Science.gov

Sample records for waste management scenarios

  1. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect

    Locatelli, G.; Mancini, M.

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  2. E-waste scenario in India, its management and implications.

    PubMed

    Wath, Sushant B; Dutt, P S; Chakrabarti, T

    2011-01-01

    Electronic waste or E-waste comprises of old, end-of-life electronic appliances such as computers, laptops, TVs, DVD players, refrigerators, freezers, mobile phones, MP3 players, etc., which have been disposed of by their original users. E-waste contains many hazardous constituents that may negatively impact the environment and affect human health if not properly managed. Various organizations, bodies, and governments of many countries have adopted and/or developed the environmentally sound options and strategies for E-waste management to tackle the ever growing threat of E-waste to the environment and human health. This paper presents E-waste composition, categorization, Global and Indian E-waste scenarios, prospects of recoverable, recyclable, and hazardous materials found in the E-waste, Best Available Practices, recycling, and recovery processes followed, and their environmental and occupational hazards. Based on the discussion, various challenges for E-waste management particularly in India are delineated, and needed policy interventions were discussed.

  3. Alternative scenarios to meet the demands of sustainable waste management.

    PubMed

    Bovea, M D; Powell, J C

    2006-04-01

    This paper analyses different alternatives for solid waste management that can be implemented to enable the targets required by the European Landfill and Packaging and Packaging Waste Directives to be achieved in the Valencian Community, on the east coast of Spain. The methodology applied to evaluate the environmental performance of each alternative is Life Cycle Assessment (LCA). The analysis has been performed at two levels; first, the emissions accounted for in the inventory stage have been arranged into impact categories to obtain an indicator for each category; and secondly, the weighting of environmental data to a single unit has been applied. Despite quantitative differences between the results obtained with four alternative impact assessment methods, the same preference ranking has been established: scenarios with energy recovery (1v and 2v) achieve major improvements compared to baseline, with scenario 1v being better than 2v for all impact assessment methods except for the EPS'00 method, which obtains better results for scenario 2v. Sensitivity analysis has been used to test some of the assumptions used in the initial life cycle inventory model but none have a significant effect on the overall results. As a result, the best alternative to the existing waste management system can be identified. PMID:16202507

  4. Solid waste management scenarios for Cetinje in Montenegro.

    PubMed

    Yetis, Ulku; Jakobsen, Jens Bjørn; Dilek, Filiz B; Kıyık, Enver; Mugoša, Sanja; Novović, Jadranka; Kerestecioglu, Merih

    2015-05-01

    This study presents the options for source-segregation and selective collection of recyclable waste fractions for Cetinje, Montenegro, with the aim of meeting the European Union 50% waste recycling target in 2023, and extending collection and disposal system that builds on the existing strengths of the city. To this end, three options were considered: (1) source separation and separate collection of dry recyclable materials and central sorting of residual waste; (2) source separation and collection of co-mingled dry recyclable materials, and central sorting in a clean material recovery facility of comingled recyclables and central sorting of residual waste; (3) collection of mixed waste (current situation) and subsequent central sorting. Scenarios 1 and 2 were found to meet the European Union 50% recycling target in 2023, provided that a fast implementation of the new separate collection schemes to fine sort the co-mingled collected recyclable materials is available. Finally, a financial evaluation was made for the options and the investment and operational costs over a 20-year period were estimated. Unit costs for Scenario 3 were found to be lower than for Scenario 1 and 2. As Scenario 3 will not meet the future European Union recycling targets, Scenario 2 has been pointed as the most feasible scenario for Cetinje, with reference to the expected lower total costs compared with Scenario 1.

  5. Global warming factors modelled for 40 generic municipal waste management scenarios.

    PubMed

    Christensen, Thomas H; Simion, Federico; Tonini, Davide; Møller, Jacob

    2009-11-01

    Global warming factors (kg CO(2)-eq.-tonne(-1) of waste) have been modelled for 40 different municipal waste management scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste management by landfilling, incineration or mechanical-biological waste treatment. For average European waste composition most waste management scenarios provided negative global warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0-400, scenarios with incineration saved 200-700, and scenarios with mechanical-biological treatment saved 200- 750 kg CO(2)-eq. tonne(- 1) municipal waste depending on recycling scheme and energy recovery. Key parameters were the amount of paper recycled (it was assumed that wood made excessive by paper recycling substituted for fossil fuel), the crediting of the waste management system for the amount of energy recovered (hard-coal-based energy was substituted), and binding of biogenic carbon in landfills. Most other processes were of less importance. Rational waste management can provide significant savings in society's emission of greenhouse gas depending on waste composition and efficient utilization of the energy recovered.

  6. Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios

    PubMed Central

    Ali Rajaeifar, Mohammad; Tabatabaei, Meisam; Ghanavati, Hossein

    2015-01-01

    Environmental assessment of municipal solid waste (MSW) management scenarios would help to select eco-friendly scenarios. In this study, the inventory data in support of life cycle assessment of different MSW are presented. The scenarios were defined as: anaerobic digestion (AD, Sc-0), landfilling combined with composting (Sc-1), incineration (Sc-2), incineration combined with composting (Sc-3), and AD combined with incineration (Sc-4). The current article contains flowcharts of the different scenarios. Additionally, six supplementary files including inventory data on the different scenarios, data on the different damage assessment categories, normalization, and single scores are presented (Supplementary files 1–6). The analysis of the different scenarios revealed that the most eco-friendly scenario to be implemented in the future would be the combination of AD and incineration (Sc-4). PMID:26217743

  7. Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact.

    PubMed

    Papageorgiou, Asterios; Karagiannidis, Avraam; Barton, John R; Kalogirou, Efstratios

    2009-11-01

    Disposal of municipal solid waste in sanitary landfills is still the main waste management method in the Attica region, as in most regions of Greece. Nevertheless, diversion from landfilling is being promoted by regional plans, in which the perspectives of new waste treatment technologies are being evaluated. The present study aimed to assess the greenhouse gas (GHG) emissions impact of different municipal solid waste treatment technologies currently under assessment in the new regional plan for Attica. These technologies are mechanical-biological treatment, mass-burn incineration and mechanical treatment and have been assessed in the context of different scenarios. The present study utilized existing methodologies and emission factors for the quantification of GHG emissions from the waste management process and found that all technologies under assessment could provide GHG emission savings. However, the performance and ranking of these technologies is strongly dependent on the existence of end markets for the waste-derived fuels produced by the mechanical-biological treatment processes. In the absence of these markets the disposal of these fuels would be necessary and thus significant GHG savings would be lost. PMID:19837710

  8. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    SciTech Connect

    Parkes, Olga Lettieri, Paola Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  9. Pattern of medical waste management: existing scenario in Dhaka City, Bangladesh

    PubMed Central

    Hassan, M Manzurul; Ahmed, Shafiul Azam; Rahman, K Anisur; Biswas, Tarit Kanti

    2008-01-01

    Background Medical waste is infectious and hazardous. It poses serious threats to environmental health and requires specific treatment and management prior to its final disposal. The problem is growing with an ever-increasing number of hospitals, clinics, and diagnostic laboratories in Dhaka City, Bangladesh. However, research on this critical issue has been very limited, and there is a serious dearth of information for planning. This paper seeks to document the handling practice of waste (e.g. collection, storage, transportation and disposal) along with the types and amount of wastes generated by Health Care Establishments (HCE). A total of 60 out of the existing 68 HCE in the study areas provided us with relevant information. Methods The methodology for this paper includes empirical field observation and field-level data collection through inventory, questionnaire survey and formal and informal interviews. A structured questionnaire was designed to collect information addressing the generation of different medical wastes according to amount and sources from different HCE. A number of in-depth interviews were arranged to enhance our understanding of previous and existing management practice of medical wastes. A number of specific questions were asked of nurses, hospital managers, doctors, and cleaners to elicit their knowledge. The collected data with the questionnaire survey were analysed, mainly with simple descriptive statistics; while the qualitative mode of analysis is mainly in narrative form. Results The paper shows that the surveyed HCE generate a total of 5,562 kg/day of wastes, of which about 77.4 per cent are non-hazardous and about 22.6 per cent are hazardous. The average waste generation rate for the surveyed HCE is 1.9 kg/bed/day or 0.5 kg/patient/day. The study reveals that there is no proper, systematic management of medical waste except in a few private HCE that segregate their infectious wastes. Some cleaners were found to salvage used sharps

  10. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park.

    PubMed

    Parkes, Olga; Lettieri, Paola; Bogle, I David L

    2015-06-01

    This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for sustainable waste management planning. PMID:25837786

  11. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  12. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    SciTech Connect

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action.

  13. Applications of mathematical modeling in managing the spread of chronic wasting disease (CWD) in wild deer under alternative harvesting scenarios.

    PubMed

    Al-Arydah, M; Croteau, M C; Oraby, T; Smith, R J; Krewski, D

    2016-01-01

    The application of a recently developed mathematical model for predicting the spread of chronic wasting disease (CWD) in wild deer was assessed under different scenarios where harvesting is employed in disease management. A process-based mathematical model for CWD transmission in wild deer populations was recently developed and parameterized by Al-arydah et al. (2011) to provide a scientific basis for understanding the factors that affect spread of CWD and evaluate concomitant disease-control strategies. The impact of gender on CWD transmission was shown to have a significant influence on the spread of the disease in the wild. Our model demonstrates a range of harvesting rates in which CWD is controlled and deer populations survive. However, if harvesting rates are too low, the disease remains endemic for decades. Conversely, the Canadian deer population is eradicated if harvesting rates are excessive. Future investigation includes building the model to assess the spread of CWD under different disease-management scenarios. PMID:27556563

  14. Applications of mathematical modeling in managing the spread of chronic wasting disease (CWD) in wild deer under alternative harvesting scenarios.

    PubMed

    Al-Arydah, M; Croteau, M C; Oraby, T; Smith, R J; Krewski, D

    2016-01-01

    The application of a recently developed mathematical model for predicting the spread of chronic wasting disease (CWD) in wild deer was assessed under different scenarios where harvesting is employed in disease management. A process-based mathematical model for CWD transmission in wild deer populations was recently developed and parameterized by Al-arydah et al. (2011) to provide a scientific basis for understanding the factors that affect spread of CWD and evaluate concomitant disease-control strategies. The impact of gender on CWD transmission was shown to have a significant influence on the spread of the disease in the wild. Our model demonstrates a range of harvesting rates in which CWD is controlled and deer populations survive. However, if harvesting rates are too low, the disease remains endemic for decades. Conversely, the Canadian deer population is eradicated if harvesting rates are excessive. Future investigation includes building the model to assess the spread of CWD under different disease-management scenarios.

  15. Hazardous waste storage facility accident scenarios for the U.S. Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Policastro, A.; Roglans-Ribas, J.; Marmer, D.; Lazaro, M.; Mueller, C.; Freeman, W.

    1994-03-01

    This paper presents the methods for developing accident categories and accident frequencies for internally initiated accidents at hazardous waste storage facilities (HWSFs) at US Department of Energy (DOE) sites. This categorization is a necessary first step in evaluating the risk of accidents to workers and the general population at each of the sites. This risk evaluation is part of the process of comparing alternative management strategies in DOE`s Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Such strategies involve regionalization, decentralization, and centralization of waste treatment, storage, and disposal activities. Potential accidents at the HWSFs at the DOE sites are divided into categories of spill alone, spill plus fire, and other event combinations including spill plus fire plus explosion, fire only, spill and explosion, and fire and explosion. One or more accidents are chosen to represent the types of accidents for FY 1992 for 12 DOE sites were studied to determine the most representative set of possible accidents at all DOE sites. Each accident scenario is given a probability of occurrence that is adjusted, depending on the throughput and waste composition that passes through the HWSF at the particular site. The justification for the probabilities chosen is presented.

  16. Assessing future scenarios for health care waste management using a multi-criteria decision analysis tool: A case study in the Turkish West Black Sea Region.

    PubMed

    Ciplak, Nesli

    2015-08-01

    The aim of this paper is to identify the best possible health care waste management option in the West Black Sea Region by taking into account economic, social, environmental, and technical aspects in the concept of multi-criteria decision analysis. In the scope of this research, three different health care waste management scenarios that consist of different technology alternatives were developed and compared using a decision-making computer software, called Right Choice, by identifying various criteria, measuring them, and ranking their relative importance from the point of key stakeholders. The results of the study show that the decentralized autoclave technology option coupled with the disposal through land-filling with energy recovery has potential to be an optimum option for health care waste management system, and an efficient health care waste segregation scheme should be given more attention by the authorities in the region. Furthermore, the discussion of the results points out multidisciplinary approach and the equilibrium between social, environmental, economic, and technical criteria. The methodology used in this research was developed in order to enable the decision makers to gain an increased perception of a decision problem. In general, the results and remarks of this study can be used as a basis of future planning and anticipation of needs for investment in the area of health care waste management in the region and also in developing countries that are dealing with the similar waste management problems.

  17. Assessing future scenarios for health care waste management using a multi-criteria decision analysis tool: A case study in the Turkish West Black Sea Region.

    PubMed

    Ciplak, Nesli

    2015-08-01

    The aim of this paper is to identify the best possible health care waste management option in the West Black Sea Region by taking into account economic, social, environmental, and technical aspects in the concept of multi-criteria decision analysis. In the scope of this research, three different health care waste management scenarios that consist of different technology alternatives were developed and compared using a decision-making computer software, called Right Choice, by identifying various criteria, measuring them, and ranking their relative importance from the point of key stakeholders. The results of the study show that the decentralized autoclave technology option coupled with the disposal through land-filling with energy recovery has potential to be an optimum option for health care waste management system, and an efficient health care waste segregation scheme should be given more attention by the authorities in the region. Furthermore, the discussion of the results points out multidisciplinary approach and the equilibrium between social, environmental, economic, and technical criteria. The methodology used in this research was developed in order to enable the decision makers to gain an increased perception of a decision problem. In general, the results and remarks of this study can be used as a basis of future planning and anticipation of needs for investment in the area of health care waste management in the region and also in developing countries that are dealing with the similar waste management problems. PMID:26211633

  18. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of an Italian urban area.

    PubMed

    Di Maria, Francesco; Micale, Caterina

    2014-11-01

    Life cycle analysis of several waste management scenarios for an Italian urban area was performed on the basis of different source segregation collection (SS) intensities from 0% up to 52%. Source segregated waste was recycled and or/recovered by composting. Residual waste management options were by landfilling, incineration with energy recovery or solid recovered fuel (SRF) production to substitute for coal. The increase in fuel and materials consumption due to increase in SS had negligible influence on the environmental impact of the system. Recycling operations such as incineration and SRF were always advantageous for impact reduction. There was lower impact for an SS of 52% even though the difference with the SS intensity of 35% was quite limited, about 15%. In all the configurations analyzed, the best environmental performance was achieved for the management system producing SRF by the biodrying process.

  19. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: The case of an Italian urban area

    SciTech Connect

    Di Maria, Francesco Micale, Caterina

    2014-11-15

    Highlights: • Waste management scenarios starting from different SS intensity were analyzed by LCA. • Several experimental data were utilized for the inventory. • Collection activities influences marginally global impact. • Maximum global environmental gain was achieved by SRF for coke substitution. - Abstract: Life cycle analysis of several waste management scenarios for an Italian urban area was performed on the basis of different source segregation collection (SS) intensities from 0% up to 52%. Source segregated waste was recycled and or/recovered by composting. Residual waste management options were by landfilling, incineration with energy recovery or solid recovered fuel (SRF) production to substitute for coal. The increase in fuel and materials consumption due to increase in SS had negligible influence on the environmental impact of the system. Recycling operations such as incineration and SRF were always advantageous for impact reduction. There was lower impact for an SS of 52% even though the difference with the SS intensity of 35% was quite limited, about 15%. In all the configurations analyzed, the best environmental performance was achieved for the management system producing SRF by the biodrying process.

  20. Waste management

    SciTech Connect

    Dworschak, H.; Mannone, F.; Rocco, P.

    1995-03-01

    The presence of tritium in tritium-burning devices to be built for large scale research on thermonuclear fusion poses many problems especially in terms of occupational and environmental safety. One of these problems derives from the production of tritiated wastes in gaseous, liquid and solid forms. All these wastes need to be adequately processed and conditioned to minimize tritium releases to an acceptably low occupational and environmental level and consequently to protect workers and the public against the risks of unacceptable doses from exposure to tritium. Since all experimental thermonuclear fusion devices of the Tokomak type to be built and operated in the near future as well as all experimental activities undertaken in tritium laboratories like ETHEL will generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need to be defined. Adequate background information is provided through an exhaustive literature survey. In this frame alternative tritiated waste management options so far investigated or currently applied to this end in Europe, USA and Canada have been assessed. The relevance of tritium in waste containing gamma-emitters, originated by the neutron activation of structural materials is assessed in relation to potential final disposal options. Particular importance has been attached to the tritium retention efficiency achievable by the various waste immobilization options. 19 refs., 2 figs., 1 tab.

  1. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU.

  2. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  3. Hazardous waste management

    SciTech Connect

    Miller, S.

    1981-12-01

    An international meeting held at the State Department in Washington, DC on hazardous waste management is discussed. The conference was held by the Committee on the Challenges to Modern Society of the North Atlantic Treaty Organization. Among the wastes considered at the meeting were chromium wastes, lead wastes, pesticides, mercury wastes, nickel wastes, oil refinery wastes, PCBs, cadmium wastes, and others. Radioactive wastes were not considered. Legislation, landfill use, recycling, and the Common Market's approach to these wastes were also discussed. (JMT)

  4. Sustainable WEE management in Malaysia: present scenarios and future perspectives

    NASA Astrophysics Data System (ADS)

    Rezaul Hasan Shumon, Md; Ahmed, S.

    2013-12-01

    Technological advances have resulted development of a lot of electronic products for continuously increasing number of customers. As the customer taste and features of these products change rapidly, the life cycles have come down tremendously. Therefore, a large volume of e-wastes are now emanated every year. This scenario is very much predominant in Malaysia. On one hand e-wastes are becoming environmental hazards and affecting the ecological imbalance. On the other, these wastes are remaining still economically valuable. In Malaysia, e-waste management system is still in its nascent state. This paper describes the current status of e-waste generation and recycling and explores issues for future e-waste management system in Malaysia from sustainable point of view. As to draw some factual comparisons, this paper reviews the e-waste management system in European Union, USA, Japan, as a benchmark. Then it focuses on understanding the Malaysian culture, consumer discarding behavior, flow of the materials in recycling, e-waste management system, and presents a comparative view with the Swiss e-waste system. Sustainable issues for e-waste management in Malaysia are also presented. The response adopted so far in collection and recovery activities are covered in later phases. Finally, it investigates the barriers and challenges of e-waste system in Malaysia.

  5. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  6. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect

    Münster, M.; Finnveden, G.; Wenzel, H.

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  7. International waste management conference

    SciTech Connect

    Not Available

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance.

  8. Waste management facility accident analysis (WASTE ACC) system: software for analysis of waste management alternatives

    SciTech Connect

    Kohout, E.F.; Folga, S.; Mueller, C.; Nabelssi, B.

    1996-03-01

    This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure will allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.

  9. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  10. Workforce management strategies in a disaster scenario.

    SciTech Connect

    Kelic, Andjelka; Turk, Adam L.

    2008-08-01

    A model of the repair operations of the voice telecommunications network is used to study labor management strategies under a disaster scenario where the workforce is overwhelmed. The model incorporates overtime and fatigue functions and optimizes the deployment of the workforce based on the cost of the recovery and the time it takes to recover. The analysis shows that the current practices employed in workforce management in a disaster scenario are not optimal and more strategic deployment of that workforce is beneficial.

  11. Enrollment Management Study: Five Scenarios.

    ERIC Educational Resources Information Center

    Albers, James R.; Burns, James A.

    The effect of enrollment level changes on the long-range future of Western Washington University are investigated. Due to the high rate of Washington state in-migration, declining enrollments are not projected for Western Washington University. The impact of managed enrollment goals was examined to help the university determine the most…

  12. Nuclear waste management

    NASA Astrophysics Data System (ADS)

    Chikalla, T. D.; Powell, J. A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  13. Radioactive waste management

    SciTech Connect

    Flax, S.J.

    1981-01-01

    This article examines the technical and legal considerations of nuclear waste management. The first three sections describe the technical aspects of spent-fuel-rod production, reprocessing, and temporary storage. The next two sections discuss permanent disposal of high-level wastes and spent-fuel rods. Finally, legislative and judicial responses to the nuclear-waste crisis.

  14. Medical waste management plan.

    SciTech Connect

    Lane, Todd W.; VanderNoot, Victoria A.

    2004-12-01

    This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.

  15. Biohazardous waste management plan.

    SciTech Connect

    Lane, Todd W.

    2004-01-01

    This plan describes the process for managing non-medical biohazardous waste at Sandia National Laboratories California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of biohazardous waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to non-medical biohazardous waste.

  16. [Recommendations for waste management].

    PubMed

    Vinner, E; Odou, M F; Fovet, B; Ghnassia, J C

    2013-06-01

    Laboratory waste management must ensure the safety of patients and staff, limiting the environmental impacts and control waste disposal budget. Sorting of waste must be carried out at the source. The packaging must be adapted, allowing easy identification of specific disposal routes. With regard to wastes for human or animal health care and/or related research (DASRI), packages must comply with the regulations, standards and ADR if necessary. Storage provisions differ according to the amount of DASRI produced. Waste collection is carried out directly on the place of activity by a certified service provider. Non pre-treated DASRI is incinerated in specific approved plants for a T ° > 1,200 °C. Special provisions also exist for chemical waste and radioactive waste, the latter being regulated by ANDRA. PMID:23765028

  17. Avoidable waste management costs

    SciTech Connect

    Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

    1995-01-01

    This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

  18. Solid-Waste Management

    ERIC Educational Resources Information Center

    Science Teacher, 1973

    1973-01-01

    Consists of excerpts from a forthcoming publication of the United States Environmental Protection Agency, Student's Guide to Solid-Waste Management.'' Discusses the sources of wastes from farms, mines, factories, and communities, the job of governments, ways to collect trash, methods of disposal, processing, and suggests possible student action.…

  19. Future waste treatment and energy systems--examples of joint scenarios.

    PubMed

    Münster, M; Finnveden, G; Wenzel, H

    2013-11-01

    Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  20. AVLIS production plant waste management plan

    SciTech Connect

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  1. Scenario of solid waste reuse in Khulna city of Bangladesh

    SciTech Connect

    Bari, Quazi H.; Mahbub Hassan, K.; Haque, R.

    2012-12-15

    The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

  2. [Environmental management: critical analysis, scenarios and challenges].

    PubMed

    Porto, Marcelo Firpo de Souza; Schütz, Gabriel Eduardo

    2012-06-01

    This article discusses the limits, alternatives and challenges of environmental management in contemporary globalized capitalist societies. It is based on a critical analysis supported by authors from social sciences, political ecology and public health. To this end, we systematize the meaning of hegemonic environmental management in terms of eco-efficiency and its limits to tackle environmental risks and construct democratic processes and societies. We developed four ideal scenarios involving possible combinations of environmental management and democracy. This model served as a base, together with academic studies and the theoretical and militant experience of the authors, for a reflection on the current characteristics and future trends of environmental management and democracy, with emphasis on the reality of Latin America, specifically Brazil. Lastly, we discuss possibilities for social transformation taking into consideration the contradictions and emancipatory alternatives resulting from confrontations between hegemonic tendencies of the market and counter-hegemonic utopias and social movements. The latter assume principles of environmental justice, economic solidarity, agro-ecology and sustainability as well as the construction of new epistemologies. PMID:22699636

  3. [Environmental management: critical analysis, scenarios and challenges].

    PubMed

    Porto, Marcelo Firpo de Souza; Schütz, Gabriel Eduardo

    2012-06-01

    This article discusses the limits, alternatives and challenges of environmental management in contemporary globalized capitalist societies. It is based on a critical analysis supported by authors from social sciences, political ecology and public health. To this end, we systematize the meaning of hegemonic environmental management in terms of eco-efficiency and its limits to tackle environmental risks and construct democratic processes and societies. We developed four ideal scenarios involving possible combinations of environmental management and democracy. This model served as a base, together with academic studies and the theoretical and militant experience of the authors, for a reflection on the current characteristics and future trends of environmental management and democracy, with emphasis on the reality of Latin America, specifically Brazil. Lastly, we discuss possibilities for social transformation taking into consideration the contradictions and emancipatory alternatives resulting from confrontations between hegemonic tendencies of the market and counter-hegemonic utopias and social movements. The latter assume principles of environmental justice, economic solidarity, agro-ecology and sustainability as well as the construction of new epistemologies.

  4. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain.

    PubMed

    Ortiz, O; Pasqualino, J C; Castells, F

    2010-04-01

    The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in terms of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts. PMID:20005694

  5. Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain

    SciTech Connect

    Ortiz, O.; Pasqualino, J.C.; Castells, F.

    2010-04-15

    The main objective of this paper is to evaluate environmental impacts of construction wastes in terms of the LIFE 98 ENV/E/351 project. Construction wastes are classified in accordance with the Life Program Environment Directive of the European Commission. Three different scenarios to current waste management from a case study in Catalonia (Spain) have been compared: landfilling, recycling and incineration, and these scenarios were evaluated by means of Life Cycle Assessment. The recommendations of the Catalan Waste Catalogue and the European Waste Catalogue have been taken into account. Also, the influence of transport has been evaluated. Results show that in terms of the Global Warming Potential, the most environmentally friendly treatment was recycling, followed by incineration and lastly landfilling. According to the influence of treatment plants location on the GWP indicator, we observe that incineration and recycling of construction wastes are better than landfilling, even for long distances from the building site to the plants. This is true for most wastes except for the stony types, than should be recycled close to the building site. In summary, data from construction waste of a Catalan case study was evaluated using the well established method of LCA to determine the environmental impacts.

  6. Waste Management Process Improvement Project

    SciTech Connect

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-02-25

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

  7. Solid Waste Management Plan. Revision 4

    SciTech Connect

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  8. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  9. Waste management and chemical inventories

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  10. Radioactive Waste Management

    NASA Astrophysics Data System (ADS)

    Baisden, P. A.; Atkins-Duffin, C. E.

    Issues related to the management of radioactive wastes are presented with specific emphasis on high-level wastes generated as a result of energy and materials production using nuclear reactors. The final disposition of these high-level wastes depends on which nuclear fuel cycle is pursued, and range from once-through burning of fuel in a light water reactor followed by direct disposal in a geologic repository to more advanced fuel cycles (AFCs) where the spent fuel is reprocessed or partitioned to recover the fissile material (primarily 235U and 239Pu) as well as the minor actinides (MAs) (neptunium, americium, and curium) and some long-lived fission products (e.g., 99Tc and 129I). In the latter fuel cycle, the fissile materials are recycled through a reactor to produce more energy, the short-lived fission products are vitrified and disposed of in a geologic repository, and the minor actinides and long-lived fission products are converted to less radiotoxic or otherwise stable nuclides by a process called transmutation. The advantages and disadvantages of the various fuel cycle options and the challenges to the management of nuclear wastes they represent are discussed.

  11. Biosolids - a fuel or a waste? An integrated appraisal of five co-combustion scenarios with policy analysis

    SciTech Connect

    Elise Cartmell; Peter Gostelow; Drusilla Riddell-Black; Nigel Simms; John Oakey; Joe Morris; Paul Jeffrey; Peter Howsam; Simon J. Pollard

    2006-02-01

    An integrated appraisal of five technology scenarios for the co-combustion of biosolids in the UK energy and waste management policy context is presented. Co-combustion scenarios with coal, municipal solid waste, wood, and for cement manufacture were subject to thermodynamic and materials flow modeling and evaluated by 19 stakeholder representatives. All scenarios provided a net energy gain (0.58-5.0 kWh/kg dry solids), having accounted for the energy required for transportation and sludge drying. Co-combustion within the power generation and industrial (e.g., cement) sectors is most readily implemented but provides poor water utility control, and it suffers from poor public perception. Co-combustion with wastes or biomass appears more sustainable but requires greater investment and presents significant risks to water utilities. Incongruities within current energy and waste management policy are discussed and conclusions for improved understanding are drawn. 28 refs., 5 figs., 4 tabs.

