77 FR 59879 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection... ``Approved State Hazardous Waste Management Programs,'' Idaho's authorized hazardous waste program. The EPA... Federal Register, the EPA is codifying and incorporating by reference the State's hazardous waste program...
77 FR 46994 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
77 FR 29275 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The...
75 FR 36609 - Oklahoma: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-28
...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... ``Approved State Hazardous Waste Management Programs'', Oklahoma's authorized hazardous waste program. The... State regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act...
77 FR 60919 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental..., Division of Solid Waste Management, 5th Floor, L & C Tower, 401 Church Street, Nashville, Tennessee 37243... RCRA hazardous waste management program. We granted authorization for changes to Tennessee's program on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
...; Correction of Federal Authorization of the State's Hazardous Waste Management Program AGENCY: Environmental... to the State of Oregon's federally authorized RCRA hazardous waste management program. On January 7... changes the State of Oregon made to its federally authorized RCRA Hazardous Waste Management Program...
75 FR 918 - Oregon: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-07
... Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA... hazardous waste management program under the Resource Conservation and Recovery Act, as amended (RCRA). On... has decided that the revisions to the Oregon hazardous waste management program satisfy all of the...
76 FR 6564 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... implement the RCRA hazardous waste management program. We granted authorization for changes to their program..., 06/ 62-730.185(1) F.A.C. Universal Waste Management. 29/07. State Initiated Changes to the 62-730.210...
40 CFR 272.1351 - Montana State-Administered Program: Final Authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Montana § 272.1351... its hazardous waste management program. However, EPA retains the authority to exercise its inspection... this section are incorporated by reference as part of the hazardous waste management program under...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, T.W.
1991-09-01
This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)
77 FR 3224 - New Mexico: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Mexico: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental... entitled ``Approved State Hazardous Waste Management Programs,'' New Mexico's authorized hazardous waste... of the State regulations that are authorized and that the EPA will enforce under the Solid Waste...
Tribal Waste Management Program
The EPA’s Tribal Waste Management Program encourages environmentally sound waste management practices that promote resource conservation through recycling, recovery, reduction, clean up, and elimination of waste.
40 CFR 272.2501 - Wisconsin State-administered program; final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501... cited in this paragraph are incorporated by reference as part of the hazardous waste management program... Applicable to the Hazardous Waste Management Program, (dated August 9, 1993). (2) EPA Approved Wisconsin...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Indiana § 272.751... the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. This... Applicable to the Hazardous Waste Management Program, dated March 2001. (ii) The EPA approved Indiana...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.501 - Florida State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.501... part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Florida's Statutory Requirements Applicable to the Hazardous Waste Management Program, dated...
40 CFR 272.1301 - State-administered program; Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1301 State... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) Missouri Statutory Requirements Applicable to the Hazardous Waste Management Program...
40 CFR 272.151 - Arizona State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.151... the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i) EPA Approved Arizona Statutory Requirements Applicable to the Hazardous Waste Management Program, June 1995...
40 CFR 272.1801 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Ohio § 272.1801 State... regulations are incorporated by reference and codified as part of the hazardous waste management program under..., 1989, is codified as part of the authorized hazardous waste management program under Subtitle C of RCRA...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C... the Hazardous Waste Management Program, dated April 5, 1994. (2) The following statutes and...
77 FR 65351 - Missouri: Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
...: Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental Protection Agency (EPA... Jackson-Johnson, Environmental Protection Agency, Waste Enforcement & Materials Management Branch, 11201... its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). EPA proposes to...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho... hazardous waste management program. However, the EPA retains the authority to exercise its inspection and... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho... hazardous waste management program. However, the EPA retains the authority to exercise its inspection and... incorporated by reference as part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C...
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Michigan § 272.1151 State... hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation, by... part of the authorized hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et...
Amey, E.B.; Russell, J.A.; Hurdelbrink, R.J.
1996-01-01
In 1976, the U.S. Congress enacted the Resource Conservation and Recovery Act (RCRA) to further address the problem of increasing industrial and municipal waste. The main objectives of RCRA were to responsibly manage hazardous and solid waste and to procure materials made from recovered wastes. To fulfill these objectives, four main programs of waste management were developed. These programs were defined under Subtitle C, the Hazardous Waste Program; Subtitle D, the Solid Waste Program; Subtitle I, the Underground Storage Tank Program; and Subtitle J, the Medical Waste Program. Subtitle D illustrates the solid waste dilemma occurring in the United States. Under this program, states are encouraged to develop and implement their own waste management plans. These plans include the promotion of recycling solid wastes and the closing and upgrading of all environmentally unsound dumps. ?? 1996 International Association for Mathematical Geology.
78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...
Sandia National Laboratories California Waste Management Program Annual Report February 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brynildson, Mark E.
The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.
76 FR 6594 - Florida: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S...
77 FR 60963 - Tennessee: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of the changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Johnson, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA Division...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-25
... Department of Environmental Protection, (WVDEP), Division of Water and Waste Management, 601 57th Street SE...] West Virginia: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY... for final authorization of revisions to its hazardous waste program under the Resource Conservation...
75 FR 81187 - South Dakota: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed Rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... Agency (EPA) to authorize states to operate their hazardous waste management programs in lieu of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... Section, RCRA Programs and Materials Management Branch, RCRA Division, U.S. Environmental Protection...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.701 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.701 State... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 as part of the hazardous waste management... Administrator on January 26, 1990, is part of the authorized hazardous waste management program under Subtitle C...
40 CFR 272.651 - Idaho State-Administered Program: Final Authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Idaho § 272.651 Idaho..., 2008. (b) The State of Idaho has primary responsibility for enforcing its hazardous waste management... part of the hazardous waste management program under subtitle C of RCRA, 42 U.S.C. 6921 et seq. (i...
Nuclear waste management. Semiannual progress report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T.D.; Powell, J.A.
1983-06-01
This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.
Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.
ERIC Educational Resources Information Center
Richardson, John G.
The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…
78 FR 15299 - New York: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... Solid Waste Amendments of 1984 (HSWA). New Federal requirements and prohibitions imposed by Federal...: Final Authorization of State Hazardous Waste Management Program Revision AGENCY: Environmental...
77 FR 69788 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA). The EPA proposes to grant final authorization to the hazardous waste program changes submitted by the...
Waste treatability guidance program. User`s guide. Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, C.
1995-12-21
DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less
40 CFR 272.1851 - Oklahoma State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1851...)(1)(i) of this section are incorporated by reference as part of the hazardous waste management... Approved Oklahoma Statutory and Regulatory Requirements Applicable to the Hazardous Waste Management...
78 FR 25579 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... prohibitions imposed by Federal regulations that EPA promulgates pursuant to the Hazardous and Solid Waste...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA...
Chang, Yu-Min; Liu, Chien-Chung; Dai, Wen-Chien; Hu, Allen; Tseng, Chao-Heng; Chou, Chieh-Mei
2013-01-01
This work presents the enforcement performance of recent Haulien County, Taiwan municipal solid waste (MSW) recycling management programs. These programs include: Mandatory Refuse Sorting and Recycling, Diverse Bulk Waste Reuse, Pay-as-you-Discharge, Total Food Waste Recycling, Restricted Use on Plastic Shopping Bags & Plastic Tableware, Recycling Fund Management, and Ash Reuse. These programs provide incentives to reduce the MSW quantity growth rate. It was found that the recycled material fraction of MSW generated in 2001 was from 6.8%, but was 32.4% in 2010 and will increase stably by 2-5% yearly in the near future. Survey data for the last few years show that only 2.68% (based on total MSW generated) of food waste was collected in 2001. However, food waste was up to 9.7% in 2010 after the Total Food Waste Recycling program was implemented. The reutilization rate of bottom ash was 20% in 2005 and up to 65% in 2010 owing to Ash Reuse Program enforcement. A quantified index, the Total Recycle Index, was proposed to evaluate MSW management program performance. The demonstrated county will move toward a zero waste society in 2015 if the Total Recycle Index approaches 1.00. Exact management with available programs can lead to slow-growing waste volume and recovery of all MSW.
78 FR 15338 - New York: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... authorization of changes to its hazardous waste program under the Solid Waste Disposal Act, as amended, commonly... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 271 [EPA-R02-RCRA-2013-0144; FRL-9693-3] New York: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental...
75 FR 45583 - New York: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... authorized and that EPA will enforce under the Solid Waste Disposal Act, as amended and commonly referred to...: Incorporation by Reference of State Hazardous Waste Management Program AGENCY: Environmental Protection Agency... authorized hazardous waste program which is set forth in the regulations entitled ``Approved State Hazardous...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... Waste Management Program AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... Hazardous Waste Management Programs'', Louisiana's authorized hazardous waste program. The EPA will...), 3006, and 7004(b) of the Solid Waste Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, and 6974(b...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2014 CFR
2014-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2014-10-01 2014-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2013 CFR
2013-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2012 CFR
2012-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
45 CFR 671.13 - Waste management for the USAP.
Code of Federal Regulations, 2010 CFR
2010-10-01
... can be taken into account in planning future scientific, logistic and waste management programs. (e... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
ROOT, R.W.
1999-05-18
This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Activities; Proposed Collection; Comment Request; Final Authorization for Hazardous Waste Management Programs... Request (ICR) concerning final authorization for State Hazardous Waste Management Programs. This ICR is... potentially affected by this action are States. Title: Final Authorization for Hazardous Waste Management...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissani, M; Fischer, R; Kidd, S
2006-04-03
The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less
Saeid, Nazemi; Roudbari, Aliakbar; Yaghmaeian, Kamyar
2014-01-14
The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
RCRA Sustainable Materials Management Information
This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... Carolina: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... authorization of the changes to its hazardous waste program under the Resource Conservation and Recovery Act... authorization during the comment period, the decision to authorize North Carolina's changes to its hazardous...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 272.401 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.401 State... regulations cited in this paragraph are incorporated by reference and made a part of the hazardous waste management program under Subtitle C of RCRA, 42 U.S.C. 6921 et seq. This incorporation by reference was...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
40 CFR 270.110 - What must I include in my application for a RAP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... EPA identification number of the remediation waste management site; (b) The name, address, and... States Geological Survey (USGS) or county map showing the location of the remediation waste management...
A Program on Hazardous Waste Management.
ERIC Educational Resources Information Center
Kummler, Ralph H.; And Others
1989-01-01
Provides an overview of the "Hazardous Waste Management Graduate Certificate" program at Wayne State University. Describes four required courses and nine optional courses. Discusses the development of a Master program and the curriculum of the Master program. (YP)
About the Managing and Transforming Waste Streams Tool
The Managing and Transforming Waste Streams Tool was developed by a team of zero waste consultants and solid waste program managers making informed observations from hands-on work in communities, with contributions from EPA.
2014-01-01
Background The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Results Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Conclusion Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems. PMID:24423020
Solid Waste Management in Nigeria: Problems and Issues.
AGUNWAMBA
1998-11-01
/ This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly referred...: This action is issued under the authority of sections 2002(a), 3006 and 7004(b) of the Solid Waste and... of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection Agency (EPA...
40 CFR 272.1300 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Missouri § 272.1300 State authorization. (a) The State of Missouri is authorized to administer and enforce a hazardous waste management program in lieu of...
A mathematical model for municipal solid waste management - A case study in Hong Kong.
Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H
2016-12-01
With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Developing Tribal Integrated Waste Management Plans
An IWMP outlines how the tribe will reduce, manage, and dispose of its waste. It identifies existing waste systems, assesses needs, and sets forth the ways to design, implement, and monitor a more effective and sustainable waste management program.
40 CFR 272.700 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Illinois § 272.700 State authorization. (a) The State of Illinois is authorized to administer and enforce a hazardous waste management program in lieu of the...
40 CFR 272.1800 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.1800 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Ohio § 272.1800 State authorization. (a) The State of Ohio is authorized to administer and enforce a hazardous waste management program in lieu of the...
40 CFR 272.400 - State authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 272.400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Delaware § 272.400 State authorization. (a) The State of Delaware is authorized to administer and enforce a hazardous waste management program in lieu of the...
77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...
Hazardous waste management at the local level; The Anchorage, Alaska experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigglesworth, D.
1989-07-01
The need to manage hazardous wastes in the municipality of Anchorage, Alaska, has become increasingly evident in recent years. A task force, representing a broad cross-section of the community, was appointed by the mayor to develop a waste management plan that would address community concerns. Between 1984 and 1986, the Anchorage Hazardous Waste Task Force, supported by municipal staff, local consultants and volunteers from the community developed a plan emphasizing local responsibility and pollution prevention, using management capabilities and technical assistance. This paper describes the development of a non-regulatory hazardous waste management program in Anchorage, Alaska. Plan elements, program fundingmore » and the key role of the local Hazardous Waste Task Force are discussed.« less
75 FR 17332 - Idaho: Incorporation by Reference of Approved State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... regulations that are authorized and that the EPA will enforce under the Solid Waste Disposal Act, commonly...(b) of the Solid Waste and Disposal Act, as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: March...: Incorporation by Reference of Approved State Hazardous Waste Management Program AGENCY: Environmental Protection...
40 CFR 60.2899 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2899 Section 60.2899 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Management Plan § 60.2899 What is a waste management plan? A waste management plan is a written plan that...
Laboratory Waste Management. A Guidebook.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.
1995-03-01
This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less
Fossil energy waste management. Technology status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, S.J.; Newman, D.A.
1995-02-01
This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less
NASA Technical Reports Server (NTRS)
English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.
1977-01-01
The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.
Human factors in waste management - potential and reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.S.
There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop {open_quotes}nice to have{close_quotes} features, likemore » a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value {open_quotes}through the back door{close_quotes} on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development.« less
Environmental Sciences Division annual progress report for period ending September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, S.I.; Reichle, D.E.
1982-04-01
Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.
Li, Pu; Chen, Bing
2011-04-01
Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-11-01
North Carolina A and T State University has completed the development of an infrastructure for the interdisciplinary Waste Management Institute (WMI). The Interdisciplinary Waste Management Institute (WMI) was approved in June, 1994 by the General Administration of the University of North Carolina as an academic support unit with research and public service functions. The mission of the WMI is to enhance awareness and understanding of waste management issues and to provide instructional support including research and outreach. The goals of WMI are as follows: increase the number of minority professionals who will work in waste management fields; develop cooperative andmore » exchange programs involving faculty, students, government, and industry; serve as institutional sponsor of public awareness workshops and lecture series; and support interdisciplinary research programs. The vision of the WMI is to provide continued state-of-the art environmental educational programs, research, and outreach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Still, C.M.
1996-12-01
The primary waste management alternatives are source reduction, recycling, composting, incineration, and landfilling. Often waste management policies are based entirely on technical considerations and ignore that actual disposal practices depend on individuals` attitudes and behaviors. This research formulated a decision analysis model that incorporates social value measures to determine the waste management strategy that maximizes the individuals` willingness to participate. The social values that are important and that were considered in the decision support model to assist with making decisions about solid waste management were convenience, feeling good about reducing waste, feeling good about leaving a good environment for futuremore » generations, and the value of recreation programs that can be provided with profit from a recycling program.« less
Li, Yongping; Huang, Guohe
2009-03-01
In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability.
Managing and Transforming Waste Streams – A Tool for Communities
The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.
Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel
2011-11-01
The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President's Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in "Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa." Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The Resources Conservation and Recovery Act`s (RCRA) Subtitle C hazardous waste management program is a comprehensive and carefully constructed system to ensure wastes are managed safely and lawfully. This program begins with a very specific, formal process to categorize wastes accurately and appropriately called waste identification. The module explains each waste exclusion and its scope, so you can apply this knowledge in determining whether a given waste is or is not regulated under RCRA Subtitle C.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to promote and monitor the industrial safety program at their plant. The following topics are covered in the module's individual sections:…
I-WASTE: EPA's Suite of Homeland Security Decision Support ...
In the U.S., a single comprehensive approach to all-hazards domestic incident management has been established by the Department of Homeland Security through the National Response Framework. This helps prevent, prepare for, respond to, and recover from terrorist attacks, major disasters, and other emergencies. A significant component of responding to and recovering from wide-area or isolated events, whether natural, accidental, or intentional, is the management of waste resulting from the incident itself or from activities cleaning up after the incident. To facilitate the proper management of incident-derived waste, EPA developed the Incident Waste Assessment and Tonnage Estimator (I-WASTE). I-WASTE was developed by the U.S. EPA’s Homeland Security Research Program in partnership with EPA program and regional offices, other U.S. government agencies, industry, and state and local emergency response programs. Presenting the disaster waste tool at the ORD Tools Café held in EPA Region 7th on Dec 9th.
