of future research in healthcare waste management. To this end, the authors conducted a systematic review of 176 articles on healthcare waste management taken from the following eight esteemed journals: International Journal of Environmental Health Research, International Journal of Healthcare Quality Assurance, Journal of Environmental Management, Journal of Hazardous Material, Journal of Material Cycles and Waste Management, Resources, Conservations and Recycling, Waste Management, and Waste Management & Research. The authors have applied both quantitative and qualitative approaches for analysis, and results will be useful in the following ways: (i) results will show importance of healthcare waste management in healthcare operations; (ii) findings will give a comparative view of the various publications; (c) study will shed light on future research areas. © The Author(s) 2015.

  10. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  11. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  12. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  13. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  14. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  15. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing construction, reconstruction, or modification. ...

  16. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Must I prepare a waste management plan... December 1, 2008 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  17. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  18. 40 CFR 62.14430 - Must I prepare a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Must I prepare a waste management plan... 20, 1996 Waste Management Plan § 62.14430 Must I prepare a waste management plan? Yes. All HMIWI owners or operators must have a waste management plan. ...

  19. Disaster waste management: a review article.

    PubMed

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Disaster waste management: A review article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less

  1. Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nicholas; Adams, Lynne; Wong, Pierre

    2013-07-01

    Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators formore » all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)« less

  2. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  3. Demonstration of anaerobic biogas digesters in developing countries. Part III. The Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.H.; Morales, E.C.

    1980-03-01

    The main theme of this series of articles is that ours is now a world-wide society, short on meeting needs for energy yet long on waste from our industrial, agricultural and human consumption processes. This is a study report about developments in the Philippines where waste management has been recognized and considered as an important practical source of energy. This is revealed by several reports of the number of biogas plants in operation in this country. According to the July 31, 1977 survey made by the Philippines Bureau of Animal Industries, 200 biogas plants were then installed and in operationmore » of which 46 were government-owned and 154 privately-owned. More have been installed since then. This report presents some of the operating observations and developments from the joint engineering analyses project of the Philippines Bureau of Animal Industry, Man and the Biosphere Inter-Agency Committee on Ecological Studies, Bureau of Fisheries and Aquatic Resources and the National Institute of Science and Technology. The project's main objective was to show that establishing a biogas plant involves not only the production of a methane gas mixture but the integration of its other products as part of a system (i.e., using effluent water from the biogas digester for production of algae chlorell sp. for livestock and poultry feed, production of fish and fertilizing-irrigating of pasture and vegetable plots.). Housing development sewer systems with added biogas generators are also discussed.« less

  4. Installation of Groundwater Monitoring Wells TAV-MW15 and TAV-MW16.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lum, Clinton C. L.

    This report documents the installation of two groundwater monitoring wells at the Technical Area V Groundwater (TAVG) Area of Concern at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA- 0003525. Well installation activities were conducted in accordance with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB)-approved work plan Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern (Workmore » Plan) (SNL/NM March 2016). The Work Plan was approved by NMED HWB prior to the start of field work (NMED May 2016). Project activities were performed from November 2016 through January 2017 by SNL/NM Environmental Restoration (ER) Operations personnel, and the SNL/NM drilling contractor Cascade Drilling LP. Drilling activities began with borehole drilling and sampling on November 30, 2016. Well construction and development fieldwork was completed on January 31, 2017. Land surveys to establish the location coordinates and elevations of the two wells were completed on March 23, 2017, and transmitted to SNL/NM personnel on April 17, 2017.« less

  5. Healthcare waste management status in Lagos State, Nigeria: a case study from selected healthcare facilities in Ikorodu and Lagos metropolis.

    PubMed

    Longe, Ezechiel O

    2012-06-01

    A survey of healthcare waste management practices and their implications for health and the environment was carried out. The study assessed waste management practices in 20 healthcare facilities ranging in capacity from 40 to 600 beds in Ikorodu and metropolitan Lagos, Lagos State, Nigeria. The prevailing healthcare waste management status was analysed. Management issues on quantities and proportion of different constituents of waste, segregation, collection, handling, transportation, treatment and disposal methods were assessed. The waste generation averaged 0.631 kg bed(-1) day(-1) over the survey area. The waste stream from the healthcare facilities consisted of general waste (59.0%), infectious waste (29.7%), sharps and pathological (8.9%), chemical (1.45%) and others (0.95%). Sharps/pathological waste includes disposable syringes. In general, the waste materials were collected in a mixed form, transported and disposed of along with municipal solid waste with attendant risks to health and safety. Most facilities lacked appropriate treatment systems for a variety of reasons that included inadequate funding and little or no priority for healthcare waste management as well as a lack of professionally competent waste managers among healthcare providers. Hazards associated with healthcare waste management and shortcomings in the existing system were identified.

  6. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  7. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Preconstruction Siting Analysis Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  8. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for..., 1999 Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management...

  9. 40 CFR 60.3010 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for... Rule-Waste Management Plan § 60.3010 What is a waste management plan? A waste management plan is a...

  10. Appropriate Technology for Treating Wastewater at Remote Sites on Army Installations: Preliminary Findings

    DTIC Science & Technology

    1984-04-01

    firing ranges, and training areas--four conventional methods have been used to treat human wastes: trenching and cat holing, pit latrines, vault toilets...stations, and training and recrea- tional areas. The Army now uses four conventional methods to treat human wastes at such sites: trenching and cat ...holing, pit latrines, vault toilets, and chemical toilets ("port-a-pots"). Trenching and cat holing are used when troops are on bivouac; waste is

  11. The NASA Energy Conservation Program

    NASA Technical Reports Server (NTRS)

    Gaffney, G. P.

    1977-01-01

    Large energy-intensive research and test equipment at NASA installations is identified, and methods for reducing energy consumption outlined. However, some of the research facilities are involved in developing more efficient, fuel-conserving aircraft, and tradeoffs between immediate and long-term conservation may be necessary. Major programs for conservation include: computer-based systems to automatically monitor and control utility consumption; a steam-producing solid waste incinerator; and a computer-based cost analysis technique to engineer more efficient heating and cooling of buildings. Alternate energy sources in operation or under evaluation include: solar collectors; electric vehicles; and ultrasonically emulsified fuel to attain higher combustion efficiency. Management support, cooperative participation by employees, and effective reporting systems for conservation programs, are also discussed.

  12. Current status of waste management in Botswana: A mini-review.

    PubMed

    Mmereki, Daniel

    2018-05-01

    Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.

  13. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon... hazardous waste management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude... and recordkeeping requirements. 40 CFR Part 261 Environmental protection, Hazardous waste, Solid waste...

  14. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  15. Waste management outlook for mountain regions: Sources and solutions.

    PubMed

    Semernya, Larisa; Ramola, Aditi; Alfthan, Björn; Giacovelli, Claudia

    2017-09-01

    Following the release of the global waste management outlook in 2015, the United Nations Environment Programme (UN Environment), through its International Environmental Technology Centre, is elaborating a series of region-specific and thematic waste management outlooks that provide policy recommendations and solutions based on current practices in developing and developed countries. The Waste Management Outlook for Mountain Regions is the first report in this series. Mountain regions present unique challenges to waste management; while remoteness is often associated with costly and difficult transport of waste, the potential impact of waste pollutants is higher owing to the steep terrain and rivers transporting waste downstream. The Outlook shows that waste management in mountain regions is a cross-sectoral issue of global concern that deserves immediate attention. Noting that there is no 'one solution fits all', there is a need for a more landscape-type specific and regional research on waste management, the enhancement of policy and regulatory frameworks, and increased stakeholder engagement and awareness to achieve sustainable waste management in mountain areas. This short communication provides an overview of the key findings of the Outlook and highlights aspects that need further research. These are grouped per source of waste: Mountain communities, tourism, and mining. Issues such as waste crime, plastic pollution, and the linkages between exposure to natural disasters and waste are also presented.

  16. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  17. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  18. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  19. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  20. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  1. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  2. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  3. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  4. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  5. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  6. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan? 60... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both...

  7. 40 CFR 60.2900 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false When must I submit my waste management... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2900 When must I submit my waste management plan? You must submit a waste management plan prior to commencing...

  8. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan? 60... Modification or Reconstruction is Commenced on or After June 16, 2006 Waste Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility...

  9. 40 CFR 62.14585 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14585 When must I submit my waste management plan? You must submit a waste management plan no later than April 5, 2004. ...

  10. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  11. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit a waste management plan no later than 60 days following the initial performance test as specified in...

  12. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false What is a waste management plan? 62... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to...

  13. National information network and database system of hazardous waste management in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Hongchang

    1996-12-31

    Industries in China generate large volumes of hazardous waste, which makes it essential for the nation to pay more attention to hazardous waste management. National laws and regulations, waste surveys, and manifest tracking and permission systems have been initiated. Some centralized hazardous waste disposal facilities are under construction. China`s National Environmental Protection Agency (NEPA) has also obtained valuable information on hazardous waste management from developed countries. To effectively share this information with local environmental protection bureaus, NEPA developed a national information network and database system for hazardous waste management. This information network will have such functions as information collection, inquiry,more » and connection. The long-term objective is to establish and develop a national and local hazardous waste management information network. This network will significantly help decision makers and researchers because it will be easy to obtain information (e.g., experiences of developed countries in hazardous waste management) to enhance hazardous waste management in China. The information network consists of five parts: technology consulting, import-export management, regulation inquiry, waste survey, and literature inquiry.« less

  14. Status of waste tyres and management practice in Botswana.

    PubMed

    Mmereki, Daniel; Machola, Bontle; Mokokwe, Kentlafetse

    2017-02-22

    Waste tyres (WTs) are becoming a significant environmental, economical and technological challenge due to their high contents of combustible composition and potential for valuable materials and energy resources. Fewer studies in developing and even developed countries have been carried out to assess the challenges regarding waste tyres management, and suggested the best alternative solutions for managing this waste stream. While developed countries made progress in waste tyres management needs by implementing more efficient innovative recovery and recycling methods, and restrictive regulations regarding the management of used tyres, in many developing countries the management of waste tyres has not received adequate interest, and the processing, treatment and disposal of waste tyre is still nascent. In recent years, worldwide, several methods for managing used tyres, including other principal alternatives for managing end-of-life tyres defined in the 4Rs, reduction, re-use, recovery and recycling have been adopted and applied to minimize serious threats to both the natural environment environment and human. The paper attempted to establish stakeholders' action that has the responsibility in waste tyre management in Botswana. This study also analyzed important aspects on waste tyres management in Botswana. A synthesis of approaches was employed in the present investigation to determine the factors influencing effective performance of waste tyres management practice in Botswana. Data for the present study was obtained using relevant published literature, scientific journals, other third sector sources, academic sources, and research derived from governments and other agencies and field observations. Group discussions with the participants and semi-structured interviews with professionals were carried out. The outcomes of this investigation are a wide-range outline concerning the participants that are important in waste tyres management, and a set of aspects affecting the management of waste tyres. The information provided by this study is very critical for reviewing and updating the methods and tools to update waste tyres data and trends to improve waste tyres management efficiency, suggesting innovative methods of recovering and recycling this waste stream in Botswana.