  12. Diagnostic health risk assessment of electronic waste on the general population in developing countries' scenarios

    SciTech Connect

    Frazzoli, Chiara; Orisakwe, Orish Ebere; Dragone, Roberto; Mantovani, Alberto

    2010-11-15

    E-waste is the generic name for technological waste. Even though aspects related to e-waste environmental pollution and human exposure are known, scientific assessments are missing so far on the actual risks for health sustainability of the general population exposed to e-waste scenarios, such as illicit dumping, crude recycling and improper treatment and disposal. In fact, further to occupational and direct local exposure, e-waste scenarios may impact on the environment-to-food chain, thus eliciting a widespread and repeated exposure of the general population to mixtures of toxicants, mainly toxic chemical elements, polycyclic aromatic hydrocarbons and persistent organic pollutants. In the absence of any clear policy on e-waste flow management, the situation in the e-waste receiver countries may become quite scary; accordingly, here we address a diagnostic risk assessment of health issues potentially elicited by e-waste related mixtures of toxicants. Scientific evidence available so far (mainly from China) is discussed with special attention to the concept of health sustainability, i.e. the poor health burden heritage perpetuated through the mother-to-child dyad. Endocrine disruption and neurotoxicity are specifically considered as examples of main health burden issues relevant to perpetuation through life cycle and across generations; toxicological information are considered along with available data on environmental and food contamination and human internal exposure. The risk from exposure to e-waste related mixtures of toxicants of vulnerable subpopulation like breast-fed infants is given special attention. The diagnostic risk assessment demonstrates how e-waste exposure poses an actual public health emergency, as it may entrain significant health risks also for generations to come. Exposure scenarios as well as specific chemicals of major concern may vary in different contexts; for instance, only limited information is available on e-waste related exposures in

  13. Agricultural waste utilization and management

    SciTech Connect

    Not Available

    1985-01-01

    These papers were presented at a symposium on the management and use of agricultural waste products, including food industry wastes. Topics covered include fat and protein recovery from fish wastes, treatments for straw to improve its digestibility, using food industry wastes as animal feeds, various manure treatments and studies of its combustion properties, fermentation, methane and ethanol production, hemp waste water treatment, and heat recovery from manure combustion.

  14. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    SciTech Connect

    MANN, F.M.

    1999-03-17

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments.

  15. Medical waste management in Korea.

    PubMed

    Jang, Yong-Chul; Lee, Cargro; Yoon, Oh-Sub; Kim, Hwidong

    2006-07-01

    The management of medical waste is of great importance due to its potential environmental hazards and public health risks. In the past medical waste was often mixed with municipal solid waste and disposed of in residential waste landfills or improper treatment facilities (e.g. inadequately controlled incinerators) in Korea. In recent years, many efforts have been made by environmental regulatory agencies and waste generators to better manage the waste from healthcare facilities. This paper presents an overview of the current management practices of medical waste in Korea. Information regarding generation, composition, segregation, transportation, and disposal of medical wastes is provided and discussed. Medical waste incineration is identified as the most preferred disposal method and will be the only available treatment option in late 2005. Faced with increased regulations over toxic air emissions (e.g. dioxins and furans), all existing small incineration facilities that do not have air pollution control devices will cease operation in the next few years. Large-scale medical waste incinerators would be responsible for the treatment of medical waste generated by most healthcare facilities in Korea. It is important to point out that there is a great potential to emit air toxic pollutants from such incinerators if improperly operated and managed, because medical waste typically contains a variety of plastic materials such as polyvinyl chloride (PVC). Waste minimization and recycling, control of toxic air emissions at medical waste incinerators, and alternative treatment methods to incineration are regarded to be the major challenges in the future.

  16. Management of municipal solid waste incineration residues.

    PubMed

    Sabbas, T; Polettini, A; Pomi, R; Astrup, T; Hjelmar, O; Mostbauer, P; Cappai, G; Magel, G; Salhofer, S; Speiser, C; Heuss-Assbichler, S; Klein, R; Lechner, P

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions. PMID:12623102

  17. Management of municipal solid waste incineration residues.

    PubMed

    Sabbas, T; Polettini, A; Pomi, R; Astrup, T; Hjelmar, O; Mostbauer, P; Cappai, G; Magel, G; Salhofer, S; Speiser, C; Heuss-Assbichler, S; Klein, R; Lechner, P

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions.

  18. Perspectives on sustainable waste management.

    PubMed

    Castaldi, Marco J

    2014-01-01

    Sustainable waste management is a goal that all societies must strive to maintain. Currently nearly 80% of global wastes are sent to landfill, with a significant amount lacking proper design or containment. The increased attention to environmental impacts of human activities and the increasing demand for energy and materials have resulted in a new perspective on waste streams. Use of waste streams for energy and materials recovery is becoming more prevalent, especially in developed regions of the world, such as Europe, the United States, and Japan. Although currently these efforts have a small impact on waste disposal, use of waste streams to extract value very likely will increase as society becomes more aware of the options available. This review presents an overview of waste management with a focus on following an expanded waste hierarchy to extract value specifically from municipal solid waste streams.

  19. ACCELERATOR TRANSMUTATION OF WASTE TECHNOLOGY AND IMPLEMENTATION SCENARIOS

    SciTech Connect

    D. BELLER; G. VAN TUYLE

    2000-11-01

    During 1999, the U.S. Department of Energy, in conjunction with its nuclear laboratories, a national steering committee, and a panel of world experts, developed a roadmap for research, development, demonstration, and deployment of Accelerator-driven Transmutation of Waste (ATW). The ATW concept that was examined in this roadmap study was based on that developed at the Los Alamos National Laboratory (LANL) during the 1990s. The reference deployment scenario in the Roadmap was developed to treat 86,300 tn (metric tonnes initial heavy metal) of spent nuclear fuel that will accumulate through 2035 from existing U.S. nuclear power plants (without license extensions). The disposition of this spent nuclear reactor fuel is an issue of national importance, as is disposition of spent fuel in other nations. The U.S. program for the disposition of this once-through fuel is focused to characterize a candidate site at Yucca Mountain, Nevada for a geological repository for spent fuel and high-level waste. The ATW concept is being examined in the U.S. because removal of plutonium minor actinides, and two very long-lived isotopes from the spent fuel can achieve some important objectives. These objectives include near-elimination of plutonium, reduction of the inventory and mobility of long-lived radionuclides in the repository, and use of the remaining energy content of the spent fuel to produce power. The long-lived radionuclides iodine and technetium have roughly one million year half-lives, and they are candidates for transport into the environment via movement of ground water. The scientists and engineers who contributed to the Roadmap Study determined that the ATW is affordable, doable, and its deployment would support all the objectives. We report the status of the U.S. ATW program describe baseline and alternate technologies, and discuss deployment scenarios to support the existing U.S. nuclear capability and/or future growth with a variety of new fuel cycles.

  20. Waste management units - Savannah River Site

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  1. Illinois solid waste management legislation

    SciTech Connect

    1999-07-01

    Contents include: Degradable Plastic Act; Energy Assistance Act of 1989; Hazardous and Solid Waste Recycling and Treatment Act; Household Hazardous Waste Collection Program Act; Illinois Emergency Planning and Community Right to Know Act; Illinois Environmental Facilities Financing Act; Illinois Procurement Code; Illinois Solid Waste Management Act; Intergovernmental Cooperation Act; Junkyard Act; Litter Control Act; Local Solid Waste Disposal Act; Metro East Solid Waste Disposal and Energy Producing Service Act; Recycled Newsprint Use Act; Responsible Property Transfer Act of 1988; Solid Waste Disposal District Act; Solid Waste Planning and Recycling Act; Solid Waste Site Operator Certification Law; Township Refuse Collection and Disposal Act; Toxic Pollution Prevention Act; Used Motor Oil Recycling Act; Waste Oil Recovery Act; and Water Supply, Drainage and Flood Control Act.

  2. "Actionable" Climate Scenarios for Natural Resource Managers in Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Rondeau, R.; Wyborn, C.

    2014-12-01

    Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change. To provide such information, we developed narrative scenarios of future climate change and its impacts on different ecosystems in southwestern Colorado. This multi-institution and trans-disciplinary project seeks to provide useful and useable knowledge to facilitate climate change adaptation in the context of uncertainty. The narratives are intended to provide detailed insights into the range of changes that natural resource managers may face in the future. These scenarios were developed in an iterative process through interactions between ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal probability as another scenario. Rather than a qualitative narration of the general direction of change and range in responses, we quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. This presentation will discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We will also cover the process by which these scenarios get used, and how the user feedbacks are integrated in further developing the tools and processes.

  3. UK report on waste management

    SciTech Connect

    Ferguson, J.

    1995-09-01

    Arising jointly from the National and European Union requirements for more intensive attention to be paid to the environment, the United Kingdom (UK) has taken many strides forward in protecting the environment from pollution and preventing harm to human health arising from the handling, transport and disposal of wastes. Major adjustments are taking place in Europe following the opening up of the Eastern European countries. The consequences of the illegal movement of wastes and its mistreatment and disposal are now recognised within the European Union. The UK as a member State is well aware of the consequences which arise from the lack of proper waste management. This paper discusses waste management and legislation pertaining to waste management in the United Kingdom.

  4. Management strategies in hospitals: scenario planning.

    PubMed

    Ghanem, Mohamed; Schnoor, Jörg; Heyde, Christoph-Eckhard; Kuwatsch, Sandra; Bohn, Marco; Josten, Christoph

    2015-01-01

    Hintergrund: Das Krankenhausmanagement ist stets Herausforderungen ausgesetzt. Anstatt auf die Herausforderungen zu warten, sollten Ärzte und Manager im Voraus handeln, um ein optimiertes und nachhaltig wertorientiertes Gesundheitswesen zu sichern. Diese Arbeit unterstreicht die Bedeutung der Szenarienplanung in Krankenhäusern, schlägt eine ausgearbeitete Definition der Stakeholder eines Krankenhauses vor und definiert die Einflussfaktoren, denen Krankenhäuser ausgesetzt sind.Methodik: Basierend auf einer Literaturanalyse sowie auf persönlichen Interviews mit Stakeholdern eines Krankenhauses schlagen wir eine ausgearbeitete Definition von Stakeholdern vor und erarbeiteten einen Fragebogen. Dieser Fragebogen berücksichtigt folgende Einflussfaktoren, die entsprechende Auswirkungen auf das Krankenhaus-Management haben: politische/rechtliche, wirtschaftliche, soziale, technologische und Umweltkräfte.Diese Einflussfaktoren werden untersucht, um die so genannten kritischen Unsicherheiten zu entwickeln. Die gründliche Identifizierung von Unsicherheiten basierte auf „Stakeholder Feedback“.Ergebnisse: Zwei Haupt-Unsicherheiten wurden identifiziert und in dieser Studie berücksichtigt:die Entwicklung der Arbeitsbelastung für das medizinische Personaldie gewinnorientierte Leistung des medizinischen Personals.Entsprechend der entwickelten Szenarien konnten wir folgende Kernstrategie empfehlen: komplementäre Ausbildung sowohl des medizinischen Personals als auch der nicht-medizinischen Top-Führungskräfte und Manager von Krankenhäusern. Ergänzende szenariospezifische strategische Optionen sollen, falls erforderlich, in Betracht gezogen werden, um eine bestimmte zukünftige Entwicklung des medizinischen Umfeldes zu optimieren.Schlussfolgerung: Strategische Planung in Krankenhäusern ist wichtig, um nachhaltigen Erfolg zu gewährleisten. Diese Planung soll mehrere Situationen berücksichtigen und integriert interne und externe Ein- und Ausblicke. Darüber hinaus

  5. Informing Lake Erie agriculture nutrient management via scenario evaluation

    USGS Publications Warehouse

    Scavia, Donald; Kalcic, Margaret; Muenich, Rebecca Logsdon; Aloysius, Noel; Arnold, Jeffrey; Boles, Chelsie; Confesor, Remegio; DePinto, Joseph; Gildow, Marie; Martin, Jay; Read, Jennifer; Redder, Todd; Robertson, Dale; Sowa, Scott P.; Wang, Yu-Chen; White, Michael; Yen, Haw

    2016-01-01

    Therefore, the overall goal of this study was to identify potential options for agricultural management to reduce phosphorus loads and lessen future HABs in Lake Erie. We applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed targets. 

  6. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  7. TRU Waste Management Program cost/schedule optimization analysis

    SciTech Connect

    Detamore, J.A. . Joint Integration Office); Raudenbush, M.H.; Wolaver, R.W.; Hastings, G.A. Corp., Boulder, CO )

    1985-10-01

    The cost/schedule optimization task is a necessary function to insure that program goals and plans are optimized from a cost and schedule aspect. Results of this study will offer DOE information with which it can establish, within institutional constraints, the most efficient program for the long-term management and disposal of contact handled transuranic waste (CH-TRU). To this end, a comprehensive review of program cost/schedule tradeoffs has been made, to identify any major cost saving opportunities that may be realized by modification of current program plans. It was decided that all promising scenarios would be explored, and institutional limitations to implementation would be described. Since a virtually limitless number of possible scenarios can be envisioned, it was necessary to distill these possibilities into a manageable number of alternatives. The resultant scenarios were described in the cost/schedule strategy and work plan document. Each scenario was compared with the base case: waste processing at the originating site; transport of CH-TRU wastes in TRUPACT; shipment of drums in 6-Packs; 25 year stored waste workoff; WIPP operational 10/88, with all sites shipping to WIPP beginning 10/88; and no processing at WIPP. Major savings were identified in two alternate scenarios: centralize waste processing at INEL and eliminate rail shipment of TRUPACT. No attempt was made to calculate savings due to combination of scenarios. 1 ref., 5 figs., 1 tab. (MHB)

  8. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  9. Exposure Scenarios and Unit Dose Factors for the Hanford Immobilized Low Activity Tank Waste Performance Assessment

    SciTech Connect

    RITTMANN, P.D.

    1999-12-29

    Exposure scenarios are defined to identify potential pathways and combinations of pathways that could lead to radiation exposure from immobilized tank waste. Appropriate data and models are selected to permit calculation of dose factors for each exposure

  10. Managerial fuzzy optimal planning for solid-waste management systems

    SciTech Connect

    Chang, N.B.; Wang, S.F.

    1996-07-01

    The emphasis on waste reduction and recycling requirements prior to incineration and the promulgation of Good Combustion Practice (GCP) for emission control of trace organic compounds during incineration have created conflicting solid-waste management goals. The most critical questions in system planning include: to what extent are recycling and incineration compatible? And what are the subsequent economic impacts on the private and public sectors under specific management scenarios? However, the inherent complexity of composition, generation, and heat value of the waste streams as well as the stability of the secondary material market may result in additional difficulties in management decision making. This paper presents a nonlinear fuzzy goal programming approach for solving such questions. In particular, it demonstrates how fuzzy, or imprecise, objectives of the decision makers can be quantified through the use of specific membership functions in various types of management-planning scenarios.

  11. Integrated waste management - Looking beyond the solid waste horizon

    SciTech Connect

    Seadon, J.K. . E-mail: jseadon@unitec.ac.nz

    2006-07-01

    Waste as a management issue has been evident for over four millennia. Disposal of waste to the biosphere has given way to thinking about, and trying to implement, an integrated waste management approach. In 1996 the United Nations Environmental Programme (UNEP) defined 'integrated waste management' as 'a framework of reference for designing and implementing new waste management systems and for analysing and optimising existing systems'. In this paper the concept of integrated waste management as defined by UNEP is considered, along with the parameters that constitute integrated waste management. The examples used are put into four categories: (1) integration within a single medium (solid, aqueous or atmospheric wastes) by considering alternative waste management options (2) multi-media integration (solid, aqueous, atmospheric and energy wastes) by considering waste management options that can be applied to more than one medium (3) tools (regulatory, economic, voluntary and informational) and (4) agents (governmental bodies (local and national), businesses and the community). This evaluation allows guidelines for enhancing success: (1) as experience increases, it is possible to deal with a greater complexity; and (2) integrated waste management requires a holistic approach, which encompasses a life cycle understanding of products and services. This in turn requires different specialisms to be involved in the instigation and analysis of an integrated waste management system. Taken together these advance the path to sustainability.

  12. Corrosion and Potential Subsidence Scenarios for Buried B-25 Waste Containers

    SciTech Connect

    Jones, W.E.

    2003-01-17

    This report describes various scenarios to be modeled for static loading of B-25 containers in Engineered Trench number 1 (ET) at the Department of Energy's (DOE's) Savannah River Site in Aiken, South Carolina. Scenario information includes the static load to be used, estimated B-25 steel-volume loss with time due to corrosion, and waste characteristics.

  13. Compostable cutlery and waste management: an LCA approach.

    PubMed

    Razza, Francesco; Fieschi, Maurizio; Innocenti, Francesco Degli; Bastioli, Catia

    2009-04-01

    The use of disposable cutlery in fast food restaurants and canteens in the current management scenario generates mixed heterogeneous waste (containing food waste and non-compostable plastic cutlery). The waste is not recyclable and is disposed of in landfills or incinerated with or without energy recovery. Using biodegradable and compostable (B&C) plastic cutlery, an alternative management scenario is possible. The resulting mixed homogeneous waste (containing food waste and compostable plastic cutlery) can be recycled through organic recovery, i.e., composting. This LCA study, whose functional unit is "serving 1000 meals", shows that remarkable improvements can be obtained by shifting from the current scenario to the alternative scenario (based on B&C cutlery and final organic recovery of the total waste). The non-renewable energy consumption changes from 1490 to 128MJ (an overall 10-fold energy savings) and the CO(2) equivalents emission changes from 64 to 22 CO(2) eq. (an overall 3-fold GHG savings). PMID:18952413

  14. Coolside waste management research

    SciTech Connect

    Not Available

    1992-10-01

    Sample collection - soils, base sand, and conventional fly ash for loading the field lysimeter calls were selected and either obtained or in process of being delivered. Chemical and Mineralogical Characterization of the Waste - This activity is proceeding with proximate and ultimate analysis of the materials being completed. In addition the major and minor element analysis was performed by several analytical techniques. The protocol for rapid, thick-target proton induced x-ray emission (PIXE) and proton induced gamma emission (PIGE) spectroscopy were developed. Analysis of 97 Coolside waste samples from Run 3 and 77 samples from Run 1 showed a wide range of concentration values were observed for most of the values. In Run 3 calcium content increased with time and titanium content decreased. Likewise, a change in sodium content occurred with average concentrations being 1.26 [plus minus] 0.03 wt% during the first half of the run while it dropped to 1.18 [plus minus] 0.03 wt% in the latter part of the run. Vanadium and bromine directly correlate with the calcium content indicating these elements are either introduced in the hydrated lime or their capture efficiency depends on the calcium concentration in the waste. The other elements whose concentrations increase with time are zinc, germanium, arsenic, gallium and lead but do not appear to be introduced with the lime or have capture efficiencies that are affected by the calcium content in the ash.

  15. Participatory management of waste disposal.

    PubMed

    Noosorn, Narongsak

    2005-05-01

    The general objective of this study was to develop a sustainable waste disposal management model in Yom riverside communities by creating a sense of ownership in the project among the villagers and encourage the community to identify problems based on their socio-cultural background. The participatory approach was applied in developing a continual learning process between the researcher and stakeholders. The Tub Phueng community of Si Samrong, Sukhothai Province was selected as the location for this study. From the population of 240 households in the area, 40 stakeholders were selected to be on the research team. The team found that the waste in this community was comprised of 4 categories: 1. Occupation: discarded insecticide containers used for farming activities; 2. Consumption: plastic bags and wrappers form pre-packed foods; 3. Traditional activities: after holding ceremonies and festivities, the waste was dumped in the river; and 4. Environmental hygiene: waste water from washing, bathing, toileting, cooking and cleaning was directly drained into the Yom River. The sustainable waste disposal model developed to manage these problems included building simple waste-water treatment wells, digging garbage holes, prosecuting people who throw garbage into the river, withdrawing privileges from people who throw garbage into the river, and establishing a garbage center. Most of the villagers were satisfied with the proposed model, looked forward to the expected positive changes, and thought this kind of solution would be easy to put into practice.

  16. Change Ahead: Transient Scenarios for Long-term Water Management

    NASA Astrophysics Data System (ADS)

    Haasnoot, Marjolijn; Beersma, Jules; Schellekens, Jaap

    2013-04-01

    While the use of an ensemble of transient scenarios is common in climate change studies, they are rarely used in water management studies. Present planning studies on long-term water management often use a few plausible futures for one or two projection years, ignoring the dynamic aspect of adaptation through the interaction between the water system and society. Over the course of time society experiences, learns and adapts to changes and events, making policy responses part of a plausible future, and thus the success of a water management strategy. Exploring transient scenarios and policy options over time can support decision making on water management strategies in an uncertain and changing environment. We have developed and applied such a method, called exploring adaptation pathways (Haasnoot et al., 2012; Haasnoot et al., 2011). This method uses multiple realisations of transient scenarios to assess the efficacy of policy actions over time. In case specified objectives are not achieved anymore, an adaptation tipping point (Kwadijk et al., 2010) is reached. After reaching a tipping point, additional actions are needed to reach the objectives. As a result, a pathway emerges. In this presentation we describe the development of transient scenarios for long term water management, and how these scenarios can be used for long term water management under uncertainty. We illustrate this with thought experiments, and results from computational modeling experiment for exploring adaptation pathways in the lower Rhine delta. The results and the thought experiments show, among others, that climate variability is at least just as important as climate change for taking decisions in water management. References Haasnoot, M., Middelkoop, H., Offermans, A., Beek, E., Deursen, W.A.v. (2012) Exploring pathways for sustainable water management in river deltas in a changing environment. Climatic Change 115, 795-819. Haasnoot, M., Middelkoop, H., van Beek, E., van Deursen, W

  17. International waste management fact book

    SciTech Connect

    Amaya, J P; LaMarche, M N; Upton, J F

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  18. Healthcare waste management in Asia.

    PubMed

    Ananth, A Prem; Prashanthini, V; Visvanathan, C

    2010-01-01

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  19. Healthcare waste management in Asia

    SciTech Connect

    Prem Ananth, A.; Prashanthini, V.; Visvanathan, C.

    2010-01-15

    The risks associated with healthcare waste and its management has gained attention across the world in various events, local and international forums and summits. However, the need for proper healthcare waste management has been gaining recognition slowly due to the substantial disease burdens associated with poor practices, including exposure to infectious agents and toxic substances. Despite the magnitude of the problem, practices, capacities and policies in many countries in dealing with healthcare waste disposal, especially developing nations, is inadequate and requires intensification. This paper looks upon aspects to drive improvements to the existing healthcare waste management situation. The paper places recommendation based on a 12 country study reflecting the current status. The paper does not advocate for any complex technology but calls for changes in mindset of all concerned stakeholders and identifies five important aspects for serious consideration. Understanding the role of governments and healthcare facilities, the paper also outlines three key areas for prioritized action for both parties - budget support, developing policies and legislation and technology and knowledge management.

  20. ICDF Complex Operations Waste Management Plan

    SciTech Connect

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  1. Radioactive Waste Management BasisApril 2006

    SciTech Connect

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  2. Nuclear waste management

    SciTech Connect

    Frankel, D.R.

    1980-01-01

    Several recent congressional and executive proposals address the political problem posed by nuclear wastes. The proposals are divided into three categories on the basis of the degree of authority granted to state officials in siting decisions: those granting states a veto power, those providing for consultation with state officials during planning, and those leaving plenary authority in the hands of the Federal goverment. Legislative proposals are discussed under these categories. The most-balanced approach provides a formal role for state officials without granting the states an absolute veto. This solution provides a political outlet for local concern and ensures a wider range of views. It also avoids the problem, inherent in the state veto, of sacrificing the national interest in selecting the safest possible disposal site. 69 references.

  3. Regional solid waste management study

    SciTech Connect

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  4. Waste Management Information System (WMIS) User Guide

    SciTech Connect

    R. E. Broz

    2008-12-22

    This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

  5. Waste management regroups units into Rust International

    SciTech Connect

    Kirschner, E.

    1992-11-25

    Three Waste Management (Oak Brook, IL) subsidiaries have proposed merging units from Chemical Waste Management (CWM) and Wheelabrator Technologies with the Brand Companies (Park Ridge, IL). Waste Management says the new company, to be called Rust International, will become one of the US's largest environmental consulting and infrastructure organizations and will include design and construction services. Waste Management expects the merged company's 1993 revenues to reach $1.8 billion. It will be based in Birmingham, AL and have 12,000 employees.

  6. Implementation of SAP Waste Management System

    SciTech Connect

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), and peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)

  7. Oak Ridge Reservation Waste Management Plan

    SciTech Connect

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  8. Waste management plan for the APT

    SciTech Connect

    England, J.L.

    1997-08-22

    This revision of the APT Waste Management Plan details the waste management requirements and issues specific to the APT plant for design considerations, construction, and operation. The APT Waste Management Plan is by its nature a living document and will be reviewed at least annually and revised as required.

  9. Solid waste management in Japan

    SciTech Connect

    Naito, S.

    1995-09-01

    On Friday 17 June 1994, as the invited speaker of the International Congress of IWM/ISWA at Torbay, UK the author presented a paper of {open_quotes}A framework for success: the role of legislation{close_quotes}. THis was to introduce the amendment of Waste Disposal Cleansing Law and the Basic Environment Law in 1991, but the combination of the two amended laws has enforced promoting and assisting the fulfillment of the responsibilities of corporations and citizens. In addition to such presentation, the author pointed out a new manner of solid waste management (SWM) in Japan.

  10. Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus.

    PubMed

    Rousis, K; Moustakas, K; Malamis, S; Papadopoulos, A; Loizidou, M

    2008-01-01

    Waste from electrical and electronic equipment (WEEE) constitutes one of the most complicated solid waste streams in terms of its composition, and, as a result, it is difficult to be effectively managed. In view of the environmental problems derived from WEEE management, many countries have established national legislation to improve the reuse, recycling and other forms of recovery of this waste stream so as to apply suitable management schemes. In this work, alternative systems are examined for the WEEE management in Cyprus. These systems are evaluated by developing and applying the Multi-Criteria Decision Making (MCDM) method PROMETHEE. In particular, through this MCDM method, 12 alternative management systems were compared and ranked according to their performance and efficiency. The obtained results show that the management schemes/systems based on partial disassembly are the most suitable for implementation in Cyprus. More specifically, the optimum scenario/system that can be implemented in Cyprus is that of partial disassembly and forwarding of recyclable materials to the native existing market and disposal of the residues at landfill sites. PMID:18262405

  11. Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus.

    PubMed

    Rousis, K; Moustakas, K; Malamis, S; Papadopoulos, A; Loizidou, M

    2008-01-01

    Waste from electrical and electronic equipment (WEEE) constitutes one of the most complicated solid waste streams in terms of its composition, and, as a result, it is difficult to be effectively managed. In view of the environmental problems derived from WEEE management, many countries have established national legislation to improve the reuse, recycling and other forms of recovery of this waste stream so as to apply suitable management schemes. In this work, alternative systems are examined for the WEEE management in Cyprus. These systems are evaluated by developing and applying the Multi-Criteria Decision Making (MCDM) method PROMETHEE. In particular, through this MCDM method, 12 alternative management systems were compared and ranked according to their performance and efficiency. The obtained results show that the management schemes/systems based on partial disassembly are the most suitable for implementation in Cyprus. More specifically, the optimum scenario/system that can be implemented in Cyprus is that of partial disassembly and forwarding of recyclable materials to the native existing market and disposal of the residues at landfill sites.