Nie, Xianghui; Huang, Guo H; Li, Yongping
2009-11-01
This study integrates the concepts of interval numbers and fuzzy sets into optimization analysis by dynamic programming as a means of accounting for system uncertainty. The developed interval fuzzy robust dynamic programming (IFRDP) model improves upon previous interval dynamic programming methods. It allows highly uncertain information to be effectively communicated into the optimization process through introducing the concept of fuzzy boundary interval and providing an interval-parameter fuzzy robust programming method for an embedded linear programming problem. Consequently, robustness of the optimization process and solution can be enhanced. The modeling approach is applied to a hypothetical problem for the planning of waste-flow allocation and treatment/disposal facility expansion within a municipal solid waste (MSW) management system. Interval solutions for capacity expansion of waste management facilities and relevant waste-flow allocation are generated and interpreted to provide useful decision alternatives. The results indicate that robust and useful solutions can be obtained, and the proposed IFRDP approach is applicable to practical problems that are associated with highly complex and uncertain information.
Space disposal of nuclear wastes. Volume 1: Socio-political aspects
NASA Technical Reports Server (NTRS)
Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.
1976-01-01
The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.
A pilot outreach program for small quantity generators of hazardous waste.
Brown, M S; Kelley, B G; Gutensohn, J
1988-01-01
The Massachusetts Department of Environmental Management initiated a pilot project to improve compliance with hazardous waste regulations and management of hazardous wastes with auto body shops around the state. The program consisted of mass mailings, a series of workshops throughout the state, a coordinated inspection program by the state regulatory agency, and technology transfer. At the start of the program in January 1986, approximately 650 of the estimated 2,350 auto body shops in the state had notified EPA of their waste generating activities; by January 1987, approximately 1,200 shops had done so. Suggestions for improving program efforts include tailoring the outreach effort to the industry, government-sponsored research and development directed at the needs of small firms, mandatory participation in hazardous waste transportation programs, and better coordination by EPA of its information collection and distribution program. PMID:3421393
Tank waste remediation system tank waste retrieval risk management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimper, S.C.
1997-11-07
This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure.
A solid waste management survey in Davao del Sur (school and household waste management survey)
NASA Astrophysics Data System (ADS)
Trondillo, Mark Jude F.; Amaba, Jeneley A.; Paniza, Lyndelle Ann D.; Cubol, John Rhico V.
2018-02-01
Environmental degradation has become a very alarming issue at present. Human activities have been the primary cause of this unfortunate event which has resulted to other complications such as health problems. The resources are limited and people solely depend on it for living. Thus, the necessity to address these concerns arises. Various solid waste management programs have been established however the people's commitment has continued to challenge the local authorities as well as the cooperating agencies. This study was conducted in order to assess the awareness, practice and attitude towards the existing solid waste management programs of the selected students in Davao del Sur. It also aims to measure the effectiveness and current status of these implemented programs. The study used survey method. One hundred sixty eight of 227 students were surveyed using a validated, self-administered instrument. The study revealed that majority of the students is well aware of the existing solid waste management programs, practice them and is willing to learn more about the issue. Others, on the other hand, do the opposite. It is of great importance that all citizens must commit in the implementation of environmental programs so as to be more effective.
Decision Support Model for Municipal Solid Waste Management at Department of Defense Installations.
1995-12-01
Huang uses "Grey Dynamic Programming for Waste Management Planning Under Uncertainty." Fuzzy Dynamic Programming (FDP) is usually designed to...and Composting Programs. Washington: Island Press, 1991. Junio, D.F. Development of an Analytical Hierarchy Process ( AHP ) Model for Siting of
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Chen, Xiujuan; Huang, Guohe; Zhao, Shan; Cheng, Guanhui; Wu, Yinghui; Zhu, Hua
2017-11-01
In this study, a stochastic fractional inventory-theory-based waste management planning (SFIWP) model was developed and applied for supporting long-term planning of the municipal solid waste (MSW) management in Xiamen City, the special economic zone of Fujian Province, China. In the SFIWP model, the techniques of inventory model, stochastic linear fractional programming, and mixed-integer linear programming were integrated in a framework. Issues of waste inventory in MSW management system were solved, and the system efficiency was maximized through considering maximum net-diverted wastes under various constraint-violation risks. Decision alternatives for waste allocation and capacity expansion were also provided for MSW management planning in Xiamen. The obtained results showed that about 4.24 × 10 6 t of waste would be diverted from landfills when p i is 0.01, which accounted for 93% of waste in Xiamen City, and the waste diversion per unit of cost would be 26.327 × 10 3 t per $10 6 . The capacities of MSW management facilities including incinerators, composting facility, and landfills would be expanded due to increasing waste generation rate.
SLFP: a stochastic linear fractional programming approach for sustainable waste management.
Zhu, H; Huang, G H
2011-12-01
A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.
3 Steps to Developing a Tribal Integrated Waste Management Plan (IWMP)
An Integrated Waste Management Plan (IWMP) is the blueprint of a comprehensive waste management program. The steps to developing an IWMP are collect background data, map out the tribal IWMP framework, and write and implement the tribal IWMP.
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management...
40 CFR 60.2625 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management...
Waste certification program plan for Oak Ridge National Laboratory. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrin, R.C.
1997-05-01
This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less
Study of waste management towards sustainable green campus in Universitas Gadjah Mada
NASA Astrophysics Data System (ADS)
Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus
2018-05-01
Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.
Regulatory Aspects Of Implementing Electrokinetic Remediation
A better understanding of the environmental impact of hazardous waste management practices has led to new environmental laws and a comprehensive regulatory program. This program is designed to address remediation of past waste management practices and to ensure that the hazardou...
Technical assistance for hazardous-waste reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, F.M.; McComas, C.A.
1987-12-01
Minnesota's Waste Management Board has established, developed, and funded the Minnesota Technical Assistance Program (MnTAP). The MnTAP programs offers technical assistance to generators of hazardous waste by offering telephone and onsite consultation, a waste reduction resource bank, information dissemination, a student intern program, and research awards for waste reduction projects. The program has completed three years of successful operation. The increasing interest in and use of MnTAP's services by hazardous-waste generators has justified the belief that state technical assistance programs have an important role to play in helping generators to reduce their waste production.
Edgil, Dianna; Stankard, Petra; Forsythe, Steven; Rech, Dino; Chrouser, Kristin; Adamu, Tigistu; Sakallah, Sameer; Thomas, Anne Goldzier; Albertini, Jennifer; Stanton, David; Dickson, Kim Eva; Njeuhmeli, Emmanuel
2011-01-01
Background The global HIV prevention community is implementing voluntary medical male circumcision (VMMC) programs across eastern and southern Africa, with a goal of reaching 80% coverage in adult males by 2015. Successful implementation will depend on the accessibility of commodities essential for VMMC programming and the appropriate allocation of resources to support the VMMC supply chain. For this, the United States President’s Emergency Plan for AIDS Relief, in collaboration with the World Health Organization and the Joint United Nations Programme on HIV/AIDS, has developed a standard list of commodities for VMMC programs. Methods and Findings This list of commodities was used to inform program planning for a 1-y program to circumcise 152,000 adult men in Swaziland. During this process, additional key commodities were identified, expanding the standard list to include commodities for waste management, HIV counseling and testing, and the treatment of sexually transmitted infections. The approximate costs for the procurement of commodities, management of a supply chain, and waste disposal, were determined for the VMMC program in Swaziland using current market prices of goods and services. Previous costing studies of VMMC programs did not capture supply chain costs, nor the full range of commodities needed for VMMC program implementation or waste management. Our calculations indicate that depending upon the volume of services provided, supply chain and waste management, including commodities and associated labor, contribute between US$58.92 and US$73.57 to the cost of performing one adult male circumcision in Swaziland. Conclusions Experience with the VMMC program in Swaziland indicates that supply chain and waste management add approximately US$60 per circumcision, nearly doubling the total per procedure cost estimated previously; these additional costs are used to inform the estimate of per procedure costs modeled by Njeuhmeli et al. in “Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa.” Program planners and policy makers should consider the significant contribution of supply chain and waste management to VMMC program costs as they determine future resource needs for VMMC programs. Please see later in the article for the Editors' Summary PMID:22140363
Energy aspects of solid waste management: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less
National low-level waste management program radionuclide report series, Volume 14: Americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberg, M.R.; Garcia, R.S.
1995-09-01
This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.
Hazardous waste management in the Pacific basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirillo, R.R.; Chiu, S.; Chun, K.C.
1994-11-01
Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used tomore » address them so that new program activities can be designed more efficiently.« less
IMPACT OF LEAD ACID BATTERIES AND CADMIUM STABILIZERS ON INCINERATOR EMISSIONS
The Waste Analysis Sampling, Testing and Evaluation (WASTE) Program is a multi-year, multi-disciplinary program designed to elicit the source and fate of environmentally significant trace materials as a solid waste progresses through management processes. s part of the WASTE Prog...
FY 2017 Hazardous Waste Management Grant Program for Tribes
This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste
Solid Waste Management Practices in EBRP Schools.
ERIC Educational Resources Information Center
Mann, Nadine L.
1994-01-01
A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)
NASA Astrophysics Data System (ADS)
Ma, Xiaolin; Ma, Chi; Wan, Zhifang; Wang, Kewei
2017-06-01
Effective management of municipal solid waste (MSW) is critical for urban planning and development. This study aims to develop an integrated type 1 and type 2 fuzzy sets chance-constrained programming (ITFCCP) model for tackling regional MSW management problem under a fuzzy environment, where waste generation amounts are supposed to be type 2 fuzzy variables and treated capacities of facilities are assumed to be type 1 fuzzy variables. The evaluation and expression of uncertainty overcome the drawbacks in describing fuzzy possibility distributions as oversimplified forms. The fuzzy constraints are converted to their crisp equivalents through chance-constrained programming under the same or different confidence levels. Regional waste management of the City of Dalian, China, was used as a case study for demonstration. The solutions under various confidence levels reflect the trade-off between system economy and reliability. It is concluded that the ITFCCP model is capable of helping decision makers to generate reasonable waste-allocation alternatives under uncertainties.
40 CFR 256.11 - Recommendations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... authorized State hazardous waste management program under subtitle C of the Act. (e) The State plan should... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities...
40 CFR 256.11 - Recommendations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... authorized State hazardous waste management program under subtitle C of the Act. (e) The State plan should... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Identification of Responsibilities...
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to teach trainees to apply conduct of operations principles to their area(s) of responsibility. The following topics are covered in the module's individual…
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to enable trainees to identify regulatory organizations and oversight groups and monitor and provide guidance in the implementation of the requirements of…
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to perform purchasing and accounting tasks efficiently and effectively. The first section is an introduction to the module. The next three…
40 CFR 60.2055 - What is a waste management plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a waste management plan? 60.2055 Section 60.2055 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Which Modification or Reconstruction Is Commenced on or After June 1, 2001 Waste Management Plan § 60...
Effective Strategies for Enhancing Waste Management at University Campuses
ERIC Educational Resources Information Center
Ebrahimi, Kianoosh; North, Leslie A.
2017-01-01
Purpose: The purpose of this study is to identify and assess the waste management strategies that should be priorities for higher education institutions. The role of policy instruments (i.e. purchasing policies and recycling initiatives) in implementing sustainable zero-waste management programs at higher education institutions was investigated…
Solid Waste Management Available Information Materials. Total Listing 1966-1976.
ERIC Educational Resources Information Center
Larsen, Julie L.
This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…
FY 2018 Hazardous Waste Management Grant Program For Tribes
This notice announces the availability of funds and solicits proposals from federally-recognized tribes or intertribal consortia for the development and implementation of hazardous waste programs and for building capacity to address hazardous waste managem
Call It Trash, Garbage or Refuse: Four Case Studies Illustrate Community Waste Management Options.
ERIC Educational Resources Information Center
Kazzi, John W.
1990-01-01
Describes four successful community programs dealing with waste management issues, developed with assistance from Keep America Beautiful System: litter prevention (Beatrice, Nebraska); composting yard waste (Centralia, Illinois); recycling (Lake Jackson, Texas); and waste-to-energy incineration (Gastonia, North Carolina). Notes related education…
Energy aspects of solid waste management: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cyclemore » in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
40 CFR 60.2630 - What should I include in my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management.... Model Rule—Operator Training and Qualification ...
40 CFR 60.2630 - What should I include in my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management.... Model Rule—Operator Training and Qualification ...
Infrastructure Task Force Tribal Solid Waste Management
These documents describe 1) issues to consider when planning and designing community engagement approaches for tribal integrated waste management programs and 2) a proposed approach to improve tribal open dumps data and solid waste projects, and 3) an MOU.
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.
Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactivemore » waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.« less
Motives as predictors of the public's attitudes toward solid waste issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebreo, A.; Vining, J.
2000-02-01
Surveys focusing on solid-waste-related issues, conducted over a period of several years, provided data from independent samples of residents of a Midwestern, USA, community. The collection of these data yielded useful information about the relationship between residents' recycling motives and their attitudes toward solid waste management in light of several changes in the solid waste infrastructure of the community over that time. The initial survey assessed baseline beliefs and attitudes, while later surveys were conducted after the implementation of a community educational program and a curbside recycling program. The findings indicated that for recyclers and nonrecyclers, different motives predicted endorsementmore » of solid waste programs and policies. Although a similar percentage of recyclers and nonrecyclers were in support of various proposed programs and policies, concern for the environment was found to be positively related to nonrecyclers' support of proposed programs, particularly before these programs were implemented. Prior to program implementation, motives other than environmental altruism were found to be related to recyclers' support of the programs. Additional findings support the idea that educational programs and increased accessibility to recycling opportunities affect the relationship between people's attitudes toward solid waste management and their recycling motives.« less
Hazardous-waste analysis plan for LLNL operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R.S.
The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan willmore » address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.« less
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to use plant and industry experience to improve plant safety and reliability. The following topics are covered in the module's individual…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... submitting comments. E-mail: biscaia.robin@epa.gov . Fax: (617) 918-0642, to the attention of Robin Biscaia. Mail: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07... Delivery or Courier: Deliver your comments to: Robin Biscaia, RCRA Waste Management Section, Office of Site...
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to provide participants with knowledge and skills necessary to take full advantage of the MAST learning experience. The module contains program guidelines, sample…
Program Planning Concepts in Solid Waste Management
ERIC Educational Resources Information Center
Brown, Sanford M., Jr.
1972-01-01
Presents a brief review of the program planning process, and uses the example of a solid waste program to illustrate what has or has not been accomplished through the use of the planning process. (LK)
77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...
77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
....1. Such wastes are termed ``oil and gas wastes.'' The TCEQ has responsibility to administer the RCRA program, however, hazardous waste generated at natural gas or natural gas liquids processing plants or... with the exploration, development, or production of oil or gas or geothermal resources and other...
Land Use Management for Solid Waste Programs
ERIC Educational Resources Information Center
Brown, Sanford M., Jr.
1974-01-01
The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)
Technology Catalogue. First edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less
Tabash, Mohammed I; Hussein, Rim A; Mahmoud, Aleya H; El-Borgy, Mohamed D; Abu-Hamad, Bassam A
2016-04-01
In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. Poor knowledge about their potential downstream impacts may be a primary factor for improper disposal behavior. The objective of this study was to determine the impact of an intervention program on knowledge and practice of health care staff regarding pharmaceutical waste management. The study was designed as a pre/posttest intervention study. Total sample size was 530 in the pre-intervention phase, and then a subsample of 69 individuals was selected for the intervention and the post-intervention phases. Paired-sample t test was used to assess the difference between pretest and follow-up test results. A statistically significant improvement in knowledge and practice was achieved (P<0.001). Poor knowledge and poor practice levels (scores<50%) were found to improve to satisfactory levels (scores≥75%). Therefore, educational programs could be considered as an effective tool for changing health care staff practice in pharmaceutical waste management. In health care facilities, pharmaceutical waste is generally discharged down the drain or sent to landfill. A lack of knowledge about the potential impacts of this type of waste may be a leading factor in improper disposal behavior. Following an educational program, statistically significant improvement in knowledge and practice of health care staff as regards to pharmaceutical waste management (PWM) was achieved. It is thus recommended that authorities implement training-of-trainers (TOT) programs to educate health care staff on PWM and organize refreshment workshops regularly.
Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Industrial Program of Waste Management - Cigeo Project - 13033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butez, Marc; Bartagnon, Olivier; Gagner, Laurent
2013-07-01
The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less
USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL
NASA Technical Reports Server (NTRS)
Venuto, Charles
1987-01-01
In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.
Local Gov`t assistance in commercial waste reduction & recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, C.W.
This paper outlines programs and strategies for reducing the waste stream by targeting the commercial, industrial and institutional sectors. The programs described are implemented by the Wake County Solid Waste Management Division, North Carolina. Findings and recommendations of a task force focusing on the role of the private sector in meeting state waste reduction mandates are summarized. Commercial initiatives, educational initiatives, and a grant program are described. Several case studies are provided which overview the variety of businesses and waste materials addressed.
Shared responsibility for managing electronic waste: a case study of Maine, USA.
Wagner, Travis P
2009-12-01
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste was collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, K.W.; Twitchell, Ch.A.
2008-07-01
Korea Hydro and Nuclear Power Co., Ltd. (KHNP) is an electric company in the Republic of Korea with twenty operational nuclear power plants and eight additional units that are either planned or currently under construction. Regulations require that KHNP manage the radioactive waste generated by their nuclear power plants. In the course of planning low, intermediate, and high level waste storage facilities, KHNP sought interaction with an acknowledged expert in the field of radioactive waste management and, consequently, contacted Sandia National Laboratories (SNL). KHNP has contracted with SNL to provide a year long training program on repository science. This papermore » discusses the design of the curriculum, specific plans for execution of the training program, and recommendations for smooth implementation of international training programs. (authors)« less
This article is the preface or editors note to the dedicated issue of the Journal of the Air & Waste Management Association for a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites Program and Related Studies," that was...
Installation Restoration Program. Phase 1 - Records Search, Elmendorf AFB, Alaska
1983-09-01
Installation Restoration Hazardous Waste Management Past Solid Waste Disposal Sites Ground Water Contamination 26. ABSTRACT (CO- ffew. - reev. ilde It necessar...Activity Review 4-1 Industrial Operations (Shops) 4-2 Fire Training 4-13 Fuels Management 4-15 Description of Past On-sane Disposal Methods 4-23 Waste...characteristics, potential for contaminant migration and waste management practices. The details of the rating procedure are presented in Appendix H and the
Sapkota, Binaya; Gupta, Gopal Kumar; Mainali, Dhiraj
2014-09-26
Healthcare waste is produced from various therapeutic procedures performed in hospitals, such as chemotherapy, dialysis, surgery, delivery, resection of gangrenous organs, autopsy, biopsy, injections, etc. These result in the production of non-hazardous waste (75-95%) and hazardous waste (10-25%), such as sharps, infectious, chemical, pharmaceutical, radioactive waste, and pressurized containers (e.g., inhaler cans). Improper healthcare waste management may lead to the transmission of hepatitis B, Staphylococcus aureus and Pseudomonas aeruginosa. This evaluation of waste management practices was carried out at gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards at Government of Nepal Civil Service Hospital, Kathmandu from February 12 to October 15, 2013, with the permission from healthcare waste management committee at the hospital. The Individualized Rapid Assessment tool (IRAT), developed by the United Nations Development Program Global Environment Facility project, was used to collect pre-interventional and post-interventional performance scores concerning waste management. The healthcare waste management committee was formed of representing various departments. The study included responses from focal nurses and physicians from the gynaecology, obstetrics, paediatrics, medicine and orthopaedics wards, and waste handlers during the study period. Data included average scores from 40 responders. Scores were based on compliance with the IRAT. The waste management policy and standard operating procedure were developed after interventions, and they were consistent with the national and international laws and regulations. The committee developed a plan for recycling or waste minimization. Health professionals, such as doctors, nurses and waste handlers, were trained on waste management practices. The programs included segregation, collection, handling, transportation, treatment and disposal of waste, as well as occupational health and safety issues. The committee developed a plan for treatment and disposal of chemical and pharmaceutical waste. Pretest and posttest evaluation scores were 26% and 86% respectively. During the pre-intervention period, the hospital had no HCWM Committee, policy, standard operating procedure or proper color coding system for waste segregation, collection, transportation and storage and the specific well-trained waste handlers. Doctors, nurses and waste handlers were trained on HCWM practices, after interventions. Significant improvements were observed between the pre- and post-intervention periods.
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
1982-05-07
The State of Florida has applied for interim Authorization Phase I. EPA has reviewed Florida's application for Phase I and has determined that Florida's hazardous waste program is substantially equivalent to the Federal program covered by Phase I. The State of Florida is, hereby, granted Interim Authorization for Phase I to operate the State 's hazardous waste program, in lieu of the Federal program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colglazier, E.W. Jr.
1982-01-01
In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administrationmore » as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)« less
40 CFR 35.212 - Basis for allotment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... extent to which human beings and the environment in the State are exposed to such waste, and; (c) Other... STATE AND LOCAL ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.212 Basis for allotment. The Administrator allots funds for Hazardous Waste Management Grants in...
40 CFR 35.212 - Basis for allotment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... extent to which human beings and the environment in the State are exposed to such waste, and; (c) Other... STATE AND LOCAL ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.212 Basis for allotment. The Administrator allots funds for Hazardous Waste Management Grants in...
40 CFR 35.212 - Basis for allotment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... extent to which human beings and the environment in the State are exposed to such waste, and; (c) Other... STATE AND LOCAL ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.212 Basis for allotment. The Administrator allots funds for Hazardous Waste Management Grants in...
40 CFR 35.212 - Basis for allotment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extent to which human beings and the environment in the State are exposed to such waste, and; (c) Other... STATE AND LOCAL ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.212 Basis for allotment. The Administrator allots funds for Hazardous Waste Management Grants in...
40 CFR 35.212 - Basis for allotment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... extent to which human beings and the environment in the State are exposed to such waste, and; (c) Other... STATE AND LOCAL ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.212 Basis for allotment. The Administrator allots funds for Hazardous Waste Management Grants in...
78 FR 25252 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
... nonprofit corporations to fund the development of drinking water, wastewater, and solid waste disposal...), section 310B authorizes Solid Waste Management grants. Grants are made for 100 percent of the cost of assistance. The Technical Assistance and Training Grants and Solid Waste Management Grants programs are...
ERIC Educational Resources Information Center
Thomas, Sue; Moen, Dave
This guide provides background information and youth activities for youth leaders and classroom teachers interested in integrating waste management issues into current educational programming. Five parts suggest ideas for action that youth can take at home, in their group, or in the community to solve waste management problems. Part 1 introduces…
Guo, P; Huang, G H
2010-03-01
In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their combinations; secondly, it has capability in addressing the temporal variations of the functional intervals; thirdly, it can facilitate dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period and multi-option context. Copyright 2009 Elsevier Ltd. All rights reserved.
Clinical solid waste management practices and its impact on human health and environment - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.
2011-04-15
Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less
MINE WASTE TECHNOLOGY PROGRAM:HISTORICAL PERSPECTIVES. CURRENT HIGHLIGHTS, FUTURE OPPORTUNITIES
For the past 13 years, the Mine Waste Technology Program has been technically driven by the National Risk Management Research Lab. A portion of the MWTP funding has been used to perform field demonstrations of innovative technologies with the potential to address mine waste issue...
High-level waste program progress report, April 1, 1980-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.
Management of Biomedical Waste: An Exploratory Study.
Abhishek, K N; Suryavanshi, Harshal N; Sam, George; Chaithanya, K H; Punde, Prashant; Singh, S Swetha
2015-09-01
Dental operatories pose a threat due to the high chances of infection transmission both to the clinician and the patients. Hence, management of dental waste becomes utmost importance not only for the health benefit of the dentist himself, but also people who can come into contact with these wastes directly or indirectly. The present study was conducted to find out the management of biomedical waste in private dental practice among 3 districts of Karnataka. The study population included 186 private practitioners in 3 districts of Karnataka (Coorg, Mysore, Hassan), South India. A pre-tested self-administered questionnaire was distributed to assess the knowledge and practices regarding dental waste management. Descriptive statistics was used to summarize the results. Out of 186 study subjects, 71 (38%) were females and 115 (62%) were males. The maximum number of participants belonged to the age group of 28-33 years (29%). Undergraduate qualification was more (70%). 90 (48%) participants had an experience of 0-5 years. Chi-square analysis showed a highly significant association between participant who attended continuing dental education (CDE) program and their practice of dental waste management. Education with regards to waste management will help in enhancing practices regarding the same. In order to fill this vacuum CDE programs have to be conducted in pursuance to maintain health of the community.
NASA Astrophysics Data System (ADS)
Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda
2018-03-01
Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-01
The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandon, K.E.; Burlison, J.S.; Rau, R.G.
1980-10-01
The research reported here supplies population data for ongoing environmental evaluations of the Hanford Site's waste management programs. The population figures in this report will be used to calculate dose to population from waste management operations for up to 10,000 years after 1990.
75 FR 11835 - Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... water, wastewater, and solid waste disposal facilities in rural areas with populations of up to 10,000... Assistance and Training grants, and 7 U.S.C. 1932(b), section 310B authorizes Solid Waste Management grants... and Solid Waste Management Grants programs are administered through 7 CFR part 1775. Estimate of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.210 Purpose. (a) Purpose of section. Sections 35.210 through 35.218 govern Hazardous Waste Management Grants to States (as defined in section 1004 of the Solid Waste Disposal Act) under section 3011(a) of the Act. (b) Purpose of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ASSISTANCE Environmental Program Grants Hazardous Waste Management (section 3011(a)) § 35.210 Purpose. (a) Purpose of section. Sections 35.210 through 35.218 govern Hazardous Waste Management Grants to States (as defined in section 1004 of the Solid Waste Disposal Act) under section 3011(a) of the Act. (b) Purpose of...
Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleb, H.R.; Zelmer, R.L.
2007-07-01
The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. In this capacity, the Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. The Office is currently the proponent of the Port Hope Area Initiative; a program directed at the development and implementation of a safe, local long-term management solution for historic LLR waste in the Port Hope area. A legal agreement between the Government of Canada and the host community provides the framework for the implementationmore » of the Port Hope Project. Specifically, the agreement requires that the surface of the long-term LLR waste management facility be 'conducive to passive and active recreational uses such as soccer fields and baseball diamonds'. However, there are currently no examples of licensed LLR waste management facilities in Canada that permit recreational use. Such an end use presents challenges with respect to engineering and design, health and safety and landscape planning. This paper presents the cover system design, the environmental effects assessment and the landscape planning processes that were undertaken in support of the recreational end use of the Port Hope long-term LLR waste management facility. (authors)« less
75 FR 51392 - New York: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 272 [EPA-R02-RCRA-2010-0249; FRL-9178-8] New York: Incorporation by Reference of State Hazardous Waste Management Program Correction In rule document 2010-18927 beginning on page 45489 in the issue of Tuesday, August 3, 2010, make the following correction: Appendix A...
Transuranic solid waste management programs. Progress report, July--December 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory (LASL) by the Energy Research and Development Administration (ERDA) Division of Fuel Cycle and Production (NFCP). Under the Transuranic Waste Research and Development Program, continued studies have shown the potential attractiveness of fiber drums as an acceptable substitute for the current mild steel storage containers. Various fire retardants have been evaluated, with one indicating significant ability to inhibit fire propagation. Continued radiolysis studies, under laboratory and field conditions, continue to reaffirm earlier LASL results indicating no significant hazard from radiolytic reactions, assuming nomore » change in current allowable loadings. Care must be exercised to differentiate between radiolytic and chemical reactions. Other efforts have identified a modification of chemical processing to reduce the amounts of plutonium requiring retrievable storage. Studies are also in progress to enhance the sensitivity of the LASL MEGAS assay system. The Transuranic-Contaminated Solid Waste Treatment Development Facility building was 72 percent complete as of December 31, 1975, which is in accord with the existing schedule. Procurement of process components is also on schedule. Certain modifications to the facility have been made, and various pre-facility experiments on waste container handling and processing have been completed. The program for the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas continued development of various computer modules for simulation of radionuclide transport within the biosphere. In addition, program staff contributed to an ERDA document on radioactive waste management through the preparation of a report on burial of radioactive waste at ERDA-contractor and commercial sites.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
..., nickel-cadmium batteries or lithium batteries. Rhode Island has decided to regulate circuit boards, as... universal waste program, Rhode Island regulates certain dry cell batteries (i.e., waste-nickel cadmium, mercuric oxide, and lead acid dry cell batteries), used electronics, mercury containing equipment and...
40 CFR 262.104 - What are the minimum performance criteria?
Code of Federal Regulations, 2010 CFR
2010-07-01
... XL Project-Laboratory Environmental Management Standard § 262.104 What are the minimum performance... container management. (f) The management of laboratory waste must not result in the release of hazardous... waste management program approved under 40 CFR part 271) if it is determined in the laboratory by the...
Chemical Waste Management for the Conditionally Exempt Small Quantity Generator
NASA Astrophysics Data System (ADS)
Zimmer, Steven W.
1999-06-01
Management of hazardous chemical wastes generated as a part of the curriculum poses a significant task for the individual responsible for maintaining compliance with all rules and regulations from the Environmental Protection Agency and the Department of Transportation while maintaining the principles of OSHA's Lab Standard and the Hazard Communication Standard. For schools that generate relatively small quantities of waste, an individual can effectively manage the waste program without becoming overly burdened by the EPA regulations required for those generating large quantities of waste, if given the necessary support from the institution.
Managing previously disposed waste to today's standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
A Radioactive Waste Management Complex (RWMC) was established at the Idaho National Engineering Laboratory (INEL) in 1952 for controlled disposal of radioactive waste generated at the INEL. Between 1954 and 1970 waste characterized by long lived, alpha emitting radionuclides from the Rocky Flats Plant was also buried at this site. Migration of radionuclides and other hazardous substances from the buried Migration of radionuclides and other hazardous substances from the buried waste has recently been detected. A Buried Waste Program (BWP) was established to manage cleanup of the buried waste. This program has four objectives: (1) determine contaminant sources, (2) determinemore » extent of contamination, (3) mitigate migration, and (4) recommend an alternative for long term management of the waste. Activities designed to meet these objectives have been under way since the inception of the program. The regulatory environment governing these activities is evolving. Pursuant to permitting activities under the Resource Conservation and Recovery Act (RCRA), the Department of Energy (DOE) and the Environmental Protection Agency (EPA) entered into a Consent Order Compliance Agreement (COCA) for cleanup of past practice disposal units at the INEL. Subsequent to identification of the RWMC as a release site, cleanup activities proceeded under dual regulatory coverage of RCRA and the Atomic Energy Act. DOE, EPA, and the State of Idaho are negotiating a RCRA/Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interagency Agreement (IAG) for management of waste disposal sites at the INEL as a result of the November 1989 listing of the INEL on the National Priority List (NPL). Decision making for selection of cleanup technology will be conducted under the CERCLA process supplemented as required to meet the requirements of the National Environmental Policy Act (NEPA). 7 figs.« less
TRU Waste Management Program cost/schedule optimization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.
1985-10-01
The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementationmore » would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)« less
40 CFR 255.32 - Coordination with other programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... criteria (§ 255.11) specify review of solid waste activities being conducted by water quality management planning agencies, underground injection control agencies, and air quality management agencies. There... IDENTIFICATION OF REGIONS AND AGENCIES FOR SOLID WASTE MANAGEMENT Responsibilities of Identified Agencies and...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Minnesota State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201 Minnesota State-administered program; Final authorization. Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Minnesota State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201 Minnesota State-administered program; Final authorization. Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Minnesota State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201 Minnesota State-administered program; Final authorization. Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.1201 - Minnesota State-administered program; Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Minnesota State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1201 Minnesota State-administered program; Final authorization. Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.1651 - New York State-Administered Program: final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false New York State-Administered Program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New York § 272.1651 New York State-Administered Program: final authorization. (a) Pursuant to section 3006(b) of RCRA, 42...
40 CFR 272.1601 - New Mexico State-Administered Program: Final Authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false New Mexico State-Administered Program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New Mexico § 272.1601 New Mexico State-Administered Program: Final Authorization. (a) Pursuant to section 3006(b) of RCRA...
40 CFR 272.1601 - New Mexico State-Administered Program: Final Authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false New Mexico State-Administered Program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New Mexico § 272.1601 New Mexico State-Administered Program: Final Authorization. (a) Pursuant to section 3006(b) of RCRA...