  15. 40 CFR 264.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to... component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...

  16. Strategy of Water Pollution Control Base On Social Economic Activitiy, in Karang Mumus River, Samarinda East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramaningsih, Vita; Suprayogi, Slamet; Purnama, Setyawan

    2018-02-01

    Water Pollution in Karang Mumus River caused society behavior along the river. Daily activity such as bath, washing and defecate at the river. Garbage, sediment, domestic waste and flood are river problems should be solved. Purpose this research is make strategy of water pollution control in the Karang Mumus River. Method used observation in the field, interview to the society, industry, public activity along the river and government of environment department. Further create data using tool of Analysis Hierarchy Process (AHP) to get the strategy to control water pollution in the river. Actors have contribute pollution control are government, industry and society. Criteria to pollution control are society participation, low, human resources and sustainable. Alternative of pollution control are unit garbage storage; license loyalty for industry and waste; communal waste water installation; monitoring of water quality. Result for actor priority are government (0.4); Industry (0.4); Society (0.2). Result for priority criteria are society participation (0.338), low (0.288), human resources (0.205) and sustainable (0.169). Result for priority alternative are unit garbage storage (0.433); license loyalty for industry and waste (0.238); communal waste water installation (0.169); monitoring of water quality (0.161).

  17. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet) (in Chinese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less

  18. Hazardous Waste: Learn the Basics of Hazardous Waste

    MedlinePlus

    ... to set up a framework for the proper management of hazardous waste. Need More Information on Hazardous Waste? The RCRA Orientation Manual provides ... facility management standards, specific provisions governing hazardous waste management units ... information on the final steps in EPA’s hazardous waste ...

  19. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  20. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  1. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  2. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those...

  3. 40 CFR 62.14590 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as paper, cardboard, plastics, glass, batteries, or metals; or the... waste management measures already in place, the costs of additional measures, the emissions reductions...

  4. E-waste management in India: A mini-review.

    PubMed

    Awasthi, Abhishek Kumar; Wang, Mengmeng; Wang, Zhishi; Awasthi, Mrigendra Kumar; Li, Jinhui

    2018-05-01

    Environmental deterioration and health risk due to improper e-waste management has become a serious issue in India. The major portion of e-waste reaches an unorganized e-waste recycling sector and is then treated by using crude methods. This review article presents a brief highlight on e-waste management status, legislation, and technology uses in India. The present e-waste management needs to be more focused on environmentally sound management, by more active support from all the participants involved in the e-waste flow chain in India.

  5. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  6. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  7. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  8. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must my waste management plan be... Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your...

  9. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste management plan? You must submit a waste management plan no later than the date specified in table 1 of this...

  10. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must my waste management plan be... Before June 20, 1996 Waste Management Plan § 62.14432 When must my waste management plan be completed? As specified in §§ 62.14463 and 62.14464, you must submit your waste management plan with your initial report...

  11. Tribal Waste Management Program

    EPA Pesticide Factsheets

    The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.

  12. Management of construction and demolition wastes as secondary building resources

    NASA Astrophysics Data System (ADS)

    Manukhina, Lyubov; Ivanova, Irina

    2017-10-01

    The article analyzes the methods of management of construction and demolition wastes. The authors developed suggestions for improving the management system of the turnover of construction and demolition wastes. Today the issue of improving the management of construction and demolition wastes is of the same importance as problems of protecting the life-support field from pollution and of preserving biological and land resources. The authors educed the prospective directions and methods for improving the management of the turnover processes for construction and demolition wastes, including the evaluation of potential of wastes as secondary raw materials and the formation of a centralized waste management system.

  13. Army Reserve Expands Net Zero Energy, Water, Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solana, Amy E.

    In 2012, the Army initiated a Net Zero (NZ) program to establish NZ energy, water, and/or waste goals at installations across the U.S. In 2013, the U.S. Army Reserve expanded this program to cover all three categories at different types of Reserve Centers (RCs) across 5 regions. Projects identified at 10 pilot sites resulted in an average savings potential from recommended measures of 90% for energy, 60% for water, and 83% for waste. This article provides results of these efforts.

  14. Demonstration of Combined Food and Landscape Waste Composting at Fort Leonard Wood, MO: Fort Leonard Wood Installation Strategic Sustainable Plan

    DTIC Science & Technology

    2016-01-01

    Availability of on-site food waste-processing technologies suitable for small- to medium- sized generators is often desirable; several manufactur - ers...waste digestors varies according to manufacturer , but typically range from 0.5 to 2 cu yd/day. Food pulpers operate somewhat similarly to food ...and food courts. Based on an analysis of the volumes, potential for cross- contamination , and ease of collection, it was agreed that the primary

  15. Installation Restoration Program. Phase I. Records Search, Brooks AFB, Texas

    DTIC Science & Technology

    1985-03-01

    decay of the cadavers occurred. The waste was packaged in plastic bags, placed in seven 55-gallon drums and buried in a hole 7 to 8 feet deep. The drums...Receptors subscore (I x factor score subtotal/maximm score subtotal) 44 - II. WASTE CARACTERISTICS A. Select the factor score based on the estimated quantity...subtotal) 44 II. WASTE CARACTERISTICS A. Select the factor score based on the estimated quantity, the degree of hazard, and the confidence level of the

  16. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  17. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  18. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  19. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  20. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  1. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  2. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  3. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... immediately closed after removal): (i) Sorting batteries by type; (ii) Mixing battery types in one container... Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage universal waste batteries in a way that prevents releases of any universal waste or component of a universal...

  4. Optimised management of orphan wastes in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doudou, Slimane; McTeer, Jennifer; Wickham, Stephen

    2013-07-01

    Orphan wastes have properties preventing them from being managed according to existing or currently planned management routes, or lack characterisation so that their management is uncertain. The identification of new management opportunities for orphan wastes could realise significant benefits by reducing the number of processing facilities required, reducing waste volumes, reducing hazard or leading to the development of centres of excellence for the processing of certain types of orphan wastes. Information on the characteristics of orphan waste existing at nuclear licensed sites across the UK has been collated and a database developed to act as a repository for the informationmore » gathered. The database provides a capability to analyse the data and to explore possible treatment technologies for each orphan waste type. Thirty five distinct orphan waste types have been defined and possible treatment options considered. Treatment technologies (including chemical, high temperature, immobilisation and physical technologies) that could be applied to one or more of the generic orphan waste streams have been identified. Wiring diagrams have been used to highlight the waste treatment / lifecycle management options that are available for each of the generic orphan groups as well as identifying areas for further research and development. This work has identified the potential for optimising the management of orphan wastes in a number of areas, and many potential opportunities were identified. Such opportunities could be investigated by waste managers at waste producing nuclear sites, to facilitate the development of new management routes for orphan wastes. (authors)« less

  5. Hazardous healthcare waste management in the Kingdom of Bahrain.

    PubMed

    Mohamed, L F; Ebrahim, S A; Al-Thukair, A A

    2009-08-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  6. Hazardous healthcare waste management in the Kingdom of Bahrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-08-15

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this studymore » along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.« less

  7. Waste Generation Overview Refresher, Course 21464

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  8. [Management of hazardous waste in a hospital].

    PubMed

    Neveu C, Alejandra; Matus C, Patricia

    2007-07-01

    An inadequate management of hospital waste, that have toxic, infectious and chemical wastes, is a risk factor for humans and environment. To identify, quantify and assess the risk associated to the management of hospital residues. A cross sectional assessment of the generation of hazardous waste from a hospital, between June and August 2005, was performed. The environmental risk associated to the management of non-radioactive hospital waste was assessed and the main problems related to solid waste were identified. The rate of generation of hazardous non-radioactive waste was 1.35 tons per months or 0.7 kg/bed/day. Twenty five percent of hazardous liquid waste were drained directly to the sewage system. The drug preparation unit of the pharmacy had the higher environmental risk associated to the generation of hazardous waste. The internal transport of hazardous waste had a high risk due to the lack of trip planning. The lack of training of personnel dealing with these waste was another risk factor. Considering that an adequate management of hospital waste should minimize risks for patients, the hospital that was evaluated lacks an integral management system for its waste.

  9. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  10. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  11. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  12. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management... waste management plan? You must submit the waste management plan no later than the date specified in... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On...

  13. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  14. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That...

  15. 40 CFR 62.14715 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That... 40 Protection of Environment 8 2011-07-01 2011-07-01 false When must I submit my waste management... submit my waste management plan? You must submit the waste management plan no later than April 5, 2004. ...

  16. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A... 40 Protection of Environment 8 2011-07-01 2011-07-01 false What is a waste management plan? 62...

  17. 40 CFR 62.14432 - When must my waste management plan be completed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false When must my waste management plan be... POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste Incinerators Constructed On Or Before December 1, 2008 Waste Management Plan § 62.14432 When must my waste management plan be completed...