  12. Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus

    SciTech Connect

    Rousis, K.; Moustakas, K.; Malamis, S. Papadopoulos, A.; Loizidou, M.

    2008-07-01

    Waste from electrical and electronic equipment (WEEE) constitutes one of the most complicated solid waste streams in terms of its composition, and, as a result, it is difficult to be effectively managed. In view of the environmental problems derived from WEEE management, many countries have established national legislation to improve the reuse, recycling and other forms of recovery of this waste stream so as to apply suitable management schemes. In this work, alternative systems are examined for the WEEE management in Cyprus. These systems are evaluated by developing and applying the Multi-Criteria Decision Making (MCDM) method PROMETHEE. In particular, through this MCDM method, 12 alternative management systems were compared and ranked according to their performance and efficiency. The obtained results show that the management schemes/systems based on partial disassembly are the most suitable for implementation in Cyprus. More specifically, the optimum scenario/system that can be implemented in Cyprus is that of partial disassembly and forwarding of recyclable materials to the native existing market and disposal of the residues at landfill sites.

  13. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  14. Role of NGOs and CBOs in Waste Management

    PubMed Central

    Ahsan, A; Alamgir, M; Imteaz, M; Nik Daud, NN; Islam, R

    2012-01-01

    Background Developing cities like Khulna, the third largest metropolitan city in Bangladesh, have now begun to confess the environmental and public health risks associated with uncontrolled dumping of solid wastes mainly due to the active participation of non-governmental organizations (NGOs) and community-based organizations (CBOs) in municipal solid waste (MSW) management. Methods: A survey was conducted to observe the present scenarios of secondary disposal site (SDS), ultimate disposal site (UDS), composting plants, medical wastes management and NGOs and CBOs MSW management activities. Results: A total of 22 NGOs and CBOs are involved in MSW management in 31 wards of Khulna City Corporation. About 9 to 12% of total generated wastes are collected by door-to-door collection system provided by mainly NGOs and CBOs using 71 non-motorized rickshaw vans. A major portion of collected wastes is disposed to the nearest SDS by these organizations and then transferred to UDS or to private low-lying lands from there by the city authority. A small portion of organic wastes is going to the composting plants of NGOs. Conclusion: The participation of NGOs and CBOs has improved the overall MSW management system, especially waste collection process from sources and able to motivate the residents to store the waste properly and to keep clean the premises. PMID:23113191

  15. [Management of waste disposal in medical institutions].

    PubMed

    Horváth, A

    1991-04-30

    Recently new regulations were elaborated for the management of medical wastes in Austria, FRG, Canada and USA. There is no rule laying down the requirements of the management of medical wastes in Hungary. On the basis of foreign experiences the medical wastes are proposed to range into categories as follow: I. Waste that should be handled in special way within and outside the health care facilities. II. Waste, that should be handled in a special way within the health care facilities. III. General waste (municial-type waste). Basic requirement is the segregating collection of wastes. Color-coding is proposed to identify the content of containers and bags. Incinerators combined with pyrolysis and emission control unites should be preferred to the disposal of medical wastes. The author proposes to issue a rule setting out definitions and basic principles of management of medical wastes. Individual health care establishments should prepare own written policies and measures for waste handling appropriate to their specific requirements.

  16. Scenario analysis of the benefit of municipal organic-waste composting over landfill, Cambodia.

    PubMed

    Seng, Bunrith; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Ochiai, Satoru; Kaneko, Hidehiro

    2013-01-15

    This paper presents insight into the benefits of organic waste recycling through composting over landfill, in terms of landfill life extension, compost product, and mitigation of greenhouse gases (GHGs). Future waste generation from 2003 to 2020 was forecast, and five scenarios of organic waste recycling in the municipality of Phnom Penh (MPP), Cambodia, were carried out. Organic waste-specifically food and garden waste-was used for composting, and the remaining waste was landfilled. The recycling scenarios were set based on organic waste generated from difference sources: households, restaurants, shops, markets, schools, hotels, offices, and street sweeping. Through the five scenarios, the minimum volume reductions of waste disposal were about 56, 123, and 219 m(3) d(-1) in 2003, 2012, and 2020, respectively, whereas the maximum volume reductions in these years were about 325, 643, and 1025 m(3) d(-1). These volume reductions reflect a landfill life extension of a minimum of half a year and a maximum of about four years. Compost product could be produced at a minimum of 14, 30, and 54 tons d(-1) in 2003, 2012, and 2020, respectively, and at a maximum in those years of about 80, 158, and 252 tons d(-1). At the same time benefit is gained in compost product, GHG emissions could be reduced by a minimum of 12.8% and a maximum of 65.0% from 2003 to 2020. This means about 3.23 (minimum) and 5.79 million tons CO(2)eq (maximum) contributed to GHG mitigation. In this regard, it is strongly recommended that MPP should try to initiate an organic-waste recycling strategy in a best fit scenario.

  17. Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual

    SciTech Connect

    Matysiak, L.M.; Burns, M.L.

    1994-03-01

    This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

  18. Waste Management Quality Assurance Plan

    SciTech Connect

    Waste Management Group

    2006-08-14

    The WMG QAP is an integral part of a management system designed to ensure that WMG activities are planned, performed, documented, and verified in a manner that assures a quality product. A quality product is one that meets all waste acceptance criteria, conforms to all permit and regulatory requirements, and is accepted at the offsite treatment, storage, and disposal facility. In addition to internal processes, this QA Plan identifies WMG processes providing oversight and assurance to line management that waste is managed according to all federal, state, and local requirements for waste generator areas. A variety of quality assurance activities are integral to managing waste. These QA functions have been identified in the relevant procedures and in subsequent sections of this plan. The WMG QAP defines the requirements of the WMG quality assurance program. These requirements are derived from Department of Energy (DOE) Order 414.1C, Quality Assurance, Contractor Requirements Document, the LBNL Operating and Assurance Program Plan (OAP), and other applicable environmental compliance documents. The QAP and all associated WMG policies and procedures are periodically reviewed and revised, as necessary, to implement corrective actions, and to reflect changes that have occurred in regulations, requirements, or practices as a result of feedback on work performed or lessons learned from other organizations. The provisions of this QAP and its implementing documents apply to quality-affecting activities performed by the WMG; WMG personnel, contractors, and vendors; and personnel from other associated LBNL organizations, except where such contractors, vendors, or organizations are governed by their own WMG-approved QA programs.

  19. Radioactive Waste Management BasisSept 2001

    SciTech Connect

    Goodwin, S S

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  1. Natural gas applications in waste management

    SciTech Connect

    Tarman, P.B.

    1991-01-01

    The Institute of Gas Technology (IGT) is engaged in several projects related to the use of natural gas for waste management. These projects can be classified into four categories: cyclonic incineration of gaseous, liquid, and solid wastes; fluidized-bed reclamation of solid wastes; two-stage incineration of liquid and solid wastes; natural gas injection for emissions control. 5 refs., 8 figs.

  2. Scenario development for the Waste Isolation Pilot Plant compliance certification application

    SciTech Connect

    GALSON,D.A.; SWIFT,PETER N.; ANDERSON,D. RICHARD; BENNETT,D.G.

    1998-09-23

    Demonstrating compliance with the applicable regulations for the Waste Isolation Pilot Plant (WIPP) requires an assessment of the long-term performance of the disposal system. Scenario development is one starting point of this assessment, and generates inquiry about the present state and future evolution of the disposal system. Scenario development consists of four tasks: (1) identifying and classifying features, events and processes (FEPs), (2) screening FEPs according to well-defined criteria, (3) forming scenarios (combinations of FEPs) in the context of regulatory performance criteria and (4) specifying of scenarios for consequence analysis. The development and screening of a comprehensive FEP list provides assurance that the identification of significant processes and events is complete, that potential interactions between FEPs are not overlooked, and that responses to possible questions are available and well documented. Two basic scenarios have been identified for the WIPP: undisturbed performance (UP) and disturbed performance (DP). The UP scenario is used to evaluate compliance with the Environmental Protection Agency's (EPA's) Individual Dose (40 CFR Section 191-15) and Groundwater Protection (40 CFR Section 191-24) standards and accounts for all natural-, waste- and repository-induced FEPs that survive the screening process. The DP scenario is required for assessment calculations for the EPA's cumulative release standard (Containment Requirements, 40 CFR Section 191-13) and accounts for disruptive future human events, which have an uncertain probability of occurrence, in addition to the UP FEPs.

  3. Life cycle assessment of capital goods in waste management systems.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming. PMID:27478026

  4. Life cycle assessment of capital goods in waste management systems.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2016-10-01

    The environmental importance of capital goods (trucks, buildings, equipment, etc.) was quantified by LCA modelling 1 tonne of waste treated in five different waste management scenarios. The scenarios involved a 240L collection bin, a 16m(3) collection truck, a composting plant, an anaerobic digestion plant, an incinerator and a landfill site. The contribution of capital goods to the overall environmental aspects of managing the waste was significant but varied greatly depending on the technology and the impact category: Global Warming: 1-17%, Stratospheric Ozone Depletion: 2-90%, Ionising Radiation, Human Health: 2-91%, Photochemical Ozone Formation: 2-56%, Freshwater Eutrophication: 0.05-99%, Marine Eutrophication: 0.03-8%, Terrestrial Acidification: 2-13%, Terrestrial Eutrophication: 1-8%, Particulate Matter: 11-26%, Human Toxicity, Cancer Effect: 10-92%, Human Toxicity, non-Cancer Effect: 1-71%, Freshwater Ecotoxicity: 3-58%. Depletion of Abiotic Resources - Fossil: 1-31% and Depletion of Abiotic Resources - Elements (Reserve base): 74-99%. The single most important contribution by capital goods was made by the high use of steel. Environmental impacts from capital goods are more significant for treatment facilities than for the collection and transportation of waste and for the landfilling of waste. It is concluded that the environmental impacts of capital goods should always be included in the LCA modelling of waste management, unless the only impact category considered is Global Warming.

  5. Training waste generators: The first responder in proper waste management

    SciTech Connect

    Jones, E.

    1989-01-01

    Dealing with waste effectively requires a cradle to grave'' approach to waste management. The first step in that chain of custody is the waste generator. The waste generator plays the key role in the correct identification, packaging, and disposal of waste. The Technical Resources and Training Section at the Oak Ridge National Laboratory (ORNL) has developed several short training programs for waste generators. This training presents a consistent approach to proper handling of waste within the ORNL waste management system. This training has been developed for generators of solid low-level radioactive waste, hazardous and mixed waste, and transuranic waste. In addition to the above, a Waste Minimization training program has been developed for use by all organizations at ORNL who generate any type of hazardous waste. These training programs represent a combined effort of the training staff and the technical staff to assure that all ORNL staff accept their responsibility for handling all types of radioactive and hazardous wastes correctly from its generation to its disposal. 4 refs.

  6. Disaster waste management: A review article

    SciTech Connect

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  7. Solid waste management problems in secondary schools in Ibadan, Nigeria.

    PubMed

    Ana, G R E E; Oloruntoba, E O; Shendell, D; Elemile, O O; Benjamin, O R; Sridhar, M K C

    2011-09-01

    Inappropriate solid waste management practices in schools in less-developed countries, particularly in major urban communities, constitute one of the major factors leading to declining environmental health conditions. The objective of the authors' descriptive, cross-sectional study was to assess solid waste management problems in selected urban schools in Ibadan, Nigeria. Eight secondary schools with average pupil populations not less than 500 per school were selected randomly. Four hundred questionnaires (50 per school) were administered. In addition, an observational checklist was used to assess the physical environment. Paper and plastics were the most frequently generated wastes. Common methods of solid waste disposal reported were use of dustbins for collection and open burning. Major problems perceived with current refuse disposal methods by the study students were odors, pest infestation, and spillages. Littering and spillages of solid waste were also common features reported. Data suggested inadequate waste management facilities and practices in study schools. The lack of refuse bins may have contributed to waste spillages and the burning practices. Odors may have arisen from both the decay of overstored organic waste rich in moisture and emissions from refuse burning. This scenario poses a community environmental health nuisance and may compromise school environmental quality.

  8. Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States.

    PubMed

    Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A

    2016-08-16

    New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes. PMID:27387287

  9. Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the United States.

    PubMed

    Hodge, Keith L; Levis, James W; DeCarolis, Joseph F; Barlaz, Morton A

    2016-08-16

    New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.

  10. E-Waste Management and Challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Kumar, K. Ram

    2010-11-01

    E-Waste is one of the silent degraders of the environment in the fast-growing world. This paper explores briefly the ultra-modern problem of E-Waste. After enumerating the causes and effects of the E-Waste, it focuses on management of the E-waste using modern techniques. The paper also deals with the responsibilities of the governments, industries and citizens in reducing E-waste.

  11. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  12. Towards "DRONE-BORNE" Disaster Management: Future Application Scenarios

    NASA Astrophysics Data System (ADS)

    Tanzi, Tullio Joseph; Chandra, Madhu; Isnard, Jean; Camara, Daniel; Sebastien, Olivier; Harivelo, Fanilo

    2016-06-01

    Information plays a key role in crisis management and relief efforts for natural disaster scenarios. Given their flight properties, UAVs (Unmanned Aerial Vehicles) provide new and interesting perspectives on the data gathering for disaster management. A new generation of UAVs may help to improve situational awareness and information assessment. Among the advantages UAVs may bring to the disaster management field, we can highlight the gain in terms of time and human resources, as they can free rescue teams from time-consuming data collection tasks and assist research operations with more insightful and precise guidance thanks to advanced sensing capabilities. However, in order to be useful, UAVs need to overcome two main challenges. The first one is to achieve a sufficient autonomy level, both in terms of navigation and interpretation of the data sensed. The second major challenge relates to the reliability of the UAV, with respect to accidental (safety) or malicious (security) risks. This paper first discusses the potential of UAV in assisting in different humanitarian relief scenarios, as well as possible issues in such situations. Based on recent experiments, we discuss the inherent advantages of autonomous flight operations, both lone flights and formation flights. The question of autonomy is then addressed and a secure embedded architecture and its specific hardware capabilities is sketched out. We finally present a typical use case based on the new detection and observation abilities that UAVs can bring to rescue teams. Although this approach still has limits that have to be addressed, technically speaking as well as operationally speaking, it seems to be a very promising one to enhance disaster management efforts activities.

  13. Modeling of Human Intrusion Scenarios at the Waste Isolation Pilot Plant

    SciTech Connect

    Gross, M.B.; Hansen, F.D.; Knowles, M.K.; Larson, K.W.; Thompson, T.W.

    1998-12-04

    The Waste Isolation Pilot Plant is a mined, geologic repository designed for permanent disposal of transuranic waste. The facility is owned by the United States Department of Energy, and licensed for operations by the Environmental Protection Agency. Compliance with license requirements dictates that the repository must comply with regulatory stipulations that performance assessment calculations include the effects of resource exploitation on probable releases. Scenarios for these releases incorporate inadvertent penetration of the repository by an exploratory drilling operation. This paper presents the scenarios and models used to predict releases from the repository to the biosphere during. an inadvertent intrusion into the waste disposal regions. A summary of model results and conclusions is also presented.

  14. Using the baseline environmental management report (BEMR) to examine alternate program scenarios

    SciTech Connect

    Kristofferson, K.

    1995-12-01

    The US Department of Energy`s (DOE) Office of Environmental Management (EM) released the first Baseline Environmental Management Report (BEMR) in March, 1995. The Congressionally-mandated report provides life-cycle cost estimates, tentative schedules, and projected activities necessary to complete DOE`s Environmental Management Program. This ``base case`` estimate is based on current program assumptions and the most likely set of activities. However, since the future course of the Environmental Management Program depends upon a number of fundamental technical and policy choices, alternate program scenarios were developed. These alternate cases show the potential cost impacts of changing assumptions in four key areas: future land use, program funding and scheduling, technology development, and waste management configurations. Several cost and program evaluation tools were developed to support the analysis of these alternate cases. The objective of this paper is to describe the analytical tool kit developed to support the development of the 1995 Baseline Report and to discuss the application of these tools to evaluate alternate program scenarios.

  15. Waste Management Quality Assurance Plan

    SciTech Connect

    Not Available

    1993-11-30

    Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

  16. Waste Management Technician Partnership Program. Final Report.

    ERIC Educational Resources Information Center

    Campbell, Donna

    This final report for Columbia Basin College's waste management technician partnership program outlines 4 objectives: (1) develop at least 4 waste management competency-based curriculum modules; (2) have 50 participants complete at least 1 module; (3) have 100 participants complete a training and/or certification program and 200 managers complete…

  17. Strategic environmental assessment of alternative sewage sludge management scenarios.

    PubMed

    Poulsen, Tjalfe G; Hansen, Jens Aa

    2003-02-01

    Strategic environmental assessment (SEA) of sewage sludge management in a Danish municipality (Aalborg), with 160,000 inhabitants using alternative methods for aggregation of environmental impacts was performed. The purpose is to demonstrate the use of SEA in relation to sludge management and to improve SEA methodology. Six different scenarios for management of sewage sludge within the Aalborg municipality involving thermal treatment, composting and landfilling of sludge were evaluated. Environmental impact categories considered were global warming, non-renewable resources (nutrients and fossil fuels) and land use. Impact categories human health, ecotoxicity and soil quality were excluded as methodology for their assessment is not yet fully developed. Thermal sludge treatment with energy utilisation was shown to be a promising option for sewage sludge management in Aalborg. Sensitivity of the relative environmental impacts with respect to calculation methodology and input parameter values were evaluated to identify important parameters and calculation methods. The analysis showed that aggregation procedures, sludge biogas potential and sludge production were very important whereas sludge transport was not. PMID:12667015

  18. Strategic environmental assessment of alternative sewage sludge management scenarios.

    PubMed

    Poulsen, Tjalfe G; Hansen, Jens Aa

    2003-02-01

    Strategic environmental assessment (SEA) of sewage sludge management in a Danish municipality (Aalborg), with 160,000 inhabitants using alternative methods for aggregation of environmental impacts was performed. The purpose is to demonstrate the use of SEA in relation to sludge management and to improve SEA methodology. Six different scenarios for management of sewage sludge within the Aalborg municipality involving thermal treatment, composting and landfilling of sludge were evaluated. Environmental impact categories considered were global warming, non-renewable resources (nutrients and fossil fuels) and land use. Impact categories human health, ecotoxicity and soil quality were excluded as methodology for their assessment is not yet fully developed. Thermal sludge treatment with energy utilisation was shown to be a promising option for sewage sludge management in Aalborg. Sensitivity of the relative environmental impacts with respect to calculation methodology and input parameter values were evaluated to identify important parameters and calculation methods. The analysis showed that aggregation procedures, sludge biogas potential and sludge production were very important whereas sludge transport was not.

  19. Downscaling transient climate change scenarios for water resource management

    NASA Astrophysics Data System (ADS)

    Blenkinsop, S.; Burton, A.; Fowler, H. J.; Harpham, C.; Goderniaux, P.

    2009-04-01

    The management of hydrological systems in response to climate change requires reliable projections at relevant time horizons and at appropriate spatial scales. Furthermore the robustness of decisions is dependent on both the uncertainty of future climate scenarios and climatic variability. The current generation of climate models do not adequately meet these requirements for hydrological impacts assessments and so new techniques are required to meet the needs of hydrologists and water resource managers. Here, a new methodology is described and implemented which addresses these issues by adopting a hybrid dynamical and stochastic downscaling approach to produce a multi-model ensemble of transient scenarios of daily weather variables. These scenarios will be used to drive hydrological simulations for two groundwater systems in north-west Europe, the Brévilles and the Geer, studied as part of the EU FP6 AQUATERRA project. In so doing, the impact of climate change on the challenges facing these aquifers can be assessed on relevant timescales and provide the means to answer wide-ranging questions relating to water quality and flow. The framework described here integrates two components which use projections of future change derived from regional climate models (RCMs) to generate stochastic climate series. Firstly, a new, transient version of the Neyman Scott Rectangular Pulses (NSRP) stochastic rainfall model is implemented to produce transient rainfall scenarios for the 21st century. Secondly, a novel, transient implementation of the Climatic Research Unit (CRU) daily weather generator is adopted, conditioned with daily rainfall series simulated by the NSRP model. This two-stage process is thus able to produce consistent transient series of rainfall, temperature and other variables. Both of these stages apply monthly change factors (CFs) derived from 13 RCM experiments from the PRUDENCE ensemble to current rainfall and temperature statistics respectively to project

  20. Managing Nuclear Waste: Options Considered

    SciTech Connect

    DOE

    2002-05-02

    Starting in the 1950s, U.S. scientists began to research ways to manage highly radioactive materials accumulating at power plants and other sites nationwide. Long-term surface storage of these materials poses significant potential health, safety, and environmental risks. Scientists studied a broad range of options for managing spent nuclear fuel and high-level radioactive waste. The options included leaving it where it is, disposing of it in various ways, and making it safer through advanced technologies. International scientific consensus holds that these materials should eventually be disposed of deep underground in what is called a geologic repository. In a recent special report, the National Academy of Sciences summarized the various studies and emphasized that geologic disposal is ultimately necessary.

  1. Management scenarios for the Jordan River salinity crisis

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  2. Novel pervasive scenarios for home management: the Butlers architecture.

    PubMed

    Denti, Enrico

    2014-01-01

    Many efforts today aim to energy saving, promoting the user's awareness and virtuous behavior in a sustainability perspective. Our houses, appliances, energy meters and devices are becoming smarter and connected, domotics is increasing possibilities in house automation and control, and ambient intelligence and assisted living are bringing attention onto people's needs from different viewpoints. Our assumption is that considering these aspects together allows for novel intriguing possibilities. To this end, in this paper we combine home energy management with domotics, coordination technologies, intelligent agents, ambient intelligence, ubiquitous technologies and gamification to devise novel scenarios, where energy monitoring and management is just the basic brick of a much wider and comprehensive home management system. The aim is to control home appliances well beyond energy consumption, combining home comfort, appliance scheduling, safety constraints, etc. with dynamically-changeable users' preferences, goals and priorities. At the same time, usability and attractiveness are seen as key success factors: so, the intriguing technologies available in most houses and smart devices are exploited to make the system configuration and use simpler, entertaining and attractive for users. These aspects are also integrated with ubiquitous and pervasive technologies, geo-localization, social networks and communities to provide enhanced functionalities and support smarter application scenarios, hereby further strengthening technology acceptation and diffusion. Accordingly, we first analyse the system requirements and define a reference multi-layer architectural model - the Butlers architecture - that specifies seven layers of functionalities, correlating the requirements, the corresponding technologies and the consequent value-added for users in each layer. Then, we outline a set of notable scenarios of increasing functionalities and complexity, discuss the structure of the

  3. Novel pervasive scenarios for home management: the Butlers architecture.

    PubMed

    Denti, Enrico

    2014-01-01

    Many efforts today aim to energy saving, promoting the user's awareness and virtuous behavior in a sustainability perspective. Our houses, appliances, energy meters and devices are becoming smarter and connected, domotics is increasing possibilities in house automation and control, and ambient intelligence and assisted living are bringing attention onto people's needs from different viewpoints. Our assumption is that considering these aspects together allows for novel intriguing possibilities. To this end, in this paper we combine home energy management with domotics, coordination technologies, intelligent agents, ambient intelligence, ubiquitous technologies and gamification to devise novel scenarios, where energy monitoring and management is just the basic brick of a much wider and comprehensive home management system. The aim is to control home appliances well beyond energy consumption, combining home comfort, appliance scheduling, safety constraints, etc. with dynamically-changeable users' preferences, goals and priorities. At the same time, usability and attractiveness are seen as key success factors: so, the intriguing technologies available in most houses and smart devices are exploited to make the system configuration and use simpler, entertaining and attractive for users. These aspects are also integrated with ubiquitous and pervasive technologies, geo-localization, social networks and communities to provide enhanced functionalities and support smarter application scenarios, hereby further strengthening technology acceptation and diffusion. Accordingly, we first analyse the system requirements and define a reference multi-layer architectural model - the Butlers architecture - that specifies seven layers of functionalities, correlating the requirements, the corresponding technologies and the consequent value-added for users in each layer. Then, we outline a set of notable scenarios of increasing functionalities and complexity, discuss the structure of the

  4. The mixed waste management facility

    SciTech Connect

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

  5. Technology Roadmapping for Waste Management

    SciTech Connect

    Bray, O.

    2003-02-26

    Technology roadmapping can be an effective strategic technology planning tool. This paper describes a process for customizing a generic technology roadmapping process. Starting with a generic process reduces the learning curve and speeds up the roadmap development. Similarly, starting with a generic domain model provides leverage across multiple applications or situations within the domain. A process that combines these two approaches facilitates identifying technology gaps and determining common core technologies that can be reused for multiple applications or situations within the domain. This paper describes both of these processes and how they can be integrated. A core team and a number of technology working groups develop the technology roadmap, which includes critical system requirements and targets, technology areas and metrics for each area, and identifies and evaluates possible technology alternatives to recommend the most appropriate ones to pursue. A generalized waste management model, generated by considering multiple situations or applications in terms of a generic waste management model, provides the domain requirements for the technology roadmapping process. Finally, the paper discusses lessons learns from a number of roadmapping projects.

  6. Calculation of the proportion of reactive waste for hydrogen ignition scenario

    SciTech Connect

    Gao, Feng; Heasler, P.G.

    1997-04-01

    This study was conducted as outlined in NHC Letter of Instruction 9751330 dated February 247 1997 and entitled {open_quotes}Analysis by Pacific Northwest National Laboratory to Support a Safety Assessment for Rotary Mode Core Sampling in Flammable Gas Watchlist Tanks{close_quotes}. As prescribed in this letter, the results of this study were provided to Los Alamos National Laboratory (LANL) to revise the safety assessment document. Sampling Hanford tanks with a rotary drill could result in a drill-bit overheating accident which could ignite flammable gases present in the tanks. According to calculations, an over-heated drill bit could not get hot enough to ignite the hydrogen directly. However, an overheated drill bit could ignite saltcake waste containing high concentrations of organics, and a local organics burn would achieve sufficient temperature to ignite flammable gas present in the waste. This report estimates one quantity required to evaluate this particular accident scenario; the fraction of reactive waste in the tank waste. Reactive waste is waste that contains sufficient organic carbon and a low enough moisture content to ignite when in contact with an over-heated drill bit. This report presents a methodology to calculate the proportion of reactive waste for the 100 series tanks, using sampling data from tank characterization studies. The tanks are ranked according to their reactive waste proportions, and confidence limits are assigned to the estimates.

  7. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations' waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  8. Y-12 Waste Management Division Process Waste Assessment (PWA) report

    SciTech Connect

    Not Available

    1992-01-01

    The Process Waste Assessment (PWA) methodology used by the Martin Marietta Energy Systems, Inc. (Energy Systems) Y-12 Waste Management Division (WMD) was based on the US Department of Energy (DOE) Model Process Waste Assessment Plan, which in turn, was based on the US Environmental Protection Agency, (US EPA) Waste Minimization Opportunity Assessment Manual but incorporated modifications suggested by various DOE production facilities. The DOE PWA plan methodology was slightly modified to meet the differing needs of WMD because the model was directed toward production operations versus waste treatment, storage, and disposal operations. The objective of this PWA was to compile information about the WMD operations and processes that transport, treat, store, and dispose of waste streams generated by other Y-12 organizations and WMD. Data were also collected on WMD operating procedures and WMD waste streams as well as other Y-12 organizations` waste streams managed. The assessment consisted of five primary steps: organization of the WMD PWA Team and subteams, assessment of WMD operations and waste streams, development and evaluation of waste minimization options, compilation, review, and publication of the PWA report and supporting data, and implementation of waste minimization options.