40 CFR 272.1601 - New Mexico State-Administered Program: Final Authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false New Mexico State-Administered Program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New Mexico § 272.1601 New Mexico State-Administered Program: Final Authorization. (a) Pursuant to section 3006(b) of RCRA...
40 CFR 272.1601 - New Mexico State-Administered Program: Final Authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false New Mexico State-Administered Program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New Mexico § 272.1601 New Mexico State-Administered Program: Final Authorization. (a) Pursuant to section 3006(b) of RCRA...
40 CFR 272.2501 - Wisconsin State-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Wisconsin State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501 Wisconsin State-administered program: Final authorization. (a) Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.2501 - Wisconsin State-administered program; final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Wisconsin State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501 Wisconsin State-administered program; final authorization. Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.2501 - Wisconsin State-administered program: Final authorization.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Wisconsin State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501 Wisconsin State-administered program: Final authorization. (a) Pursuant to section 3006(b) of RCRA, 42 U.S.C...
40 CFR 272.2501 - Wisconsin State-administered program: Final authorization.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Wisconsin State-administered program... (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2501 Wisconsin State-administered program: Final authorization. (a) Pursuant to section 3006(b) of RCRA, 42 U.S.C...
Assessment of medical waste management in seven hospitals in Lagos, Nigeria.
Awodele, Olufunsho; Adewoye, Aishat Abiodun; Oparah, Azuka Cyril
2016-03-15
Medical waste (MW) can be generated in hospitals, clinics and places where diagnosis and treatment are conducted. The management of these wastes is an issue of great concern and importance in view of potential public health risks associated with such wastes. The study assessed the medical waste management practices in selected hospitals and also determined the impact of Lagos Waste Management Authority (LAWMA) intervention programs. A descriptive cross-sectional survey method was used. Data were collected using three instrument (questionnaire, site visitation and in -depth interview). Two public (hospital A, B) and five private (hospital C, D, E, F and G) which provide services for low, middle and high income earners were used. Data analysis was done with SPSS version 20. Chi-squared test was used to determine level of significance at p < 0.05. The majority 56 (53.3%) of the respondents were females with mean age of 35.46 (±1.66) years. The hospital surveyed, except hospital D, disposes both general and medical waste separately. All the facilities have the same process of managing their waste which is segregation, collection/on-site transportation, on-site storage and off-site transportation. Staff responsible for collecting medical waste uses mainly hand gloves as personal protective equipment. The intervention programs helped to ensure compliance and safety of the processes; all the hospitals employ the services of LAWMA for final waste disposal and treatment. Only hospital B offered on-site treatment of its waste (sharps only) with an incinerator while LAWMA uses hydroclave to treat its wastes. There are no policies or guidelines in all investigated hospitals for managing waste. An awareness of proper waste management amongst health workers has been created in most hospitals through the initiative of LAWMA. However, hospital D still mixes municipal and hazardous wastes. The treatment of waste is generally done by LAWMA using hydroclave, to prevent environmental hazards except hospital B that treats its sharp with an incinerator. In order to enhance uniform and appropriate waste management practices in the entire State, there is need for capacity building at all levels and also policies and guidelines formulations.
NASA Astrophysics Data System (ADS)
Prajati, Gita; Padmi, Tri; Benno Rahardyan, dan
2017-12-01
Nowadays, solid waste management continues to be a major challenge in urban areas, especially in developing country. It is triggered by population growth, economic growth, industrialization and urbanization. Indonesia itselfs categorized into developing country. Indonesia's government has many program in order to increase the economic growth. One of them is MP3EI (Masterplan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia. This program should be suppported by right waste management system. If Indonesia's waste management system can't afford the economic growth, it will trigger health and environmental problems. This study's purpose is to develop the socio-economic-environment model that can be used as a basis planning for the facility and cost of waste management systems. In this paper we used the development of Khajuria model test method. This method used six variables, which are GDP, population, population density, illiteracy, school's period and economic growth. The result showed that development of Khajuria test could explained the influence of economic and demographic factors to waste generation, 65.6%. The projection of waste generation shows that Pangkalpinang, Pekanbaru and Serang are the cities with the highest waste generation for the next five years. The number of dump truck and TPS in DKI Jakarata is the highest within another city, which is 39.37%. For the next five years, the waste management system in our study areas cost maximum 0.8% from GDP (Gross Domestic Products).
Shared responsibility for managing electronic waste: A case study of Maine, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Travis P., E-mail: twagner@usm.maine.ed
2009-12-15
Based on high disposal and low recycling rates of electronic waste (e-waste) and continued exportation to developing countries, reliance on municipal responsibility for e-waste management has been unsuccessful in the United States. This case study examines Maine's program, which was the first US state to mandate producer responsibility for recycling household e-waste. Maine's program established a shared cost responsibility among producers, municipalities, and consumers. The study found that Maine's program resulted in a significant reduction in disposal and a corresponding increase in environmentally sound recycling. In the first 3 years of the program, 6.406 million kg of household e-waste wasmore » collected and recycled for a population of 1.32 million. The new program, implemented in 2006, increased the number of e-waste items collected and recycled by 108% in the first year, 170% in the second year, and 221% in the third year. The program decreased direct economic costs to municipalities and households because of the shared cost approach and for the first time established costs for producers. There was no empirical evidence indicating that producers have or will improve the recyclability of electronic products to reduce recycling costs. While other weaknesses were that found potentially limit the adoption of Maine's program, its positive aspects warrant consideration by other governments.« less
ERIC Educational Resources Information Center
Apanomeritaki, Olga
This action research project sought to increase the waste management and recycling knowledge among 20 children age 4 and 5 years enrolled in a preschool program in Thessaloniki, Greece. A structured interview was developed to assess the children's pre-intervention knowledge of waste management and recycling. It indicated that most children knew…
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Hazardous Waste Management System; Testing and Monitoring Activities (Checklist 158) 62 FR 32452 June 13... Management System; Carbamate Production, Identification and Listing of Hazardous Waste; Land Disposal... Indiana Department of Environmental Management, signed by the Commissioner of the IDEM on February 14...
Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, V.
Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less
Tank waste remediation system multi-year work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less
Tank waste remediation system multi-year work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsectionmore » for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.« less
ERIC Educational Resources Information Center
Corson, Alan; And Others
Presented are key issues to be addressed by state, regional, and local governments and agencies in creating effective hazardous waste management programs. Eight chapters broadly frame the topics which state-level decision makers should consider. These chapters include: (1) definition of hazardous waste; (2) problem definition and recognition; (3)…
Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data
As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part of EPA's Sustainable Materials Management Program (SMM). SMM seeks to reduce the environmental impact of materials through their entire life cycle. This includes how they are extracted, manufactured, distributed, used, reused, recycled, and disposed. Organizations are encouraged to follow the Food Recovery Hierarchy (https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy) to prioritize their actions to prevent and divert wasted food. Each tier of the Food Recovery Hierarchy focuses on different management strategies for your wasted food. The program started in 2011 and the first data were made available in 2012. The FRC is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program.
Composting of Municipal Solid Wastes in the United States.
ERIC Educational Resources Information Center
Breidenbach, Andrew W.
To gain more comprehensive knowledge about composting as a solid waste management tool and to better assess the limited information available, the Federal solid waste management program, within the U. S. Public Health Service, entered into a joint experimental windrow composting project in 1966 with the Tennessee Valley Authority and the City of…
40 CFR 272.951 - Louisiana state-administered program: Final authorization.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Louisiana state-administered program: Final authorization. 272.951 Section 272.951 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.951...
Robotics crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less
Sustainable Materials Management Challenge Data
Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program. As part of EPA's Food Recovery Challenge, organizations pledge to improve their sustainable food management practices and report their results. The SMM Electronics Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Federal Green Challenge, a national effort under the EPA??s Sustainable Materials Management Program, challenges EPA and other federal agencies throughout the country to lead by example in reducing the federal government's environmental impact. EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustaina
Code of Federal Regulations, 2010 CFR
2010-07-01
... Federal laws required in § 270.3. (e) Solid waste management unit information required by § 270.14(d). (f... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM RCRA Standardized Permits for Storage and Treatment Units...
Recommended HSE-7 documents hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.B.; Jennrich, E.A.; Lund, D.M.
1990-12-12
This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or Laboratory''). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.
Recommended HSE-7 documents hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.B.; Jennrich, E.A.; Lund, D.M.
1990-12-12
This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or ``Laboratory``). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.
Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrick, T.E.
1997-08-01
A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Sitemore » Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.« less
International waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya, J P; LaMarche, M N; Upton, J F
1997-10-01
Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.
Land, Waste, and Cleanup Topics
After reducing waste as much as possible through recycling and sustainability, managing waste protects land quality. EPA is also involved in cleaning up and restoring contaminated land, through brownfield and superfund programs.
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Lakey, L.T.; Silviera, D.J.
The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less
Summary of the 2012 Wide Area Recovery and Resiliency Program (WARRP) Waste Management Workshop
Workshop advanced the planning of federal, state and local officials in the area of waste management following a chemical, biological or radiological wide-area incident in the Denver, Colorado urban area.
Change in MSW characteristics under recent management strategies in Taiwan.
Chang, Yu-Min; Liu, Chien-Chung; Hung, Chao-Yang; Hu, Allen; Chen, Shiao-Shing
2008-12-01
Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.
Internship - practical education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porell, A.L.; Bauman, H.F.
1989-01-01
The current emphasis on regulatory compliance with environmental laws has depleted the availability of experienced environmental scientists and engineers needed to initiate critical environmental projects. Further, projects of short duration and long-term commitments to employment situations are considered a high risk for both the employer and the employee. Martin Marietta Energy Systems, Inc., has met this challenge for federal agencies through the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP). Through unique interdepartmental agency agreements between the DOE and the Department of Defense (DOD) and contractual arrangements between Energy Systems, DOE, and the University of Tennessee's (UT's)more » Waste Management Institute (WMI), an intern program was formulated. HAZWRAP is a DOE headquarters' program for addressing hazardous-waste issues at all DOE facilities. Energy Systems is the support contractor office responsible for developing policies and implementing plans for this program. Under this charter, HAZWRAP assembled a large staff of experienced project managers for developing remedial actions plans, while providing other federal agencies assistance in implementing their remedial actions programs. HAZWRAP project managers are currently managing remedial investigations and feasibility studies at 130 federal facilities located throughout the DOD.« less
TRU Waste Management Program. Cost/schedule optimization analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.
This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less
Radioactive Waste Management in Non-Nuclear Countries - 13070
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubelka, Dragan; Trifunovic, Dejan
2013-07-01
This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services,more » comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)« less
40 CFR 262.102 - What special definitions are included in this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Laboratories XL Project-Laboratory Environmental Management Standard § 262.102 What special definitions are... Laboratory Waste means a laboratory waste, defined in the Environmental Management Plan as posing significant... Management Plan (EMP) means a written program developed and implemented by the university which sets forth...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.« less
Tank waste remediation system nuclear criticality safety program management review
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADY RAAP, M.C.
1999-06-24
This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Danneels, J.; Kenagy, W.D.
The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less
Al-Khatib, Issam A; Monou, Maria; Mosleh, Salem A; Al-Subu, Mohammed M; Kassinos, Despo
2010-05-01
This study investigated the dental waste management practices and safety measures implemented by dentists in the Nablus district, Palestine. A comprehensive survey was conducted for 97 of the 134 dental clinics to assess the current situation. Focus was placed on hazardous waste produced by clinics and the handling, storage, treatment and disposal measures taken. Mercury, found in dental amalgam, is one of the most problematic hazardous waste. The findings revealed that there is no proper separation of dental waste by classification as demanded by the World Health Organization. Furthermore, medical waste is often mixed with general waste during production, collection and disposal. The final disposal of waste ends up in open dumping sites sometimes close to communities where the waste is burned. Correct management and safety procedures that could be effectively implemented in developing countries were examined. It was concluded that cooperation between dental associations, government-related ministries and authorities needs to be established, to enhance dental waste management and provide training and capacity building programs for all professionals in the medical waste management field.
Ceramics in nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T D; Mendel, J E
1979-05-01
Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)
Factors affecting waste generation: a study in a waste management program in Dhaka City, Bangladesh.
Afroz, Rafia; Hanaki, Keisuke; Tudin, Rabaah
2011-08-01
Information on waste generation, socioeconomic characteristics, and willingness of the households to separate waste was obtained from interviews with 402 respondents in Dhaka city. Ordinary least square regression was used to determine the dominant factors that might influence the waste generation of the households. The results showed that the waste generation of the households in Dhaka city was significantly affected by household size, income, concern about the environment, and willingness to separate the waste. These factors are necessary to effectively improve waste management, growth and performance, as well as to reduce the environmental degradation of the household waste.
40 CFR 272.751 - Indiana state-administered program: Final authorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Metal Wastes and Mineral Processing Wastes (Checklist 167A), Hazardous Soils Treatment Standards and...)), 270.1, 270.14(a), and 270.28 are non-HSWA provisions. Hazardous Remediation Waste Management...
Repurposing Waste Streams: Lessons on Integrating Hospital Food Waste into a Community Garden.
Galvan, Adri M; Hanson, Ryan; George, Daniel R
2018-04-06
There have been increasing efforts in recent decades to divert institutional food waste into composting programs. As major producers of food waste who must increasingly demonstrate community benefit, hospitals have an incentive to develop such programs. In this article, we explain the emerging opportunity to link hospitals' food services to local community gardens in order to implement robust composting programs. We describe a partnership model at our hospital in central Pennsylvania, share preliminary outcomes establishing feasibility, and offer guidance for future efforts. We also demonstrate that the integration of medical students in such efforts can foster systems thinking in the development of programs to manage hospital waste streams in more ecologically-friendly ways.
ERIC Educational Resources Information Center
National Field Research Center Inc., Iowa City, IA.
Educational programs in solid waste management offered by 16 schools in 9 states were surveyed. These programs represent a sample, only, of the various programs available nationwide. Enrollment and graduate statistics are presented. Overall, 116 full-time and 124 part-time faculty were involved in the programs surveyed. Curricula and sources of…
An inexact reverse logistics model for municipal solid waste management systems.
Zhang, Yi Mei; Huang, Guo He; He, Li
2011-03-01
This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, T.; Brandt, C.; Calfee, J.
1994-03-01
The Data Management Plan and Functional System Design supports the Clinch River Remedial Investigation (CRRI) and Waste Area Grouping (WAG) 6 Environmental Monitoring Program. The objective of the Data Management Plan and Functional System Design is to provide organization, integrity, security, traceability, and consistency of the data generated during the CRRI and WAG 6 projects. Proper organization will ensure that the data are consistent with the procedures and requirements of the projects. The Information Management Groups (IMGs) for these two programs face similar challenges and share many common objectives. By teaming together, the IMGs have expedited the development and implementationmore » of a common information management strategy that benefits each program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, A.G.
The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membershipmore » is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program.« less
40 CFR 35.101 - Environmental programs covered by the subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (section 205(g) of the Clean Water Act). (19) Water quality management planning (section 205(j)(2) of the... Drinking Water Act). (6) Hazardous waste management (section 3011(a) of the Solid Waste Disposal Act). (7... Insecticide, Fungicide, and Rodenticide Act). (10) Nonpoint source management (sections 205(j)(5) and 319(h...
Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.
Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin
2017-09-04
This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.
Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand
Yukalang, Nachalida; Clarke, Beverley
2017-01-01
This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572
ERIC Educational Resources Information Center
Institute for Environmental Education, Chagrin Falls, OH.
Increased human population has led to more frequent interactions with the environment. The results of those interactions have affected the Earth's ecosystem. This manual contains hands-on, problem-centered activities to help students develop an environmental ethic and stewardship regarding waste management. The activities are grouped under three…
NASA Astrophysics Data System (ADS)
Affandy, Nur Azizah; Isnaini, Enik; Laksono, Arif Budi
2017-06-01
Waste management becomes a serious issue in Indonesia. Significantly, waste production in Lamongan Regency is increasing in linear with the growth of population and current people activities, creating a gap between waste production and waste management. It is a critical problem that should be solved immediately. As a reaction to the issue, the Government of Lamongan Regency has enacted a new policy regarding waste management through a program named Lamongan Green and Clean (LGC). From the collected data, it showed that the "wet waste" or "organic waste" was approximately 63% of total domestic waste. With such condition, it can be predicted that the trashes will decompose quite quickly. From the observation, it was discovered that the generated waste was approximately 0.25 kg/person/day. Meanwhile, the number of population in Tumenggungan Village, Lamongan (data obtained from Monograph in Lamongan district, 2012) was 4651 people. Thus, it can be estimated the total waste in Lamongan was approximately 0.25 kg/person/day x 4651 characters = 930 kg/day. Within 3RWB Model, several stages have to be conducted. In the planning stage, the promotion of self-awareness among the communities in selecting and managing waste due to their interest in a potential benefit, is done. It indicated that community's awareness of waste management waste grew significantly. Meanwhile in socialization stage, each village staff, environmental expert, and policymaker should bear significant role in disseminating the awareness among the people. In the implementation phase, waste management with 3RWB model is promoted by applying it among of the community, starting from selection, waste management, until recycled products sale through the waste bank. In evaluation stage, the village managers, environmental expert, and waste managers are expected to regularly supervise and evaluate the whole activity of the waste management.