  18. Waste Management Information System (WMIS) User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  19. Hospital waste management in developing countries: A mini review.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong

    2017-06-01

    Health care activities can generate different kinds of hazardous wastes. Mismanagement of these wastes can result in environmental and occupational health risks. Developing countries are resource-constrained when it comes to safe management of hospital wastes. This study summarizes the main issues faced in hospital waste management in developing countries. A review of the existing literature suggests that regulations and legislations focusing on hospital waste management are recent accomplishments in many of these countries. Implementation of these rules varies from one hospital to another. Moreover, wide variations exist in waste generation rates within as well as across these countries. This is mainly attributable to a lack of an agreement on the definitions and the methodology among the researchers to measure such wastes. Furthermore, hospitals in these countries suffer from poor waste segregation, collection, storage, transportation and disposal practices, which can lead to occupational and environmental risks. Knowledge and awareness regarding proper waste management remain low in the absence of training for hospital staff. Moreover, hospital sanitary workers, and scavengers, operate without the provision of safety equipment or immunization. Unsegregated waste is illegally recycled, leading to further safety risks. Overall, hospital waste management in developing countries faces several challenges. Sustainable waste management practices can go a long way in reducing the harmful effects of hospital wastes.

  20. Current practices of construction waste reduction through 3R practice among contractors in malaysia: Case study in penang

    NASA Astrophysics Data System (ADS)

    Ng, L. S.; Tan, L. W.; Seow, T. W.

    2017-11-01

    The effectiveness of the implementation of construction waste reduction through 3R reflects the sustainability in construction waste management. Weak implementation of construction waste reduction through 3R among contractors will lead to unsustainable construction waste management. Increase in construction waste on landfills is critical especially on islands where land is very limited for solid waste disposal. This aim of this paper is to investigate current practice of construction waste reduction through 3R practice among contractors in Penang, Malaysia. The findings reported herein is based on feedbacks from 143 construction contractors of grade CIDB G7, G6 and G5 in Penang and experts from Penang Local Authority, CIDB in Penang and its Headquarters, National Solid Waste Management Department, and Headquarters of Solid Waste and Public Cleansing Management Corporation. Interviews and questionnaire surveys have been found that 3R practice is not mandatory in construction waste management in Penang. Only 39.8% construction contractors practiced 3R in managing their waste. Therefore, 3R practices should be emphasized in construction industry. Reducing wastes through 3R practices in construction industry is a way forward towards sustainable construction waste management especially in expanding the lifetime of landfill.

  1. Solid waste management in Thailand: an overview and case study (Tha Khon Yang sub-district).

    PubMed

    Yukalang, Nachalida; Clarke, Beverley Dawn; Ross, Kirstin Elizabeth

    2017-09-26

    Due to rapid urbanization, solid waste management (SWM) has become a significant issue in several developing countries including Thailand. Policies implemented by the Central Thai Government to manage SWM issues have had only limited success. This article reviews current municipal waste management plans in Thailand and examines municipal waste management at the local level, with focus on the Tha Khon Yang sub-district surrounding Mahasarakham University in Mahasarakham Province. Within two decades this area has been converted from a rural to an urban landscape featuring accommodation for over 45,000 university students and a range of business facilities. This development and influx of people has outpaced the government's ability to manage municipal solid waste (MSW). There are significant opportunities to improve local infrastructure and operational capacity; but there are few mechanisms to provide and distribute information to improve community participation in waste management. Many community-based waste management projects, such as waste recycling banks, the 3Rs (reduce, reuse and recycle), and waste-to-biogas projects have been abandoned. Additionally, waste from Tha Kon Yang and its surrounding areas has been transferred to unsanitary landfills; there is also haphazard dumping and uncontrolled burning of waste, which exacerbate current pollution issues.

  2. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production potential of sulfur-containing wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. WHO collaboration in hazardous waste management in the Western Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Hisashi

    Since April 1989 when the World Health Organization`s (WHO`s) activities in hazardous waste management in the Western Pacific Region were presented at the Pacific Basin Conference in Singapore, WHO and its Member States have carried out a number of collaborative activities in hazardous waste management. These activities focused on three main areas: national capacity building in the management of toxic chemicals and hazardous wastes in rapidly industrializing countries, management of clinical or medical waste, and hazardous waste management in Pacific Island countries. This paper summarizes these collaborative activities, identifies the main problems and issues encountered, and discusses future prospects ofmore » WHO collaboration with its Member States in the area of hazardous waste management. 1 fig., 1 tab.« less

  4. Military wastes-to-energy applications

    NASA Astrophysics Data System (ADS)

    Kawaoka, K. E.

    1980-11-01

    This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.

  5. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Joseph K.; Chostner, Stephen M.

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when breaking into lines is great. Incidents of personnel exposure to liquids during draining are likely. Records from the initial 1990 deactivation led early work planners to assume the facility was cold, dark and dry. This turned out to be a poor assumption. Work instructions had to be modified to require that engineers evaluate each of several hundred process lines to identify the low point, where a tap and drain system could be installed to allow positive verification that the line was empty before the line was cut for removal. During the period between facility shut down in 1990 and the start of final deactivation in 2003, roof leaks had developed, allowing rain water to enter building 247-F, which provided an environment for mold growth. Sampling confirmed the presence of Stachybotrys chartarum, a toxic indoor mold that grows on wet cellulosic material, such as drywall paper. D and D workers in areas where this hazard was identified were required to where proper personal protective equipment, which complicated work execution. Discovery of the potential presence of uniquely hazardous chemicals such as shock sensitive compounds and toxic uranium hexafluoride became issues which required investigation and special handling strategies. Team access to subject matter experts, who could quickly provide the required guidance for safe material handling, was critical to keeping the project on schedule. In old legacy facilities, it is possible that the D and D workers will be exposed to undocumented energy sources such as energized electrical conductors and pipes containing hazardous materials that originate outside the boundaries of the facility. Significant effort must be expended on adequate mechanical and electrical isolation. Subdividing the facility into well defined zones for which detailed zone-specific end points could be developed proved to be a highly effective project management strategy. Waste management must be carefully planned. The rate of waste generation as the facility is converted from a structure to waste can frequently exceed the D and D team's resources to characterize, package, store and transport the waste to a disposal facility in a timely manner. This can lead to schedule delays and/or increased project cost.« less

  6. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less

  7. 41 CFR 101-39.304 - Modification or installation of accessory equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.3-Use and Care of GSA Interagency Fleet Management System Vehicles § 101-39.304 Modification or installation of accessory equipment. The modification of a GSA Interagency Fleet Management System (IFMS) vehicle or the permanent installation of...

  8. Integrated management of hazardous waste generated from community sources in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yodnane, P.; Spaeder, D.J.

    A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less

  9. A total quality management approach to healthcare waste management in Namazi Hospital, Iran.

    PubMed

    Askarian, Mehrdad; Heidarpoor, Peigham; Assadian, Ojan

    2010-11-01

    Healthcare waste comprises all wastes generated at healthcare facilities, medical research centers and laboratories. Although 75-90% of these wastes are classified as household waste posing no potential risk, 10-25% are deemed to be hazardous, representing a potential threat to healthcare workers, patients, the environment and even the general population, if not disposed of appropriately. If hazardous and non-hazardous waste is mixed and not segregated prior to disposal, costs will increase substantially. Medical waste management is a worldwide issue. In Iran, the majority of problems are associated with an exponential growth in the healthcare sector together with low- or non-compliance with guidelines and recommendations. The aim of this study was to reduce the amounts of infectious waste by clear definition and segregation of waste at the production site in Namazi Hospital in Shiraz, Iran. Namazi Hospital was selected as a study site with an aim to achieving a significant decrease in infectious waste and implementing a total quality management (TQM) method. Infectious and non-infectious waste was weighed at 29 admission wards over a 1-month period. Before the introduction of the new guidelines and the new waste management concept, weight of total waste was 6.67 kg per occupied bed per day (kg/occupied bed/day), of which 73% was infectious and 27% non-infectious waste. After intervention, total waste was reduced to 5.92 kg/occupied bed/day, of which infectious waste represented 61% and non-infectious waste 30%. The implementation of a new waste management concept achieved a 26% reduction in infectious waste. A structured waste management concept together with clear definitions and staff training will result in waste reduction, consequently leading to decreased expenditure in healthcare settings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Benzene contamination at a metal plating facility

    NASA Astrophysics Data System (ADS)

    Memon, B. A.; Burston, M. R.

    2005-08-01

    A metal plating facility in central Kentucky was required to complete a RCRA Facility Investigation to address a number of Solid Waste Management Units at the site. Twenty monitoring wells were installed at the facility. Ground water from the wells was sampled for total and dissolved metals, polychlorinated biphenyls, acid extractable compounds, base neutral compounds, and volatile organic compounds. Unexpectedly, relatively large concentrations of benzene, up to 120 μg/l, were detected in samples from some of the wells, including wells that should have been hydraulically upgradient from the facility. As a result of the detection of benzene, the facility completed an investigation to identify the source. A nearby facility had completed a gasoline underground storage tank (UST) closure at about the time of the installation of the 20 wells. Reportedly the UST had small holes when removed. Three potential pathways of migration (a ditch, sanitary sewer, and a sink hole) from the nearby facility to the metal-plating facility and residual soils with very large concentrations of benzene, toluene, ethylbenzene, and xylenes have been identified.

  11. KSC-2014-2026

    NASA Image and Video Library

    2014-04-11

    CAPE CANAVERAL, Fla. - Dressed for a little exercise, Deputy Program Manager of Launch Services Chuck Dovale addresses the employees who have turned out during their lunchtime for a ribbon-cutting ceremony opening the new fitness trail next to the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The one-mile-long track will provide employees with a safe place off Kennedy's roadways to walk or run. The more than 6 tons of green waste removed to create the trail's footprint will be mulched and used for cover at Kennedy's landfill. Approximately 1,594 tons of crawler fines -- ground-up crawler rock removed from the crawlerway in the Launch Complex 39 area -- was used for the foundation of the trail. Fitness equipment has been ordered and will be installed on a concrete slab at the trail's west end. After the equipment has been installed, the slab will be coated to provide a rubberized exercise pad. At Kennedy Space Center, the health and safety of every employee is paramount. To learn more about Kennedy, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Frankie Martin

  12. 40 CFR 60.2755 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and Reporting § 60.2755 When must I submit my waste management plan? You must submit the waste management plan...

  13. 76 FR 63252 - Hazardous and Solid Waste Management System: Identification and Listing of Special Wastes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ...-2011-0392; FRL-9476-6] RIN 2050-AE81 Hazardous and Solid Waste Management System: Identification and... Protection Agency (Agency or EPA) in conjunction with the proposed rule: Hazardous and Solid Waste Management...-0392. (4) Mail: Send two copies of your comments to Hazardous and Solid Waste Management System...