  9. Solid Waste Management in Recreational Forest Areas.

    ERIC Educational Resources Information Center

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  10. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  11. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  12. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  13. Solid Waste Management Practices in EBRP Schools.

    ERIC Educational Resources Information Center

    Mann, Nadine L.

    1994-01-01

    A Louisiana school district has made tremendous progress toward developing and implementing an environmentally friendly solid waste management program. Packaging changes in school food service, newspaper and aluminum can recycling, and composting of leaf and yard waste have contributed to reduced waste sent to the local landfill. (MLF)

  14. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristic of hazardous waste identified in 40 CFR part 261, subpart C: (A) Mercury or clean-up residues... generator of the mercury, residues, and/or other waste and must manage it in compliance with 40 CFR part 262... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic...

  15. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it must be managed in compliance with all applicable requirements of 40 CFR parts 260... is subject to 40 CFR part 262. (ii) If the electrolyte or other solid waste is not hazardous,...

  16. Management of small producers waste in Slovenia

    SciTech Connect

    Fabjan, Marija; Rojc, Joze

    2007-07-01

    Available in abstract form only. Full text of publication follows: Radioactive materials are extensively used in Slovenia in various fields and applications in medicine, industry and research. For the managing of radioactive waste raised from these establishments the Agency for radwaste management (ARAO) was authorised as the state public service of managing the radioactive waste in 1999. The public service of the radioactive waste of small producers in Slovenia is performed in line with the Governmental decree on the Mode, Subject and Terms of Performing the Public Service of Radioactive Waste Management (Official Gazette RS No. 32/99). According to the Decree the scope of the public service includes: 'collection of the waste from small producers at the producers' premises and its transportation to the storage facility for treatment, storing and disposal', 'acceptance of radioactive waste in case of emergency situation on the premises, in case of transport accidents or some other accidents', 'acceptance of radioactive waste in cases when the producer is unknown', 'management (collection, transport, pre-treatment, storing, together with QA and radiation protection measures) of radioactive waste', 'treatment and conditioning of radioactive waste for storing and disposal', and 'operating of the Central Interim Storage for LIL waste from small producers'. After taking over the performing of the public service, ARAO first started with the project for refurbishment and modernization of the Central Interim Storage Facility, including improvements of the storage utilization and rearrangement of the stored waste. (authors)

  17. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  18. Optimal waste-to-energy strategy assisted by GIS For sustainable solid waste management

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Hashim, H.

    2014-02-01

    Municipal solid waste (MSW) management has become more complex and costly with the rapid socio-economic development and increased volume of waste. Planning a sustainable regional waste management strategy is a critical step for the decision maker. There is a great potential for MSW to be used for the generation of renewable energy through waste incineration or landfilling with gas capture system. However, due to high processing cost and cost of resource transportation and distribution throughout the waste collection station and power plant, MSW is mostly disposed in the landfill. This paper presents an optimization model incorporated with GIS data inputs for MSW management. The model can design the multi-period waste-to-energy (WTE) strategy to illustrate the economic potential and tradeoffs for MSW management under different scenarios. The model is capable of predicting the optimal generation, capacity, type of WTE conversion technology and location for the operation and construction of new WTE power plants to satisfy the increased energy demand by 2025 in the most profitable way. Iskandar Malaysia region was chosen as the model city for this study.

  19. Waste Management Facilities Cost Information Report

    SciTech Connect

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  20. The Orbital Workshop Waste Management Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This image is a wide-angle view of the Orbital Workshop waste management compartment. The waste management facilities presented a unique challenge to spacecraft designers. In addition to collection of liquid and solid human wastes, there was a medical requirement to dry all solid human waste products and to return the residue to Earth for examination. Liquid human waste (urine) was frozen for return to Earth. Total quantities of each astronaut's liquid and solid wastes were precisely measured. Cabin air was drawn into the toilet, shown on the wall at right in this photograph, and over the waste products to generate a flow of the waste in the desired direction. The air was then filtered for odor control and antiseptic purposes prior to being discharged back into the cabin.

  1. RCRA COVER SYSTEMS FOR WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The closure of waste management facilities, whether Subtitle C, Subtitle D or CERCLA, requires consideration of site-specific information, the Federal regulations and applicability of state regulations and the liquids management strategy. This paper will present the current EPA ...

  2. Waste management units: Savannah River Site

    SciTech Connect

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  3. Electronic waste management approaches: An overview

    SciTech Connect

    Kiddee, Peeranart; Naidu, Ravi; Wong, Ming H.

    2013-05-15

    Highlights: ► Human toxicity of hazardous substances in e-waste. ► Environmental impacts of e-waste from disposal processes. ► Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) to and solve e-waste problems. ► Key issues relating to tools managing e-waste for sustainable e-waste management. - Abstract: Electronic waste (e-waste) is one of the fastest-growing pollution problems worldwide given the presence if a variety of toxic substances which can contaminate the environment and threaten human health, if disposal protocols are not meticulously managed. This paper presents an overview of toxic substances present in e-waste, their potential environmental and human health impacts together with management strategies currently being used in certain countries. Several tools including Life Cycle Assessment (LCA), Material Flow Analysis (MFA), Multi Criteria Analysis (MCA) and Extended Producer Responsibility (EPR) have been developed to manage e-wastes especially in developed countries. The key to success in terms of e-waste management is to develop eco-design devices, properly collect e-waste, recover and recycle material by safe methods, dispose of e-waste by suitable techniques, forbid the transfer of used electronic devices to developing countries, and raise awareness of the impact of e-waste. No single tool is adequate but together they can complement each other to solve this issue. A national scheme such as EPR is a good policy in solving the growing e-waste problems.

  4. Waste to energy – key element for sustainable waste management

    SciTech Connect

    Brunner, Paul H. Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  5. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    SciTech Connect

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  6. Environmental Education: Compendium for Integrated Waste Management.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    This compendium is a tool for bringing waste management education into classrooms. Curriculum materials gathered from across the country were reviewed by California's top environmental educators, both for correlation with the state's educational frameworks and for accuracy and completeness of waste management information. Materials that cover…

  7. Waste management facilities cost information for transuranic waste

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  8. Waste Management Facilities cost information for low-level waste

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  9. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  10. Management of medical waste in Tanzanian hospitals.

    PubMed

    Manyele, S V; Anicetus, H

    2006-09-01

    A survey was conducted to study the existing medical waste management (MWM) systems in Tanzanian hospitals during a nationwide health-care waste management-training programme conducted from 2003 to 2005. The aim of the programme was to enable health workers to establish MWM systems in their health facilities aimed at improving infection prevention and control and occupational health aspects. During the training sessions, a questionnaire was prepared and circulated to collect information on the MWM practices existing in hospitals in eight regions of the Tanzania. The analysis showed that increased population and poor MWM systems as well as expanded use of disposables were the main reasons for increased medical wastes in hospitals. The main disposal methods comprised of open pit burning (50%) and burying (30%) of the waste. A large proportion (71%) of the hospitals used dust bins for transporting waste from generation points to incinerator without plastic bags. Most hospitals had low incineration capacity, with few of them having fire brick incinerators. Most of the respondents preferred on-site versus off-site waste incineration. Some hospitals were using untrained casual labourers in medical waste management and general cleanliness. The knowledge level in MWM issues was low among the health workers. It is concluded that hospital waste management in Tanzania is poor. There is need for proper training and management regarding awareness and practices of medical waste management to cover all carders of health workers in the country.

  11. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    SciTech Connect

    Banar, Mufide Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-15

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

  12. Life cycle assessment of solid waste management options for Eskisehir, Turkey.

    PubMed

    Banar, Mufide; Cokaygil, Zerrin; Ozkan, Aysun

    2009-01-01

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management. PMID:18280731

  13. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann

    1992-03-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  14. Hazardous waste management and pollution prevention

    SciTech Connect

    Chiu, Shen-yann.

    1992-01-01

    The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

  15. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe. PMID:27067099

  16. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe.

  17. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    NASA Astrophysics Data System (ADS)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  18. Management of infectious waste by US hospitals.

    PubMed

    Rutala, W A; Odette, R L; Samsa, G P

    In July 1987 and January 1988, forty-six percent (441/955) of randomly selected US hospitals responded to a questionnaire intended to identify their waste disposal practices. Survey responses were received from hospitals in 48 states. United States hospitals generated a median of 6.93 kg of hospital waste per patient per day and infectious waste made up 15% of the total hospital waste. Most hospitals (greater than 90%) considered blood, microbiology, "sharps," communicable disease isolation, pathology, autopsy, and contaminated animal carcass waste as infectious. Other sources of hospital waste that were commonly (greater than 80%) designated infectious were surgical, dialysis, and miscellaneous laboratory waste. The infectious waste was normally (80%) treated via incineration or steam sterilization before disposal, whereas noninfectious waste was discarded directly in a sanitary landfill. Eight-two percent of these US hospitals are discarding blood, microbiology, sharps, pathology, and contaminated animal carcass waste in accordance with the Centers for Disease Control's recommendations, while the compliance rate for the Environmental Protection Agency's recommendations (excluding optional waste) is 75%. No hospital could identify an infection problem (excluding needle-stick injuries) that was attributable to the disposal of infectious waste. While the management of infectious waste by US hospitals is generally consistent with the Centers for Disease Control's guidelines, many hospitals employ overly inclusive definitions of infectious waste.

  19. Federal facilities compliance act waste management

    SciTech Connect

    Bowers, J; Gates-Anderson, D; Hollister, R; Painter, S

    1999-07-06

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal.

  20. Biomedical waste management operating plan. Revision C

    SciTech Connect

    Not Available

    1996-02-14

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. Several regulations, both at the federal and state level, govern management (i.e., handling, storage, transport, treatment, and disposal) of solid or liquid waste which may present a threat of infection to humans. This waste, called infectious, biomedical, biohazardous, or biological waste, generally includes non-liquid human tissue and body parts; laboratory waste which contains human disease-causing agents; discarded sharps; human blood, blood products, and other body fluids. The information that follows outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management.

  1. Biomedical waste management operating plan. Revision D

    SciTech Connect

    Chivington, G.K.

    1997-03-01

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. This information outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management. Several government agencies recognized the need for regulations which prescribe safeguards to protect workers and the public against hazards associated with exposure to blood and certain body fluids potentially containing bloodborne pathogens. This information will assist employers and employees in understanding and complying with the applicable regulations.

  2. Biomedical waste management operating plan. Revision E

    SciTech Connect

    Chivington, G.K.

    1997-04-01

    Recent national incidents involving medical and/or infectious wastes indicated the need for tighter control of medical wastes. Within the last five years, improper management of medical waste resulted in the spread of disease, reuse of needles by drug addicts, and the closing of large sections of public beaches due to medical waste that washed ashore from ocean disposal. This information outlines and summarizes the general requirements of each standard or rule applicable to biohazardous waste management. In addition, it informs employees of risks associated with biohazardous waste management. Several government agencies recognized the need for regulations which prescribe safeguards to protect workers and the public against hazards associated with exposure to blood and certain body fluids potentially containing bloodborne pathogens. This information will assist employers and employees in understanding and complying with the applicable regulations.

  3. Innovative systems for sustainable nuclear energy generation and waste management

    NASA Astrophysics Data System (ADS)

    Loiseaux, Jm; David, S.

    2006-05-01

    The limited amount of fossil resources, the impact of green-house gas emissions on the world climate, the rising demand of primary energy projected to 2050, lead to a potentially critical situation for the world energy supply. The need for alternative (to fossil energies) massive energy production is evaluated to 10 Gtoe. The potential of Nuclear Energy generation at the level of 5 Gtoe is examined. Such a sustainable production can only be met by a breeder reactor fleet for which a deployment scenario is described with the associated constraints. Waste management is discussed in connection with different nuclear energy development scenarios according to the point in time when breeder reactors are started. At the world level, it appears that the optimal handling of today's wastes rests on an early decision to develop tomorrow's breeder reactors.

  4. Waste management in Guangdong cities: the waste management literacy and waste reduction preferences of domestic waste generators.

    PubMed

    Chung, Shan-Shan; Lo, Carlos W H

    2004-05-01

    A questionnaire survey was conducted in 2002 on 1365 households in two prefectural-level cities in the Pearl River Delta, Jiangmen and Zhongshan. Three groups of issues are covered in this paper: 1) waste management literacy, concerns, and public participation; 2) waste recycling practices and the potential for waste avoidance; and 3) public environmental literacy. This study confirms findings from previous surveys and provides new information on important issues such as imposing monetary charges on waste and environmental activities, littering, source separation programs (SSPs), and public participation and expectations in local waste management. Saving up recyclable materials for redemption in waste depots is commonly practiced in mainland China regardless of the level of development of a city, although at the household level, high-income families tend to place less value on the revenues to be gained from redemption than lower income groups do. Data from the previous and the present studies indicate that such voluntary but largely economically driven waste recovery behavior diverts at least 10% of the household waste from the waste stream. Although uncompensated SSP is less appealing in the two cities than compensated SSP, it was found that when the median per capita income of a city reaches RMB2000 per month, a high participation rate for uncompensated waste recovery is more likely to occur. Education and income levels are the chief factors affecting littering behavior and the potential for waste avoidance. Contrary to general belief, the local Chinese community is active in microwaste management. The concern, however, is over the inability of the grassroots bureaucracy to deal with rising expectations for waste collection services and neighborhood cleanliness.

  5. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles.

  6. Greenhouse gas emissions of waste management processes and options: A case study.

    PubMed

    de la Barrera, Belen; Hooda, Peter S

    2016-07-01

    Increasing concern about climate change is prompting organisations to mitigate their greenhouse gas emissions. Waste management activities also contribute to greenhouse gas emissions. In the waste management sector, there has been an increasing diversion of waste sent to landfill, with much emphasis on recycling and reuse to prevent emissions. This study evaluates the carbon footprint of the different processes involved in waste management systems, considering the entire waste management stream. Waste management data from the Royal Borough of Kingston upon Thames, London (UK), was used to estimate the carbon footprint for its (Royal Borough of Kingston upon Thames) current source segregation system. Second, modelled full and partial co-mingling scenarios were used to estimate carbon emissions from these proposed waste management approaches. The greenhouse gas emissions from the entire waste management system at Royal Borough of Kingston upon Thames were 12,347 t CO2e for the source-segregated scenario, and 11,907 t CO2e for the partial co-mingled model. These emissions amount to 203.26 kg CO2e t(-1) and 196.02 kg CO2e t(-1) municipal solid waste for source-segregated and partial co-mingled, respectively. The change from a source segregation fleet to a partial co-mingling fleet reduced the emissions, at least partly owing to a change in the number and type of vehicles. PMID:27236164

  7. Appropriate waste management for developing countries

    SciTech Connect

    Curi, K.

    1985-01-01

    This First International symposium presents information on the following topics: environmental technology, environmental management, appropriate sanitation technology, development of low-waste and waste-free technologies, reliability engineering, recycling of wastes of production and consumption, biological treatment of urban and industrial effluents, surface characteristics of biological solids, sludge methods, treatment of piggery wastes, sewage derived methane as a vehicle fuel, anaerobic treatment of olive oil wastewater, and treatment of wastewater from the Egyptian canning industry. Other topics of discussion include: purification of refinery wastes by means of flocculation with ferric chloride, current issues in hazardous chemical waste disposal, the use of plastic outfalls as a low-cost waste disposal alternative, and retentivity of copper from waste effluents.

  8. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    SciTech Connect

    Boldrin, Alessio; Andersen, Jacob K.; Christensen, Thomas H.

    2011-07-15

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categories and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.

  9. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H

    2011-07-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. PMID:21316210

  10. Management of the Mediterranean Coast in Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Conte, D.; Scarascia, L.; Sanchez-Arcilla, A.; Sierra, J. P.; Mosso, C.; Hinkel, J.; Vafeidis, A.

    2015-12-01

    Model projections can provide a rich information on the hazards posed by marine storminess on coastal areas and their evolution in climate change scenarios. When addressing coastal protection issues is however necessary to consider simultaneously different factors, that are usually separately computed, such as sea level rise, storm surges and ocean waves and adopt an approach accounting for their superposition. Further, this information need to be combined with that on the vulnerability of the coastal areas, their morphology and the location of harbors and defenses. This study shows how to use multi-factor projections and geographical information to identify critical parts of the coastline and to suggest to policymaker where to invest resources at country and regional scale. Results are applied to the Mediterranean coastline. Impacts on beaches (e.g. erosion), harbors (e.g. overtopping), human settlements (e.g., flood damage) and their management through enhanced coastal defenses are discussed. This study is part of the RISES-AM project (FP7-EU-603396).

  11. Waste to energy--key element for sustainable waste management.

    PubMed

    Brunner, Paul H; Rechberger, Helmut

    2015-03-01

    Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.

  12. Solid waste management in Croatia in response to the European Landfill Directive.

    PubMed

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy.

  13. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation. PMID:20924666

  14. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill.

    PubMed

    Abduli, M A; Naghib, Abolghasem; Yonesi, Mansoor; Akbari, Ali

    2011-07-01

    As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact comparison between the current solid waste management (MSW) strategies: (1) landfill, and (2) composting plus landfill. Life cycle assessment (LCA) was used to compare these scenarios for MSW in Tehran, Iran. The Eco-Indicator 99 is applied as an impact assessment method considering surplus energy, climate change, acidification, respiratory effect, carcinogenesis, ecotoxicity and ozone layer depletion points of aspects. One ton of municipal solid waste of Tehran was selected as the functional unit. According to the comparisons, the composting plus landfill scenario causes less damage to human health in comparison to landfill scenario. However, its damages to both mineral and fossil resources as well as ecosystem quality are higher than the landfill scenario. Thus, the composting plus landfill scenario had a higher environmental impact than landfill scenario. However, an integrated waste management will ultimately be the most efficient approach in terms of both environmental and economic benefits. In this paper, a cost evaluation shows that the unit cost per ton of waste for the scenarios is 15.28 and 26.40 US$, respectively. Results show landfill scenario as the preferable option both in environmental and economic aspects for Tehran in the current situation.

  15. Quantifying uncertainty in LCA-modelling of waste management systems

    SciTech Connect

    Clavreul, Julie; Guyonnet, Dominique; Christensen, Thomas H.

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Uncertainty in LCA-modelling of waste management is significant. Black-Right-Pointing-Pointer Model, scenario and parameter uncertainties contribute. Black-Right-Pointing-Pointer Sequential procedure for quantifying uncertainty is proposed. Black-Right-Pointing-Pointer Application of procedure is illustrated by a case-study. - Abstract: Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

  16. [Health services waste management: a biosafety issue].

    PubMed

    Garcia, Leila Posenato; Zanetti-Ramos, Betina Giehl

    2004-01-01

    The subject of "health services waste" is controversial and widely discussed. Biosafety, the principles of which include safeguarding occupational health, community health, and environmental safety, is directly involved in the issue of medical waste management. There are controversies as to the risks posed by medical waste, as evidenced by diverging opinions among authors: some advocate severe approaches on the basis that medical waste is hazardous, while others contend that the potential for infection from medical waste is nonexistent. The Brazilian National Health Surveillance Agency (ANVISA) has published resolution RDC 33/2003 to standardize medical waste management nationwide. There is an evident need to implement biosafety procedures in this area, including heath care workers' training and provision of information to the general population.

  17. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  18. Packaging waste prevention activities: A life cycle assessment of the effects on a regional waste management system.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2015-09-01

    A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories.

  19. Packaging waste prevention activities: A life cycle assessment of the effects on a regional waste management system.

    PubMed

    Nessi, Simone; Rigamonti, Lucia; Grosso, Mario

    2015-09-01

    A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. PMID:26089188

  20. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  1. Hanford Site Waste Management Units Report

    SciTech Connect

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  2. Hanford Site Waste Management Units Report

    SciTech Connect

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  3. Hanford Site Waste Management Units Report

    SciTech Connect

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  4. LCA for household waste management when planning a new urban settlement.

    PubMed

    Slagstad, Helene; Brattebø, Helge

    2012-07-01

    When planning for a new urban settlement, industrial ecology tools like scenario building and life cycle assessment can be used to assess the environmental quality of different infrastructure solutions. In Trondheim, a new greenfield settlement with carbon-neutral ambitions is being planned and five different scenarios for the waste management system of the new settlement have been compared. The results show small differences among the scenarios, however, some benefits from increased source separation of paper and metal could be found. The settlement should connect to the existing waste management system of the city, and not resort to decentralised waste treatment or recovery methods. However, as this is an urban development project with ambitious goals for lifestyle changes, effort should be put into research and initiatives for proactive waste prevention and reuse issues.

  5. Hazardous waste management in the Pacific basin

    SciTech Connect

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G.; Carpenter, R.A.; Indriyanto, S.H.

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  6. Data collection and analysis in support of the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement waste management alternatives

    SciTech Connect

    Coley, R.F.; Avci, H.I.; Habegger, L.J.

    1994-03-01

    This paper is a report on work in progress in support of the US Department of Energy Environmental Restoration and Waste Management (EM) Programmatic Environmental Impact Statement (PEIS). Argonne National Laboratory (ANL) has been providing technical support in the areas of waste characterization; waste treatment, storage, and disposal (TSD) facility descriptions (developed jointly with EG&G, Idaho); analysis of potential accidents at TSD facilities; and waste transportation risk assessment. Support efforts encompass the following six waste types: high-level waste; transuranic waste; low-level waste; greater-than Class-C low-level waste; low-level mixed waste; and hazardous waste. Treatment, storage, and disposal facility descriptions cover the following parameters: resource requirements, cost, staffing, capacity, by-products, and effluents. The variations in these parameters effected by the proposed alternatives are estimated. Selection of proposed initiating events, characterization of source terms, and descriptions of scenarios are covered in the accident analysis portion of the ANL work. The transportation risk assessment portion includes both off-site and on-site transportation of both radioactive and hazardous wastes for all waste management alternatives under consideration in the EM PEIS.

  7. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 3 2013-10-01 2013-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a basis for tracking USAP wastes, and to facilitate studies aimed at evaluating the environmental...

  8. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 3 2012-10-01 2012-10-01 false Waste management for the USAP. 671.13 Section 671... WASTE REGULATION Waste Management § 671.13 Waste management for the USAP. (a) In order to provide a basis for tracking USAP wastes, and to facilitate studies aimed at evaluating the environmental...

  9. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  10. Managing America`s solid waste

    SciTech Connect

    Not Available

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  11. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that meets the requirements of 40 CFR 262.34; (iv) Immediately transfers any mercury resulting from... manage it in compliance with 40 CFR part 262. (iii) If the mercury, residues, and/or other solid waste is... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic...

  12. Municipal Solid Waste - Sustainable Materials Management

    EPA Science Inventory

    The MSW DST was initially developed in the 1990s and has evolved over the years to better account for changes in waste management practices, waste composition, and improvements in decision support tool design and functionality. The most recent version of the tool is publicly ava...

  13. Fossil energy waste management. Technology status report

    SciTech Connect

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  14. Toward integrated design of waste management technologies

    SciTech Connect

    Carnes, S.A.; Wolfe, A.K.

    1993-11-01

    What technical, economic and institutional factors make radioactive and/or hazardous waste management technologies publicly acceptable? The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R&D might be revised to enhance the acceptability of alternative waste management technologies. Technology development must attend to the full range of technology characteristics (technical, engineering, physical, economic, health, environmental, and socio-institutional) relevant to diverse stakeholders. ORNL`s efforts in recent years illustrate some attempts to accomplish these objectives or, at least, to build bridges toward the integrated design of waste management technologies.

  15. Management of hazardous medical waste in Croatia

    SciTech Connect

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  16. Radioactive waste management in the former USSR

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  17. AVMA guide for veterinary medical waste management.

    PubMed

    Brody, M D

    1989-08-15

    Lawmakers have enacted a variety of laws and regulations to ensure proper disposal of certain potentially infectious or otherwise objectionable waste. The veterinary medical profession supports scientifically based regulations that benefit public health. In 1988, Congress passed the Medical Waste Tracking Act, a federal program that mandates tracking certain regulated waste. Several types of waste generated in the typical clinical veterinary medical practice are considered regulated veterinary medical waste. Discarded needles, syringes, and other sharps; vaccines and vials that contained certain live or attenuated vaccines; cultures and stocks of infectious agents and culture plates; research animals that were exposed to agents that are infectious to human beings and their associated waste; and other animal waste that is known to be potentially harmful to human beings should be handled as regulated veterinary medical waste. Regulated veterinary medical waste should be handled with care. It should be decontaminated prior to disposal. The most popular, effective methods of decontamination are steam sterilization (autoclaving) and incineration. Chemical decontamination is appropriate for certain liquid waste. Waste should be packaged so that it does not spill. Sharps require rigid puncture- and leak-resistant containers that can be permanently sealed. Regulated veterinary medical waste that has not been decontaminated should be labeled with the universal biohazard symbol. Generators retain liability for waste throughout the entire disposal process. Therefore, it is essential to ensure that waste transporters and disposal facilities comply with state and federal requirements. Veterinary practices should maintain a written waste management program and accurate records of regulated veterinary medical waste disposal. Contingency planning and staff training are other important elements of a veterinary medical waste management program. The guide includes a model veterinary

  18. Financial implications of compliance with EU waste management goals: Feasibility and consequences in a transition country.

    PubMed

    Mihajlović, Višnja; Vujić, Goran; Stanisavljević, Nemanja; Batinić, Bojan

    2016-09-01

    This paper outlines the approach that can assist decision makers to have first preliminary insights regarding costs of complying with requested European Union municipal waste management goals in transition and developing countries. Serbia, as a joining member of European Union, must confront itself with the challenges resulting from European Union waste management directives. Implementation of waste separation units and the construction of sanitary landfills is already in place in Serbia. However, new waste management practice will need additional transformation and will require implementation of waste treatment technologies for additional management of generated waste. Implementation of analyzed best available technology/techniques for waste treatment can support the country's effort in reaching the policy goals. However, the question here is how much will the implementation of additional waste treatments influence the overall waste management costs? Results of the scenario's financial viability show that composting and sanitary landfill are the most viable solutions regarding the costs, even under increasing discount rates. Although different discount rates influence the overall gate fees and net present values, the level of affordability for different scenarios remains the same. PMID:27357561

  19. Financial implications of compliance with EU waste management goals: Feasibility and consequences in a transition country.

    PubMed

    Mihajlović, Višnja; Vujić, Goran; Stanisavljević, Nemanja; Batinić, Bojan

    2016-09-01

    This paper outlines the approach that can assist decision makers to have first preliminary insights regarding costs of complying with requested European Union municipal waste management goals in transition and developing countries. Serbia, as a joining member of European Union, must confront itself with the challenges resulting from European Union waste management directives. Implementation of waste separation units and the construction of sanitary landfills is already in place in Serbia. However, new waste management practice will need additional transformation and will require implementation of waste treatment technologies for additional management of generated waste. Implementation of analyzed best available technology/techniques for waste treatment can support the country's effort in reaching the policy goals. However, the question here is how much will the implementation of additional waste treatments influence the overall waste management costs? Results of the scenario's financial viability show that composting and sanitary landfill are the most viable solutions regarding the costs, even under increasing discount rates. Although different discount rates influence the overall gate fees and net present values, the level of affordability for different scenarios remains the same.

  20. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  1. Tank waste remediation system configuration management plan

    SciTech Connect

    Vann, J.M.