78 FR 43810 - State of Kansas; Authorization of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... seeking authorization for the National Environmental Performance Track Program (April 22, 2004, 69 FR... terminated the National Environmental Performance Track Program. (c) Kansas has not adopted the optional... or more hazardous waste containers are stored, on a monthly basis. (c) At 28-31-262a(f)(2)(B)(i) and...
76 FR 62303 - California: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...) Land Disposal Restrictions Phase IV--Treatment Standards for Wood Preserving Wastes, Paperwork... the Carbamate Land Disposal Restrictions; (5) Clarification of Standards for Hazardous Waste LDR...) Emergency Revision of the Land Disposal Restrictions (LDR) Treatment Standards for Listed Hazardous Wastes...
Li, Y P; Huang, G H
2010-09-15
Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.
POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL SERVICE OPERATIONS, MERRIFIELD, VIRGINIA
The United States Postal Service (USPS) in cooperation with EPA’s National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describ...
Transuranic Waste Test Facility Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looper, M.G.
1987-05-05
This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.27 Recommendation for schedules leading...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.26 Requirement for schedules leading to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.26 Requirement for schedules leading to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.27 Recommendation for schedules leading...
From waste to sustainable materials management: Three case studies of the transition journey.
Silva, Angie; Rosano, Michele; Stocker, Laura; Gorissen, Leen
2017-03-01
Waste policy is increasingly moving on from the 'prevention of waste' to a 'sustainable materials policy' focused agenda recognising individual wastes as a resource. In order to comparatively analyse policy developments in enhanced waste management, three case studies were selected; San Francisco's Zero Waste Program, Flanders's Sustainable Materials Management Initiative and Japan's Sound Material-Cycle Society Plan. These case studies were chosen as an opportunity to investigate the variety of leading approaches, governance structures, and enhanced waste policy outcomes, emerging globally. This paper concludes that the current transitional state of waste management across the world, is only in the first leg of the journey towards Circular Economy closed loop production models of waste as a resource material. It is suggested that further development in government policy, planning and behaviour change is required. A focus on material policy and incorporating multiple front runners across industry and knowledge institutions are offered as potential directions in the movement away from end-pipe land-fill solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Final environmental impact statement. Waste Isolation Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures aremore » given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)« less
WIPP Remote-Handled TRU Waste Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W.; Kehrman, B.
2006-07-01
There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less
Mamady, Keita
2016-01-01
Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community. PMID:27092183
Mamady, Keita
2016-01-01
Waste indiscriminate disposal is recognized as an important cause of environmental pollution and is associated with health problems. Safe management and disposal of household waste are an important problem to the capital city of Guinea (Conakry). The objective of this study was to identify socioeconomic and demographic factors associated with practice, knowledge, and safety behavior of family members regarding household waste management and to produce a remedial action plan. I found that no education background, income, and female individuals were independently associated with indiscriminate waste disposal. Unplanned residential area was an additional factor associated with indiscriminate waste disposal. I also found that the community residents had poor knowledge and unsafe behavior in relation to waste management. The promotion of environmental information and public education and implementation of community action programs on disease prevention and health promotion will enhance environmental friendliness and safety of the community.
Analysis of the healthcare waste management status in Tehran hospitals.
Malekahmadi, Fariba; Yunesian, Masud; Yaghmaeian, Kamyar; Nadafi, Kazem
2014-01-01
Considering the importance of healthcare waste management, following the ratification of the Waste Management law in 2005 and the subsequent approval of its executive bylaw in 2006 and finally the healthcare waste management criteria passing by the parliament in 2008, a review on the status of healthcare waste management is needed to implement the mentioned law properly. In this retrospective study during six months period all public hospitals in Iran's capital city, Tehran, were selected to conduct the survey. Data collected through an expert-standardized questionnaire was analyzed by using SPSS software. The results of the current status of healthcare waste management in Tehran hospitals showed 5.6% of hospitals were ranked excellent, 50.7% good, 26.4% medium, and the 13.9% of hospitals were ranked weak and 3.5% ranked very poor. The findings showed that appropriate technologies should be used to have better disposal stage. As the ratified criteria were not fully observed by all the selected hospitals, training courses and comprehensive program conducting by each hospital could be enjoyed as practical tools to implement the all stages of healthcare waste management properly.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Activities; Submission to OMB for Review and Approval; Comment Request; Hazardous Remediation Waste....regulations.gov . Title: Hazardous Remediation Waste Management Requirements (HWIR- Media) (Renewal). ICR... program), EPA regulates newly generated hazardous wastes, as well as hazardous remediation wastes (i.e...
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tank waste remediation system configuration management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
The Low-Level Radioactive Waste Management Office: Thirty Years of Experience in Canada - 13308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, Liliana; Gardiner, Mark J.; Zelmer, Robert L.
2013-07-01
This paper reviews thirty years of progress by the Low-Level Radioactive Waste Management Office (LLRWMO) in developing and implementing low-level radioactive waste (LLRW) remediation projects and environmentally safe co-existence strategies. It reports on the present status and the future of the national historic waste program in Canada. There are over two million cubic metres of historic LLRW in Canada. Historic LLRW is broadly defined as LLRW that was managed in the past in a manner that is no longer considered acceptable and for which the original owner cannot reasonably be held accountable. In many cases, the original owner can notmore » be identified or no longer exists. The LLRWMO was established in 1982 as Canada's agent to carry out the responsibilities of the federal government for the management of historic LLRW. The LLRWMO is operated by Atomic Energy of Canada Limited (AECL) through a cost-recovery agreement with Natural Resources Canada (NRCan), the federal department that provides the funding and establishes national policy for radioactive waste management in Canada. The LLRWMO expertise includes project managers, environmental remediation specialists, radiation surveyors, communications staff and administrative support staff. The LLRWMO in providing all aspects of project oversight and implementation contracts additional resources supplementing core staff capacity as project/program demands require. (authors)« less
1999-01-05
used in each chapter to define the techniques of waste minimization are: improved operation management , material substitution, process substitution...1994 – Reduce Quantity & Toxicity of Waste • Improved Operation Management • Material & Process Substitution • Recycling • Treatment Advantages
POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL SERVICE POST OFFICES, PITTSBURGH, PA AREA
The United States Postal Service (USPS) in cooperation with EPA’s National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describ...
POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL SERVICE BULK MAIL CENTER, DALLAS, TEXAS
The United States Postal Service (USPS) in cooperation with EPA’s National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describ...
Tank waste remediation system configuration management implementation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, J.M.
1998-03-31
The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
TECHNICAL GUIDANCE DOCUMENT: INSPECTION TECHNIQUES FOR THE FABRICATION OF GEOMEMBRANE FIELD SEAMS
Subtitle C of the Resource Conservation and Recovery Act (RCRA) requires the U.S. Environmental Protection Agency (EPA) to establish a Federal hazardous waste management program. This program must ensure that hazardous wastes are handled safely from generation until final dispos...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
...: Robin Biscaia, RCRA Waste Management Section, Office of Site Remediation and Restoration (OSRR 07-1... Restoration and Remediation (OSRR 07-1), EPA New England--Region 1, 5 Post Office Square, Suite 100, Boston... Management Section, Office of Site Remediation and Restoration (OSRR 07-1), EPA New England--Region 1, 5 Post...
Analysis of efficiency of waste reverse logistics for recycling.
Veiga, Marcelo M
2013-10-01
Brazil is an agricultural country with the highest pesticide consumption in the world. Historically, pesticide packaging has not been disposed of properly. A federal law requires the chemical industry to provide proper waste management for pesticide-related products. A reverse logistics program was implemented, which has been hailed a great success. This program was designed to target large rural communities, where economy of scale can take place. Over the last 10 years, the recovery rate has been very poor in most small rural communities. The objective of this study was to analyze the case of this compulsory reverse logistics program for pesticide packaging under the recent Brazilian Waste Management Policy, which enforces recycling as the main waste management solution. This results of this exploratory research indicate that despite its aggregate success, the reverse logistics program is not efficient for small rural communities. It is not possible to use the same logistic strategy for small and large communities. The results also indicate that recycling might not be the optimal solution, especially in developing countries with unsatisfactory recycling infrastructure and large transportation costs. Postponement and speculation strategies could be applied for improving reverse logistics performance. In most compulsory reverse logistics programs, there is no economical solution. Companies should comply with the law by ranking cost-effective alternatives.
Integrated management of hazardous waste generated from community sources in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yodnane, P.; Spaeder, D.J.
A system for the collection, transport, disposal and recycling of hazardous waste was developed as part of an overall master plan for the management of hazardous waste generated from community sources in Thailand. Results of a waste generation survey conducted as part of the study indicated that over 300 million kilograms per year of hazardous waste is generated from non-industrial, community sources such as automotive repair shops, gas stations, hospitals, farms, and households in Thailand. Hazardous waste from community sources consists primarily of used oils, lead-acid and dry cell batteries, cleaning chemicals, pesticides, medical wastes, solvents and fuels. Most ofmore » this waste was found to be mismanaged by codisposing with municipal waste in burning, unlined dumps, dumping directly to land or water courses, dumping into sewers, or recycling improperly, all of which pose serious threats to human health and the environment. The survey data on waste generation quantities and data from a reconnaissance survey of the conditions and operations of 86 existing waste disposal facilities was incorporated into a nationwide Geographic Information System (GIS) database. Based on this data, problems associated with hazardous waste were identified and needs for waste management systems were tabulated. A system was developed for ranking geographic regions according to hazardous waste management problems and needs, in order to prioritize implementation of waste management programs. The data were also used in developing solutions for hazardous waste management, which addressed methods for storing, collecting, transporting, disposing, and recycling the waste. It was recommended that centralized waste management facilities be utilized which included hazardous waste and medical waste incinerators, waste stabilization units, and secure landfills.« less
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
1982-04-12
EPA regulations to protect human health and the environment from the improper management of hazardous waste were published in the Federal Register on May 19, 1980 (45 FR 33063). These regulations include provisions for authorization of State programs to operate in lieu of the Federal program. Today EPA is announcing the availability for public review of the Indiana application for Phase I Interim Authorization, inviting public comment, and giving notice of a public hearing to be held on the application.
Installation Restoration Program. Phase 1. Records Search, Charleston AFB, South Carolina
1983-10-01
and plastics plants. Conducted industrial waste surveys, landfill design, and planning for plant environmental protection programs; evaluated air...management study for a major plastics manufacturing company. Responsibilitites included identification and investigation of a number of operating...61 aste Caracteristics 68 Pathways 69 Total 198 divided by 3 = 63 3ross total sc,:re B. Aooly factor for waste containment from waste manaement
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
The purpose of this module is to develop a general procedure to decide the feasibility of land application as a waste management alternative, given a specific problem situation. This information provides a framework within which to apply the information presented in all other modules in the program. An outline of the general procedure followed in…
NASA Astrophysics Data System (ADS)
Solano Meza, Johanna; Romero Hernandez, Claudia; Rodrigo Ilarri, Javier
2017-04-01
One of the main environmental issues to address in the Capital City of Bogotá (Colombia) is the increasing production of solid waste. Despite significant efforts have been made to implement an integral solid waste system management, the current management methods do not provide a permanent alternative to minimize waste production. According to the most recent data, Bogotá is producing almost 2,7 Mt/year of solid waste and only 17,12% of this amount is reused. This means that 82,88% of the waste production has to be disposed on the municipal landfill which has an estimated life of 7,6 years [1]. Bogotá is nowadays running the so-called Zero Waste Program, which tries to run an adequate solid waste management scheme while updating the most recent Integral Solid Waste Management Plan (ISWMP). However, various strategies and methodologies are still needed to fulfill their objetives. The analysis of the solid waste production inside the city using geographic information systems (GIS) is one of the available strategies that may contribute to the environmental impacts minimization, acting at the same time as a decission support tool. These techniques have already been used to the analysis and optimization of the waste collection routes and the location of waste disposal sites. They allow to visualize the critical urban zones with increasing waste production so the next steps of the management process can be properly designed (collection, trasnport routes design, location of treatment facilities and final waste disposal sites). The estimation of the urban solid waste generation is done applying different mathematical and statistical methods, which are based on the relation between the total population of the city and the per capita waste production. GIS methods allow i) to determine the total amount of waste generated as a function of the population increasement and ii) provide a full view of the zones where priority actions are needed as they take into account both the geographical and spatial component. The behaviour of the waste generation is explained considering also the socieconomic stratiphication. Results show in this research are obtained using ArcGIS considering the official 2005 census population, the population estimation in 2020, the amount of waste recycled and disposed on the municipal landfill and the socioeconomical of the different urban areas following the local waste management plans and programs. [1]Technical Support document, Solid Waste Management Plan of Bogotá D.C. Alcaldía Mayor de Bogotá, November 2016.
Shuttle era waste management and biowaste monitoring
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Fogal, G. L.
1976-01-01
The acquisition of crew biomedical data has been an important task on manned space missions. The monitoring of biowastes from the crew to support water and mineral balance studies and endocrine studies has been a valuable part of this activity. This paper will present a review of waste management systems used in past programs. This past experience will be cited as to its influence on the Shuttle design. Finally, the Shuttle baseline waste management system and the proposed Shuttle biomedical measurement and sampling systems will be presented.
... on the pesticide label. Check with your local solid waste management authority, environmental agency or health department to find out whether your community has a household hazardous waste collection program or a ... your local solid waste agency, Search the internet or look in ...
Greene, Krista L; Tonjes, David J
2014-04-01
The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for waste system performance assessments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Source Separation and Composting of Organic Municipal Solid Waste.
ERIC Educational Resources Information Center
Gould, Mark; And Others
1992-01-01
Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
40 CFR 256.24 - Recommendations for closing or upgrading open dumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Solid Waste Disposal Programs § 256.24 Recommendations for closing or upgrading open dumps. (a) All... feasibility of resource recovery or resource conservation to reduce the solid waste volume entering a facility...
E-waste issues in Sri Lanka and the Basel Convention.
Suraweera, Inoka
2016-03-01
E-waste is hazardous, complex and expensive to treat in an environmentally sound manner. The management of e-waste is considered a serious challenge in both developed and developing countries and Sri Lanka is no exception. Due to significant growth in the economy and investments and other reasons the consumption of electronic and electrical equipment in Sri Lanka has increased over the years resulting in significant generation of e-waste. Several initiatives such as introduction of hazardous waste management rules, ratification of the Basel Convention in 1992 and the introduction of a National Corporate E-waste Management Program have been undertaken in Sri Lanka to manage e-waste. Strengthening policy and legislation, introducing methods for upstream reduction of e-waste, building capacity of relevant officers, awareness raising among school children and the general public and development of an e-waste information system are vital. Research on e-waste needs to be developed in Sri Lanka. The health sector could play a leading role in the provision of occupational health and safety for e-waste workers, advocacy, capacity building of relevant staff and raising awareness among the general public about e-waste. Improper e-waste management practices carried out by informal sector workers need to be addressed urgently in Sri Lanka.
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
2001 AIR & WASTE MANAGEMENT ASSOCIATION DELEGATION TO CHINA
The paper describes a visit to the People's Republic of China (China) by members of the Air & Waste Management Association in October-November 2001 as part of a People to People Ambassador Program delegation. The delegation's main goal was to exchange information in the field of ...
The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate Waste prevention and recycling activities into the waste management programs at Postal facilities. In this report, the findi...
The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate Waste prevention and recycling activities into the waste management programs at Postal facilities. In this report, the findi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prod'homme, A.; Drouvot, O.; Gregory, J.