  14. 40 CFR 60.3011 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3011 When must I submit my waste management plan? You must submit...

  15. Worldwide Environmental Compliance Assessment System (ECAS)

    DTIC Science & Technology

    1993-03-01

    and other Pickling liquor and other corrosive alkalies corrosive acids Lime wastewater Spent acid Lime and water Spent mixed acid Spent caustic Spent ...labeling. packag- ing. and spill response for hazardous materials? 4. Does the installation store: * a. acids? b. caustics ? c. flammables? d. combustibles...USEPA Hazardous Waste Hazard Waste Code No. FOOl The following spent halokenated solvents used in degreasing: tetra- (T) chloroethylene, trichloroethylene

  16. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management.

  17. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  18. 40 CFR 62.14431 - What must my waste management plan include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste management plan must identify both the feasibility of, and the approach for, separating certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from incinerated waste. The waste management plan you develop may address, but is not limited to, paper...

  19. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  20. Aerobic Food Waste Composting: Measurement of Green House Gases

    NASA Astrophysics Data System (ADS)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  1. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  2. Factors influencing household participation in solid waste management (Case study: Waste Bank Malang)

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Arifiani, N. F.; Humaira, A. N. S.; Putri, H. T.

    2018-03-01

    Solid waste management is very important measure in order to reduce the amount of waste. One of solid waste management form in Indonesia is waste banks. This kind of solid waste management required high level of participation of the community. The objective of this study is to explore factors influencing household participation in waste banks. Waste bank in Malang City (WBM) was selected as case study. Questionnaires distribution and investigation in WBM were conducted to identify problems of participation. Quantitative analysis was used to analyze the data. The research reveals that education, income, and knowledge about WBM have relationship with participation in WBM.

  3. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Jointmore » Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)« less

  4. Software Management Environment (SME) installation guide

    NASA Technical Reports Server (NTRS)

    Kistler, David; Jeletic, Kellyann

    1992-01-01

    This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information.

  5. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Practices and challenges of infectious waste management: A qualitative descriptive study from tertiary care hospitals in Pakistan

    PubMed Central

    Kumar, Ramesh; Shaikh, Babar Tasneem; Somrongthong, Ratana; Chapman, Robert S

    2015-01-01

    Background and Objective: Infectious waste management practices among health care workers in the tertiary care hospitals have been questionable. The study intended to identify issues that impede a proper infectious waste management. Methods: Besides direct observation, in-depths interviews were conducted with the hospital administrators and senior management involved in healthcare waste management during March 2014. We looked at the processes related to segregation, collection, storage and disposal of hospital waste, and identified variety of issues in all the steps. Results: Serious gaps and deficiencies were observed related to segregation, collection, storage and disposal of the hospital wastes, hence proving to be hazardous to the patients as well as the visitors. Poor safety, insufficient budget, lack of trainings, weak monitoring and supervision, and poor coordination has eventually resulted in improper waste management in the tertiary hospitals of Rawalpindi. Conclusion: Study has concluded that the poor resources and lack of healthcare worker’s training in infectious waste results in poor waste management at hospitals. PMID:26430405

  7. Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.

    2017-07-01

    Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.

  8. 40 CFR 60.2899 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...

  9. Salad Bars Increased Selection and Decreased Consumption of Fruits and Vegetables 1 Month After Installation in Title I Elementary Schools: A Plate Waste Study.

    PubMed

    Bean, Melanie K; Brady Spalding, Bethany; Theriault, Elizabeth; Dransfield, Kayla-Brooke; Sova, Alexandra; Dunne Stewart, Mary

    2018-06-01

    To evaluate the 1-month impact of salad bars on fruit and vegetable (FV) selection, intake, and waste. Pre-post quasi-experimental design. Title I elementary schools in a large, urban district in central Virginia. Students (grades 1-5; >95% African American) from 2 elementary schools participated in plate waste assessments (282 plates were rated at baseline, 443 at post-assessment); fourth- and fifth-grade students from 15 (of 18 eligible) schools (n = 1,193) responded to surveys. Digital imagery plate waste assessments were conducted before salad bars were installed (baseline) and 1 month afterward (post). Post-surveys examined student perceptions of salad bars. Fruit and vegetable selection, consumption, and waste. General linear models (without considering clustering) examined changes in outcomes, controlling for school. Frequencies and qualitative analyses were applied to survey data. At post, students selected more types of FVs (1.81-2.58; P < .001), although FV consumption decreased by 0.65 cups (P < .001). Given the smaller portions selected, there was less FV waste (0.27 cups; P < .001) at post. Students liked the ability to choose FV from salad bars. Short-term exposure to salad bars increased the number of FV students chose but decreased FV consumption. Additional strategies are needed to increase FV consumption. Copyright © 2018 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  10. Nevada National Security Site Environmental Report Summary 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, Cathy

    This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less

  11. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  12. Waste management system

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Jorgensen, G. K.

    1975-01-01

    The function of the waste management system was to control the disposition of solid and liquid wastes and waste stowage gases. The waste management system consisting of a urine subsystem and a fecal subsystem is described in detail and its overall performance is evaluated. Recommendations for improvement are given.

  13. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Corrosion-Resistant Materials for Water and Wastewater Treatment Plants at Fort Bragg

    DTIC Science & Technology

    2007-06-01

    degradation, and assist in evaluating the Return on Investment for the project. The Project Manager was Dr. Ashok Kumar. The Associate Project Man- ager...Fort Bragg DPW Office), Steve Jackson (Instal- lation Management Agency – South East Region Office), Paul Volkman (Headquarters-Installation... Management Command), David Purcell, (Headquarters, Assistant Chief of Staff for Installation Management ), and Hilton Mills (Army Materiel Command), as

  15. Purge water management system

    DOEpatents

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  16. Purge water management system

    DOEpatents

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  17. Solid waste management challenges for cities in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abarca Guerrero, Lilliana, E-mail: l.abarca.guerrero@tue.nl; Maas, Ger, E-mail: g.j.maas@tue.nl; Hogland, William, E-mail: william.hogland@lnu.se

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publicationsmore » from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.« less

  18. Irrigation Controllers

    EPA Pesticide Factsheets

    With proper installation, programming, and maintenance, homeowners and businesses can use WaterSense labeled controllers instead of standard clock-timer controllers on their existing systems, and no longer worry about wasted water.

  19. Tribal Decisions-Makers Guide to Solid Waste Management: Chapter 2 - Developing Solid Waste Management Plans

    EPA Pesticide Factsheets

    Solid waste management plans offer a host of benefits for tribes and Alaskan Native villages. Through the preparation of these plans, you can assess your cur-rent and future waste management needs, set priorities, and allocate resources accordingly.

  20. Greening MSW management systems by saving footprint: The contribution of the waste transportation.

    PubMed

    Peri, G; Ferrante, P; La Gennusa, M; Pianello, C; Rizzo, G

    2018-08-01

    Municipal solid waste (MSW) management constitutes a highly challenging issue to cope with in order of moving towards more sustainable urban policies. Despite new Standards call for recycling and reusing materials contained in the urban waste, several municipalities still use landfilling as a waste disposal method. Other than the environmental pressure exerted by these plants, waste transportation from the collection points to the landfill needs a specific attention to correctly assess the whole burden of the waste management systems. In this paper, the Ecological Footprint (EF) indicator is applied to the actual MSW of the city of Palermo (Sicily). Results show that the effects produced by the involved transportation vehicles are not negligible, compared to those generated by the other segments of the waste management system. This issue is further deepened by analysing the role of transportation in an upgraded waste management system that is represented by the newly designed waste management plan of Palermo. The computed saved ecological footprint is used here for suitably comparing the environmental performances of the MSW system in both scenarios. Finally, the suitability of the EF method to address not only complete waste management plans but also single segments of the waste management system, is also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less

  2. Medical Waste Management in Community Health Centers.

    PubMed

    Tabrizi, Jafar Sadegh; Rezapour, Ramin; Saadati, Mohammad; Seifi, Samira; Amini, Behnam; Varmazyar, Farahnaz

    2018-02-01

    Non-standard management of medical waste leads to irreparable side effects. This issue is of double importance in health care centers in a city which are the most extensive system for providing Primary Health Care (PHC) across Iran cities. This study investigated the medical waste management standards observation in Tabriz community health care centers, northwestern Iran. In this triangulated cross-sectional study (qualitative-quantitative), data collecting tool was a valid checklist of waste management process developed based on Iranian medical waste management standards. The data were collected in 2015 through process observation and interviews with the health center's staff. The average rate of waste management standards observance in Tabriz community health centers, Tabriz, Iran was 29.8%. This case was 22.8% in dimension of management and training, 27.3% in separating and collecting, 31.2% in transport and temporary storage, and 42.9% in sterilization and disposal. Lack of principal separation of wastes, inappropriate collecting and disposal cycle of waste and disregarding safety tips (fertilizer device performance monitoring, microbial cultures and so on) were among the observed defects in health care centers supported by quantitative data. Medical waste management was not in a desirable situation in Tabriz community health centers. The expansion of community health centers in different regions and non-observance of standards could predispose to incidence the risks resulted from medical wastes. So it is necessary to adopt appropriate policies to promote waste management situation.

  3. Frequent Questions About Universal Waste

    EPA Pesticide Factsheets

    Frequent questions such as Who is affected by the universal waste regulations? What is “mercury-containing equipment”? How are waste batteries managed under universal waste? How are waste pesticides managed under universal waste?

  4. Waste minimization charges up recycling of spent lead-acid batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queneau, P.B.; Troutman, A.L.

    Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less

  5. Electronic waste management approaches: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiddee, Peeranart; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Mawson Lakes Campus, Adelaide, SA 5095; Naidu, Ravi, E-mail: ravi.naidu@crccare.com

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present inmore » e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.« less

  6. Towards the effective plastic waste management in Bangladesh: a review.

    PubMed

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  7. 77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...

  8. 77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  9. 77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...

  10. 75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...

  11. 77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...

  12. Municipal solid waste development phases: Evidence from EU27.

    PubMed

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  13. 75 FR 20942 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... of the waste generation and management information for saccharin and its salts, which demonstrate... partnership with the States, biennially collects information regarding the generation, management, and final... Based on the Available Toxicological Information and Waste Generation and Management Information for...