    1998-01-08

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

  2. Mixed Waste Focus Area program management plan

    SciTech Connect

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  3. Multiple system modelling of waste management.

    PubMed

    Eriksson, Ola; Bisaillon, Mattias

    2011-12-01

    Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  4. Evaluating water management scenarios to support habitat management for the Cape Sable seaside sparrow

    USGS Publications Warehouse

    Beerens, James M.; Romañach, Stephanie S.; McKelvy, Mark

    2016-01-01

    The endangered Cape Sable seaside sparrow (Ammodramus maritimus mirabilis) is endemic to south Florida and a key indicator species of marl prairie, a highly diverse freshwater community in the Florida Everglades. Maintenance and creation of suitable habitat is seen as the most important pathway to the persistence of the six existing sparrow subpopulations; however, major uncertainties remain in how to increase suitable habitat within and surrounding these subpopulations, which are vulnerable to environmental stochasticity. Currently, consistently suitable conditions for the Cape Sable seaside sparrow are only present in two of these subpopulations (B and E). The water management scenarios evaluated herein were intended to lower water levels and improve habitat conditions in subpopulation A and D, raise water levels to improve habitat conditions in subpopulations C and F, and minimize impacts to subpopulations B and E. Our objective in this analysis was to compare these scenarios utilizing a set of metrics (short- to long-time scales) that relate habitat suitability to hydrologic conditions. Although hydrologic outputs are similar across scenarios in subpopulation A, scenario R2H reaches the hydroperiod and depth suitability targets more than the other scenarios relative to ECB, while minimizing negative consequences to subpopulation E. However, although R2H hydroperiods are longer than those for ECB during the wet season in subpopulations C and F, depths during the breeding season are predicted to decrease in suitability (less than -50 cm) relative to existing conditions.

  5. Evaluating water management scenarios to support habitat management for the Cape Sable seaside sparrow

    USGS Publications Warehouse

    Beerens, James M.; Romañach, Stephanie S.; McKelvy, Mark

    2016-06-22

    The endangered Cape Sable seaside sparrow (Ammodramus maritimus mirabilis) is endemic to south Florida and a key indicator species of marl prairie, a highly diverse freshwater community in the Florida Everglades. Maintenance and creation of suitable habitat is seen as the most important pathway to the persistence of the six existing sparrow subpopulations; however, major uncertainties remain in how to increase suitable habitat within and surrounding these subpopulations, which are vulnerable to environmental stochasticity. Currently, consistently suitable conditions for the Cape Sable seaside sparrow are only present in two of these subpopulations (B and E). The water management scenarios evaluated herein were intended to lower water levels and improve habitat conditions in subpopulation A and D, raise water levels to improve habitat conditions in subpopulations C and F, and minimize impacts to subpopulations B and E. Our objective in this analysis was to compare these scenarios utilizing a set of metrics (short- to long-time scales) that relate habitat suitability to hydrologic conditions. Although hydrologic outputs are similar across scenarios in subpopulation A, scenario R2H reaches the hydroperiod and depth suitability targets more than the other scenarios relative to ECB, while minimizing negative consequences to subpopulation E. However, although R2H hydroperiods are longer than those for ECB during the wet season in subpopulations C and F, depths during the breeding season are predicted to decrease in suitability (less than -50 cm) relative to existing conditions.

  6. Geochemical survey of an illegal waste disposal site under a waste emergency scenario (Northwest Naples, Italy).

    PubMed

    Ferrara, L; Iannace, M; Patelli, A M; Arienzo, M

    2013-03-01

    Since the mid 1980s, Naples and the Campania region have suffered from the dumping of wastes into overfilled landfills. The aim was to characterise a former cave located in Roccarainola (Naples, Italy) for its eventual destination to a controlled landfill site. A detailed hydro-geochemical survey of the area was carried out through drilling of 14 boreholes and four monitoring wells. Samples of water, sediment and soil were analysed for heavy metals and organic contaminants from a dew pond placed in the middle of the cave. The underneath aquifer was also surveyed. The nature of gases emitted from the site was investigated. Results of the geognostic survey revealed the presence of huge volumes of composite wastes, approximately half a million of cubic metre, which accumulated up to a thickness of 25.6 m. In some points, wastes lie below the free surface level of the aquifer. The sampled material from the boreholes revealed levels of As, Cd, Cr, Cu, Hg, Pb, Sn, Tl and Zn exceeding the intervention legal limits. Outstanding loads of Cd, Pb and Zn were found, with levels exceeding of about 50, 100 and 1,870 times the limit. In several points, polycyclic aromatic hydrocarbon load was extremely high, 35 vs 1 mg kg(-1) of the threshold. The aquifer was also very heavily polluted by Cd, Cr-tot, Cu, Fe, Mn, Ni, Pb and Zn, with impressive high load of Cr and Mn, up to 250-370 times the limits. Hot gases up to 62 °C with presence of xylene and ethylbenzene were found. Results indicated that the site needs an urgent intervention of recovery to avoid compromising the surrounding areas and aquifers of the Campania plain. PMID:22766923

  7. Recent Advancements in Food Waste Management

    NASA Astrophysics Data System (ADS)

    Amin, Tawheed; Chhabra, Poonam; Bhat, Suman Vikas

    2012-09-01

    In the past few years, there has been a tremendous increase in food waste generation due to rapid urbanization and industrialization. Population is also increasing and is expected to reach 9.5 billion by 2050. Both of these factors have put an emphasis to employ novel techniques for management of waste generated so that waste generation could be reduced to a minimum or these wastes could be converted into some valuable products. Therefore, in this view much technological advancement has occurred in the recent past which has proved to be useful for combating this problem. In this review, a brief introduction to status of waste generation and novel methods for its management has been discussed.

  8. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  9. Urban waste management and the mobile challenge.

    PubMed

    Mavropoulos, Antonis; Tsakona, Maria; Anthouli, Aida

    2015-04-01

    Digital evolution and mobile developments are carving a new era that affects human behaviour and global governance. Interconnectivity and flow of information through various types of modern means create new opportunities for cooperation and ways to work. Waste management could not stay unaffected by these changes. New potentials are arising for the sector, offering a novel field for innovation, changing the way waste practices are applied. In this framework, mobile products and apps can become valuable tools for authorities, companies, civilians and other stakeholders, integrating these technologies in the battle for environmental protection, recycling, etc. This article examines the unexplored challenges of mobile apps to deliver sustainable waste management with emphasis on recycling and waste prevention performance, especially for emerging developing countries. It presents the opportunities that are involved in using mobile apps to improve both the systemic performance of a specific waste management system and the individual behaviour of the users. Furthermore, the article reviews the most important relevant literature and summarises the key findings of the recent research on mobile apps and human behaviour. Useful conclusions are drawn for both the content and the format of the mobile apps required for recycling and waste prevention. Finally, the article presents the most characteristic mobile apps that are already in place in the waste management sector.

  10. Innovative technologies for managing oil field waste.

    SciTech Connect

    Veil, J. A.; Environmental Assessment

    2003-09-01

    Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

  11. Municipal solid waste management strategies in Turkey.

    PubMed

    Turan, N Gamze; Coruh, Semra; Akdemir, Andaç; Ergun, Osman Nuri

    2009-01-01

    Municipal solid waste (MSW) is a major environmental problem in Turkey, as in many developing countries. Problems associated with municipal solid waste are difficult to address, but efforts towards more efficient collection and transportation and environmentally acceptable waste disposal continue in Turkey. Although strict regulations on the management of solid waste are in place, primitive disposal methods such as open dumping and discharge into surface water have been used in various parts of Turkey. This study presents a brief history of the legislative trends in Turkey for MSW management. The study also presents the MSW responsibility and management structure together with the present situation of generation, composition, recycling, and treatment. The results show that approximately 25 million ton of MSW are generated annually in Turkey. About 77% of the population receives MSW services. In spite of efforts to change open dumping areas into sanitary landfills and to build modern recycling and composting facilities, Turkey still has over 2000 open dumps.

  12. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    USGS Publications Warehouse

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  13. Sustainable waste management through end-of-waste criteria development.

    PubMed

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies. PMID:26690583

  14. Sustainable waste management through end-of-waste criteria development.

    PubMed

    Zorpas, Antonis A

    2016-04-01

    The Waste Framework Directive 2000/98 (WFD) contains specific requirements to define end-of-waste criteria (EWC). The main goal of EWC is to remove and eliminate the administrative loads of waste legislation for safe and high-quality waste materials, thereby facilitating and assisting recycling. The target is to produce effective with high quality of recyclables materials, promoting product standardization and quality and safety assurance, and improving harmonization and legal certainty in the recyclable material markets. At the same time, those objectives aim to develop a plan in order to improve the development and wider use of environmental technologies, which reduce pressure on environment and at the same time address the three dimensions of the Lisbon strategy: growth, jobs and environment. This paper presents the importance of EWC, and the approach of setting EWC as EWC affect several management systems as well as sustainable and clean technologies.

  15. Management of Biomedical Waste: An Exploratory Study

    PubMed Central

    Abhishek, K N; Suryavanshi, Harshal N; Sam, George; Chaithanya, K H; Punde, Prashant; Singh, S Swetha

    2015-01-01

    Background: Dental operatories pose a threat due to the high chances of infection transmission both to the clinician and the patients. Hence, management of dental waste becomes utmost importance not only for the health benefit of the dentist himself, but also people who can come into contact with these wastes directly or indirectly. The present study was conducted to find out the management of biomedical waste in private dental practice among 3 districts of Karnataka. Materials and Methods: The study population included 186 private practitioners in 3 districts of Karnataka (Coorg, Mysore, Hassan), South India. A pre-tested self-administered questionnaire was distributed to assess the knowledge and practices regarding dental waste management. Descriptive statistics was used to summarize the results. Results: Out of 186 study subjects, 71 (38%) were females and 115 (62%) were males. The maximum number of participants belonged to the age group of 28-33 years (29%). Undergraduate qualification was more (70%). 90 (48%) participants had an experience of 0-5 years. Chi-square analysis showed a highly significant association between participant who attended continuing dental education (CDE) program and their practice of dental waste management. Conclusion: Education with regards to waste management will help in enhancing practices regarding the same. In order to fill this vacuum CDE programs have to be conducted in pursuance to maintain health of the community. PMID:26435621

  16. OCRWM International Cooperation in Nuclear Waste Management

    SciTech Connect

    Jackson, R.; Levich, R.; Strahl, J.

    2002-02-27

    With the implementation of nuclear power as a major energy source, the United States is increasingly faced with the challenges of safely managing its inventory of spent nuclear materials. In 2002, with 438 nuclear power facilities generating electrical energy in 31 nations around the world, the management of radioactive material including spent nuclear fuel and high-level radioactive waste, is an international concern. Most of the world's nuclear nations maintain radioactive waste management programs and have generally accepted deep geologic repositories as the long-term solution for disposal of spent nuclear fuel and high-level radioactive waste. Similarly, the United States is evaluating the feasibility of deep geologic disposal at Yucca Mountain, Nevada. This project is directed by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM), which has responsibility for managing the disposition of spent nuclear fuel produced by commercial nuclear power facilities along with U.S. government-owned spent nuclear fuel and high-level radioactive waste. Much of the world class science conducted through the OCRWM program was enhanced through collaboration with other nations and international organizations focused on resolving issues associated with the disposition of spent nuclear fuel and high-level radioactive waste.

  17. Radioactive waste management complex low-level waste radiological composite analysis

    SciTech Connect

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  18. Management of chemical toxic wastes

    SciTech Connect

    Gold, L.

    1982-05-25

    Two regimes of vertical shaft furnace operation can be employed to slag encapsulate hazardous chemical wastes. One of these is similar to a method applicable to radioactive wastes, involving the pouring of hot molten slag from a coal reactor over the hazardous matter contained in a suitable designed crucible. The other method is especially appropriate for the treatment of chemical wastes that have become mixed with a great deal of soil or other diluent as must be handled as in the case of the love canal incident. It consists of feeding the contaminated solid mass into the coal reactor with a predetermined amount of coal and limestone that will still admit an adequate heat balance to generate a carefully tailored slag to incorporate the reacted waste feedstock.

  19. Accident analysis for transuranic waste management alternatives in the U.S. Department of Energy waste management program

    SciTech Connect

    Nabelssi, B.; Mueller, C.; Roglans-Ribas, J.; Folga, S.; Tompkins, M.; Jackson, R.

    1995-03-01

    Preliminary accident analyses and radiological source term evaluations have been conducted for transuranic waste (TRUW) as part of the US Department of Energy (DOE) effort to manage storage, treatment, and disposal of radioactive wastes at its various sites. The approach to assessing radiological releases from facility accidents was developed in support of the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS). The methodology developed in this work is in accordance with the latest DOE guidelines, which consider the spectrum of possible accident scenarios in the implementation of various actions evaluated in an EIS. The radiological releases from potential risk-dominant accidents in storage and treatment facilities considered in the EM PEIS TRUW alternatives are described in this paper. The results show that significant releases can be predicted for only the most severe and extremely improbable accidents sequences.

  20. Life cycle assessment of solid waste management strategies in a chlor-alkali production facility.

    PubMed

    Muñoz, Edmundo; Navia, Rodrigo

    2011-06-01

    The waste management of a chlor-alkali and calcium chloride industrial facility from southern Chile was the object of this study. The main solid waste materials generated in these processes are brine sediments and calcium chloride sediments, respectively. Both residues are mixed in the liquid phase and filtered in a press filter, obtaining a final low humidity solid waste, called 'mixed sediments', which is disposed of in an industrial landfill as non-hazardous waste. The aim of the present study was to compare by means of LCA, the current waste management option of the studied chlor-alkali facility, namely landfill disposal, with two new possible options: the reuse of the mixed sediments as mineral additive in compost and the use of brine sediments as an unconventional sorbent for the removal of heavy metals from wastewater. The functional unit was defined as 1 tonne of waste being managed. To perform this evaluation, software SimaPro 7.0 was used, selecting the Ecoindicator 99 and CML 2000 methodologies for impact evaluation. The obtained results indicate that the use of brine sediments as a novel material for the removal of heavy metals from wastewater (scenario 3) presented environmental benefits when compared with the waste management option of sediments landfilling (scenario 1). The avoided environmental loads, generated by the substitution of activated granular carbon and the removal of Cu and Zn from wastewater in the treatment process generated positive environmental impacts, enhancing the environmental performance of scenario 3. PMID:20699293

  1. Waste management news: Nalco unveils commitment to waste minimization

    SciTech Connect

    Not Available

    1989-12-01

    On September 27, 1989, Nalco Chemical Company held a press event in Detroit, Michigan, to announce the Company's growing commitment to waste minimization. The Nalco HEC Management Services Program was described as instrumental in the Company's efforts to provide waste minimization products and services to the automotive industry. The HEC Management Services Program is a unique waste minimization process. This program combines technology, sales and service in water treatment. The HEC Management Services Program uses an emulsion in place of conventional water/chemical paint spray booth programs. The emulsion is able to attract paint overspray, keep it in a liquid form, and prevent the resulting sludge from being sticky and tacky. This, in turn, improves paint spray booth efficiencies, negates the need for paint sludge landfilling and provides a clean, manageable system with minimal maintenance costs. With this program, spent emulsion is transported to RTR, Inc., a facility in Detroit, Michigan, designed exclusively for recycling HEC spent emulsion. The recovered oil/emulsion is returned to the spray booth as a recycled product while the paint solids and various solvents are processed as waste-derived fuels.

  2. Environmental Restoration and Waste Management: Strategic plan

    SciTech Connect

    Not Available

    1994-09-01

    The Brookhaven National Laboratory (BNL) site is currently divided into five major areas, Operable Units (OUs), and several Areas of Concern (AOCs), which are the focus of investigation and clean-up. The primary environmental concern is groundwater contamination and a major emphasis of the restoration activities is focused on this medium. Each year, BNL generates 60 tons of hazardous waste and 7,000 to 8,000 cubic feet of radioactive waste that result from research activities. These wastes are collected at a central location, packaged and shipped off site for disposal. The operations for Hazardous and Radioactive Waste Management are conducted in compliance with EPA and DOE regulations. BNL has continued to actively pursue means by which these wastes may be minimized. Activities in both the remediation and waste management arenas are intimately connected with the future vision of BNL. The long-range goal for remediation in conjunction with vigorous monitoring of BNL`s activities is to restore the site and maintain strong environmental controls. The goals of the waste minimization program include activities to find environmentally safe alternatives to materials currently in use. By careful planning, BNL will minimize the amount of all waste, including sanitary, that is generated on site.

  3. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  4. Energy aspects of solid waste management: Proceedings

    SciTech Connect

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  5. 1993 baseline solid waste management system description

    SciTech Connect

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  6. Boiler chemical cleaning waste management manual

    SciTech Connect

    Behrens, G.P.; Holcombe, L.J.; Owen, M.L.; Rohlack, L.A.; Stohs, M. )

    1992-08-01

    Boiler chemical cleaning waste is generated during power plant outages when the water-side of the boiler and condenser tubes are cleaned to remove built-up scale and corrosion products that reduce heat transfer efficiency. The cleaning agents are designed to remove scale and deposits; thus, the spent cleaning solutions contain dissolved and suspended metals such as iron and copper, with lesser amounts of chromium, magnesium, nickel and zinc. The alternatives for managing boiler chemical cleaning waste include strategies for minimizing the generation of the waste, pretreatment, physical/chemical treatment, ponding, evaporation in the boiler, contract disposal, and reuse in wet scrubbers. The selection of a particular management option will be influenced by the cleaning chemical used, tube metallurgy, environmental regulations, and particulars of the plant such as the facilities and equipment available for treatment and the plant physical layout. The continued evolution of air, water, and solid waste regulations will greatly influence the choices available for cleaning chemicals, vendors, and boiler cleaning waste management options. This manual presents cost information and detailed laboratory and field data on the options available for management of this waste stream.

  7. BRC waste management in Taiwan

    SciTech Connect

    Liu, T.D.S.

    1993-12-31

    The nuclear safety authority recently in its regulations proclaimed individual and collective dose limits. Accordingly, the guidelines for implementing the Below Regulatory Concern (BRC) concept has been developed by the Radwaste Administration. Recognizing the significance of implementing the BRC concept, the RWA completed a study on evaluation of the BRC implementation in Taiwan, in which the types and amounts of potential BRC waste were tabulated and costs for the disposal of LLRW and BRC wastes were also compared. The public acceptability of the BRC concept appears to be low in the wake of events which recently occurred at home and abroad. To dispose of BRC wastes on-site is believed to be a less conflicting alternative.

  8. Sustainability assessment and comparison of waste management systems: The Cities of Sofia and Niš case studies.

    PubMed

    Milutinović, Biljana; Stefanović, Gordana; Kyoseva, Vanya; Yordanova, Dilyana; Dombalov, Ivan

    2016-09-01

    Sustainability assessment of a waste management system is a very complex problem for numerous reasons. Firstly, it is a problem of environmental assessment, economic viability and social acceptability, and also a choice of the most practical waste treatment technique, taking into account all the specific areas in which a waste management system is implemented. For these reasons, among others, it is very important to benchmark, cooperate and exchange experiences in areas with similar characteristics. In this study, a comparison of waste management scenarios in the Cities of Niš and Sofia was performed. Based on the amount and composition of municipal solid waste, and taking into account local specifics (economic conditions, social acceptance, etc.), different scenarios were developed: landfilling without energy recovery, landfilling with energy recovery, mechanical-biological treatment, anaerobic digestion with biogas utilization and incineration with energy recovery. Scenario ranking was done using multi-criteria analysis and 12 indicators were chosen as the criteria. The obtained results show that the most sustainable scenario in both case studies is the mechanical-biological treatment (recycling, composting and Refuse Derived Fuel production). Having in mind that this scenario is the current waste management system in Sofia, these results can help decision-makers in the City of Niš in choosing a successful and sustainable waste management system.

  9. Waste Management Program. Technical progress report, October-December 1982

    SciTech Connect

    1983-07-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  10. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  11. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as those... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management guidelines....

  12. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  13. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  14. 40 CFR 60.35e - Waste management guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management guidelines. 60.35e... Hospital/Medical/Infectious Waste Incinerators § 60.35e Waste management guidelines. For approval, a State plan shall include the requirements for a waste management plan at least as protective as...

  15. Tailoring Green Infrastructure Implementation Scenarios based on Stormwater Management Objectives

    EPA Science Inventory

    Green infrastructure (GI) refers to stormwater management practices that mimic nature by soaking up, storing, and controlling onsite. GI practices can contribute reckonable benefits towards meeting stormwater management objectives, such as runoff peak shaving, volume reduction, f...

  16. Nuclear waste management. Quarterly progress report, January-March 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-06-01

    Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

  17. Definition of intrusion scenarios and example concentration ranges for the disposal of near-surface waste at the Hanford Site

    SciTech Connect

    Aaberg, R.L.; Kennedy, W.E. Jr.

    1990-10-01

    The US Department of Energy (DOE) is in the process of conducting performance assessments of its radioactive waste sites and disposal systems to ensure that public health and safety are protected, the environment is preserved, and that no remedial actions after disposal are required. Hanford Site low-level waste performance assessments are technical evaluations of waste sites or disposal systems that provide a basis for making decisions using established criteria. The purpose of this document is to provide a family of scenarios to be considered when calculating radionuclide exposure to individuals who may inadvertently intrude into near-surface waste disposal sites. Specific performance assessments will use modifications of the general scenarios described here to include additional site/system details concerning the engineering design, waste form, inventory, and environmental setting. This document also describes and example application of the Hanford-specific scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. 24 refs., 2 figs., 5 tabs.

  18. Integrated waste and water management system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  19. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  20. Environmental assessment of waste management in Greenland: current practice and potential future developments.

    PubMed

    Eisted, Rasmus; Christensen, Thomas H

    2013-05-01

    The majority of the waste in Greenland is disposed of in open dumps or incinerated in simple small-scale incinerators. There are relatively few environmental regulations that control the emissions of leachate, landfill gas and/or flue gases from incineration. Only some scrap metal and hazardous waste are collected separately and exported to Europe. The impacts from the current waste management system were modelled from a life-cycle perspective using the LCA-waste model EASEWASTE. Impacts with regard to global warming, acidification, etc. are small (a few hundred person-equivalents (PE) for a system serving 56 000 inhabitants), but significant environmental loads are caused by air emissions from the incinerators and leachate from the landfills. Several alternative management scenarios were modelled and results show that increased use of incineration, full utilization of the heat production for district heating and separation of hazardous waste probably could improve Greenland's waste management system. Segregation of recyclable materials as paper, cardboard and biowaste will do little to environmentally improve the waste management system due to loss of energy recovery from incineration and the long transport of the recyclables to markets. Export of waste to Denmark for incineration at modern waste incinerators with advanced flue gas cleaning could also be considered as a means to achieve better environmental performance of the waste management system.

  1. Municipal solid-waste management in Istanbul

    SciTech Connect

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  2. Multiple system modelling of waste management

    SciTech Connect

    Eriksson, Ola; Bisaillon, Mattias

    2011-12-15

    Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

  3. Advanced waste management technology evaluation

    NASA Technical Reports Server (NTRS)

    Couch, H.; Birbara, P.

    1996-01-01

    The purpose of this program is to evaluate the feasibility of steam reforming spacecraft wastes into simple recyclable inorganic salts, carbon dioxide and water. Model waste compounds included cellulose, urea, methionine, Igapon TC-42, and high density polyethylenes. These are compounds found in urine, feces, hygiene water, etc. The gasification and steam reforming process used the addition of heat and low quantities of oxygen to oxidize and reduce the model compounds.The studied reactions were aimed at recovery of inorganic residues that can be recycled into a closed biologic system. Results indicate that even at very low concentrations of oxygen (less than 3%) the formation of a carbonaceous residue was suppressed. The use of a nickel/cobalt reforming catalyst at reaction temperature of 1600 degrees yielded an efficient destruction of the organic effluents, including methane and ammonia. Additionally, the reforming process with nickel/cobalt catalyst diminished the noxious odors associated with butyric acid, methionine and plastics.

  4. Development and Application of Future Climate Scenarios for Natural Resource Management in Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.

    2015-12-01

    Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.

  5. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors

  6. Stakeholder analysis for industrial waste management systems.

    PubMed

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution.

  7. Popular democracy and waste management

    SciTech Connect

    Wallis, L.R.

    1986-01-01

    The US has moved from representative democracy to popular democracy and public scrutiny is unrelenting. Any hope of success on their part in resolving the nuclear waste question hinges on their ability to condition themselves to operate in a popular democracy environment. Those opposed to the siting of high- and low-level waste repositories have already developed a set of recurring themes: (1) the siting criteria are fatally flawed; (2) the criteria are not adequate; (3) the process is driven by politics not science; (4) unrealistic deadlines lead to dangerous shortcuts; (5) transportation experience is lacking; (6) the scientific community does not really know how to dispose of the wastes. They must continue to tell the public that if science has brought us problems, then the answer can be only more knowledge - not less. Failure by their profession to recognize that popular democracy is a fact and that nuclear issues need to be addressed in humanistic terms raises the question of whether America is philosophically suited for the expanded use of nuclear power in the future - or for that matter for leadership in the world of tomorrow.

  8. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  9. A COMPUTATIONAL FRAMEWORK FOR EVALUATION OF NPS MANAGEMENT SCENARIOS: ROLE OF PARAMETER UNCERTAINTY

    EPA Science Inventory

    Utility of complex distributed-parameter watershed models for evaluation of the effectiveness of non-point source sediment and nutrient abatement scenarios such as Best Management Practices (BMPs) often follows the traditional {calibrate ---> validate ---> predict} procedure. Des...

  10. Improving integrated waste management at the regional level: the case of Lombardia.

    PubMed

    Rigamonti, Lucia; Falbo, Alida; Grosso, Mario

    2013-09-01

    The article summarises the main results of the 'Gestione Rifiuti in Lombardia: Analisi del ciclo di vita' (Waste management in Lombardia region: Life cycle assessment; GERLA) project. Life cycle assessment (LCA) has been selected by Regione Lombardia as a strategic decision support tool in the drafting of its new waste management programme. The goal was to use the life cycle thinking approach to assess the current regional situation and thus to give useful strategic indications for the future waste management. The first phase of the study consisted of the LCA of the current management of municipal waste in the Lombardia region (reference year: 2009). The interpretation of such results has allowed the definition of four possible waste management scenarios for the year 2020, with the final goal being to improve the environmental performance of the regional system. The results showed that the current integrated waste management of Lombardia region is already characterised by good energy and environmental performances. However, there is still room for further improvement: actions based, on the one hand, on a further increase in recycling rates and, on the other hand, on a series of technological modifications, especially in food waste and residual waste management, can be undertaken to improve the overall system.

  11. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  12. U.S.A. national overview on waste management

    SciTech Connect

    Eighmy, T.T.; Kosson, D.S.

    1996-12-31

    In the United States, municipal solid waste (MSW) is principally regulated at the federal level by the Resource Conservation and Recovery Act of 1976 (RCRA), as amended by the Solid Waste Disposal Act of 1980 and the Hazardous and Solid Waste Amendment (HSWA) of 1984. A brief national overview of waste management in the United States is provided. More emphasis is given to trends and management of municipal solid waste (MSW) although some is also provided on hazardous wastes (HW). Specific information is provided on MSW characteristics and management, MSW waste minimization, thermal treatment of MSW, incineration residue management, and contaminated site remediation.

  13. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  14. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    SciTech Connect

    Not Available

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  15. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. PMID:25840735

  16. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.

  17. Environmental impact assessment of solid waste management in Beijing City, China

    SciTech Connect

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  18. Environmental impact assessment of solid waste management in Beijing City, China.