In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Tan, Q; Huang, G H; Cai, Y P
2010-09-01
The existing inexact optimization methods based on interval-parameter linear programming can hardly address problems where coefficients in objective functions are subject to dual uncertainties. In this study, a superiority-inferiority-based inexact fuzzy two-stage mixed-integer linear programming (SI-IFTMILP) model was developed for supporting municipal solid waste management under uncertainty. The developed SI-IFTMILP approach is capable of tackling dual uncertainties presented as fuzzy boundary intervals (FuBIs) in not only constraints, but also objective functions. Uncertainties expressed as a combination of intervals and random variables could also be explicitly reflected. An algorithm with high computational efficiency was provided to solve SI-IFTMILP. SI-IFTMILP was then applied to a long-term waste management case to demonstrate its applicability. Useful interval solutions were obtained. SI-IFTMILP could help generate dynamic facility-expansion and waste-allocation plans, as well as provide corrective actions when anticipated waste management plans are violated. It could also greatly reduce system-violation risk and enhance system robustness through examining two sets of penalties resulting from variations in fuzziness and randomness. Moreover, four possible alternative models were formulated to solve the same problem; solutions from them were then compared with those from SI-IFTMILP. The results indicate that SI-IFTMILP could provide more reliable solutions than the alternatives. 2010 Elsevier Ltd. All rights reserved.
Management of Disused Radioactive Sealed Sources in Egypt - 13512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralizedmore » radioactive waste management facility in Egypt by law 7/2010. (authors)« less
(Low-level radioactive waste management techniques)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.
1988-08-08
The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.
Morris, Liz; Petch, David; May, David; Steele, William K
2017-05-01
Intertidal invertebrates are often used in environmental monitoring programs as they are good indicators of water quality and an important food source for many species of fish and birds. We present data from a monitoring program where the primary aim is to report on the condition of the potential invertebrate prey abundance, biomass and diversity for migrating shorebirds on mudflats adjacent to a waste water treatment plant in a Ramsar listed wetland in Victoria, Australia. A key threat to the foraging habitat at this site has been assessed as a reduction in potential prey items as a result of the changes to the waste water treatment processes. We use control charts, which summarise data from intertidal mudflats across the whole shoreline of the adjacent waste water treatment plant, to elicit a management response when trigger levels are reached. We then examine data from replicate discharge and control sites to determine the most appropriate management response. The monitoring program sits within an adaptive management framework where management decisions are reviewed and the data is examined at different scales to evaluate and modify our models of the likely outcomes of management actions. This study provides a demonstration of the process undertaken in a year when trigger levels were reached and a management decision was required. This highlights the importance of monitoring data from a range of scales in reducing uncertainty and improving decision making in complex systems.
EPA issues interim final waste minimization guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeson, L.L.
1993-08-01
The U.S. Environmental Protection Agency (EPA) has released a new and detailed interim final guidance to assist hazardous waste generators in certifying they have a waste minimization program in place under the Resource Conservation and Recovery Act (RCRA). EPA's guidance identifies the basic elements of a waste minimization program in place that, if present, will allow people to certify they have implemented a program to reduce the volume and toxicity of hazardous waste to the extent economically practical. The guidance is directly applicable to generators of 1000 or more kilograms per month of hazardous waste, or large-quantity generators, and tomore » owners and operators of hazardous waste treatment, storage or disposal facilities who manage their own hazardous waste on site. Small-quantity generators that generate more than 100 kilograms, but less than 1,000 kilograms, per month of hazardous waste are not subject to the same program in place certification requirement. Rather, they must certify on their manifests that they have made a good faith effort to minimize their waste generation.« less
Conflicting Expertise and Uncertainty: Quality Assurance in High-Level Radioactive Waste Management.
ERIC Educational Resources Information Center
Fitzgerald, Michael R.; McCabe, Amy Snyder
1991-01-01
Dynamics of a large, expensive, and controversial surface and underground evaluation of a radioactive waste management program at the Yucca Mountain power plant are reviewed. The use of private contractors in the quality assurance study complicates the evaluation. This case study illustrates high stakes evaluation problems. (SLD)
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.
The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...
Capoor, Malini R; Bhowmik, Kumar Tapas
2017-01-01
This article deals with practices related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management and attempts at India-specific guidelines for their dispersal and disposal. The articles related to cytotoxic drug dispersal, cytotoxic safety, and cytotoxic waste management were reviewed from PubMed and their applicability in Indian health-care facilities (HCFs) was also reviewed. All HCFs dealing with cytotoxic drugs should consider cytotoxic policy, patient safety and health-care worker safety, and environmental monitoring program as per the available international guidelines customized as per Indian conditions. Utmost care in handling cytotoxic waste is quintessential. The formation of India-specific cytotoxic guidelines requires the inputs from all stakeholders. Cytotoxic waste, cytotoxic safety, and cytotoxic waste management should be the subject of a national strategy with an infrastructure, cradle-to-grave legislation, competent regulatory authority, and trained personnel. PMID:28900329
Agents Contribute to Statewide Program Designs in Yardwaste Management.
ERIC Educational Resources Information Center
May, James H.; And Others
1994-01-01
A survey of 125 Virginia extension agents received 90 responses demonstrating their knowledge of yard waste management and composting. Results were used to develop public education programs and pilot projects about composting. (SK)
77 FR 15966 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-19
... Solid Waste Amendments of 1984 (HSWA). New federal requirements and prohibitions imposed by federal...; Definition of Solid Waste; Toxicity Characteristic, Checklist 199, March 13, 2002 (67 FR 11251); [[Page 15968... Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: February 29, 2012. Susan...
40 CFR 264.98 - Detection monitoring program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conductance, total organic carbon, or total organic halogen), waste constituents, or reaction products that... reaction products in the unsaturated zone beneath the waste management area; (3) The detectability of indicator parameters, waste constituents, and reaction products in ground water; and (4) The concentrations...
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-02-15
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive & Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth & Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summarymore » of Technology Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.« less
Waste-Management Education and Research Consortium (WERC) annual progress report, 1992--1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eiceman, Gary A.; King, J. Phillip; Smith, Geoffrey B.
1993-02-15
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineeringat New Mexico State University; Appendix D - Non-degree Certificate program; Appendix E - Curriculum for Associate Degree Program in Radioactive Hazardous Waste Materials; Appendix F - Curriculum for NCC Program in Earth Environmental Sciences; Appendix G - Brochure of 1992 Teleconference Series; Appendix H - Sites for Hazardous/Radioactive Waste Management Series; Appendix I - WERC Interactive Television Courses; Appendix J - WERC Research Seminar Series Brochures; Appendix K - Summary of Technologymore » Development of the Third Year; Appendix L - List of Major Publications Resulting From WERC; Appendix M - Types of Equipment at WERC Laboratories; and Appendix N - WERC Newsletter Examples.« less
Joint Integration Office Independent Review Committee annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular researchmore » and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
A facility location model for municipal solid waste management system under uncertain environment.
Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K
2017-12-15
In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
A multi-objective model for sustainable recycling of municipal solid waste.
Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz
2017-04-01
The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.
Waste reduction plan for The Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, R.M.
1990-04-01
The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaus, P.S.
This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.
Newly emerging resource efficiency manager programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, S.; Howell, C.
1997-12-31
Many facilities in the northwest such as K--12 schools, community colleges, and military installations are implementing resource-efficiency awareness programs. These programs are generally referred to as resource efficiency manager (REM) or resource conservation manager (RCM) programs. Resource efficiency management is a systems approach to managing a facility`s energy, water, and solid waste. Its aim is to reduce utility budgets by focusing on behavioral changes, maintenance and operation procedures, resource accounting, education and training, and a comprehensive awareness campaign that involves everyone in the organization.
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 256.05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
40 CFR 256.05 - Annual work program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 256.05 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Purpose, General Requirements... implementation of the State plan. ...
NASA Astrophysics Data System (ADS)
Massoud, May A.; Chami, Ghida; Al-Hindi, Mahmoud; Alameddine, Ibrahim
2016-05-01
Pharmaceuticals comprise an extensive group of compounds whose release into the environment has potential adverse impacts on human health and aquatic ecosystems. In many developing countries the extent of the problem and the occurrence of pharmaceuticals in water bodies are generally unknown. While thousands of tons of pharmaceutical substances are used annually, little information is known about their final fate after their intended use. This paper focuses on better understanding the management of human-use pharmaceutical wastes generated at the residential level within the Administrative Beirut Area. A survey encompassing 300 households was conducted. Results revealed that the majority of respondents were found to dispose of their unwanted medications, mainly through the domestic solid waste stream. Willingness to participate in a future collection program was found to be a function of age, medical expenditure, and the respondents' views towards awareness and the importance of establishing a collection system for pharmaceutical wastes. Respondents who stated a willingness to participate in a collection program and/or those who believed in the need for awareness programs on the dangers of improper medical waste disposal tended to favor more collection programs managed by the government as compared to a program run by pharmacies or to the act of re-gifting medication to people in need. Ultimately, collaboration and coordination between concerned stakeholders are essential for developing a successful national collection plan.
Multi-objective reverse logistics model for integrated computer waste management.
Ahluwalia, Poonam Khanijo; Nema, Arvind K
2006-12-01
This study aimed to address the issues involved in the planning and design of a computer waste management system in an integrated manner. A decision-support tool is presented for selecting an optimum configuration of computer waste management facilities (segregation, storage, treatment/processing, reuse/recycle and disposal) and allocation of waste to these facilities. The model is based on an integer linear programming method with the objectives of minimizing environmental risk as well as cost. The issue of uncertainty in the estimated waste quantities from multiple sources is addressed using the Monte Carlo simulation technique. An illustrated example of computer waste management in Delhi, India is presented to demonstrate the usefulness of the proposed model and to study tradeoffs between cost and risk. The results of the example problem show that it is possible to reduce the environmental risk significantly by a marginal increase in the available cost. The proposed model can serve as a powerful tool to address the environmental problems associated with exponentially growing quantities of computer waste which are presently being managed using rudimentary methods of reuse, recovery and disposal by various small-scale vendors.
2016 Los Alamos National Laboratory Hazardous Waste Minimization Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; English, Charles Joe
Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less
78 FR 79654 - Vermont: Proposed Authorization of State Hazardous Waste Management Program Revisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-31
...EPA proposes to grant final authorization to the State of Vermont for changes to its hazardous waste program. In the ``Rules and Regulations'' section of this Federal Register we are authorizing the changes to the Vermont hazardous waste program under the Resource Conservation and Recovery Act (RCRA) as a direct final rule without prior proposed rule. EPA has determined that these changes satisfy all requirements needed to qualify for final authorization. If we receive no adverse comment, we will not take further action on this proposed rule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This volume contains written public comments and hearing board responses and reports offered on the draft statement.« less
The Workshop is designed to achieve three goals:
1. Convey public and private sector perspectives on the management of mercury in products, processes, and wastes;
2. Present ongoing efforts that address mercury prevention, elimination, noncombustion treatment and disposal; ...
NREL Document Profiles Natural Gas Fueling, Fleet Operation
, Waste Management's LNG Truck Fleet Start-Up Experience, offers solid evidence that LNG-powered vehicles program from concept to start-up to present-day operation, describing the vehicle, engine and fueling . The document Waste Management's LNG Truck Fleet Start-Up Experience is one of a series of NREL
Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.
1988-02-01
In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and...
40 CFR 60.2755 - When must I submit my waste management plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Recordkeeping and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
...) Hazardous Soils Treatment Standards and Exclusions; (8) Administrative Stay for Zinc Micronutrient... Hazardous Wastes from Carbamate Production; (10) Extension of Compliance Date for Characteristic Slags; (11...
NASA Astrophysics Data System (ADS)
Suparmini; Junadi, Purnawan
2018-03-01
Waste Bank is a program that the government uses as one of the efforts to tackle the increasingly growing garbage day. The Waste Bank in Depok City serves as a collection of non-organic waste that still has economic value. This study attempts to examine the factors that make Depok City Waste Bank play its role today and its relationship with the community involved in the activities of the Waste Bank. Through qualitative approach with a case study, the authors make observations on the object and conduct in-depth interviews with some informants. This study found four factors that make a Waste Bank continues to play a role, namely the presence of leaders who are reliable (leadership), good management (management), incentive (incentive) and the involvement of partners (partnership). While the characteristics of community-based on the level of education, income levels also affect the community participation in receiving the Waste Bank as a form of waste management in the city of Depok.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Sustainable Materials Management (SMM) WasteWise Data
EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustainable materials management efforts, which promote the use and reuse of materials more productively over their entire lifecycles. All U.S. businesses, governments and nonprofit organizations can join WasteWise as a partner, endorser or both. Current participants range from small local governments and nonprofit organizations to large multinational corporations. Partners demonstrate how they reduce waste, practice environmental stewardship and incorporate sustainable materials management into their waste-handling processes. Endorsers promote enrollment in WasteWise as part of a comprehensive approach to help their stakeholders realize the economic benefits to reducing waste. WasteWise helps organizations reduce their impact on global climate change through waste reduction. Every stage of a product's life cycle??extraction, manufacturing, distribution, use and disposal??indirectly or directly contributes to the concentration of greenhouse gases (GHGs) in the atmosphere and affects the global climate. WasteWise is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources
This final rule establishes consolidated permit program requirements governing the Hazardous Waste Management program under the Resource Conservation and Recovery Act (RCRA) and other related programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies themore » close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M&O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [``Program`` refers to the CRWMS-wide activity and ``project`` refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project.« less
Tank waste remediation system systems engineering management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, L.G.
1998-01-08
This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves.more » The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1994-10-11
The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less
77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...
Managing hazardous waste in the clinical laboratory.
Hoeltge, G A
1989-09-01
Clinical laboratories generate wastes that present chemical and biologic hazards. Ignitable, corrosive, reactive, toxic, and infectious potentials must be contained and minimized. A summary of these problems and an overview of the applicable regulations are presented. A checklist of activities to facilitate the annual review of the hazardous waste program is provided.
Youth Solid Waste Educational Materials List, November 1991.
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Cooperative Extension Service.
This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…
Trained Home Composters Reduce Solid Waste by 18%.
ERIC Educational Resources Information Center
Vossen, Paul; Rilla, Ellen
1996-01-01
In the University of California Cooperative Extension's Master Gardener Program, a partnership with the Sonoma County Waste Management Agency, volunteers teach approximately 1000 people annually how to compost in their backyards to help reduce landfill waste. Surveys conducted in 1995 and 1996 showed that home composters reduced their input into…
Hazardous Educational Waste Collections in Illinois.
ERIC Educational Resources Information Center
Illinois State Environmental Protection Agency, Springfield.
This report presents the status of programs designed to manage hazardous educational waste collections in secondary schools in the state of Illinois. Laboratory wastes, expired chemicals, unstable compounds, and toxic or flammable materials are accounted for in this document. The report contains an executive summary, a review of Illinois statutes…
Investigation of health care waste management in Binzhou District, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruoyan, Gai; Xu Lingzhong; Li Huijuan
In China, national regulations and standards for health care waste management were implemented in 2003. To investigate the current status of health care waste management at different levels of health care facilities (HCF) after the implementation of these regulations, one tertiary hospital, one secondary hospital, and four primary health care centers from Binzhou District were visited and 145 medical staff members and 24 cleaning personnel were interviewed. Generated medical waste totaled 1.22, 0.77, and 1.17 kg/bed/day in tertiary, secondary, and primary HCF, respectively. The amount of medical waste generated in primary health care centers was much higher than that inmore » secondary hospitals, which may be attributed to general waste being mixed with medical waste. This study found that the level of the HCF, responsibility for medical waste management in departments and wards, educational background and training experience can be factors that determine medical staff members' knowledge of health care waste management policy. Regular training programs and sufficient provision of protective measures are urgently needed to improve occupational safety for cleaning personnel. Financing and administrative monitoring by local authorities is needed to improve handling practices and the implementation of off-site centralized disposal in primary health care centers.« less
Environment, Health and Safety (EH&S): Division Liaisons
, NSD, PHY EHS Groups: Training Name Role Phone James Basore EHS Training Manager (510) 486-7524 Carmen Ayala EHS Training Program Assistant (510-495-2228) Fax (510) 486-2384 EHS Groups: Waste Management Name Hazardous Waste Electronic Requisition For training on use of the electronic requisition, see your Generator
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to organize work activities efficiently and effectively. The first section of the module is an introduction that includes a terminal objective and…
Incentivizing secondary raw material markets for sustainable waste management.
Schreck, Maximilian; Wagner, Jeffrey
2017-09-01
Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.
75 FR 45489 - New York: Incorporation by Reference of State Hazardous Waste Management Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... (EPA). ACTION: Direct final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly referred... Hazardous and Solid Waste Amendments of 1984 (HSWA) for which the State has not yet been authorized and... 7004(b) of the Solid Waste Disposal Act as amended, 42 U.S.C. 6912(a), 6926, 6974(b). Dated: April 27...