  14. 77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...

  15. Oak Ridge Reservation Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  16. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  17. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  18. 40 CFR 60.2060 - When must I submit my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false When must I submit my waste management plan? 60.2060 Section 60.2060 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Management Plan § 60.2060 When must I submit my waste management plan? You must submit a waste management...

  19. Development of sustainable waste management toward zero landfill waste for the petrochemical industry in Thailand using a comprehensive 3R methodology: A case study.

    PubMed

    Usapein, Parnuwat; Chavalparit, Orathai

    2014-06-01

    Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.

  20. The radioactive waste management policy and practice in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucerka, M.

    1996-12-31

    In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less

  1. About the Managing and Transforming Waste Streams Tool

    EPA Pesticide Factsheets

    The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.R.

    A comprehensive evaluation was conducted of the radiation protection practices and programs at prototype LMFBRs with long operational experience. Installations evaluated were the Fast Flux Test Facility (FFTF), Richland, Washington; Experimental Breeder Reactor II (EBR-II), Idaho Falls, Idaho; Prototype Fast Reactor (PFR) Dounreay, Scotland; Phenix, Marcoule, France; and Kompakte Natriumgekuhlte Kernreak Toranlange (KNK II), Karlsruhe, Federal Republic of Germany. The evaluation included external and internal exposure control, respiratory protection procedures, radiation surveillance practices, radioactive waste management, and engineering controls for confining radiation contamination. The theory, design, and operating experience at LMFBRs is described. Aspects of LMFBR health physics different frommore » the LWR experience in the United States are identified. Suggestions are made for modifications to the NRC Standard Review Plan based on the differences.« less

  3. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  4. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  5. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  6. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plan. The owner or operator of an affected facility shall prepare a waste management plan. The waste management plan shall identify both the feasibility and the approach to separate certain components of solid waste from the health care waste stream in order to reduce the amount of toxic emissions from...

  7. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  8. Biomedical waste management in Ayurveda hospitals - current practices & future prospectives.

    PubMed

    Rajan, Renju; Robin, Delvin T; M, Vandanarani

    2018-03-16

    Biomedical waste management is an integral part of traditional and contemporary system of health care. The paper focuses on the identification and classification of biomedical wastes in Ayurvedic hospitals, current practices of its management in Ayurveda hospitals and its future prospective. Databases like PubMed (1975-2017 Feb), Scopus (1960-2017), AYUSH Portal, DOAJ, DHARA and Google scholar were searched. We used the medical subject headings 'biomedical waste' and 'health care waste' for identification and classification. The terms 'biomedical waste management', 'health care waste management' alone and combined with 'Ayurveda' or 'Ayurvedic' for current practices and recent advances in the treatment of these wastes were used. We made a humble attempt to categorize the biomedical wastes from Ayurvedic hospitals as the available data about its grouping is very scarce. Proper biomedical waste management is the mainstay of hospital cleanliness, hospital hygiene and maintenance activities. Current disposal techniques adopted for Ayurveda biomedical wastes are - sewage/drains, incineration and land fill. But these methods are having some merits as well as demerits. Our review has identified a number of interesting areas for future research such as the logical application of bioremediation techniques in biomedical waste management and the usage of effective micro-organisms and solar energy in waste disposal. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  9. Rules and management of biomedical waste at Vivekananda Polyclinic: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai

    Hospitals and other healthcare establishments have a 'duty of care' for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedicalmore » waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.« less

  10. Rules and management of biomedical waste at Vivekananda Polyclinic: a case study.

    PubMed

    Gupta, Saurabh; Boojh, Ram; Mishra, Ajai; Chandra, Hem

    2009-02-01

    Hospitals and other healthcare establishments have a "duty of care" for the environment and for public health, and have particular responsibilities in relation to the waste they produce (i.e., biomedical waste). Negligence, in terms of biomedical waste management, significantly contributes to polluting the environment, affects the health of human beings, and depletes natural and financial resources. In India, in view of the serious situation of biomedical waste management, the Ministry of Environment and Forests, within the Government of India, ratified the Biomedical Waste (Management and Handling) Rules, in July 1998. The present paper provides a brief description of the biomedical waste (Management and Handling) Rules 1998, and the current biomedical waste management practices in one of the premier healthcare establishments of Lucknow, the Vivekananda Polyclinic. The objective in undertaking this study was to analyse the biomedical waste management system, including policy, practice (i.e., storage, collection, transportation and disposal), and compliance with the standards prescribed under the regulatory framework. The analysis consisted of interviews with medical authorities, doctors, and paramedical staff involved in the management of the biomedical wastes in the Polyclinic. Other important stakeholders that were consulted and interviewed included environmental engineers (looking after the Biomedical Waste Cell) of the State Pollution Control Board, and randomly selected patients and visitors to the Polyclinic. A general survey of the facilities of the Polyclinic was undertaken to ascertain the efficacy of the implemented measures. The waste was quantified based on random samples collected from each ward. It was found that, although the Polyclinic in general abides by the prescribed regulations for the treatment and disposal of biomedical waste, there is a need to further build the capacity of the Polyclinic and its staff in terms of providing state-of-the-art facilities and on-going training in order to develop a model biomedical waste management system in the Polyclinic. There is also a need to create awareness among all other stakeholders about the importance of biomedical waste management and related regulations. Furthermore, healthcare waste management should go beyond data compilation, enforcement of regulations, and acquisition of better equipment. It should be supported through appropriate education, training, and the commitment of the healthcare staff and management and healthcare managers within an effective policy and legislative framework.

  11. The effect of food waste disposers on municipal waste and wastewater management.

    PubMed

    Marashlian, Natasha; El-Fadel, Mutasem

    2005-02-01

    This paper examines the feasibility of introducing food waste disposers as a waste minimization option within urban waste management schemes, taking the Greater Beirut Area (GBA) as a case study. For this purpose, the operational and economic impacts of food disposers on the solid waste and wastewater streams are assessed. The integration of food waste disposers can reduce the total solid waste to be managed by 12 to 43% under market penetration ranging between 25 and 75%, respectively. While the increase in domestic water consumption (for food grinding) and corresponding increase in wastewater flow rates are relatively insignificant, wastewater loadings increased by 17 to 62% (BOD) and 1.9 to 7.1% (SS). The net economic benefit of introducing food disposers into the waste and wastewater management systems constitutes 7.2 to 44.0% of the existing solid waste management cost under the various scenarios examined. Concerns about increased sludge generation persist and its potential environmental and economic implications may differ with location and therefore area-specific characteristics must be taken into consideration when contemplating the adoption of a strategy to integrate food waste disposers in the waste-wastewater management system.

  12. 75 FR 76691 - Oregon; Correction of Federal Authorization of the State's Hazardous Waste Management Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...

  13. 75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...

  14. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  15. 76 FR 63509 - Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Small Business Size Standards: Administrative and Support, Waste Management and Remediation Services... Standards: Administrative and Support, Waste Management and Remediation Services AGENCY: U.S. Small Business...) Sector 56, Administrative and Support, Waste Management and Remediation Services. As part of its ongoing...

  16. Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.

    ERIC Educational Resources Information Center

    Richardson, John G.

    The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…

  17. Management of solid waste

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Stinton, L. H.

    1980-04-01

    Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.

  18. Household waste compositional analysis variation from insular communities in the framework of waste prevention strategy plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorpas, Antonis A., E-mail: antonis.zorpas@ouc.ac.cy; Lasaridi, Katia, E-mail: klasaridi@hua.gr; Voukkali, Irene

    Highlights: • Waste framework directive has set clear waste prevention procedures. • Household Compositional analysis. • Waste management plans. • Zero waste approach. • Waste generation. - Abstract: Waste management planning requires reliable data regarding waste generation, affecting factors on waste generation and forecasts of waste quantities based on facts. In order to decrease the environmental impacts of waste management the choice of prevention plan as well as the treatment method must be based on the features of the waste that are produced in a specific area. Factors such as culture, economic development, climate, and energy sources have an impactmore » on waste composition; composition influences the need of collecting waste more or less frequently of waste collection and disposition. The research question was to discover the main barriers concerning the compositional analysis in Insular Communities under warm climate conditions and the findings from this study enabled the main contents of a waste management plan to be established. These included advice to residents on waste minimisation, liaison with stakeholders and the expansion of kerbside recycling schemes.« less

  19. TANK OPERATIONS CONTRACT CONSTRUCTION MANAGEMENT METHODOLOGY UTILIZING THE AGENCY METHOD OF CONSTRUCTION MANAGEMENT TO SAFELY AND EFFECTIVELY COMPLETE NUCLEAR CONSTRUCTION WORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LESO KF; HAMILTON HM; FARNER M

    Washington River Protection Solutions, LLC (WRPS) has faced significant project management challenges in managing Davis-Bacon construction work that meets contractually required small business goals. The unique challenge is to provide contracting opportunities to multiple small business construction subcontractors while performing high hazard work in a safe and productive manner. Previous to the Washington River Protection Solutions, LLC contract, Construction work at the Hanford Tank Farms was contracted to large companies, while current Department of Energy (DOE) Contracts typically emphasize small business awards. As an integral part of Nuclear Project Management at Hanford Tank Farms, construction involves removal of old equipmentmore » and structures and installation of new infrastructure to support waste retrieval and waste feed delivery to the Waste Treatment Plant. Utilizing the optimum construction approach ensures that the contractors responsible for this work are successful in meeting safety, quality, cost and schedule objectives while working in a very hazardous environment. This paper describes the successful transition from a traditional project delivery method that utilized a large business general contractor and subcontractors to a new project construction management model that is more oriented to small businesses. Construction has selected the Agency Construction Management Method. This method was implemented in the first quarter of Fiscal Year (FY) 2009, where Construction Management is performed by substantially home office resources from the URS Northwest Office in Richland, Washington. The Agency Method has allowed WRPS to provide proven Construction Managers and Field Leads to mentor and direct small business contractors, thus providing expertise and assurance of a successful project. Construction execution contracts are subcontracted directly by WRPS to small or disadvantaged contractors that are mentored and supported by DRS personnel. Each small contractor is mentored and supported utilizing the principles of the Construction Industry Institute (CII) Partnering process. Some of the key mentoring and partnering areas that are explored in this paper are, internal and external safety professional support, subcontractor safety teams and the interface with project and site safety teams, quality assurance program support to facilitate compliance with NQA-1, construction, team roles and responsibilities, work definition for successful fixed price contracts, scheduling and interface with project schedules and cost projection/accruals. The practical application of the CII Partnering principles, with the Construction Management expertise of URS, has led to a highly successful construction model that also meets small business contracting goals.« less

  20. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  1. Identifying potential environmental impacts of waste handling strategies in textile industry.