    PubMed

    Zhao, Yan; Christensen, Thomas H; Lu, Wenjing; Wu, Huayong; Wang, Hongtao

    2011-04-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City. PMID:21145723

  19. Environmental impact assessment of solid waste management in Beijing City, China.

    PubMed

    Zhao, Yan; Christensen, Thomas H; Lu, Wenjing; Wu, Huayong; Wang, Hongtao

    2011-04-01

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  20. An Exploration of Scenarios to Support Sustainable Land Management Using Integrated Environmental Socio-economic Models

    NASA Astrophysics Data System (ADS)

    Fleskens, L.; Nainggolan, D.; Stringer, L. C.

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes.

  1. An exploration of scenarios to support sustainable land management using integrated environmental socio-economic models.

    PubMed

    Fleskens, L; Nainggolan, D; Stringer, L C

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes.

  2. LCA for household waste management when planning a new urban settlement

    SciTech Connect

    Slagstad, Helene; Brattebo, Helge

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Household waste management of a new carbon neutral settlement. Black-Right-Pointing-Pointer EASEWASTE as a LCA tool to compare different centralised and decentralised solutions. Black-Right-Pointing-Pointer Environmental benefit or close to zero impact in most of the categories. Black-Right-Pointing-Pointer Paper and metal recycling important for the outcome. Black-Right-Pointing-Pointer Discusses the challenges of waste prevention planning. - Abstract: When planning for a new urban settlement, industrial ecology tools like scenario building and life cycle assessment can be used to assess the environmental quality of different infrastructure solutions. In Trondheim, a new greenfield settlement with carbon-neutral ambitions is being planned and five different scenarios for the waste management system of the new settlement have been compared. The results show small differences among the scenarios, however, some benefits from increased source separation of paper and metal could be found. The settlement should connect to the existing waste management system of the city, and not resort to decentralised waste treatment or recovery methods. However, as this is an urban development project with ambitious goals for lifestyle changes, effort should be put into research and initiatives for proactive waste prevention and reuse issues.

  3. Scientific Basis for Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Trask, Newell J.

    As a result of the Reagan administration's commitment to nuclear energy as a significant future energy source and of attempts by the 97th Congress to grapple with legislative aspects of the problem, increased attention has focused recently on the problem of safely disposing of nuclear waste. These proceedings of the Third Symposium on Nuclear Waste Management of the Materials Research Society provide insight into the status of investigations on the subject as of late 1980. As with volumes 1 and 2 of this series, the 77 contributions are all short progress reports of ongoing research with the emphasis fittingly on materials science. Readers who wish extensive background material on the problems of nuclear-waste management and disposal, details of specific sites, or overviews of the programs of research in this country and abroad will have to look elsewhere.

  4. Integrated solid waste management of Minneapolis, Minnesota

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

  5. Nuclear waste management. Quarterly progress report, October-December 1979

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-04-01

    Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

  6. Twelfth annual US DOE low-level waste management conference

    SciTech Connect

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  7. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Waste management plan. 60.55c Section...: Hospital/Medical/Infectious Waste Incinerators § 60.55c Waste management plan. The owner or operator of...

  8. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., glass, batteries, food waste, and metals (e.g., aluminum cans, metals-containing devices); segregation... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Waste management plan. 60.55c Section...: Hospital/Medical/Infectious Waste Incinerators § 60.55c Waste management plan. The owner or operator of...

  9. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  10. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  11. General survey of solid-waste management

    NASA Technical Reports Server (NTRS)

    Reese, T. G.; Wadle, R. C.

    1974-01-01

    Potential ways of providing solid-waste management for a building complex serviced by a modular integrated utility system (MIUS) were explored. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  12. Waste management project technical baseline description

    SciTech Connect

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  13. International High Level Nuclear Waste Management

    ERIC Educational Resources Information Center

    Dreschhoff, Gisela; And Others

    1974-01-01

    Discusses the radioactive waste management in Belgium, Canada, France, Germany, India, Italy, Japan, the United Kingdom, the United States, and the USSR. Indicates that scientists and statesmen should look beyond their own lifetimes into future centuries and millennia to conduct long-range plans essential to protection of future generations. (CC)

  14. Management of uncontrolled hazardous waste sites

    SciTech Connect

    Not Available

    1985-01-01

    This book is a compilation of papers presented at a conference on the management of uncontrolled hazardous waste sites. Papers were presented in the following topics: federal and state programs; sampling and monitoring; leaking tanks; in-situ treatment; site remediation; banner technology; storage/disposal; endangerment assessment; risk assessment techniques; and research and development.

  15. Solid Waste Management Planning--A Methodology

    ERIC Educational Resources Information Center

    Theisen, Hilary M.; And Others

    1975-01-01

    This article presents a twofold solid waste management plan consisting of a basic design methodology and a decision-making methodology. The former provides a framework for the developing plan while the latter builds flexibility into the design so that there is a model for use during the planning process. (MA)

  16. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  17. The mixed waste management facility. Monthly report

    SciTech Connect

    Streit, R.D.

    1995-07-01

    This report presents a project summary for the Mixed Waste Management facility from the Lawrence Livermore National Laboratory for June, 1995. Key developments were the installation of the MSO Engineering Development Unit (EDU) which is on schedule for operation in July, and the first preliminary design review. This report also describes budgets and includes a milestone log of activities.

  18. Satellite Power System (SPS) financial/management scenarios

    NASA Technical Reports Server (NTRS)

    Vajk, J. P.

    1978-01-01

    The possible benefits of a Satellite Power System (SPS) program, both domestically and internationally, justify detailed and imaginative investigation of the issues involved in financing and managing such a large-scale program. In this study, ten possible methods of financing a SPS program are identified ranging from pure government agency to private corporations. The following were analyzed and evaluated: (1) capital requirements for SPS; (2) ownership and control; (3) management principles; (4) organizational forms for SPS; (5) criteria for evaluation; (6) detailed description and preliminary evaluation of alternatives; (7) phased approaches; and (8) comparative evaluation. Key issues and observations and recommendations for further study are also presented.

  19. Predicting bird response to alternative management scenarios on a ranch in Campeche, Mexico

    USGS Publications Warehouse

    Wood, P.A.; Dawson, D.K.; Sauer, J.R.; Wilson, M.H.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We developed models to predict the potential response of wintering Neotropical migrant and resident bird species to alternative management scenarios, using data from point counts of birds along with habitat variables measured or estimated from remotely sensed data in a Geographic Information System. Expected numbers of occurrences at points were calculated for 100 species of birds, under current habitat conditions and under habitat conditions that would result from seven alternative management scenarios for Rancho Sandoval, a cattle ranch and private nature reserve in Campeche, Mexico. Most bird species of conservation concern would benefit from management scenarios that increase the amount of forest, but the highest priority resident species would not. To balance the somewhat conflicting habitat needs of these species and the concerns of ranch managers, we recommend that forest area and connectivity be increased, and pastures be maintained but more efficiently managed to support cattle and the priority resident and migrant birds that require open habitats.

  20. Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study.

    PubMed

    Bovea, M D; Ibáñez-Forés, V; Gallardo, A; Colomer-Mendoza, F J

    2010-11-01

    The aim of this study is to compare, from an environmental point of view, different alternatives for the management of municipal solid waste generated in the town of Castellón de la Plana (Spain). This town currently produces 207 ton of waste per day and the waste management system employed today involves the collection of paper/cardboard, glass and light packaging from materials banks and of rest waste at street-side containers. The proposed alternative scenarios were based on a combination of the following elements: selective collection targets to be accomplished by the year 2015 as specified in the Spanish National Waste Plan (assuming they are reached to an extent of 50% and 100%), different collection models implemented nationally, and diverse treatments of both the separated biodegradable fraction and the rest waste to be disposed of on landfills. This resulted in 24 scenarios, whose environmental behaviour was studied by applying the life cycle assessment methodology. In accordance with the ISO 14040-44 (2006) standard, an inventory model was developed for the following stages of the waste management life cycle: pre-collection (bags and containers), collection, transport, pre-treatment (waste separation) and treatment/disposal (recycling, composting, biogasification+composting, landfill with/without energy recovery). Environmental indicators were obtained for different impact categories, which made it possible to identify the key variables in the waste management system and the scenario that offers the best environmental behaviour. Finally, a sensitivity analysis was used to test some of the assumptions made in the initial life cycle inventory model.

  1. Hanford Site waste management and environmental restoration integration plan

    SciTech Connect

    Merrick, D.L.

    1990-04-30

    The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

  2. Recent Developments in Nuclear Waste Management in Canada

    SciTech Connect

    King, F.

    2002-02-27

    This paper describes recent developments in the field of nuclear waste management in Canada with a focus on management of nuclear fuel waste. Of particular significance is the April 2001 tabling in the Canadian House of Commons of Bill C-27, An Act respecting the long-term management of nuclear fuel waste. At the time of finalizing this paper (January 15, 2002), Bill C-27 is in Third Reading in the House of Commons and is expected to move to the Senate in February. The Nuclear Fuel Waste Act is expected to come into force later in 2002. This Act requires the three nuclear utilities in Canada owning nuclear fuel waste to form a waste management organization and deposit funds into a segregated fund for nuclear fuel waste long-term management. The waste management organization is then required to perform a study of long-term management approaches for nuclear fuel waste and submit the study to the federal government within three years. The federal government will select an approach for implementation by the waste management organization. The paper discusses the activities that the nuclear fuel waste owners currently have underway to prepare for the formation of the waste management organization. As background, the paper reviews the status of interim storage of nuclear fuel waste in Canada, and describes previous initiatives related to the development of a national strategy for nuclear fuel waste long-term management.

  3. Plasma reactor waste management systems

    NASA Technical Reports Server (NTRS)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  4. Waste Information Management System-2012 - 12114

    SciTech Connect

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D.

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has

  5. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ...) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... petitioned waste on human health and the environment. DATES: Comments must be received on or before...

  6. 75 FR 11002 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste..., Tennessee from the lists of hazardous wastes. This final rule responds to a petition submitted by Valero to delist F037 waste. The F037 waste is sediment generated in the Storm Water Basin. After careful...

  7. Public involvement in radioactive waste management decisions

    SciTech Connect

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  8. Design in Practice: Scenarios for Improving Management Education

    ERIC Educational Resources Information Center

    Schlenker, Lee; Chantelot, Sébastien

    2014-01-01

    Despite the increasing attention given to design in business, Design Thinking has had little impact on the quality of business school education. Building upon the foundations of long-standing critiques of management education and the potential for student-centric learning, the authors propose that the use of Design in Practice can significantly…

  9. Teaching Conflict Management Using a Scenario-Based Approach

    ERIC Educational Resources Information Center

    Callanan, Gerard A.; Perri, David F.

    2006-01-01

    In this article, the authors present a framework for the teaching of conflict management in college courses. The framework describes an experiential learning approach for helping individuals understand the influence of contextual factors in the selection of conflict handling strategy. It also includes a comparison of participants' choice of style,…

  10. Evaluation of Operations Scenarios for Managing the Big Creek Marsh

    NASA Astrophysics Data System (ADS)

    Wilson, Ian; Rahman, Masihur; Wychreschuk, Jeremy; Lebedyk, Dan; Bolisetti, Tirupati

    2013-04-01

    Wetland management in changing climate is important for maintaining sustainable ecosystem as well as for reducing the impact of climate change on the environment as wetlands act as natural carbon sinks. The Big Creek Marsh within the Essex County is a Provincially Significant Wetland (PSW) in Ontario, Canada. The marsh is approximately 900 hectares in area and is primarily fed by streamflow from the Big Creek Watershed. The water level of this wetland has been managed by the stakeholders using a system of pumps, dykes and a controlled outlet to the Lake Erie. In order to adequately manage the Big Creek Marsh and conserve diverse aquatic plant species, Essex Region Conservation Authority (ERCA), Ontario has embarked on developing an Operations Plan to maintain desire water depths during different marsh phases, viz., Open water, Hemi and Overgrown marsh phases. The objective of the study is to evaluate the alternatives for managing water level of the Big Creek Marsh in different marsh phases. The Soil and Water Assessment Tool (SWAT), a continuous simulation model was used to simulate streamflow entering into the marsh from the Big Creek watershed. A Water Budget (WB) model was developed for the Big Creek Marsh to facilitate in operational management of the marsh. The WB model was applied to simulate the marsh level based on operations schedules, and available weather and hydrologic data aiming to attain the target water depths for the marsh phases. This paper presents the results of simulated and target water levels, streamflow entering into the marsh, water releasing from the marsh, and water pumping into and out of the marsh under different hydrologic conditions.

  11. Managing lead-based paint abatement wastes

    SciTech Connect

    Steele, N.L.C.

    1994-12-31

    Renovation, remodeling, demolition, and surface preparation for painting, in addition to specified lead abatement, are all activities that have the potential to produce hazardous wastes if a property was painted with lead-based paint. Lead-based paint was used on residential structures until 1978, when most residential uses were banned by the Consumer Products Safety Council. Prior to the 1950s, paints for residential uses may have contained up to 50% lead by weight. Today, commercial and military paints may still contain lead and can be used on non-residential structures. The lead content of residential paints is limited to 0.06% lead (by weight) in the dried film. This paper provides an overview of some of the information needed to properly manage lead-based paint abatement wastes. The issues covered in this paper include waste classification, generator status, treatment, and land disposal restrictions. The author assumes that the reader is familiar with the provision of the Health and Safety Code and the California Code of Regulations that pertain to generation and management of hazardous wastes. Citations provided herein do not constitute an exhaustive list of all the regulations with which a generator of hazardous waste must comply.

  12. Municipal solid waste management in Beijing City

    SciTech Connect

    Li Zhenshan Yang Lei; Qu XiaoYan; Sui Yumei

    2009-09-15

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  13. Unit costs of waste management operations

    SciTech Connect

    Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

    1994-04-01

    This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

  14. Tank waste remediation system risk management list

    SciTech Connect

    Collard, L.B.

    1995-10-31

    The Tank Waste Remedation System (TWRS) Risk Management List and it`s subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists.

  15. A generic hazardous waste management training program

    SciTech Connect

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref.

  16. Design Scenarios for Web-Based Management of Online Information

    NASA Astrophysics Data System (ADS)

    Hepting, Daryl H.; Maciag, Timothy

    The Internet enables access to more information, from a greater variety of perspectives and with greater immediacy, than ever before. A person may be interested in information to become more informed or to coordinate his or her local activities and place them into a larger, more global context. The challenge, as has been noted by many, is to sift through all the information to find what is relevant without becoming overwhelmed. Furthermore, the selected information must be put into an actionable form. The diversity of the Web has important consequences for the variety of ideas that are now available. While people once relied on newspaper editors to shape their view of the world, today's technology creates room for a more democratic approach. Today it is easy to pull news feeds from a variety of sources and aggregate them. It is less easy to push that information to a variety of channels. At a higher level, we might have the goal of collecting all the available information about a certain topic, on a daily basis. There are many new technologies available under the umbrella of Web 2.0, but it can be difficult to use them together for the management of online information. Web-based support for online communication management is the most appropriate choice to address the deficiencies apparent with current technologies. We consider the requirements and potential designs for such information management support, by following an example related to local food.

  17. Sustainable Phosphorus Management in Land Applied Reclaimed Water Scenarios

    NASA Astrophysics Data System (ADS)

    Weinkam, G.

    2015-12-01

    Florida leads the nation in wastewater effluent/reclaimed water use, at over 700 million gallons per day, of which 75% is land applied. While these effluent waters are treated to reduce pathogen loads, phosphorus (P) concentrations can still be substantial in long term application scenarios. Currently an estimated 1.5 million kg of P are reintroduced to the landscape yearly (at effluent = 2 mg P/L), compared to only 23,000 kg that would be applied if landscapes were irrigated with ground water (at ground water = 0.03 mg P/L). Research suggests that under long term applications of P systems can reach a state at which they are no longer able to assimilate further loading, potentially resulting in landscapes that are actively leaching and eroding P rich particulate matter to receiving hydrologic systems. This can be especially relevant in Florida given the large proportion of sandy soils that contain, relatively, low physical and chemical ion exchange capacity and high hydraulic conductivity, thus increasing the potential for water quality impairment. Due to increasingly stringent surface water P concentrations allowances, and the many uncertainties regarding the long term fate and transport of P, this research seeks to determine how different soil conditions and reclaimed water loading amounts can alter P leaching profiles in Florida. Field sampling at reclaimed water sprayfield sites are used to determine the relative change in P sequestration potential using soil-phosphorus saturation capacity (SPSC) analyses and potential leaching risk is determined by soil core experimentation. The resulting information improves fundamental understanding of soil-phosphorus transport dynamics and provides insights into alternative techniques for long term environmental sustainability of reclaimed wastewater usage.

  18. Simulating post-wildfire forest trajectories under alternative climate and management scenarios

    NASA Astrophysics Data System (ADS)

    Azpeleta, Alicia; Fule, Peter; Shive, Kristen; Sieg, Carolyn; Sanchez-Meador, Andrew; Strom, Barbara

    2013-04-01

    To assess post-fire vegetation recovery under the influence of climate change, we applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multi-species forest of Arizona, U.S.A. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) projections of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon storage. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon storage relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no-treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S.A. management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the

  19. Solid waste management complex site development plan

    SciTech Connect

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  20. Review of scenario selection approaches for performance assessment of high-level waste repositories and related issues.

    SciTech Connect

    Banano, E.J.; Baca, R.G.

    1995-08-01

    The selection of scenarios representing plausible realizations of the future conditions-with associated probabilities of occurrence-that can affect the long-term performance of a high-level radioactive waste (HLW) repository is the commonly used method for treating the uncertainty in the prediction of the future states of the system. This method, conventionally referred to as the ``scenario approach,`` while common is not the only method to deal with this uncertainty; other method ``ch as the environmental simulation approach (ESA), have also been proposed. Two of the difficulties with the scenario approach are the lack of uniqueness in the definition of the term ``scenario`` and the lack of uniqueness in the approach to formulate scenarios, which relies considerably on subjective judgments. Consequently, it is difficult to assure that a complete and unique set of scenarios can be defined for use in a performance assessment. Because scenarios are key to the determination of the long-term performance of the repository system, this lack of uniqueness can present a considerable challenge when attempting to reconcile the set of scenarios, and their level of detail, obtained using different approaches, particularly among proponents and regulators of a HLW repository.

  1. Quarterly Briefing Book on Environmental and Waste Management Activities

    SciTech Connect

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  2. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement.

  3. Transboundary hazardous waste management. Part I: Waste management policy of importing countries.

    PubMed

    Fan, Kuo-Shuh; Chang, Tien Chin; Ni, Shih-Piao; Lee, Ching-Hwa

    2005-12-01

    Mixed metal-containing waste, polychlorinated biphenyls (PCB) containing capacitors, printed circuit boards, steel mill dust and metal sludge were among the most common wastes exported from Taiwan. Before the implementation of the self-monitoring model programme of the Basel Convention (secretariat of the Basel Convention 2001) in the Asia region, Taiwan conducted a comprehensive 4-year follow-up project involving government authorities and the waste disposal facilities of the importing countries. A total of five countries and nine plants were visited in 2001-2002. The following outcomes can be drawn from these investigations. The Chinese government adopts the strategies of 'on-site processing' and 'relative centralization' on the waste management by tightening permitting and increasing site inspection. A three-level reviewing system is adopted for the import application. The United States have not signed the Basel Convention yet; the procedures of hazardous waste import rely on bilateral agreements. Importers are not required to provide official notification from the waste exporting countries. The operation, administration, monitoring and licensing of waste treatment plants are governed by the state environmental bureau. Finland, France and Belgium are members of the European Union. The procedures and policies of waste import are similar. All of the documents associated with transboundary movement require the approval of each government involved. Practically, the notification forms and tracking forms effectively manage the waste movement. PMID:16379119

  4. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so

  5. Setting priorities for waste management strategies in developing countries.

    PubMed

    Brunner, Paul H; Fellner, Johann

    2007-06-01

    This study aimed to determine whether the waste management systems, that are presently applied in affluent countries are appropriate solutions for waste management in less developed regions. For this purpose, three cities (Vienna, Damascus and Dhaka) which differ greatly in their gross domestic product and waste management were compared. The criteria for evaluation were economic parameters, and indicators as to whether the goals of waste management (protection of human health and the environment, the conservation of resources) were reached. Based on case studies, it was found that for regions spending 1-10 Euro capita(-1) year(-1) for waste management, the 'waste hierarchy' of prevention, recycling and disposal is not an appropriate strategy. In such regions, the improvement of disposal systems (complete collection, upgrading to sanitary landfilling) is the most cost-effective method to reach the objectives of solid waste management. Concepts that are widely applied in developed countries such as incineration and mechanical waste treatment are not suitable methods to reach waste management goals in countries where people cannot spend more than 10 Euro per person for the collection, treatment and disposal of their waste. It is recommended that each region first determines its economic capacity for waste management and then designs its waste management system according to this capacity and the goals of waste management. PMID:17612323

  6. Anticipatory Water Management in Phoenix using Advanced Scenario Planning and Analyses: WaterSim 5

    NASA Astrophysics Data System (ADS)

    Sampson, D. A.; Quay, R.; White, D. D.; Gober, P.; Kirkwood, C.

    2013-12-01

    Complexity, uncertainty, and variability are inherent properties of linked social and natural processes; sustainable resource management must somehow consider all three. Typically, a decision support tool (using scenario analyses) is used to examine management alternatives under suspected trajectories in driver variables (i.e., climate forcing's, growth or economic projections, etc.). This traditional planning focuses on a small set of envisioned scenarios whose outputs are compared against one-another in order to evaluate their differing impacts on desired metrics. Human cognition typically limits this to three to five scenarios. However, complex and highly uncertain issues may require more, often much more, than five scenarios. In this case advanced scenario analysis provides quantitative or qualitative methods that can reveal patterns and associations among scenario metrics for a large ensemble of scenarios. From this analysis, then, a smaller set of heuristics that describe the complexity and uncertainty revealed provides a basis to guide planning in an anticipatory fashion. Our water policy and management model, termed WaterSim, permits advanced scenario planning and analysis for the Phoenix Metropolitan Area. In this contribution we examine the concepts of advanced scenario analysis on a large scale ensemble of scenarios using our work with WaterSim as a case study. For this case study we created a range of possible water futures by creating scenarios that encompasses differences in water supplies (our surrogates for climate change, drought, and inherent variability in riverine flows), population growth, and per capital water consumption. We used IPCC estimates of plausible, future, alterations in riverine runoff, locally produced and vetted estimates of population growth projections, and empirical trends in per capita water consumption for metropolitan cities. This ensemble consisted of ~ 30, 700 scenarios (~575 k observations). We compared and contrasted

  7. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    PubMed

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  8. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    PubMed

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed. PMID:27026497

  9. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    PubMed

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed.

  10. Using STELLA System Dynamic Model to Analyze Greenhouse Gases' Emission From Solid Waste Management in Taiwan

    SciTech Connect

    Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.

    2004-03-31

    Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce a lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.

  11. Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Cullinane Thomas, Catherine; Frid, Leonardo; Olsson, Aaryn D.

    2015-01-01

    Resource managers are often faced with trade-offs in allocating limited resources to manage plant invasions. These decisions must often be made with uncertainty about the location of infestations, their rate of spread and effectiveness of management actions. Landscape level simulation tools such as state-and-transition simulation models (STSMs) can be used to evaluate the potential long term consequences of alternative management strategies and help identify those strategies that make efficient use of resources. We analyzed alternative management scenarios for African buffelgrass (Pennisetum ciliare syn. Cenchrus ciliaris) at Ironwood Forest National Monument, Arizona using a spatially explicit STSM implemented in the Tool for Exploratory Landscape Scenario Analyses (TELSA). Buffelgrass is an invasive grass that is spreading rapidly in the Sonoran Desert, affecting multiple habitats and jurisdictions. This invasion is creating a novel fire risk and transforming natural ecosystems. The model used in this application incorporates buffelgrass dispersal and establishment and management actions and effectiveness including inventory, treatment and post-treatment maintenance. We simulated 11 alternative scenarios developed in consultation with buffelgrass managers and other stakeholders. The scenarios vary according to the total budget allocated for management and the allocation of that budget between different kinds of management actions. Scenario results suggest that to achieve an actual reduction and stabilization of buffelgrass populations, management unconstrained by fiscal restrictions and across all jurisdictions and private lands is required; without broad and aggressive management, buffelgrass populations are expected to increase over time. However, results also suggest that large upfront investments can achieve control results that require relatively minimal spending in the future. Investing the necessary funds upfront to control the invasion results in the most

  12. Environmental assessment of low-organic waste landfill scenarios by means of life-cycle assessment modelling (EASEWASTE).

    PubMed

    Manfredi, Simone; Christensen, Thomas H; Scharff, Heijo; Jacobs, Joeri

    2010-02-01

    The environmental performance of two low-organic waste landfill scenarios ('low-organic-energy' and 'low-organic-flare') was developed and compared with two household waste landfill scenarios ('household-energy' and 'household-flare') by means of LCA-modelling. The LCA-modelling was made for 1 tonne of wet waste landfilled and the environmental aspects were evaluated for a 100-year period after disposal. The data utilized in the LCA-calculations to model the first 10-20 years of landfilling of the two low-organic waste scenarios make extensive use of site-specific data from the Nauerna Landfill (The Netherlands), but average data from other comparable, existing landfills were used too. As data from full-scale landfills do not cover more than 30-40 years of landfilling, data from laboratory simulations and accelerated tests of limited scale were also utilized. The life-cycle impact assessments show that the low-organic waste scenarios achieved better environmental performance than the household waste scenarios with regard to both ordinary and toxicity-related environmental impact categories. This indicates that the reduction of organic matter accepted at landfills (as prescribed by the European Union Landfill Directive: Council Directive 1999/31/EC, EU, Brussels, 1999) can be a successful approach to decrease the environmental loads in several impact categories in comparison with landfilling of waste with significant organic content. However, when utilization of landfill gas is accounted for in the life-cycle impact assessment calculation, the small gas generation in low-organic waste landfills reduced the actual potential for energy generation and therefore the environmental savings obtained were reduced proportionally. Groundwater pollution from input of leachate was also evaluated and the WHO (Guidelines for Drinking-water Quality; WHO, Geneva, 2006) guideline for drinking water quality was assumed as reference. The results show that low-organic waste landfills

  13. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district.

    PubMed

    Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela; Sisani, Luciano; Damiano, Roberto

    2015-10-01

    Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  14. A NEW RUSSIAN WASTE MANAGEMENT INSTALLATION

    SciTech Connect

    Griffith, Andrew; Engxy, Thor; Endregard, Monica; Schwab, Patrick; Nazarian, Ashot; Krumrine, Paul; Backe, Steinar; Gorin, Stephen; Evans, Brent

    2003-02-27

    The Polyarninsky Shipyard (sometimes called Navy Yard No. 10 or the Shkval Shipyard) has been designated as the recipient for Solid Radioactive Waste (SRW) management facilities under the Arctic Military Environmental Cooperation (AMEC) Program. The existing SRW storage site at this shipyard is filled to capacity, which is forcing the shipyard to reduce its submarine dismantlement activities. The Polyarninsky Shipyard Waste Management Installation is planned as a combination of several AMEC projects. It will have several elements, including a set of hydraulic metal cutting tools, containers for transport and storage, the Mobile Pretreatment Facility (MPF) for Solid Radioactive Waste, the PICASSO system for radiation monitoring, and a Waste Storage Facility. Hydraulically operated cutting tools can cut many metal items via shearing so that dusts or particulates are not generated. The AMEC Program procured a cutting tool system, consisting of a motor and hydraulic pumping unit, a 38-mm conduit-cutting tool, a 100- mm pipe-cutting tool, and a spreading tool all mounted on a wheeled cart. The vendor modified the tool system for extremely cold conditions and Russian electrical standards, then delivered the tool system to the Polyarninsky shipyard. A new container for transportation and storage of SRW and been designed and fabricated. The first 400 of these containers have been delivered to the Northern Fleet of the Russian Navy for use at the Polyarninsky Shipyard Waste Management Installation. These containers are cylindrical in shape and can hold seven standard 200-liter drums. They are the first containers ever certified in Russia for the offsite transport of military SRW. These containers can be transported by truck, rail, barge, or ship. The MPF will be the focal point of the Polyarninsky Shipyard Waste Management Installation and a key element in meeting the nuclear submarine dismantlement and waste processing needs of the Russian Federation. It will receive raw

  15. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    PubMed

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  16. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect

    Not Available

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  17. Waste management for Shippingport Station Decommissioning Project: Extended summary

    SciTech Connect

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP.