River Protection Project (RPP) Dangerous Waste Training Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
POHTO, R.E.
2000-03-09
This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Titlemore » 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.« less
FY 1987 current fiscal year work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, informationmore » gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.« less
NPS Government Purchase Card Program: An Analysis of Internal Controls
2014-03-01
approving official APC agency program coordinator CCPMD Consolidated Card Program Management Division CH cardholder COSO Committee of Sponsoring...correct, and minimize fraud, waste, and abuse” (DPAP, 2011, p. 2-2). To minimize risks , the management and internal controls should have support from...three interrelated subjects: enterprise risk management (ERM), internal control, and fraud deterrence” (para. 6). The 23 five components of an
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao
1997-03-01
The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
BIOREMEDIATION OF HAZARDOUS WASTES
In 1987, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) initiated the Biosystems Technology Development Program to anticipate and address research needs in managing our nation's hazardous waste. The Agency believes that bioremediation of...
Multimedia environmental management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soesilo, J.A.; Wiley, W.D.
1999-09-01
This book explores and supports the argument that effective environmental management must be based on a multimedia approach, which focuses simultaneously on air, water, and waste and enables managers to assess the resulting financial, operation, and management benefits. The multimedia approach, which can be used to design an effective compliance program, includes proper waste and material handling management, systematic monitoring, and record keeping requirements. This approach integrates a wide array of environmental requirements and decision processes, which the authors examine in sixteen chapters, organized into four parts: the role of environmental management; environmental aspects of business operation, environmental processes; andmore » environmental management trends. Within these parts, the authors highlight the development of modern environmental management and provide an overview of federal laws pertinent to multimedia environmental management. They examine such issues as chemical storage and transportation, tank system operations and requirements, waste determination, spill response procedures, and employee training. Environmental processes addressed in the book include the management of solid and hazardous waste, wastewater treatment systems, stormwater management, air emission control, and site remediation. The authors also briefly discuss significant initiatives in US environmental management and look toward corporate sustainable development.« less
HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian Puente
The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technologymore » a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.« less
McKenrick, Laurence L; Ii, Keiko; Lawrence, Bill; Kaufmann, Michael; Marshall, Mark
2003-11-01
From January 1, 2000, to August 31, 2001, a team of environmental health specialists from Public Health-Seattle & King County, a partner in King County's Local Hazardous Waste Management Program, made educational visits to 981 automotive repair shops. The purpose was to give the auto repair industry technical assistance on hazardous waste management without using enforcement action. Through site inspections and interviews, the environmental health staff gathered information on the types and amounts of conditionally exempt small-quantity generator (CESQG) hazardous wastes and how they were handled. Proper methods of hazardous waste management, storage, and disposal were discussed with shop personnel. The environmental health staff measured the impact of these educational visits by noting changes made between the initial and follow-up visits. This report focuses on nine major waste streams identified in the auto repair industry. Of the 981 shops visited, 497 were already practicing proper hazardous waste management and disposal. The remaining 484 shops exhibited 741 discrepancies from proper practice. Environmental health staff visited these shops again within six months of the initial visit to assess changes in their practices. The educational visits and technical assistance produced a 76 percent correction of all the discrepancies noted.
Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.; Storch, S.N.; Lewis, L.C.
1998-07-07
The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storagemore » of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.« less
Geochemical Aspects of Radioactive Waste Disposal
NASA Astrophysics Data System (ADS)
Moody, Judith B.
1984-04-01
The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.
Massawe, Ephraim; Legleu, Tye; Vasut, Laura; Brandon, Kelly; Shelden, Greg
2014-06-01
An enormous amount of household hazardous waste (HHW) is generated as part of municipal solid waste. This scenario presents problems during disposal, including endangering human health and the environment if improperly disposed. This article examines current HHW recycling efforts in Hammond, Louisiana, with the following objectives: (a) analyze factors and attitudes that motivate residents to participate in the program; (b) quantify various types of HHW; and (c) analyze the e-waste stream in the HHW. Residents and city officials who were surveyed and interviewed cited that commitment shown by local authorities and passion to protect the environment and human health were part of their active participation in the program. An awareness program has played a key role in the success of the program. A legislation specific to e-waste is encouraged. While knowledge and information on laws and permit application processes and the promotion of greener products are encouraged, provision of storage or collection facilities and communal transportation will further motivate more residents to participate in the recycling program.
Optimization of municipal solid waste collection and transportation routes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in
2015-09-15
Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less
Feasibility study for a transportation operations system cask maintenance facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennich, M.J.; Medley, L.G.; Attaway, C.R.
The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less
Benchmarking transportation logistics practices for effective system planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, A.W.; Dravo, A.N.; Keister, M.
2007-07-01
This paper presents preliminary findings of an Office of Civilian Radioactive Waste Management (OCRWM) benchmarking project to identify best practices for logistics enterprises. The results will help OCRWM's Office of Logistics Management (OLM) design and implement a system to move spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to the Yucca Mountain repository for disposal when that facility is licensed and built. This report suggests topics for additional study. The project team looked at three Federal radioactive material logistics operations that are widely viewed to be successful: (1) the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico; (2)more » the Naval Nuclear Propulsion Program (NNPP); and (3) domestic and foreign research reactor (FRR) SNF acceptance programs. (authors)« less
These reviews and evaluations compiled by Pecos Management Services, Inc. encompass the current and future WIPP activities in the program areas of TRU waste characterization, transportation, and disposal.
None
2018-01-16
Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.
Characterization, monitoring, and sensor technology crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plumemore » Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.
2004-03-31
Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce amore » lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.« less
Annual Site Environmental Report: 2008 (ASER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabba, D.
2009-11-09
This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental,more » Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.« less
76 FR 2618 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
....0552(3)(F); Standards for Organic 7045.0665(4)(B); Toxicity Characteristic 7045.1390 Minnesota Wastes...; Organic Air 7001.0570(G); Emissions Standards for 7001.0580(K); Tanks, Surface Impoundments, 7001.0590(N... Hazardous 7045.0478(3)(H); Waste Generators; Organic Air 7045.0547; Emissions Standards for 7045.0548; Tanks...
Hazardous Waste Processing in the Chemical Engineering Curriculum.
ERIC Educational Resources Information Center
Dorland, Dianne; Baria, Dorab N.
1995-01-01
Describes a sequence of two courses included in the chemical engineering program at the University of Minnesota, Duluth that deal with the processing of hazardous wastes. Covers course content and structure, and discusses developments in pollution prevention and waste management that led to the addition of these courses to the curriculum.…
Glass Science tutorial lecture No. 5: Historical review of USDOE tank waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, E.W.
1995-02-01
This is a two day course whose objective is to present an unbiased historical overview of the DOE tank waste activities. World events which impacted the US nuclear program (or vise versa) will be presented. Liquid, mostly tank waste, and sludge are the primary concerns of this course.
ERIC Educational Resources Information Center
Chang, J. C.; And Others
1986-01-01
Discusses a new program at the University of Michigan in hazardous waste management. Describes a laboratory demonstration that deals with the reactivity and potential violence of several reactions that may be encountered on a hazardous waste site. Provides criteria for selecting particular compatibility testing methods. (TW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, W
This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team wasmore » expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing wastes. (7) M-TSD staff participated in a series of meetings of the US-Japan GNEP Working Group on Waste Management, developing the content for the first deliverable of the working group.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.1200 Section 272.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1200 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.1200 Section 272.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1200 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.1200 Section 272.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1200 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.1200 Section 272.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1200 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.1650 Section 272.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS New York § 272.1650 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.150 Section 272.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.150 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.500 Section 272.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.500 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.950 Section 272.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.950 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.950 Section 272.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.950 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.200 Section 272.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arkansas § 272.200 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.500 Section 272.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.500 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.950 Section 272.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.950 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.200 Section 272.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arkansas § 272.200 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.150 Section 272.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.150 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.150 Section 272.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.150 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.200 Section 272.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arkansas § 272.200 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.1850 Section 272.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1850 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.500 Section 272.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.500 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.200 Section 272.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arkansas § 272.200 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.950 Section 272.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.950 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.150 Section 272.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.150 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.500 Section 272.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.500 [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.2500 Section 272.2500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2500 [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.2500 Section 272.2500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2500 [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.2500 Section 272.2500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2500 [Reserved] ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.2500 Section 272.2500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2500 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.1850 Section 272.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oklahoma § 272.1850 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.200 Section 272.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arkansas § 272.200 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.2500 Section 272.2500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Wisconsin § 272.2500 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.1350 Section 272.1350 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Montana § 272.1350 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.150 Section 272.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Arizona § 272.150 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.500 Section 272.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Florida § 272.500 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.2200 Section 272.2200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Texas § 272.2200 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.950 Section 272.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Louisiana § 272.950 [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false [Reserved] 272.1200 Section 272.1200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota § 272.1200 [Reserved] ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Danneels, Jeffrey John
2009-03-01
Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-09-01
The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure ofmore » each of the following hazardous waste management units regulated under RCRA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-10-01
This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to communicate effectively in the workplace. The first section of the module is an introduction that includes a terminal objective and opening remarks…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kevin W.; Vandergaast, Gerald
2012-07-01
The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less
Underground storage tank management plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective actionmore » is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
Optimization of municipal solid waste collection and transportation routes.
Das, Swapan; Bhattacharyya, Bidyut Kr
2015-09-01
Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview.
Pandey, Anita; Ahuja, Sanjiv; Madan, Molly; Asthana, Ajay Kumar
2016-11-01
Bio-Medical Waste (BMW) management is of utmost importance as its improper management poses serious threat to health care workers, waste handlers, patients, care givers, community and finally the environment. Simultaneously, the health care providers should know the quantity of waste generated in their facility and try to reduce the waste generation in day-to-day work because lesser amount of BMW means a lesser burden on waste disposal work and cost saving. To have an overview of management of BMW in a tertiary care teaching hospital so that effective interventions and implementations can be carried out for better outcome. The observational study was carried out over a period of five months from January 2016 to May 2016 in Chhatrapati Shivaji Subharti Hospital, Meerut by the Infection Control Team (ICT). Assessment of knowledge was carried out by asking set of questions individually and practice regarding awareness of BMW Management among the Health Care Personnel (HCP) was carried out by direct observation in the workplace. Further, the total BMW generated from the present setup in kilogram per bed per day was calculated by dividing the mean waste generated per day by the number of occupied beds. Segregation of BMW was being done at the site of generation in almost all the areas of the hospital in color coded polythene bags as per the hospital protocol. The different types of waste being collected were infectious solid waste in red bag, soiled infectious waste in yellow bag and sharp waste in puncture proof container and blue bag. Though awareness (knowledge) about segregation of BMW was seen in 90% of the HCP, 30%-35% did not practice. Out of the total waste generated (57912 kg.), 8686.8 kg. (15%) was infectious waste. Average infectious waste generated was 0.341 Kg per bed per day. The transport, treatment and disposal of each collected waste were outsourced and carried out by 'Synergy' waste management Pvt. Ltd. The practice of BMW Management was lacking in 30-35% HCP which may lead to mixing of the 15% infectious waste with the remaining non-infectious. Therefore, training courses and awareness programs about BMW management will be carried out every month targeting smaller groups.
Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin
2018-06-21
Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste separation at source; educating the citizens of the municipality; and the local government staff, and for the local government to seek external support from the local temples and expertise from the nearby university.
Fuzzy robust credibility-constrained programming for environmental management and planning.
Zhang, Yimei; Hang, Guohe
2010-06-01
In this study, a fuzzy robust credibility-constrained programming (FRCCP) is developed and applied to the planning for waste management systems. It incorporates the concepts of credibility-based chance-constrained programming and robust programming within an optimization framework. The developed method can reflect uncertainties presented as possibility-density by fuzzy-membership functions. Fuzzy credibility constraints are transformed to the crisp equivalents with different credibility levels, and ordinary fuzzy inclusion constraints are determined by their robust deterministic constraints by setting a-cut levels. The FRCCP method can provide different system costs under different credibility levels (lambda). From the results of sensitivity analyses, the operation cost of the landfill is a critical parameter. For the management, any factors that would induce cost fluctuation during landfilling operation would deserve serious observation and analysis. By FRCCP, useful solutions can be obtained to provide decision-making support for long-term planning of solid waste management systems. It could be further enhanced through incorporating methods of inexact analysis into its framework. It can also be applied to other environmental management problems.
Characterization monitoring & sensor technology crosscutting program
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).
EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION
This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...
EVALUATION OF THE COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION
This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
2011-09-15
programs and operations at high risk of being vulnerable to fraud, waste, and abuse.1 Despite several reform initiatives, DOD’s financial management...remains on GAO’s high- risk list today. Long- standing and pervasive weaknesses in DOD’s financial management and related business processes and systems...GAO has identified as being at high risk of waste, fraud, abuse, and mismanagement. The seven specific DOD high- risk areas are (1) approach to
Composition, Production Rate and Management of Dental Solid Waste in 2017 in Birjand, Iran.
Momeni, Habibe; Tabatabaei Fard, Seyyedeh Fatemeh; Arefinejad, Aliye; Afzali, Afsane; Talebi, Farkhonde; Rahmanpour Salmani, Elham
2018-01-01
The presence of toxic and pathogenic agents in the dental waste products has made it to be classified as "hazardous waste." To assess dental waste production rate and composition and approaches used to manage these waste products in 2017 in Birjand, Iran. 48 dental clinics were evaluated in two months of 2017. Sampling was performed from each clinic 3 times a week. Samples were manually divided into 5 categories of chemical-pharmaceutical, infectious, semi-household, sharp and cutting materials, and toxic waste products, and weighed. A checklist containing 25 questions was used to evaluate the aspects of waste management in dental clinics. The total amount of waste products generated in dental clinics was 7848.02 kg/ year in which semi-household waste had the highest quantity (4263.411 kg/year) and toxic waste had the lowest quantity (9.275 kg/year). Components with the highest amounts in dentistry waste products were nylon gloves (16.7%), paper and cardboard (13.4%), latex gloves (10.8%), and pharmaceuticals (10.2%). Waste separation was restricted to sharp and cutting waste. More than half (57%) of dental units were equipped with amalgam filter. Fixing solutions were directly discharged to sewage in 48.6% of clinics. There was no program to reduce waste generation in 54% of the clinics. Autoclave was the main tool for sterilizing dental instruments. This study showed a remarkable share of recyclable materials in the composition of dental waste and lack of special approach to manage waste in dental clinics. It is necessary to plan for minimizing generation of, separating, and recycling waste at source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maji, A. K.; Thomson, Bruce M.; Samani, Zohrab A.
1992-04-07
This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M -more » List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.« less
Green campus management based on conservation program in Universitas Negeri Semarang
NASA Astrophysics Data System (ADS)
Prihanto, Teguh
2018-03-01
Universitas Negeri Semarang (UNNES) has a great commitment in the development of higher education programs in line with its vision as a conservation - minded and internationally reputable university. Implementation of conservation programs with respect to the rules or conservation aspects of sustainable use, preservation, provisioning, protection, restoration and conservation of nature. In order to support the implementation of UNNES conservation program more focused, development strategies and development programs for each conservation scope are covered: (1) Biodiversity management; (2) Internal transportation management; (3) energy management; (4) Green building management; (5) Waste and water management; (6) Cultural conservation management. All related to conservation development strategies and programs are managed in the form of green campus management aimed at realizing UNNES as a green campus, characterized and reputable at the regional and global level.
76 FR 62054 - Environmental Management Site-Specific Advisory Board Chairs
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... environmental restoration, waste management, and related activities. Tentative Agenda Topics [cir] EM Program... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board Chairs AGENCY... of the Environmental Management Site-Specific Advisory Board (EM SSAB) Chairs. The Federal Advisory...
Biomedical waste management: incineration vs. environmental safety.
Gautam, V; Thapar, R; Sharma, M
2010-01-01
Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.