    PubMed

    Yacout, Dalia M M; Hassouna, M S

    2016-08-01

    Waste management is a successful instrument to minimize generated waste and improve environmental conditions. In spite of the large share of developing countries in the textile industry, limited information is available concerning the waste management strategies implemented for textiles on those countries and their environmental impacts. In the current study, two waste management approaches for hazardous solid waste treatment of acrylic fibers (landfill and incineration) were investigated. The main research questions were: What are the different impacts of each waste management strategy? Which waste management strategy is more ecofriendly? Life cycle assessment was employed in order to model the environmental impacts of each waste streaming approach separately then compare them together. Results revealed that incineration was the more ecofriendly approach. Highest impacts of both approaches were on ecotoxicity and carcinogenic potentials due to release of metals from pigment wastes. Landfill had an impact of 46.8 % on human health as compared to 28 % by incineration. Incineration impact on ecosystem quality was higher than landfill impact (68.4 and 51.3 %, respectively). As for resources category, incineration had a higher impact than landfill (3.5 and 2.0 %, respectively). Those impacts could be mitigated if state-of-the-art landfill or incinerator were used and could be reduced by applying waste to energy approaches for both management systems In conclusion, shifting waste treatment from landfill to incineration would decrease the overall environmental impacts and allow energy recovery. The potential of waste to energy approach by incineration with heat recovery could be considered in further studies. Future research is needed in order to assess the implementation of waste management systems and the preferable waste management strategies in the textile industry on developing countries.

  2. Innovative Solidification Techniques for Hazardous Wastes at Army Installations.

    DTIC Science & Technology

    1985-11-01

    Fixed Hazardous Industrial Wastes and Flue Gas Desulfurization Sludges," Interim Report, EPA-600/2-76-182, US Environmental Protection Agency... flue gas . Flyash from coal-fired power plants is an almost entirely inorganic product having a glassy nature. Consequently, flyash by itself has little...effective- ness of alternative control strategies for reducing environmental impacts. 4. % 46 -"- °° ~~~~~...-.-..o

  3. Environmental evaluation of municipal waste prevention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk

    Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less

  4. Developing Tribal Integrated Waste Management Plans

    EPA Pesticide Factsheets

    An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.

  5. Theoretical Framework for Plastic Waste Management in Ghana through Extended Producer Responsibility: Case of Sachet Water Waste.

    PubMed

    Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona

    2015-08-20

    Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.

  6. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  7. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  8. Response Action Plan for the Basin F Interim Response Action Waste Pile.

    DTIC Science & Technology

    1992-10-01

    the Waste Pile via an 8-Inch diameter HDPE stand pipe. A stainless - steel submersible pump provides the lift to deliver the collected liquid 5 to the...2.1.4 Settlement Measuring System 3 Nine settlement plates were installed at the base of the Waste Pile during its construction. A 1-Inch steel pipe...PLATE STEEL CONDUIT. PIPE GS: 5219.61 GS: 5219.98 GS: 5219.56 GS: 5219.50 SPSP: 5217.87 SPSP: 5217.94 SPSP: 5218.59 THP: 5221.25 THP: 5221.41 THP

  9. Installation Restoration Program. Phase I. Records Search, Hazardous Materials Disposal Sites, Griffiss AFB, New York.

    DTIC Science & Technology

    1981-07-01

    Disposal Methods 4-31 Evaluation of Past and Present Waste 4-35 Disposal Facilities Landfills 4-35 Dry Wells 4-37 Rating of Waste Disposal Sites 4-37 V 2...Problems Identified at GAPE Landfills 4-36 4.12 Priority Ranking of Potential 4-38 Contamination Sources 4.13 -4.31 Rating Forms for Waste Disposal Sites 4...39 -4-76 5.1 Priority Ranking of Potential Con- 5-2 tamination Sources B.1 Rating Factor System B-2 -B-5 4W EXECUTIVE SUMMARY The Resource

  10. Installation and Sampling of Observation Wells and Analyses of Water From the Shallow Aquifer at Selected Waste-Disposal Sites in the Memphis Area, Tennessee

    DTIC Science & Technology

    1989-01-01

    water-table aquifer. This aquifer is made up chiefly of the alluvium and fluvial (terrace) deposits of Quaternary age , but locally may include sand in...the uppermost part of the Jackson Formation and Claiborne Group of Tertiary age . Water samples were collected from these 10 wells and from two...been identified as having received unknown quantities and types of industrial wastes (Waste Age , 1979, p. 54, 56). These sites are the (1) Belleuue

  11. Solid industrial wastes and their management in Asegra (Granada, Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casares, M.L.; Ulierte, N.; Mataran, A.

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both themore » type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.« less

  12. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  13. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  14. Evaluation and Analysis of Cotton Bedding as a Bulking Agent in an Aerobic Food Waste Composting System

    NASA Astrophysics Data System (ADS)

    Chan, A. S. L.

    2017-12-01

    Food wastage is a prominent issue in Hong Kong that should be addressed. Here at The Independent Schools Foundation Academy, we are continuously looking for ways to improve, including that of food waste. In 2013 the school installed an A900 Rocket Food Composter, in hopes of reducing carbon footprint. Since the installation, the school has tested various elements of the food composter to further improve upon it to make it increasingly more sustainable and effective. These improvements vary from the revamping of the odour control system, increasing the nitrogen content and the installation of an improved grease trap. The school composts the food waste through combining a variety of substances together: coffee, compost, food waste, and a bulking agent - which will be tested in this study. Recently, the school has changed the compost bulking agent from wood shavings and cardboard to cotton bedding - a side product of the production of UK passports. In this study, I will evaluate the effectiveness of cotton bedding as a bulking agent in an aerobic composting system, focusing primarily on three points: a) microbial activity - the identification of cellulose digesting bacteria and the associated kinetics, b) the soil gas composition - the data shall be collected through the use of the Gasmet DX 4015, and c) the chemical analysis of the compost - specifically the amount of aluminum in the compost and whether or not it is significant enough to discredit cotton bedding as an effective bulking agent. The the analysis of cotton bedding using these three specifications will allow ISF Academy to evaluate the overall effectiveness of cotton bedding as a bulking agent.

  15. Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.

    ERIC Educational Resources Information Center

    Donovan, Connie

    1998-01-01

    Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)

  16. Alternative Fuels Data Center: Seattle's Waste Haulers are Going Green

    Science.gov Websites

    -hauling companies in the Puget Sound region, Waste Management and CleanScapes, were the first two private revolution in Washington's waste-hauling industry. Eager to win the Seattle contract, both Waste Management per year of greenhouse gas emissions reductions. Waste Management continues to rise to the challenge

  17. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  18. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  19. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  20. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  1. 40 CFR 267.101 - What must I do to address corrective action for solid waste management units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... action for solid waste management units? 267.101 Section 267.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Releases from Solid Waste Management Units § 267.101 What...

  2. TOOLS FOR DETERMINING SUSTAINABLE WASTE MANAGEMENT THROUGH APPLICATION OF LIFE-CYCLE ASSESSMENT: UPDATE ON U.S. RESEARCH

    EPA Science Inventory

    The paper is an update on U.S. research to develop tools and information for evaluating integrated solid waste management strategies. In the past, waste management systems consisted primarily of waste collection and disposal at a local landfill. Today's municipal solid waste ma...

  3. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident.

    PubMed

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.

  4. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident

    PubMed Central

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047

  5. Tribal Waste Journal: What Is an Integrated Waste Management Plan (Issue 7)

    EPA Pesticide Factsheets

    Integrated Waste Management Plans (IWMPs) may offer tribes an efficient and cost-effective way to reduce open dumping, effectively manage solid waste, and protect human health and the environment for this generation and the next.

  6. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  7. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  8. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  9. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  10. 40 CFR 273.8 - Applicability-household and conditionally exempt small quantity generator waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... managing the wastes listed below may, at their option, manage them under the requirements of this part: (1... section together with universal waste regulated under this part must manage the commingled waste under the...

  11. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  12. 40 CFR 62.14580 - What is a waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What is a waste management plan? 62.14580 Section 62.14580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Construction On or Before November 30, 1999 Waste Management Plan § 62.14580 What is a waste management plan? A...

  13. 76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...

  14. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management plan? 60.3012 Section 60.3012 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A...

  15. Sound Waste Management Plan environmental operations, and used oil management system: Restoration project 97115. Exxon Valdez oil spill restoration project final report: Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less

  16. The use of multi-criteria decision analysis to tackle waste management problems: a literature review.

    PubMed

    Achillas, Charisios; Moussiopoulos, Nicolas; Karagiannidis, Avraam; Banias, Georgias; Perkoulidis, George

    2013-02-01

    Problems in waste management have become more and more complex during recent decades. The increasing volumes of waste produced and social environmental consciousness present prominent drivers for environmental managers towards the achievement of a sustainable waste management scheme. However, in practice, there are many factors and influences - often mutually conflicting - criteria for finding solutions in real-life applications. This paper presents a review of the literature on multi-criteria decision aiding in waste management problems for all reported waste streams. Despite limitations, which are clearly stated, most of the work published in this field is reviewed. The present review aims to provide environmental managers and decision-makers with a thorough list of practical applications of the multi-criteria decision analysis techniques that are used to solve real-life waste management problems, as well as the criteria that are mostly employed in such applications according to the nature of the problem under study. Moreover, the paper explores the advantages and disadvantages of using multi-criteria decision analysis techniques in waste management problems in comparison to other available alternatives.