  18. Legislative aspects of hazardous waste management.

    PubMed

    Friedman, M

    1983-02-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management.

  19. Legislative aspects of hazardous waste management.

    PubMed Central

    Friedman, M

    1983-01-01

    In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630

  20. In-plant management of hazardous waste

    SciTech Connect

    Hall, M.W.; Howell, W.L. Jr. |

    1995-12-31

    One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interests within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.

  1. Safety management of nuclear waste in Spain

    SciTech Connect

    Echavarri, L.E. )

    1991-01-01

    For the past two decades, Spain has been consolidating a nuclear program that in the last 3 years has provided between 35 and 40% of the electricity consumed in that country. This program includes nine operating reactor units, eight of them based on US technology and one from Germany, a total of 7,356 MW(electric). There is also a 480-MW(electric) French gas-cooled reactor whose operation recently ceased and which will be decommissioned in the coming years. Spanish industry has participated significantly in this program, and material produced locally has reached 85% of the total. Once the construction program has been completed and operation is proceeding normally, the capacity factor will be {approximately} 80%. It will be very important to complete the nuclear program with the establishment of conditions for safe management and disposal of the nuclear waste generated during the years in which these reactors are in operation and for subsequent decommissioning. To establish the guidelines for the disposal of nuclear waste, the Spanish government approved in october 1987, with a revision in January 1989, the General Plan of Radioactive Wastes proposed by the Ministry of Industry and Energy and prepared by the national company for radioactive waste management, ENRESA.

  2. The Scientific Management of Hazardous Wastes

    NASA Astrophysics Data System (ADS)

    Porter, Keith S.

    According to the jacket of this book, three independent scientists carefully define the limits of scientific knowledge applicable to the management of hazardous wastes. It is claimed that the extrapolation and application of this knowledge is examined, significant areas of uncertainty are identified, and the authors reveal “the fallibility of certain interpretations.” It would be more accurate to claim these as possible goals of the book rather than its accomplishments.Chapter 1, Hazardous Wastes and Their Recycling Potential, includes 11 pages of lists of chemicals, some of which are poorly reproduced. The remaining pages describe, superficially, several recycling schemes. Connections between the chemicals previously listed and the recycling schemes are not given. Concerning the potential for recycling, the last sentence of the chapter reads, “Indeed, the concept of waste recycling, itself a contradiction in terms, is better politics than business.” Taken literally, this assertion itself contradicts venerable practice, as the farmer might observe as he transfers waste from his cows to the crops in his field. More pertinently, it can be argued that the recovery of solvents, metals, and oil from waste flows is much more than a political gesture.

  3. Resource Management, Coexistence, and Balance--The Fundamentals of Teaching Waste Management.

    ERIC Educational Resources Information Center

    Donovan, Connie

    1998-01-01

    Argues for the need for courses in waste management in departments other than civil engineering. Points out that although waste management is a business administration function, it is best performed from an environmental management perspective. (DDR)

  4. Integrated solid waste management of Seattle, Washington

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  5. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  6. Waste Management System overview for future spacecraft.

    NASA Technical Reports Server (NTRS)

    Ingelfinger, A. L.; Murray, R. W.

    1973-01-01

    Waste Management Systems (WMS) for post Apollo spacecraft will be significantly more sophisticated and earthlike in user procedures. Some of the features of the advanced WMS will be accommodation of both males and females, automatic operation, either tissue wipe or anal wash, measurement and sampling of urine, feces and vomitus for medical analysis, water recovery, and solids disposal. This paper presents an overview of the major problems of and approaches to waste management for future spacecraft. Some of the processes discussed are liquid/gas separation, the Dry-John, the Hydro-John, automated sampling, vapor compression distillation, vacuum distillation-catalytic oxidation, incineration, and the integration of the above into complete systems.

  7. A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN

    SciTech Connect

    Masuda, S.

    2002-02-25

    This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

  8. Mixed Waste Management Facility Groundwater Monitoring Report

    SciTech Connect

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  9. Integrated solid waste management in Japan

    SciTech Connect

    Not Available

    1993-10-01

    The Japanese, through a combination of public policy, private market conditions, a geographic necessity, practice integrated municipal solid waste (MSW) management. The approach of MSW management in Japan is as follows: The basic concept of refuse treatment consists of recycling discharged refuse into usable resources, reusing such resources as much as possible, and then treating or disposing of the usable portion into a sanitary condition. Considering the difficulty of procuring land or seaside areas for such purpose as a refuse disposal site, it will be necessary to minimize the volume of refuse collected for treatment or disposal.

  10. Management of offshore wastes in the United States.

    SciTech Connect

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  11. Healthcare waste management in the capital city of Mongolia.

    PubMed

    Shinee, Enkhtsetseg; Gombojav, Enkhjargal; Nishimura, Akio; Hamajima, Nobuyuki; Ito, Katsuki

    2008-01-01

    Inconsistencies are present in the management options for healthcare wastes in Mongolia. One of the first critical steps in the process of developing a reliable waste management plan requires the performance of a waste characterization analysis. The objectives of this study were an assessment of the current situation of healthcare waste management (HCWM) and characterization of healthcare wastes generated in Ulaanbaatar. A total about 2.65 tonnes of healthcare wastes are produced each day in Ulaanbaatar (0.78 tons of medical wastes and 1.87 tons of general wastes). The medical waste generation rate per kg/patient-day in the inpatient services of public healthcare facilities was 1.4-3.0 times higher than in the outpatient services (P<0.01). The waste generation rate in the healthcare facilities of Ulaanbaatar was lower than in some other countries; however, the percentage of medical wastes in the total waste stream was comparatively high, ranging from 12.5% to 69.3%, which indicated poor waste handling practices. Despite the efforts for the management of wastes, the current system of healthcare waste management in Ulaanbaatar city of Mongolia is under development and is in dire need of immediate attention and improvement. It is essential to develop a national policy and implement a comprehensive action plan for HCWM providing environmentally sound technological measures to improve HCWM in Mongolia.

  12. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management plan. 60.55c Section... Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.55c Waste...

  13. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management plan. 60.55c Section... Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.55c Waste...

  14. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and recycling of paper, cardboard, plastics, glass, batteries, food waste, and metals (e.g., aluminum... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Waste management plan. 60.55c Section... Waste Incinerators for Which Construction is Commenced After June 20, 1996 § 60.55c Waste...

  15. Issues for small businesses with waste management.

    PubMed

    Redmond, Janice; Walker, Elizabeth; Wang, Calvin

    2008-07-01

    Participation by small and medium enterprise (SME) in corporate social responsibility issues has been found to be lacking. This is a critical issue, as individually SMEs may have little impact on the environment but their collective footprint is significant. The management style and ethical stance of the owner-manager affects business decision making and therefore has a direct impact on the environmental actions of the business. Although adoption of environmental practices to create competitive advantage has been advocated, many businesses see implementation as a cost which cannot be transferred to their customers. After a brief review of pertinent literature this paper reports on an exploratory investigation into the issue. Results show that whereas owner-managers of small enterprises express concern regarding the environment, this does not then translate into better waste management practices.

  16. Issues for small businesses with waste management.

    PubMed

    Redmond, Janice; Walker, Elizabeth; Wang, Calvin

    2008-07-01

    Participation by small and medium enterprise (SME) in corporate social responsibility issues has been found to be lacking. This is a critical issue, as individually SMEs may have little impact on the environment but their collective footprint is significant. The management style and ethical stance of the owner-manager affects business decision making and therefore has a direct impact on the environmental actions of the business. Although adoption of environmental practices to create competitive advantage has been advocated, many businesses see implementation as a cost which cannot be transferred to their customers. After a brief review of pertinent literature this paper reports on an exploratory investigation into the issue. Results show that whereas owner-managers of small enterprises express concern regarding the environment, this does not then translate into better waste management practices. PMID:17445961

  17. Management and utilization of poultry wastes.

    PubMed

    Williams, C M; Barker, J C; Sims, J T

    1999-01-01

    Waste by-products such as excreta or bedding material that are generated by the worldwide annual production of more than 40 million metric tons (t) of poultry meat and 600 billion eggs are generally land applied as the final step of a producer's waste management strategy. Under proper land application conditions, the nutrients and organisms in poultry wastes pose little environmental threat. Environmental contamination occurs when land application of poultry wastes is in excess of crop utilization potential, or is done under poor management conditions causing nutrient loss from environmental factors such as soil erosion or surface runoff during rainfall. Environmental parameters of concern are N, P, and certain metals (Cu and Zn in particular), as well as pathogenic microorganisms that may be contained in poultry waste. The biochemical cycle of N is very dynamic, and N contained in poultry waste may either be removed by crop harvest, leave the animal production facility, waste treatment lagoon, or application field as a gas (NH3, NO, NO2, N2O, or N2), or, due to its mobility in soil, be transported in organic or inorganic N forms in the liquid state via surface runoff or leaching into groundwater. Elevated concentrations of NO3-N in groundwater used for human consumption is a health risk to infants that are susceptible to methemoglobinemia. An environmental impact resulting from elevated NO3-N is eutrophication of surface waters. Ammonia loss from poultry waste is an environmental concern because of volatilized wet and dry deposits of NH3 into nitrogen-sensitive ecosystems. Phosphorus in poultry wastes may contribute to environmental degradation by accelerating the process of eutrophication. Unlike N, P is very immobile in soil and must first be transported to a surface water environment to have an environmental impact. It is generally accepted, however, that this nutrient affects receiving waters via transport in eroding soil as sediment-bound P or in surface

  18. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    SciTech Connect

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  19. Greenhouse gases emission from municipal waste management: The role of separate collection

    SciTech Connect

    Calabro, Paolo S.

    2009-07-15

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO{sub 2}, CH{sub 4}, N{sub 2}O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  20. Greenhouse gases emission from municipal waste management: The role of separate collection.

    PubMed

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  1. An Ontology-Based Scenario for Teaching the Management of Health Information Systems.

    PubMed

    Jahn, Franziska; Schaaf, Michael; Kahmann, Christian; Tahar, Kais; Kücherer, Christian; Paech, Barbara; Winter, Alfred

    2016-01-01

    The terminology for the management of health information systems is characterized by complexity and polysemy which is both challenging for medical informatics students and practitioners. SNIK, an ontology of information management (IMI) in hospitals, brings together IM concepts from different literature sources. Based on SNIK, we developed a blended learning scenario to teach medical informatics students IM concepts and their relationships. In proof-of-concept teaching units, students found the use of SNIK in teaching and learning motivating and useful. In the next step, the blended learning scenario will be rolled out to an international course for medical informatics students.

  2. An Ontology-Based Scenario for Teaching the Management of Health Information Systems.

    PubMed

    Jahn, Franziska; Schaaf, Michael; Kahmann, Christian; Tahar, Kais; Kücherer, Christian; Paech, Barbara; Winter, Alfred

    2016-01-01

    The terminology for the management of health information systems is characterized by complexity and polysemy which is both challenging for medical informatics students and practitioners. SNIK, an ontology of information management (IMI) in hospitals, brings together IM concepts from different literature sources. Based on SNIK, we developed a blended learning scenario to teach medical informatics students IM concepts and their relationships. In proof-of-concept teaching units, students found the use of SNIK in teaching and learning motivating and useful. In the next step, the blended learning scenario will be rolled out to an international course for medical informatics students. PMID:27577404

  3. Minimax regret optimization analysis for a regional solid waste management system.

    PubMed

    Chang, Ni-Bin; Davila, Eric

    2007-01-01

    Solid waste management (SWM) facilities are crucial for environmental management and public health in urban regions. Due to the waste management hierarchy, one of the greatest challenges that organizations face today is to figure out how to diversify the treatment options, increase the reliability of infrastructure systems, and leverage the redistribution of waste streams among incineration, compost, recycling, and other facilities to their competitive advantage region wide. Systems analysis plays an important role for regionalization assessment of integrated SWM systems, leading to provide decision makers with break-through insights and risk-informed strategies. This paper aims to apply a minimax regret optimization analysis for improving SWM strategies in the Lower Rio Grande Valley (LRGV), an economically fast growing region in the US. Based on different environmental, economic, legal, and social conditions, event-based simulation in the first stage links estimated waste streams in major cities in LRGV with possible solid waste management alternatives. The optimization analysis in the second stage emphasizes the trade-offs and associated regret evaluation with respect to predetermined scenarios. Such optimization analyses with multiple criteria have featured notable successes, either by public or private efforts, in diverting recyclables, green waste, yard waste, and biosolids from the municipal solid waste streams to upcoming waste-to-energy, composting, and recycling facilities. Model outputs may link prescribed regret scenarios in decision making with various scales of regionalization policies. The insights drawn from the system-oriented, forward-looking, and preventative study can eventually help decision-makers and stakeholders gain a scientific understanding of the consequences of short-term and long-term decisions relating to sustainable SWM in the fast-growing US-Mexico borderland.

  4. Minimax regret optimization analysis for a regional solid waste management system.

    PubMed

    Chang, Ni-Bin; Davila, Eric

    2007-01-01

    Solid waste management (SWM) facilities are crucial for environmental management and public health in urban regions. Due to the waste management hierarchy, one of the greatest challenges that organizations face today is to figure out how to diversify the treatment options, increase the reliability of infrastructure systems, and leverage the redistribution of waste streams among incineration, compost, recycling, and other facilities to their competitive advantage region wide. Systems analysis plays an important role for regionalization assessment of integrated SWM systems, leading to provide decision makers with break-through insights and risk-informed strategies. This paper aims to apply a minimax regret optimization analysis for improving SWM strategies in the Lower Rio Grande Valley (LRGV), an economically fast growing region in the US. Based on different environmental, economic, legal, and social conditions, event-based simulation in the first stage links estimated waste streams in major cities in LRGV with possible solid waste management alternatives. The optimization analysis in the second stage emphasizes the trade-offs and associated regret evaluation with respect to predetermined scenarios. Such optimization analyses with multiple criteria have featured notable successes, either by public or private efforts, in diverting recyclables, green waste, yard waste, and biosolids from the municipal solid waste streams to upcoming waste-to-energy, composting, and recycling facilities. Model outputs may link prescribed regret scenarios in decision making with various scales of regionalization policies. The insights drawn from the system-oriented, forward-looking, and preventative study can eventually help decision-makers and stakeholders gain a scientific understanding of the consequences of short-term and long-term decisions relating to sustainable SWM in the fast-growing US-Mexico borderland. PMID:16793251

  5. Integrated solid waste management of Springfield, Massachusetts

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  6. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... sludge from the list of hazardous wastes under 40 CFR 261.31 and 261.32 (see 70 FR 41358). EPA is... released from the waste, plausible and specific types of management of the petitioned waste, the quantities... also eligible for exclusion and remain hazardous wastes until excluded. See 66 FR 27266 (May 16,...

  7. Minimax regret analysis for municipal solid waste management: an interval-stochastic programming approach.

    PubMed

    Li, Yong P; Huang, Guo H

    2006-07-01

    In this study, an interval minimax regret programming (IMMRP) method is developed for the planning of municipal solid waste (MSW) management under uncertainty. It improves on the existing interval programming and minimax regret analysis methods by allowing uncertainties presented as both intervals and random variables to be effectively communicated into the optimization process. The IMMRP can account for economic consequences under all possible scenarios without any assumption on their probabilities. The developed method is applied to a case study of long-term MSW management planning under uncertainty. Multiple scenarios associated with different cost and risk levels are analyzed. Reasonable solutions are generated, demonstrating complex tradeoffs among system cost, regret level, and system-failure risk. The method can also facilitate examination of the difference between the cost incurred with identified strategy and the least cost under an ideal condition. The results can help determine desired plans and policies for waste management under a variety of uncertainties. PMID:16878586

  8. Development of a Prototype Automation Simulation Scenario Generator for Air Traffic Management Software Simulations

    NASA Technical Reports Server (NTRS)

    Khambatta, Cyrus F.

    2007-01-01

    A technique for automated development of scenarios for use in the Multi-Center Traffic Management Advisor (McTMA) software simulations is described. The resulting software is designed and implemented to automate the generation of simulation scenarios with the intent of reducing the time it currently takes using an observational approach. The software program is effective in achieving this goal. The scenarios created for use in the McTMA simulations are based on data taken from data files from the McTMA system, and were manually edited before incorporation into the simulations to ensure accuracy. Despite the software s overall favorable performance, several key software issues are identified. Proposed solutions to these issues are discussed. Future enhancements to the scenario generator software may address the limitations identified in this paper.

  9. Situation-Based Access Control: privacy management via modeling of patient data access scenarios.

    PubMed

    Peleg, Mor; Beimel, Dizza; Dori, Dov; Denekamp, Yaron

    2008-12-01

    Access control is a central problem in privacy management. A common practice in controlling access to sensitive data, such as electronic health records (EHRs), is Role-Based Access Control (RBAC). RBAC is limited as it does not account for the circumstances under which access to sensitive data is requested. Following a qualitative study that elicited access scenarios, we used Object-Process Methodology to structure the scenarios and conceive a Situation-Based Access Control (SitBAC) model. SitBAC is a conceptual model, which defines scenarios where patient's data access is permitted or denied. The main concept underlying this model is the Situation Schema, which is a pattern consisting of the entities Data-Requestor, Patient, EHR, Access Task, Legal-Authorization, and Response, along with their properties and relations. The various data access scenarios are expressed via Situation Instances. While we focus on the medical domain, the model is generic and can be adapted to other domains.

  10. Life cycle assessment of bagasse waste management options

    SciTech Connect

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  11. Sustainable solid waste management: an integrated approach for Asian countries.

    PubMed

    Shekdar, Ashok V

    2009-04-01

    Solid waste management (SWM) has been an integral part of every human society. The approaches for SWM should be compatible with the nature of a given society, and, in this regard, Asian countries are no exception. In keeping with global trends, the systems are being oriented to concentrate on sustainability issues; mainly through the incorporation of 3R (reduce, reuse and recycle) technologies. However, degree and nature of improvements toward sustainability are varying and depend on the economic status of a country. High-income countries like Japan and South Korea can afford to spend more to incorporate 3R technologies. Most of the latest efforts focus on "Zero Waste" and/or "Zero Landfilling" which is certainly expensive for weaker economies such as those of India or Indonesia. There is a need to pragmatically assess the expectations of SWM systems in Asian countries. Hence, in this paper, we analyze the situation in different Asian countries, and explore future trends. We conceptually evaluate issues surrounding the sustainability of SWM. We propose a multi-pronged integrated approach for improvement that achieves sustainable SWM in the context of national policy and legal frameworks, institutional arrangement, appropriate technology, operational and financial management, and public awareness and participation. In keeping with this approach, a generic action plan has been proposed that could be tailored to suit a situation in a particular country. Our proposed concept and action plan framework would be useful across a variety of country-specific scenarios. PMID:19081236

  12. Impact of river regulation on a Mediterranean delta: Assessment of managed versus unmanaged scenarios

    NASA Astrophysics Data System (ADS)

    Bergillos, Rafael J.; Rodríguez-Delgado, Cristóbal; Millares, Agustín.; Ortega-Sánchez, Miguel; Losada, Miguel A.

    2016-07-01

    This work addresses the effects of the construction of a reservoir 19 km from the mouth on the dynamics of the Guadalfeo delta (southern Spain), a Mediterranean delta in a semiarid and high-mountain basin. The sediment volume transported as bed load and accumulated in the delta was estimated under two scenarios by means of a calibrated hydrological model: a managed scenario, considering the flows drained by the dam, and an unmanaged scenario, considering the absence of such infrastructure. Bathymetric and topographic measurements were analyzed and correlated with the fluvial and maritime forcing agents. Results indicate that the reservoir has significantly modified the dynamics downstream: the coast has lost almost 0.3 hm3 of sediments since the entry into operation of the dam, generating a 1.4 km coastline retreat around the mouth, with a maximum retreat of 87 m (92% of the initial). The beach profile decreased by up to 820 m2, whereas the average decrease around the mouth was equal to 214 m2. Under unmanaged conditions, more than 2 hm3 of bed load would have reached the coast. Based on the results, three new management scenarios of flows drained by the dam, in combination with bypassed sediment from the reservoir, were proposed to prevent more severe consequences in the delta and the silting of the reservoir. The proposed methodology for new management scenarios can be extended to other worldwide deltas, especially to those in semiarid and Mediterranean basins, and it represents an advanced tool for decision making.

  13. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect

    Kastury, S.N. )

    1993-03-01

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  14. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy

  15. Field scale manure born animal waste management : GIS application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive beef backgrounding often accumulate manure born soil nutrients, microbes, and pharmaceuticals at different site locations. Unless properly managed, such waste materials can pollute surrounding soil and water sources. Soil sampling from these sites helps determining waste material levels bu...

  16. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  17. From waste treatment to integrated resource management.

    PubMed

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  18. Taipower`s radioactive waste management program

    SciTech Connect

    Lee, B.C.C.

    1996-09-01

    Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words, by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.

  19. Environmental remediation and waste management information systems

    SciTech Connect

    Harrington, M.W.; Harlan, C.P.

    1993-12-31

    The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

  20. Animal biocalorimeter and waste management system

    NASA Technical Reports Server (NTRS)

    Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)

    1995-01-01

    A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.

  1. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  2. Managing nuclear waste: Social and economic impacts

    SciTech Connect

    Hemphill, R.C.; Bassett, G.W. Jr.

    1993-03-01

    Recent research has focused on perceptions of risk dominant source of economic impacts due to siting a high level radioactive waste facility. This article addresses the social and economic considerations involved with the issue of risk perception and other types of negative imagery. Emphasis is placed on ways of measuring the potential for economic effects resulting from perceptions prior to construction and operation of a HLW facility. We describe the problems in arriving at defensible estimates of economic impacts. Our review has found that although legal and regulatory bases may soon allow inclusion of these impacts in EIS and for compensation purposes, credible scientific methods do not currently exist for predicting the existence or magnitude of changes in economic decision-making. Policy-makers should recognize the potential for perception-based economic impacts in determining the location and means of managing radioactive waste; but, they also need be cognizant of the current limitations of quantitative estimates of impacts in this area.

  3. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267

  4. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  5. Waste management. (Chapter 16). Book chapter, August 1991-August 1992

    SciTech Connect

    Thorneloe, S.A.; Barlaz, M.A.; Peer, R.; Huff, L.C.; Davis, L.

    1993-01-01

    Landfills, wastewater treatment lagoons, and livestock waste management are operations representing sources of methane. The report begins with a brief overview of how CH4 is generated from the anaerobic decomposition of waste and then discusses generation of CH4 in detail in landfills, wastewater treatment lagoons, and livestock waste management. Current techniques for estimating CH4 emissions from waste are summarized, and sources of uncertainty are identified. (Copyright (c) Springer-Verlag 1993.)

  6. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  7. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  8. Salmon Futures: Stakeholder-driven salmon management scenarios under changing environmental conditions on Alaska's Kenai Peninsula

    NASA Astrophysics Data System (ADS)

    Trammell, E. J.; Krupa, M.

    2015-12-01

    Understanding the adaptive capacity of individuals within natural resource management agencies is a key component of assessing the vulnerability of salmon to future environmental change. We seek to explore the adaptive capacity of natural resource agencies on Alaska's Kenai Peninsula by exploring the drivers and implications of different salmon allocation scenarios through participatory workshops with managers. We present here the initial results from the first workshop, which explores the various drivers responsible for changes in salmon allocation. Ranging from global to local, and biophysical to socioeconomic, these drivers are also linked to specific actors in the region. These complex interactions comprise the Kenai Peninsula's social-ecological system and determine its ability to react to change. Using a stakeholder-driven scenario framework, we aim to: 1) explore the adaptive capacity of natural resource agencies in the region by exploring and exposing managers to different but logically coherent salmon allocation scenarios; 2) build stakeholder confidence in the science of environmental change on the Kenai Peninsula; and 3) develop a decision support tool that helps regional resource managers better understand their changing environment. We utilize and present the scenario framework as a platform for integrating hydrologic, landscape, and cultural change information into actionable decisions, crafted by the stakeholders, so that landscape change on the Kenai becomes more coordinated.

  9. Arsenic: a roadblock to potential animal waste management solutions.

    PubMed

    Nachman, Keeve E; Graham, Jay P; Price, Lance B; Silbergeld, Ellen K

    2005-09-01

    The localization and intensification of the poultry industry over the past 50 years have incidentally created a largely ignored environmental management crisis. As a result of these changes in poultry production, concentrated animal feeding operations (CAFOs) produce far more waste than can be managed by land disposal within the regions where it is produced. As a result, alternative waste management practices are currently being implemented, including incineration and pelletization of waste. However, organic arsenicals used in poultry feed are converted to inorganic arsenicals in poultry waste, limiting the feasibility of waste management alternatives. The presence of inorganic arsenic in incinerator ash and pelletized waste sold as fertilizer creates opportunities for population exposures that did not previously exist. The removal of arsenic from animal feed is a critical step toward safe poultry waste management. PMID:16140615

  10. Waste Management Program. Technical progress report, July-December, 1984

    SciTech Connect

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

  11. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Removal of...

  12. Supplements to the release scenario analyses for the waste isolation pilot plant (WIPP)

    SciTech Connect

    Bingham, F. W.; Merritt, M. L.; Tierney, M. S.

    1980-01-01

    This paper summarizes three analyses of long-term environmental impacts of the WIPP that were made subsequent to the publication of the DEIS in response to agency and public comments. Three supplemental scenarios are described in which activity is transported to the biosphere by groundwater. The scenarios are entitled: brine pocket rupture scenario, effects of water on domestic wells; and agricultural use of the Pecos River Water.

  13. Waste management for Space Station Freedom.

    PubMed

    Huff, W

    1991-10-01

    Because of the tremendous task of designing, testing, building and maintaining the waste systems for Space Station Freedom, different methods of managing these systems are now being developed. This paper summarizes some of those methods. The first task for the design engineer is to develop systems and hardware to handle waste in the special conditions of the space station. Different closed and open loop systems, along with the development of new hardware in these loops, are being tested to meet this task. Some of the new hardware to be discussed are water and air monitors, hazardous material handling, and plumbing hardware such as commodes, showers and clothes washers. The second task is to develop methods to manage the process of developing these systems. Some of the areas to manage are testing information, materials, facilities, people, budgets, time, safety, legal responsibilities and testing standards. The last task is to incorporate the new technologies for other areas besides space stations. Other areas would include long-duration space missions, lunar stations and other non-space applications.