Consolidation and Centralization of Waste Operations Business Systems - 12319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, D. Dean
This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however; your objective is to build a strong, strategic alliance across the enterprise in order to execute an unprecedented change in waste management, transportation and logistical operations. The success of such an initiative can be achieved by creating a responsible framework by enabling key individuals to 'own' the sustainability of the program. This includes the strategic collaboration of responsible revolutionaries covering application developers, information owners and federal stakeholders to ensure compliance, security and risk management are 'baked' into the process and sustainability is fostered through continued innovation by both technology and application functionality. This ensures that working software can adapt to changing circumstances and is the principle measure of the success of the program. The consolidation of waste management business systems must be achieved in order to realize efficiencies in information technology portfolio management, data integrity, business intelligence and the lifecycle management of hazardous materials within the DOE enterprise architecture. By identifying best practices across the enterprise and aggregating computational and application development resources, you can provide a unified, holistic solution serviceable from a single location while being accessed from anywhere. The business impact of integrating and delivering a unified solution would reduce costs to the Department of Energy within the first year of deployment with increased savings annually. (author)« less
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
ERIC Educational Resources Information Center
Westinghouse Electric Corp., Carlsbad, NM.
This module is part of a set of management and supervisor training (MAST) materials developed by the Department of Energy for the Waste Isolation Division. Its stated purpose is to enable trainees to solve problems and make decisions in an efficient and effective manner. The first section of the module is an introduction that includes a terminal…
1996 hazardous waste management survey in selected Asian countries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.; Christie, K.; Tao, Hong-lei
This report documents the results of a 42-question survey submitted to countries in Asia concerning their hazardous waste management programs and other issues. The same survey questions were distributed in 1992. This report compares the 1992 and 1996 responses. The respondents were Australia, New Zealand, Malaysia, Philippines, Hong Kong, People`s Republic of China, Taiwan, Japan, Korea, Singapore, Thailand, and Indonesia. 7 figs.
2006-03-17
energy programs, fossil energy, nuclear energy information, and civilian radioactive waste management; oversight of the power marketing administrations...ADMINISTRATION ALASKA BONNEVILLE SOUTHEASTERN SOUTHWESTERN WESTERN AREA OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT ASST SECRETARY ( FOSSIL ENERGY) OFFICE ON...Cutter Service and the Lifesaving Service. The USCG remained in the Department of Treasury until 1967 when it transferred to the Department of
Hanford Site Groundwater Protection Management Program: Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime,more » (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.B.; Srivastava, P.; Mishra, S.K.
2013-07-01
Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less
40 CFR 272.1151 - State-administered program: Final authorization.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management and Budget's Publication Office, 7461 Crowner Drive, Lansing, Michigan 48913, Phone: (517) 322..., DC 20460. Phone: (202) 382-5926; U.S. EPA, Region V, Waste, Pesticides and Toxics Division, Program Management Branch, 7th floor, 77 West Jackson Boulevard, Chicago, IL. Phone: Ms. Judy Feigler, (312) 886-4179...
NASA Astrophysics Data System (ADS)
Kong, X. M.; Huang, G. H.; Fan, Y. R.; Li, Y. P.
2016-04-01
In this study, a duality theorem-based algorithm (DTA) for inexact quadratic programming (IQP) is developed for municipal solid waste (MSW) management under uncertainty. It improves upon the existing numerical solution method for IQP problems. The comparison between DTA and derivative algorithm (DAM) shows that the DTA method provides better solutions than DAM with lower computational complexity. It is not necessary to identify the uncertain relationship between the objective function and decision variables, which is required for the solution process of DAM. The developed method is applied to a case study of MSW management and planning. The results indicate that reasonable solutions have been generated for supporting long-term MSW management and planning. They could provide more information as well as enable managers to make better decisions to identify desired MSW management policies in association with minimized cost under uncertainty.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Multi-objective model of waste transportation management for crude palm oil industry
NASA Astrophysics Data System (ADS)
Silalahi, Meslin; Mawengkang, Herman; Irsa Syahputri, Nenna
2018-02-01
The crude palm oil industry is an agro-industrial commodity. The global market of this industry has experienced rapid growth in recent years, such that it has a strategic value to be developed for Indonesian economy. Despite these economic benefits there are a number of environmental problems at the factories, such as high water consumption, the generation of a large amount of wastewater with a high organic content, and the generation of a large quantity of solid wastes and air pollution. In terms of waste transportation, we propose a multiobjective programming model for managing business environmental risk in a crude palm oil manufacture which gives the best possible configuration of waste management facilities and allocates wastes to these facilities. Then we develop an interactive approach for tackling logistics and environmental risk production planning problem for the crude palm oil industry.
7 CFR 1700.30 - Water and Environmental Programs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... policies for the effective, efficient, and orderly management of Water and Environmental Programs responsibilities; provides leadership to ensure execution of policies and procedures by the Water and Waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
The module outlines the requirements and procedures for a state to become authorized to manage and oversee its own RCRA program. It also describes how the state authorization system can affect the applicability of certain rules. When one has completed the module they will be familiar with the state authorization process for hazardous waste management programs.
Kim, Young-Chan; Hong, Won-Hwa
2017-06-01
The safe management and disposal of asbestos is a matter of considerable importance. A large number of studies have been undertaken to quantify the issue of waste management following a disaster. Nevertheless, there have been few (if any) studies concerning asbestos waste, covering the amount generated, the cost of disposal, and the degree of hazard incurred. Thus, the current study focuses on developing a program for the management of Asbestos Containing Building Materials (ACBMs), which form the source of asbestos waste in the event of a disaster. The study will also discuss a case study undertaken in a specific region in Korea in terms of: (1) the location of ACBM-containing buildings; (2) types and quantities of ACBMs; (3) the cost of ACBM disposal; (4) the amount of asbestos fiber present during normal times and during post-disaster periods; (5) the required order in which ACBM-containing buildings should be dismantled; and (6) additional greenhouse gases generated during ACBM removal. The case study will focus on a specific building, with an area of 35.34m 2 , and will analyze information concerning the abovementioned points. In addition, the case study will focus on a selected area (108 buildings) and the administrative district (21,063 buildings). The significance of the program can be established by the fact that it visibly transmits information concerning ACBM management. It is a highly promising program, with a widespread application for the safe management and optimal disposal of asbestos in terms of technology, policy, and methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Publications of the NASA CELSS (Controlled Ecological Life Support Systems) program
NASA Technical Reports Server (NTRS)
Dufour, P. A.; Solberg, J. L.; Wallace, J. S.
1985-01-01
Publications on research sponsored by the NASA CELSS (controlled ecological life support systems) Program are listed. The bibliography is divided into four areas: (1) human requirements; (2) food production; (3) waste management; and (4) system management and control. The 210 references cover the period from the inception of the CELSS Program (1979) to the present, as well as some earlier publications during the development of the CELSS Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-01-01
Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE).more » In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and maintaining safety at each site while negotiating state and Federal environmental compliance agreements. The program also concentrated on characterizing waste and nuclear materials and assessing the magnitude and extent of environmental contamination. By the late 1990s, EM had made significant progress in identifying and characterizing the extent of contamination and cleanup required and began transitioning from primarily a characterization and stabilization program to an active cleanup and closure program. During that time, EM formulated multi-year cleanup and closure plans, which contributed to cleanup progress; however, reducing the overall environmental risk associated with the cleanup program remained a challenge. In response, the Secretary of Energy directed a review of the EM program be undertaken. The resulting 'Top-to Bottom Review' re-directed the program focus from managing risks to accelerating the reduction of these risks.« less
Hospital waste management in El-Beheira Governorate, Egypt.
Abd El-Salam, Magda Magdy
2010-01-01
This study investigated the hospital waste management practices used by eight randomly selected hospitals located in Damanhour City of El-Beheira Governorate and determined the total daily generation rate of their wastes. Physico-chemical characteristics of hospital wastes were determined according to standard methods. A survey was conducted using a questionnaire to collect information about the practices related to waste segregation, collection procedures, the type of temporary storage containers, on-site transport and central storage area, treatment of wastes, off-site transport, and final disposal options. This study indicated that the quantity of medical waste generated by these hospitals was 1.249tons/day. Almost two-thirds was waste similar to domestic waste. The remainder (38.9%) was considered to be hazardous waste. The survey results showed that segregation of all wastes was not conducted according to consistent rules and standards where some quantity of medical waste was disposed of with domestic wastes. The most frequently used treatment method for solid medical waste was incineration which is not accepted at the current time due to the risks associated with it. Only one of the hospitals was equipped with an incinerator which is devoid of any air pollution control system. Autoclaving was also used in only one of the selected hospitals. As for the liquid medical waste, the survey results indicated that nearly all of the surveyed hospitals were discharging it in the municipal sewerage system without any treatment. It was concluded that the inadequacies in the current hospital waste management practices in Damanhour City were mainly related to ineffective segregation at the source, inappropriate collection methods, unsafe storage of waste, insufficient financial and human resources for proper management, and poor control of waste disposal. The other issues that need to be considered are a lack of appropriate protective equipment and lack of training and clear lines of responsibilities between the departments involved in hospital waste management. Effective medical waste management programs are multisectoral and require cooperation between all levels of implementation, from national and local governments to hospital staff and private businesses. 2009 Elsevier Ltd. All rights reserved.
Optimal planning for the sustainable utilization of municipal solid waste.
Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M
2013-12-01
The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
SUSTAINABLE MSW MANAGEMENT STRATEGIES IN THE UNITED STATES
Under increasing pressure to minimize potential environmental burdens and costs for municipal solid waste (MSW) management, state and local governments often must modify programs and adopt more efficient integrated MSW management strategies that reflect dynamic shifts in MSW mana...
76 FR 36879 - Minnesota: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... Phase II--Universal Treatment Standards, and Treatment Standards for Organic Toxicity Characteristic... Disposal Facilities and Hazardous Waste Generators; Organic Air Emissions Standards for Tanks, Surface... Generators; Organic Air Emissions Standards for Tanks, Surface Impoundments, and Containers; Clarification...
NATIONAL QA STANDARD FOR ENVIRONMENTAL PROGRAMS FOR HAZARDOUS WASTE MANAGEMENT ACTIVITIES
The clean-up of Federally-owned facilities contaminated by mixtures of hazardous chemical and radioactive wastes involves critical decisions based on environmental data. ederal agencies are currently using several different standards or sets of requirements, including U.S. Enviro...
Urban Waste Recycling Behavior: Antecedents of Participation in a Selective Collection Program
NASA Astrophysics Data System (ADS)
Garcés, Conchita; Lafuente, Alberto; Pedraja, Marta; Rivera, Pilar
2002-09-01
The aim of this study is to analyze the antecedents of urban waste recycling behavior. To achieve this goal, a concrete urban waste management program was chosen. The study focuses on the Selective Collection Program (SCP) in Zaragoza, a medium-sized city in northeastern Spain. The research starts with a conceptual model in which the variables that potentially affect recycling behavior can be classified into two groups: incentives and barriers. Moreover, the sociodemographic characteristics of the individuals are included in our study. Given that the proposed model requires specification of latent variables or constructs, the analysis is based on the Structural Equation Models (SEM) methodology. The results revealed that environmental awareness, knowledge of the environmental impact of urban waste, and the positive perception of management by local government exercise a positive effect on individual recycling behavior, while perceived personal difficulties (space and time availability) and distance to and from the container have a negative effect. As regards sociodemographic variables, this study found that annual family income sustains a negative relationship with recycling behavior, while age maintains a positive one. The results obtained clearly show the important role that the public authorities play, especially municipal governments, in achieving the waste recycling objectives established in accordance with international legislation.
An Operational Safety and Health Program.
ERIC Educational Resources Information Center
Uhorchak, Robert E.
1983-01-01
Describes safety/health program activities at Research Triangle Institute (North Carolina). These include: radioisotope/radiation and hazardous chemical/carcinogen use, training, monitoring, disposal; chemical waste management; air monitoring and analysis; medical program; fire safety/training, including emergency planning; Occupational Safety and…
Environmental restoration and waste management: Five-year plan, Fiscal Years 1992--1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleman, L.I.
1990-06-01
This document reflects DOE's fulfillment of a major commitment of the Environmental Restoration and Waste Management Five-Year Plan: reorganization to create an Office of Environmental Restoration and Waste Management (EM) responsible for the consolidated environmental management of nuclear-related facilities and sites formerly under the Assistant Secretaries for Defense Programs and Nuclear Energy and the Director of the Office of Energy Research. The purposes of this Plan for FY 1992--1996 are to measure progress in meeting DOE's compliance, cleanup, and waste management agenda; to incorporate a revised and condensed version of the Draft Research Development, Demonstration, Testing, and Evaluation (RDDT E)more » Plan (November 1989) to describe DOE's process for developing the new technologies critically needed to solve its environmental problems; to show DOE's current strategy and planned activities through FY 1996, including reasons for changes required to meet compliance and cleanup commitments; and to increase the involvement of other agencies and the public in DOE's planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.H.
In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been aboutmore » $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $$4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $$226 billion over a period of 75 years. 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Harris R.; Blink, James A.; Halsey, William G.
2011-08-11
The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less
Auditing Operating Room Recycling: A Management Case Report.
McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane
2015-08-01
Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.
Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta
NASA Astrophysics Data System (ADS)
Rezagama, Arya; Purwono; Damayanti, Verika
2018-02-01
Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.
Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in themore » Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.« less
Zhang, Xiaodong; Huang, Gordon
2014-03-15
Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Johannes G., E-mail: jp.aht.p3@gmail.com; Arce-Jaque, Joan; Ravena, Neil
The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposedmore » by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.« less
Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview
Ahuja, Sanjiv; Madan, Molly; Asthana, Ajay Kumar
2016-01-01
Introduction Bio-Medical Waste (BMW) management is of utmost importance as its improper management poses serious threat to health care workers, waste handlers, patients, care givers, community and finally the environment. Simultaneously, the health care providers should know the quantity of waste generated in their facility and try to reduce the waste generation in day-to-day work because lesser amount of BMW means a lesser burden on waste disposal work and cost saving. Aim To have an overview of management of BMW in a tertiary care teaching hospital so that effective interventions and implementations can be carried out for better outcome. Materials and Methods The observational study was carried out over a period of five months from January 2016 to May 2016 in Chhatrapati Shivaji Subharti Hospital, Meerut by the Infection Control Team (ICT). Assessment of knowledge was carried out by asking set of questions individually and practice regarding awareness of BMW Management among the Health Care Personnel (HCP) was carried out by direct observation in the workplace. Further, the total BMW generated from the present setup in kilogram per bed per day was calculated by dividing the mean waste generated per day by the number of occupied beds. Results Segregation of BMW was being done at the site of generation in almost all the areas of the hospital in color coded polythene bags as per the hospital protocol. The different types of waste being collected were infectious solid waste in red bag, soiled infectious waste in yellow bag and sharp waste in puncture proof container and blue bag. Though awareness (knowledge) about segregation of BMW was seen in 90% of the HCP, 30%-35% did not practice. Out of the total waste generated (57912 kg.), 8686.8 kg. (15%) was infectious waste. Average infectious waste generated was 0.341 Kg per bed per day. The transport, treatment and disposal of each collected waste were outsourced and carried out by ‘Synergy’ waste management Pvt. Ltd. Conclusion The practice of BMW Management was lacking in 30-35% HCP which may lead to mixing of the 15% infectious waste with the remaining non-infectious. Therefore, training courses and awareness programs about BMW management will be carried out every month targeting smaller groups. PMID:28050362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghipour, Hassan, E-mail: hteir@yahoo.com; Amjad, Zahra; Jafarabadi, Mohamad Asghari
2014-07-15
Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability ofmore » sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place.« less
Environmental Adult Education in the English-Speaking Caribbean.
ERIC Educational Resources Information Center
Ellis, Pat
2000-01-01
Describes a public education program about solid waste management in Trinidad and Tobago, community action for environmental policy formation in St. Vincent and the Grenadines, and other environmental education programs. (SK)
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
40 CFR 272.1900-272.1949 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false [Reserved] 272.1900-272.1949 Section 272.1900-272.1949 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oregon §§ 272.1900-272.1949 [Reserved] ...
40 CFR 272.1900-272.1949 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 28 2012-07-01 2012-07-01 false [Reserved] 272.1900-272.1949 Section 272.1900-272.1949 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oregon §§ 272.1900-272.1949 [Reserved] ...
40 CFR 272.1900-272.1949 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false [Reserved] 272.1900-272.1949 Section 272.1900-272.1949 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oregon §§ 272.1900-272.1949 [Reserved] ...
40 CFR 272.1900-272.1949 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.1900-272.1949 Section 272.1900-272.1949 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Oregon §§ 272.1900-272.1949 [Reserved] ...
40 CFR 272.1202-272.1249 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false [Reserved] 272.1202-272.1249 Section 272.1202-272.1249 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED STATE HAZARDOUS WASTE MANAGEMENT PROGRAMS Minnesota §§ 272.1202-272.1249 [Reserved] ...