  17. Assessing knowledge, performance, and efficiency for hospital waste management-a comparison of government and private hospitals in Pakistan.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong; Ashraf, Uzma

    2017-04-01

    Proper management of healthcare waste is a critical concern in many countries of the world. Rapid urbanization and population growth rates pose serious challenges to healthcare waste management infrastructure in such countries. This study was aimed at assessing the situation of hospital waste management in a major city of Pakistan. Simple random sampling was used to select 12 government and private hospitals in the city. Field visits, physical measurements, and questionnaire survey method were used for data collection. Information was obtained regarding hospital waste generation, segregation, collection, storage, transportation, and disposal. Data envelopment analysis (DEA) was used to classify the hospitals on the basis of their relative waste management efficiencies. The weighted average total waste generation at the surveyed hospitals was discovered to be 1.53 kg/patient/day of which 75.15% consisted of general waste and the remaining consisted of biomedical waste. Of the total waste, 24.54% came from the public hospital and the remaining came from the private hospitals. DEA showed that seven of the surveyed hospitals had scale or pure technical inefficiencies in their waste management activities. The public hospital was relatively less efficient than most of the private hospitals in these activities. Results of the questionnaire survey showed that none of the surveyed hospitals was carrying out waste management in strict compliance with government regulations. Moreover, hospital staff at all the surveyed hospitals had low level of knowledge regarding safe hospital waste management practices. The current situation should be rectified in order to avoid environmental and epidemiological risks.

  18. A system dynamics-based environmental performance simulation of construction waste reduction management in China.

    PubMed

    Ding, Zhikun; Yi, Guizhen; Tam, Vivian W Y; Huang, Tengyue

    2016-05-01

    A huge amount of construction waste has been generated from increasingly higher number of construction activities than in the past, which has significant negative impacts on the environment if they are not properly managed. Therefore, effective construction waste management is of primary importance for future sustainable development. Based on the theory of planned behaviors, this paper develops a system dynamic model of construction waste reduction management at the construction phase to simulate the environmental benefits of construction waste reduction management. The application of the proposed model is shown using a case study in Shenzhen, China. Vensim is applied to simulate and analyze the model. The simulation results indicate that source reduction is an effective waste reduction measure which can reduce 27.05% of the total waste generation. Sorting behaviors are a premise for improving the construction waste recycling and reuse rates which account for 15.49% of the total waste generated. The environmental benefits of source reduction outweigh those of sorting behaviors. Therefore, to achieve better environmental performance of the construction waste reduction management, attention should be paid to source reduction such as low waste technologies and on-site management performance. In the meantime, sorting behaviors encouragement such as improving stakeholders' waste awareness, refining regulations, strengthening government supervision and controlling illegal dumping should be emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Study of waste management towards sustainable green campus in Universitas Gadjah Mada

    NASA Astrophysics Data System (ADS)

    Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus

    2018-05-01

    Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.

  20. Impact of intervention on healthcare waste management practices in a tertiary care governmental hospital of Nepal.

    PubMed

    Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj

    2014-09-26

    Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues. The committee developed a plan for treatment and disposal of chemical and pharmaceutical waste. Pretest and posttest evaluation scores were 26% and 86% respectively. During the pre-intervention period, the hospital had no HCWM Committee, policy, standard operating procedure or proper color coding system for waste segregation, collection, transportation and storage and the specific well-trained waste handlers. Doctors, nurses and waste handlers were trained on HCWM practices, after interventions. Significant improvements were observed between the pre- and post-intervention periods.

  1. Implementing Livestock Anaerobic Digestion Projects

    EPA Pesticide Factsheets

    Page provides information to help make an informed decision about installing an anaerobic digester. Is it a good match for a farm’s organic waste, project financing, development guidelines and permit requirements?

  2. Health care waste management practice in a hospital.

    PubMed

    Paudel, R; Pradhan, B

    2010-10-01

    Health-care waste is a by-product of health care. Its poor management exposes health-care workers, waste handlers and the community to infections, toxic effects and injuries including damage of the environment. It also creates opportunities for the collection of disposable medical equipment, its re-sale and potential re-use without sterilization, which causes an important burden of disease worldwide. The purpose of this study was to find out health care waste management practice in hospital. A cross-sectional study was conducted in Narayani Sub-Regional Hospital, Birgunj from May to October 2006 using both qualitative and quantitative methods. Study population was four different departments of the hospital (Medical/Paediatric, Surgical/Ortho, Gynae/Obstetric and Emergency), Medical Superintendent, In-charges of four different departments and all sweepers. Data was collected using interview, group discussion, observation and measurement by weight and volume. Total health-care waste generated was 128.4 kg per day while 0.8 kg per patient per day. The composition of health care waste was found to be 96.8 kg (75.4%) general waste, 24.1 kg (8.8%) hazardous waste and 7.5 kg (5.8%) sharps per day by weight. Health staffs and sweepers were not practicing the waste segregation. Occupational health and safety was not given due attention. Majority of the sweepers were unaware of waste management and need of safety measures to protect their own health. Health care waste management practice in the hospital was unsatisfactory because of the lack of waste management plan and carelessness of patients, visitors and staffs. Therefore the hospital should develop the waste management plan and strictly follow the National Health Care Waste Management Guideline.

  3. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  4. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  5. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  6. Comparison of infectious waste management in European hospitals.

    PubMed

    Mühlich, M; Scherrer, M; Daschner, F D

    2003-12-01

    A research project sponsored by the EC-LIFE programme was conducted to compare waste management in five different European hospitals. A comparison of the regulations governing current waste management revealed different strategies for defining infectious hospital waste. The differences in the infrastructure were examined and the consequences for waste segregation and disposal were discussed under economic and ecological aspects. In this context the definition of infectious waste is very important.

  7. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  8. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohout, E.F.; Folga, S.; Mueller, C.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less

  10. 40 CFR 60.2625 - When must I submit my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false When must I submit my waste management... Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced Construction On or Before November 30, 1999 Model Rule-Waste Management Plan § 60.2625 When must I submit my waste...

  11. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  12. Backcasting to identify food waste prevention and mitigation opportunities for infant feeding in maternity services.

    PubMed

    Ryan-Fogarty, Yvonne; Becker, Genevieve; Moles, Richard; O'Regan, Bernadette

    2017-03-01

    Food waste in hospitals is of major concern for two reasons: one, healthcare needs to move toward preventative and demand led models for sustainability and two, food system sustainability needs to seek preventative measures such as diet adaptation and waste prevention. The impact of breast-milk substitute use on health services are well established in literature in terms of healthcare implications, cost and resourcing, however as a food demand and waste management issue little has been published to date. This paper presents the use of a desk based backcasting method to analyse food waste prevention, mitigation and management options within the Irish Maternity Service. Best practice in healthcare provision and waste management regulations are used to frame solutions. Strategic problem orientation revealed that 61% of the volume of ready to use breast-milk substitutes purchased by maternity services remains unconsumed and ends up as waste. Thirteen viable strategies to prevent and manage this waste were identified. Significant opportunities exist to prevent waste and also decrease food demand leading to both positive health and environmental outcomes. Backcasting methods display great promise in delivering food waste management strategies in healthcare settings, especially where evidenced best practice policies exist to inform solution forming processes. In terms of food waste prevention and management, difficulties arise in distinguishing between demand reduction, waste prevention and waste reduction measures under the current Waste Management Hierarchy definitions. Ultimately demand reduction at source requires prioritisation, a strategy which is complimentary to health policy on infant feeding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. ANALYSIS OF THE POTENTIAL EFFECTS OF TOXICS ON MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS

    EPA Science Inventory

    Many alternative waste management practices and strategies are available to manage the large quantities of MSW generated every year. hese management alternatives include recycling, composting, waste-to-fuel/energy recovery, and landfilling. n choosing the best possible management...

  14. Developing a Regional Recovery Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Ann M.; Olson, Jarrod; Stein, Steven L.

    2011-09-01

    Abstract A biological attack would present an unprecedented challenge for local, state, and federal agencies; the military; the private sector; and individuals on many fronts ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare the Seattle region to recover from a biological attack, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a Regional Recovery Framework for a Biological Attack in the Seattle Urban Area. The goal was to reduce the time and resources required to recover and restore wide urban areas, military installations, and other criticalmore » infrastructure following a biological incident by providing a coordinated systems approach. Based on discussions in small workshops, tabletop exercises, and interviews with emergency response agency staff, the partners identified concepts of operation for various areas to address critical issues the region will face as recovery progresses. Key to this recovery is the recovery of the economy. Although the Framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach. The Framework also served to coalesce policy questions that must be addressed for long-term recovery. These questions cover such areas as safety and health, security, financial management, waste management, legal issues, and economic development.« less

  15. Green utilities for research and eco-tourist communities, Rio Bravo, Belize, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, O.

    1997-12-31

    Programme for Belize (PFB), a non-governmental organization which owns and manages the Rio Bravo Conservation and Management Area (RBCMA), a 229,000 acre section of subtropical rainforest in northwestern Belize, is developing a series of research and eco-tourism developments as sustainable development projects. Guided by a comprehensive Sustainable Infrastructure Plan completed by Caribbean Infra-Tech, Inc. (CIT) in 1995, PFB adopted an organizational goal of implementing 100% green renewable energy-based utilities for their two major development sites: La Milpa and Hill Bank stations. To date, PFB has constructed or installed over 20 kW of standalone PV power, sustainable water supply systems, recyclingmore » waste treatment systems, and a model sustainable Dormitory and Bath House facility in the RBCMA. In addition, a Resource Conservation and Management Program (RCMP), which is to guide ongoing visitor orientation, staff training, and sustainable systems operations and maintenance, is now being prepared for immediate implementation. In this paper, the design and technical performance of the solar (PV) electric power plants, PV water pumping, solar water heating and other green utility systems will be assessed.« less

  16. Waste Management in Universities and Colleges. Workshop Proceedings (Madison, Wisconsin, July 9-11, 1980).

    ERIC Educational Resources Information Center

    Association of Physical Plant Administrators of Universities and Colleges, Washington, DC.

    In response to a request from the Wisconsin Department of Natural Resources, Region V of the United States Environmental Protection Agency (EPA) sponsored a workshop on waste management in universities and colleges. It consisted of four sessions: (1) managing general university waste and regulatory concerns; (2) chemical waste management; (3)…

  17. [Assessment of medical waste management in a Palestinian hospital].

    PubMed

    Al-Khatib, I A; Khatib, R A

    2006-01-01

    We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.

  18. 77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...

  19. Caught between the global economy and local bureaucracy: the barriers to good waste management practice in South Africa.

    PubMed

    Godfrey, Linda; Scott, Dianne; Trois, Cristina

    2013-03-01

    Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.

  20. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  1. Integrated, Automated Distributed Generation Technologies Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kWmore » new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.« less

  2. Dental solid and hazardous waste management and safety practices in developing countries: Nablus district, Palestine.

    PubMed

    Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo

    2010-05-01

    This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.

  3. Solid waste management in Abuja, Nigeria.

    PubMed

    Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R

    2008-01-01

    The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.

  4. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  5. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. © The Author(s) 2016.

  6. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.

    PubMed

    Hupponen, M; Grönman, K; Horttanainen, M

    2018-03-22

    This study focuses on commercial waste, which has received less attention than household waste in regards to greenhouse gas emission research. First, the global warming potential (GWP) of commercial waste management was calculated. Second, the impacts of different waste fractions and the processes of waste management were recognised. Third, the key areas on which to focus when aiming to reduce the greenhouse gas emissions of commercial waste management were determined. This study was conducted on the waste generated by a real hypermarket in South-East Finland and included eight different waste fractions. The waste treatment plants were selected based on the actual situation. Three different scenarios were employed to evaluate the environmental impact of managing mixed waste: landfilling, combustion and more accurate source separation. The GaBi software and impact assessment methodology CML 2001 were used to perform a life cycle assessment of the environmental impacts associated with the waste management. The results indicated that the total GWP of commercial waste management could be reduced by 93% by directing the mixed waste to combustion instead of landfill. A further 5% GWP reduction could be achieved by more accurate source separation of the mixed waste. Utilisation of energy waste had the most significant influence (41-52%) on the total GWP (-880 to -860 kgCO 2 -eq./t), followed by landfilling of mixed waste (influence 15-23% on the total GWP, 430 kgCO 2 -eq./t), recycling polyethylene (PE) plastic (influence 18-21% on the total GWP, -1800 kgCO 2 -eq./t) and recycling cardboard (influence 11-13% on the total GWP, 51 kgCO 2 -eq./t). A key focus should be placed on treatment processes and substitutions, especially in terms of substitutions of energy waste and PE plastic. This study also clarified the importance of sorting PE plastic, even though the share of this waste fraction was not substantial. The results of this paper were compared to those of previous studies. The output of this analysis indicated that the total GWP can be significantly reduced by identifying an alternative recycling or incineration location for cardboard where it is used to substitute virgin material or replace fossil fuels respectively. In conclusion, it is essential to note that waste management companies have a notable influence on the emissions of commercial waste management because they choose the places at which the waste fractions are treated and utilised. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe

    PubMed Central

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders. PMID:27418935

  8. Occupational Risks Associated with Solid Waste Management in the Informal Sector of Gweru, Zimbabwe.

    PubMed

    Jerie, Steven

    2016-01-01

    This study identifies and analyses the occupational risks associated with solid waste management practices in the informal enterprises of Gweru. Many concerns have been raised about the potential harm from waste to the environment and the general public, but the risks and consequent costs of occupational hazards in waste management have received little attention in the rush to adopt or adapt technologies such as composting. A multimethods research design that triangulates qualitative and quantitative research paradigms is employed in this study. The quantitative design involves physical characterisation of solid waste through material component separation and measurements as well as a questionnaire survey that investigates the risks associated with waste management. The qualitative component includes interviews, open-ended questionnaires, and field observations. Occupational risks occur at every stage in the waste management process, from the point where workers handle waste in the enterprises for collection or recycling to the point of ultimate disposal. Key findings from the study revealed that solid waste management practices are dominated by manual handling tasks hence the higher incidents of muscular-skeletal disorders. Other safety and health hazards associated with waste management in the informal enterprises of Gweru include incidents of diarrhoea, viral hepatitis, and higher incidents of obstructive and restrictive disorders.

  9. A multi-criteria decision-making approach to rank supplier selection criteria for hospital waste management: A case from Pakistan.

    PubMed

    Ishtiaq, Palvisha; Khan, Sharfuddin Ahmed; Haq, Moiz-Ul

    2018-04-01

    To address environmental issues and cost effectiveness, waste management is necessary for healthcare facilities. Most importantly, segregation of hazardous and non-hazardous waste must be done as in many developing countries; disposal of both types of healthcare waste is done together, which is an unsafe practice. Waste generated in hospitals needs proper management to minimise hazards for patient and healthcare workers. At the same time, it is quite difficult for hospitals to find a systematic way to select appropriate suppliers for hospital waste management. Therefore, the purpose of this article is to identify, validate, and rank criteria that are essential for hospital waste management suppliers' selection. The analytical hierarchal process approach has been used and a survey from Pakistan's largest city (Karachi) has been considered to rank the most appropriate criteria that is necessary to select the supplier, especially in a developing country like Pakistan. Results show that waste management cost (45.5%) and suppliers' details (31.5%) are the top two main criteria for supplier selection; and storage cost (15.7%), waste handling cost (14.7%), and qualification of the suppliers (10.9%) are the top three most important overall sub-criteria for supplier selection for hospital waste management.

  10. Inertial waste separation system for zero G WMS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design, operation, and flight test are presented for an inertial waste separation system. Training personnel to use this system under simulated conditions is also discussed. Conclusions indicate that before the system is usable in zero gravity environments, a mirror for the user's guidance should be installed, the bounce cycle and bag changing system should be redesigned, and flange clips should be added to improve the user's balance.

  11. Water Reuse and Wastewater Recycling at U.S. Army Installations: Policy Implications

    DTIC Science & Technology

    2011-06-01

    Definition Blackwater Water captured from toilets and urinals along with kitchen waste. Direct potable reuse The introduction of highly treated reclaimed...reused. It does not include water from kitchen sinks or dishwashers. Indirect potable reuse The planned incorporation of reclaimed water into a raw...industrial cooling. * Some organizations do accept a definition of “graywater” that does include kitchen and dishwasher waste- water along with wastewater

  12. Possibilities of heat energy recovery from greywater systems

    NASA Astrophysics Data System (ADS)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  13. Operational test report -- Project W-320 cathodic protection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, T.J.

    1998-06-16

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31).more » WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.« less

  14. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  15. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  16. A Model for Determining Modular Heat Recovery Incinerator Feasibility on Air Force Installations.

    DTIC Science & Technology

    1992-09-01

    INCINERATOR FEASIBILITY ON AIR FORCE INSTALLATIONS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology...commer- cial, (and) institutional discards...not (including] industrial process or manufacturing discards, segre- gated medical waste, or construction...have "... particular 11 value as an additive to an existing steam system, such as a central heating plant for an institution " (46:E-26). Exam- ples

  17. Installation Restoration Program. Phase 1 - Records Search, Robins AFB, Georgia.

    DTIC Science & Technology

    1982-04-01

    Installations U under the provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980. PURPOSE AND SCOPE OF THE... Liability Act of 1980 (CERCLA). A potentially hazardous waste is one which is suspected of being hazardous although insufficient data are available to...comprised of a concrete vault buried approximately six feet below the ground surface. 4 A locked chain -linked fence with two barbed wire strands surrounds

  18. Developing a monitoring and evaluation framework to integrate and formalize the informal waste and recycling sector: the case of the Philippine National Framework Plan.

    PubMed

    Serrona, Kevin Roy B; Yu, Jeongsoo; Aguinaldo, Emelita; Florece, Leonardo M

    2014-09-01

    The Philippines has been making inroads in solid waste management with the enactment and implementation of the Republic Act 9003 or the Ecological Waste Management Act of 2000. Said legislation has had tremendous influence in terms of how the national and local government units confront the challenges of waste management in urban and rural areas using the reduce, reuse, recycle and recovery framework or 4Rs. One of the sectors needing assistance is the informal waste sector whose aspiration is legal recognition of their rank and integration of their waste recovery activities in mainstream waste management. To realize this, the Philippine National Solid Waste Management Commission initiated the formulation of the National Framework Plan for the Informal Waste Sector, which stipulates approaches, strategies and methodologies to concretely involve the said sector in different spheres of local waste management, such as collection, recycling and disposal. What needs to be fleshed out is the monitoring and evaluation component in order to gauge qualitative and quantitative achievements vis-a-vis the Framework Plan. In the process of providing an enabling environment for the informal waste sector, progress has to be monitored and verified qualitatively and quantitatively and measured against activities, outputs, objectives and goals. Using the Framework Plan as the reference, this article developed monitoring and evaluation indicators using the logical framework approach in project management. The primary objective is to institutionalize monitoring and evaluation, not just in informal waste sector plans, but in any waste management initiatives to ensure that envisaged goals are achieved. © The Author(s) 2014.

  19. Developing a master plan for hospital solid waste management: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karamouz, Mohammad; Zahraie, Banafsheh; Kerachian, Reza

    2007-07-01

    Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated.more » In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.« less

  20. Geographic information system-based healthcare waste management planning for treatment site location and optimal transportation routeing.

    PubMed

    Shanmugasundaram, Jothiganesh; Soulalay, Vongdeuane; Chettiyappan, Visvanathan

    2012-06-01

    In Lao People's Democratic Republic (Lao PDR), a growth of healthcare centres, and the environmental hazards and public health risks typically accompanying them, increased the need for healthcare waste (HCW) management planning. An effective planning of an HCW management system including components such as the treatment plant siting and an optimized routeing system for collection and transportation of waste is deemed important. National government offices at developing countries often lack the proper tools and methodologies because of the high costs usually associated with them. However, this study attempts to demonstrate the use of an inexpensive GIS modelling tool for healthcare waste management in the country. Two areas were designed for this study on HCW management, including: (a) locating centralized treatment plants and designing optimum travel routes for waste collection from nearby healthcare facilities; and (b) utilizing existing hospital incinerators and designing optimum routes for collecting waste from nearby healthcare facilities. Spatial analysis paved the way to understand the spatial distribution of healthcare wastes and to identify hotspots of higher waste generating locations. Optimal route models were designed for collecting and transporting HCW to treatment plants, which also highlights constraints in collecting and transporting waste for treatment and disposal. The proposed model can be used as a decision support tool for the efficient management of hospital wastes by government healthcare waste management authorities and hospitals.

Top