  14. HISPANIC ENVIRONMENTAL AND WASTE MANAGEMENT OUTREACH PROJECT

    SciTech Connect

    Sebastian Puente

    1998-07-25

    The Department of Energy Office of Environmental Management (DOE-EM) in cooperation with the Self Reliance Foundation (SRF) is conducting the Hispanic Environmental and Waste Management Outreach Project (HEWMO) to increase science and environmental literacy, specifically that related to nuclear engineering and waste management in the nuclear industry, among the US Hispanic population. The project will encourage Hispanic youth and young adults to pursue careers through the regular presentation of Spanish-speaking scientists and engineers and other role models, as well as career information on nationally broadcast radio programs reaching youth and parents. This project will encourage making science, mathematics, and technology a conscious part of the everyday life experiences of Hispanic youth and families. The SRF in collaboration with the Hispanic Radio Network (HRN) produces and broadcasts radio programs to address the topics and meet the objectives as outlined in the Environmental Literacy Plan and DOE-EM Communications Plan in this document. The SRF has in place a toll-free ''800'' number Information and Resource Referral (I and RR) service that national radio program listeners can call to obtain information and resource referrals as well as give their reactions to the radio programs that will air. HRN uses this feature to put listeners in touch with local organizations and resources that can provide them with further information and assistance on the related program topics.

  15. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  16. Probabilistic scenario-based water resource planning and management:A case study in the Yellow River Basin, China

    NASA Astrophysics Data System (ADS)

    Dong, C.; Schoups, G.; van de Giesen, N.

    2012-04-01

    Water resource planning and management is subject to large uncertainties with respect to the impact of climate change and socio-economic development on water systems. In order to deal with these uncertainties, probabilistic climate and socio-economic scenarios were developed based on the Principle of Maximum Entropy, as defined within information theory, and as inputs to hydrological models to construct probabilistic water scenarios using Monte Carlo simulation. Probabilistic scenarios provide more explicit information than equally-likely scenarios for decision-making in water resource management. A case was developed for the Yellow River Basin, China, where future water availability and water demand are affected by both climate change and socio-economic development. Climate scenarios of future precipitation and temperature were developed based on the results of multiple Global climate models; and socio-economic scenarios were downscaled from existing large-scale scenarios. Probability distributions were assigned to these scenarios to explicitly represent a full set of future possibilities. Probabilistic climate scenarios were used as input to a rainfall-runoff model to simulate future river discharge and socio-economic scenarios for calculating water demand. A full set of possible future water supply-demand scenarios and their associated probability distributions were generated. This set can feed the further analysis of the future water balance, which can be used as a basis to plan and manage water resources in the Yellow River Basin. Key words: Probabilistic scenarios, climate change, socio-economic development, water management

  17. Waste Management with Earth Observation Technologies

    NASA Astrophysics Data System (ADS)

    Margarit, Gerard; Tabasco, A.

    2010-05-01

    The range of applications where Earth Observation (EO) can be useful has been notably increased due to the maturity reached in the adopted technology and techniques. In most of the cases, EO provides a manner to remotely monitor particular variables and parameters with a more efficient usage of the available resources. Typical examples are environmental (forest, marine, resources…) monitoring, precision farming, security and surveillance (land, maritime…) and risk / disaster management (subsidence, volcanoes…). In this context, this paper presents a methodology to monitor waste disposal sites with EO. In particular, the explored technology is Interferometric Synthetic Aperture Radar (InSAR), which applies the interferometric concept to SAR images. SAR is an advanced radar concept able to acquire 2D coherent microwave reflectivity images for large scenes (tens of thousands kilometres) with fine resolution (< 1 m). The main product of InSAR is Digital Elevation Models (DEM) that provide key information about the tri-dimensional configuration of a scene, that is, a height map of the scene. In practice, this represents an alternative way to obtain the same information than in-situ altimetry can provide. In the case of waste management, InSAR has been used to evaluate the potentiality of EO to monitor the disposed volume along a specific range of time. This activity has been developed in collaboration with the Agència de Resídus de Catalunya (ARC) (The Waste Agency of Catalonia), Spain, in the framework of a pilot project. The motivation comes from the new law promoted by the regional Government that taxes the volume of disposed waste. This law put ARC in duty to control that the real volume matches the numbers provided by the waste processing firms so that they can not commit illegal actions. Right now, this task is performed with in-situ altimetry. But despite of the accurate results, this option is completely inefficient and limits the numbers of polls that

  18. Valorisation of fish by-products against waste management treatments--Comparison of environmental impacts.

    PubMed

    Lopes, Carla; Antelo, Luis T; Franco-Uría, Amaya; Alonso, Antonio A; Pérez-Martín, Ricardo

    2015-12-01

    Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing companies save the costs associated with the management of those wastes. However, it is important to estimate the advantages of valorisation processes not only in terms of economic income, but also considering the environmental impacts. This would help to know if the valorisation of a residue provokes higher impact than other waste management options, which means that its advantages are probably not enough for guarantying a sustainable waste reuse. To that purpose, there are several methodologies to evaluate the environmental impacts of processes, including those of waste management, providing different indicators which give information on relevant environmental aspects. In the current study, a comparative environmental assessment between a valorisation process (fishmeal and oil production) and different waste management scenarios (composting, incineration and landfilling) was developed. This comparison is a necessary step for the development and industrial implementation of these processes as the best alternative treatment for fish by-products. The obtained results showed that both valorisation process and waste management treatments presented similar impacts. However, a significant benefit can be achieved through valorisation of fish by-products. Additionally, the implications of the possible presence of pollutants were discussed.

  19. Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model

    NASA Astrophysics Data System (ADS)

    Kaplan, Isaac C.; Horne, Peter J.; Levin, Phillip S.

    2012-09-01

    End-to-end marine ecosystem models link climate and oceanography to the food web and human activities. These models can be used as forecasting tools, to strategically evaluate management options and to support ecosystem-based management. Here we report the results of such forecasts in the California Current, using an Atlantis end-to-end model. We worked collaboratively with fishery managers at NOAA’s regional offices and staff at the National Marine Sanctuaries (NMS) to explore the impact of fishery policies on management objectives at different spatial scales, from single Marine Sanctuaries to the entire Northern California Current. In addition to examining Status Quo management, we explored the consequences of several gear switching and spatial management scenarios. Of the scenarios that involved large scale management changes, no single scenario maximized all performance metrics. Any policy choice would involve trade-offs between stakeholder groups and policy goals. For example, a coast-wide 25% gear shift from trawl to pot or longline appeared to be one possible compromise between an increase in spatial management (which sacrificed revenue) and scenarios such as the one consolidating bottom impacts to deeper areas (which did not perform substantially differently from Status Quo). Judged on a coast-wide scale, most of the scenarios that involved minor or local management changes (e.g. within Monterey Bay NMS only) yielded results similar to Status Quo. When impacts did occur in these cases, they often involved local interactions that were difficult to predict a priori based solely on fishing patterns. However, judged on the local scale, deviation from Status Quo did emerge, particularly for metrics related to stationary species or variables (i.e. habitat and local metrics of landed value or bycatch). We also found that isolated management actions within Monterey Bay NMS would cause local fishers to pay a cost for conservation, in terms of reductions in landed

  20. Infectious waste management in Japan: A revised regulation and a management process in medical institutions

    SciTech Connect

    Miyazaki, M. . E-mail: motonobu@cis.fukuoka-u.ac.jp; Une, H.

    2005-07-01

    In Japan, the waste management practice is carried out in accordance with the Waste Disposal Law of 1970. The first rule of infectious waste management was regulated in 1992, and infectious wastes are defined as the waste materials generated in medical institutions as a result of medical care or research which contain pathogens that have the potential to transmit infectious diseases. Revised criteria for infectious waste management were promulgated by the Ministry of Environment in 2004. Infectious waste materials are divided into three categories: the form of waste; the place of waste generation; the kind of infectious diseases. A reduction of infectious waste is expected. We introduce a summary of the revised regulation of infectious waste management in this article.

  1. Nuclear Waste Management Program summary document, FY 1981

    SciTech Connect

    Meyers, Sheldon

    1980-03-01

    The Nuclear Waste Management Program Summary Document outlines the operational and research and development (R and D) activities of the Office of Nuclear Waste Management (NEW) under the Assistant Secretary for Nuclear Energy, US Department of Energy (DOE). This document focuses on the current and planned activities in waste management for FY 1981. This Program Summary Document (PSD) was prepared in order to explain the Federal nuclear waste management and spent fuel storage programs to Congress and its committees and to interested members of the public, the private sector, and the research community. The national energy policy as it applies to waste management and spent fuel storage is presented first. The program strategy, structure, budget, management approach, and public participation programs are then identified. The next section describes program activities and outlines their status. Finally, the applicability of departmental policies to NEW programs is summarized, including field and regional activities, commercialization plans, and environmental and socioeconomic implications of waste management activities, and international programs. This Nuclear Waste Management Program Summary Document is meant to serve as a guide to the progress of R and D and other energy technology programs in radioactive waste management. The R and D objective is to provide the Nation with acceptable solutions to short- and long-term management problems for all forms of radioactive waste and spent fuel.

  2. Facilitating the improved management of waste in South Africa through a national waste information system

    SciTech Connect

    Godfrey, Linda

    2008-07-01

    Developing a waste information system (WIS) for a country is more than just about collecting routine data on waste; it is about facilitating the improved management of waste by providing timely, reliable information to the relevant role-players. It is a means of supporting the waste governance challenges facing South Africa - challenges ranging from strategic waste management issues at national government to basic operational challenges at local government. The paper addresses two hypotheses. The first is that the identified needs of government can provide a platform from which to design a national WIS framework for a developing country such as South Africa, and the second is that the needs for waste information reflect greater, currently unfulfilled challenges in the sustainable management of waste. Through a participatory needs analysis process, it is shown that waste information is needed by the three spheres of government, to support amongst others, informed planning and decision-making, compliance monitoring and enforcement, community participation through public access to information, human, infrastructure and financial resource management and policy development. These needs for waste information correspond closely with key waste management challenges currently facing the country. A shift in governments approach to waste, in line with national and international policy, is evident from identified current and future waste information needs. However, the need for information on landfilling remains entrenched within government, possibly due to the poor compliance of landfill sites in South Africa and the problems around the illegal disposal of both general and hazardous waste.

  3. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    SciTech Connect

    Ferri, Giovane Lopes; Diniz Chaves, Gisele de Lorena; Ribeiro, Glaydston Mattos

    2015-06-15

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the

  4. European trends in greenhouse gases emissions from integrated solid waste management.

    PubMed

    Calabrò, Paolo S; Gori, Manuela; Lubello, Claudio

    2015-01-01

    The European Union (EU) has 28 member states, each with very different characteristics (e.g. surface, population density, per capita gross domestic product, per capita municipal solid waste (MSW) production, MSW composition, MSW management options). In this paper several integrated waste management scenarios representative of the European situation have been generated and analysed in order to evaluate possible trends in the net emission of greenhouse gases and in the required landfill volume. The results demonstrate that an integrated system with a high level of separate collection, efficient energy recovery in waste-to-energy plants and very limited landfill disposal is the most effective according to the indices adopted. Moreover, it is evident that a fully integrated system can make MSW management a carbon sink with a potentiality of up to approximately 40 Mt CO2eq year(-1).

  5. Solid waste management challenges for cities in developing countries

    SciTech Connect

    Abarca Guerrero, Lilliana; Maas, Ger; Hogland, William

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very

  6. [Safe management of waste generated in health care institutions especially with infectious waste].

    PubMed

    Kanclerski, Krzysztof; Głuszyński, Paweł

    2008-01-01

    Health care institutions generate variable waste, including infectious. Since the microorganism can survive on non alive surfaces for up to dozen or so mouth infectious medical waste can be real health risk for patients and personnel. Then it is very important to prepare and introduce the plan of waste management. It must be done by the adequate team. The members of this committee should be representatives from all departments. The plan of management waste from health can institutions include the segregation of waste and management (collecting, storage, transport, neutralization).

  7. Nuclear waste management. Quarterly progress report, October through December 1980

    SciTech Connect

    Chikalla, T.D.; Powell, J.A.

    1981-03-01

    Progress reports and summaries are presented under the following headings: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of radionuclides in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; high level waste form preparation; development of backfill material; development of structural engineered barriers; ONWI disposal charge analysis; spent fuel and fuel component integrity program; analysis of spent fuel policy implementation; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; revegetation of inactive uranium tailing sites; verification instrument development.

  8. Nuclear waste management. Quarterly progress report, April-June 1980

    SciTech Connect

    Platt, A.M.; Powell, J.A.

    1980-09-01

    The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

  9. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  10. Factors affecting waste generation: a study in a waste management program in Dhaka City, Bangladesh.

    PubMed

    Afroz, Rafia; Hanaki, Keisuke; Tudin, Rabaah

    2011-08-01

    Information on waste generation, socioeconomic characteristics, and willingness of the households to separate waste was obtained from interviews with 402 respondents in Dhaka city. Ordinary least square regression was used to determine the dominant factors that might influence the waste generation of the households. The results showed that the waste generation of the households in Dhaka city was significantly affected by household size, income, concern about the environment, and willingness to separate the waste. These factors are necessary to effectively improve waste management, growth and performance, as well as to reduce the environmental degradation of the household waste. PMID:21046234

  11. Technologies for environmental cleanup: Toxic and hazardous waste management

    SciTech Connect

    Ragaini, R.C.

    1993-12-01

    This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

  12. New hazardous waste management system: regulation of wastes or wasted regulation

    SciTech Connect

    Friedland, S.I.

    1981-01-01

    The unsound management of hazardous wastes, as exemplified by Love Canal, causes a variety of environmental and health problems. A review of present state controls reveals the need for the Federal regulation that was incorporated in the Resource Conservation and Recovery Act of 1976 (RCRA). A detailed description of RCRA, however, faults the Environmental Protection Agency (EPA) for deferring regulation and for its failure to meet deadlines, issue standards, or include many dangerous wastes in the prohibited list. EPA's interim standards of essentially voluntary guidelines will offer little protection from contamination until final permit regulations are established. 326 references. (DCK)

  13. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  14. Study on partitioning and transmutation as a possible option for spent fuel management within a nuclear phase-out scenario

    SciTech Connect

    Fazion, C.; Rineiski, A.; Salvatores, M.; Schwenk-Ferrero, A.; Romanello, V.; Vezzoni, B.; Gabrielli, F.

    2013-07-01

    Most Partitioning and Transmutation (PT) studies implicitly presuppose the continuous use of nuclear energy. In this case the development of new facilities or the modification of the fuel cycle can be justified in the long-term as an important feature in order to improve sustainability by minimizing radioactive waste and reducing the burden at waste disposal. In the case of a country with nuclear energy phase-out policy, the PT option might have also an important role for what concerns the final disposal strategies of the spent fuel. In this work three selected scenarios are analyzed in order to assess the impact of PT implementation in a nuclear energy phase out option. The scenarios are: -) Scenario 1: Identification of Research/Development activities needs for a technological development of PT while postponing the decision of PT implementation; -) Scenario 2: Isolated application of PT in a phase-out context; and -) Scenario 3: Implementation of PT in a European context. In order to facilitate the discrimination among the 3 scenarios, a number of figures of indicators have been evaluated for each scenario. The selected indicators are: the mass of High Level Waste (HLW), Uranium inventory, thermal output of HLW, Radiotoxicity, Fuel cycle secondary waste associated to the PT operation, and Facility capacity/number requirements. The reduction, due to PT implementation, of high level wastes masses and their associated volumes can be significant. For what concerns the thermal output and radiotoxicity a significant impact can be also expected. However, when assessing these two indicators the contribution coming from already vitrified waste should also not be neglected. Moreover, an increase of secondary waste inventory is also expected. On the contrary, the increase of fission product inventories due to the operation of the transmutation system has a relatively limited impact on the fuel cycle.

  15. Influence of assumptions about household waste composition in waste management LCAs.

    PubMed

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories. PMID:23117136

  16. Influence of assumptions about household waste composition in waste management LCAs.

    PubMed

    Slagstad, Helene; Brattebø, Helge

    2013-01-01

    This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  17. Waste load allocation for water quality management of a heavily polluted river using linear programming.

    PubMed

    Cho, J H; Ahn, K H; Chung, W J; Gwon, E M

    2003-01-01

    A waste load allocation model using linear programming has been developed for economic water quality management. A modified Qual2e model was used for water quality calculations and transfer coefficients were derived from the calculated water quality. This allocation model was applied to the heavily polluted Gyungan River, located in South Korea. For water quality management of the river, two scenarios were proposed. Scenario 1 proposed to minimise the total waste load reduction in the river basin. Scenario 2 proposed to minimise waste load reduction considering regional equity. Waste loads, which have to be reduced at each sub-basin and WWTP, were determined to meet the water quality goal of the river. Application results of the allocation model indicate that advanced treatment is required for most of the existing WWTPs in the river basin and construction of new WWTPs and capacity expansion of existing plants are necessary. Distribution characteristics of pollution sources and pollutant loads in the river basin was analysed using Arc/View GIS. PMID:15137169

  18. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.

    PubMed

    Zhang, Xiaodong; Huang, Gordon

    2014-03-15

    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices.

  19. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment.

    PubMed

    Zhang, Xiaodong; Huang, Gordon

    2014-03-15

    Waste management activities can release greenhouse gases (GHGs) to the atmosphere, intensifying global climate change. Mitigation of the associated GHG emissions is vital and should be considered within integrated municipal solid waste (MSW) management planning. In this study, a fuzzy possibilistic integer programming (FPIM) model has been developed for waste management facility expansion and waste flow allocation planning with consideration of GHG emission trading in an MSW management system. It can address the interrelationships between MSW management planning and GHG emission control. The scenario of total system GHG emission control is analyzed for reflecting the feature that GHG emission credits may be tradable. An interactive solution algorithm is used to solve the FPIM model based on the uncertainty-averse preferences of decision makers in terms of p-necessity level, which represents the certainty degree of the imprecise objective. The FPIM model has been applied to a hypothetical MSW planning problem, where optimal decision schemes for facility expansion and waste flow allocation have been achieved with consideration of GHG emission control. The results indicate that GHG emission credit trading can decrease total system cost through re-allocation of GHG emission credits within the entire MSW management system. This will be helpful for decision makers to effectively determine the allowable GHG emission permits in practices. PMID:24508842

  20. Multi-criteria decision analysis for waste management in Saharawi refugee camps.

    PubMed

    Garfì, M; Tondelli, S; Bonoli, A

    2009-10-01

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

  1. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    SciTech Connect

    Garfi, M. Tondelli, S.; Bonoli, A.

    2009-10-15

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

  2. International nuclear waste management fact book

    SciTech Connect

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  3. A purview of waste management evolution: special emphasis on USA.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-02-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste. PMID:18796347

  4. A purview of waste management evolution: Special emphasis on USA

    SciTech Connect

    Kollikkathara, Naushad Feng, Huan; Stern, Eric

    2009-02-15

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste.

  5. A purview of waste management evolution: special emphasis on USA.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Stern, Eric

    2009-02-01

    The generation of waste in urban regions over time is seen to impact the balance of anthropogenic and natural resources. Various national and international initiatives to manage urban solid waste are in place and has thus have evolved at present to form an assortment of different subcomponents involving environmental, administrative, regulatory, scientific, market, technology, and socio-economic factors, which has increasing bearing on the US due to its volume and nature of discards. This paper draws together the various aspects of municipal solid waste (MSW) management as it evolved, particularly in the American society through reviewing works and findings. In many parts of the country, waste management at present, primarily involves landfilling, incineration with and without energy recovery, recycling and composting. Legislation, nature of wastes and market trends continue to redefine management operations and its responsibilities and impacts. Complexities are added to it by the nature of urban development as well. New studies and concepts like 3Rs, cradle-to-cradle, industrial ecology, and integrated waste management are adding new dimensions for solving waste problems towards achieving sustainable resource use. Local initiatives, both public and private are in the forefront of adopting alternate waste management procedures. The assistance from various government and private bodies, supporting shifts in waste management approaches, have immense value, as according to the new paradigms, nothing goes to waste.

  6. Influence of assumptions about household waste composition in waste management LCAs

    SciTech Connect

    Slagstad, Helene; Brattebo, Helge

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  7. Municipal solid waste management in Malaysia: Practices and challenges

    SciTech Connect

    Manaf, Latifah Abd Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-15

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  8. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  9. Integrating waste management with Job Hazard analysis

    SciTech Connect

    2007-07-01

    The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards

  10. Applications of life cycle assessment and cost analysis in health care waste management

    SciTech Connect

    Soares, Sebastiao Roberto; Finotti, Alexandra Rodrigues; Prudencio da Silva, Vamilson; Alvarenga, Rodrigo A.F.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg{sup -1} for the waste treated with microwaves, US$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible

  11. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district

    SciTech Connect

    Di Maria, Francesco; Micale, Caterina; Morettini, Emanuela; Sisani, Luciano; Damiano, Roberto

    2015-10-15

    Highlights: • LCA analysis of two option for residual waste management. • Exploitation of mechanical physical sorting facility for extracting recyclable from RMSW. • Processing the mechanically sorted organic fraction in bioreactor landfill. • Sensitivity analysis demonstrate high influence for impact assessment of substitution ratio for recycle materials. - Abstract: Starting from an existing waste management district without thermal treatment facilities, two different management scenarios for residual waste were compared by life cycle assessment (LCA). The adoption of a bioreactor landfill for managing the mechanically sorted organic fraction instead of bio-stabilization led to reduction of global warming and fresh water eutrophication by 50% and 10%, respectively. Extraction of recyclables from residual waste led to avoided emissions for particulate matter, acidification and resource depletion impact categories. Marginal energy and the amount of energy recovered from landfill gas marginally affected the LCA results. On the contrary the quality of the recyclables extracted can significantly modify the eco profile of the management schemes.

  12. Nitty-Gritty Federalism: Managing Solid Waste. Teaching Strategy.

    ERIC Educational Resources Information Center

    LaRocco, Joseph C.; Gregori, Harry E., Jr.

    1995-01-01

    Outlines the lesson plan that uses the issue of solid waste disposal to examine the relationship between local, state, and federal governments. Handouts include a quiz on solid waste management, an information sheet, and a simulation of a local problem. The simulation involves the location of a hazardous waste site. (MJP)

  13. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  14. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... basis for tracking USAP wastes, and to facilitate studies aimed at evaluating the environmental impacts... environmental effects of waste and waste management; (3) Other efforts to minimize environmental effects...

  15. Medical Waste Management Implications for Small Medical Facilities.

    ERIC Educational Resources Information Center

    Byrns, George; Burke, Thomas

    1992-01-01

    Discusses the implications of the Medical Waste Management Act of 1988 for small medical facilities, public health, and the environment. Reviews health and environmental risks associated with medical waste, current regulatory approaches, and classifications. Concludes that the health risk of medical wastes has been overestimated; makes…

  16. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios.

    PubMed

    Hongoh, Valerie; Campagna, Céline; Panic, Mirna; Samuel, Onil; Gosselin, Pierre; Waaub, Jean-Philippe; Ravel, André; Samoura, Karim; Michel, Pascal

    2016-01-01

    The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual

  17. Using scenarios to test the appropriateness of pharmacist prescribing in asthma management

    PubMed Central

    Hanna, Tamer; Bajorek, Beata; LeMay, Kate; Armour, Carol L.

    Objective To explore the potential for community pharmacist prescribing in terms of usefulness, pharmacists’ confidence, and appropriateness, in the context of asthma management. Methods Twenty community pharmacists were recruited using convenience sampling from a group of trained practitioners who had already delivered asthma services. These pharmacists were asked to complete a scenario-based questionnaire (9 scenarios) modelled on information from real patients. Pharmacist interventions were independently reviewed and rated on their appropriateness according to the Respiratory Therapeutic Guidelines (TG) by three expert researchers. Results In seven of nine scenarios (78%), the most common prescribing intervention made by pharmacists agreed with TG recommendations. Although the prescribing intervention was appropriate in the majority of cases, the execution of such interventions was not in line with guidelines (i.e. dosage or frequency) in the majority of scenarios. Due to this, only 47% (76/162) of the interventions overall were considered appropriate. However, pharmacists were deemed to be often following common clinical practice for asthma prescribing. Therefore 81% (132/162) of prescribing interventions were consistent with clinical practice, which is often not guideline driven, indicating a need for specific training in prescribing according to guidelines. Pharmacists reported that they were confident in making prescribing interventions and that this would be very useful in their management of the patients in the scenarios. Conclusions Community pharmacists may be able to prescribe asthma medications appropriately to help achieve good outcomes for their patients. However, further training in the guidelines for prescribing are required if pharmacists are to support asthma management in this way. PMID:24644524

  18. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios.

    PubMed

    Hongoh, Valerie; Campagna, Céline; Panic, Mirna; Samuel, Onil; Gosselin, Pierre; Waaub, Jean-Philippe; Ravel, André; Samoura, Karim; Michel, Pascal

    2016-01-01

    The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual

  19. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios

    PubMed Central

    Hongoh, Valerie; Campagna, Céline; Panic, Mirna; Samuel, Onil; Gosselin, Pierre; Waaub, Jean-Philippe; Ravel, André; Samoura, Karim; Michel, Pascal

    2016-01-01

    The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual

  20. Characteristics and management of infectious industrial waste in Taiwan

    SciTech Connect

    Huang, M.-C. Lin, Jim Juimin

    2008-11-15

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.

  1. Comprehensive scenario management of sustainable spatial planning and urban water services.

    PubMed

    Baron, Silja; Hoek, Jannis; Kaufmann Alves, Inka; Herz, Sabine

    2016-01-01

    Adaptations of existing central water supply and wastewater disposal systems to demographic, climatic and socioeconomic changes require a profound knowledge about changing influencing factors. The paper presents a scenario management approach for the identification of future developments of drivers influencing water infrastructures. This method is designed within a research project with the objective of developing an innovative software-based optimisation and decision support system for long-term transformations of existing infrastructures of water supply, wastewater and energy in rural areas. Drivers of water infrastructures comprise engineering and spatial factors and these are predicted by different methods and techniques. The calculated developments of the drivers are illustrated for a model municipality. The developed scenario-manager enables the generation of comprehensive scenarios by combining different drivers. The scenarios are integrated into the optimisation model as input parameters. Furthermore, the result of the optimisation process - an optimal transformation strategy for water infrastructures - can have impacts on the existing fee system. General adaptation possibilities of the present fee system are presented.

  2. Managing uncertainty: a review of food system scenario analysis and modelling

    PubMed Central

    Reilly, Michael; Willenbockel, Dirk

    2010-01-01

    Complex socio-ecological systems like the food system are unpredictable, especially to long-term horizons such as 2050. In order to manage this uncertainty, scenario analysis has been used in conjunction with food system models to explore plausible future outcomes. Food system scenarios use a diversity of scenario types and modelling approaches determined by the purpose of the exercise and by technical, methodological and epistemological constraints. Our case studies do not suggest Malthusian futures for a projected global population of 9 billion in 2050; but international trade will be a crucial determinant of outcomes; and the concept of sustainability across the dimensions of the food system has been inadequately explored so far. The impact of scenario analysis at a global scale could be strengthened with participatory processes involving key actors at other geographical scales. Food system models are valuable in managing existing knowledge on system behaviour and ensuring the credibility of qualitative stories but they are limited by current datasets for global crop production and trade, land use and hydrology. Climate change is likely to challenge the adaptive capacity of agricultural production and there are important knowledge gaps for modelling research to address. PMID:20713402

  3. Comprehensive scenario management of sustainable spatial planning and urban water services.

    PubMed

    Baron, Silja; Hoek, Jannis; Kaufmann Alves, Inka; Herz, Sabine

    2016-01-01

    Adaptations of existing central water supply and wastewater disposal systems to demographic, climatic and socioeconomic changes require a profound knowledge about changing influencing factors. The paper presents a scenario management approach for the identification of future developments of drivers influencing water infrastructures. This method is designed within a research project with the objective of developing an innovative software-based optimisation and decision support system for long-term transformations of existing infrastructures of water supply, wastewater and energy in rural areas. Drivers of water infrastructures comprise engineering and spatial factors and these are predicted by different methods and techniques. The calculated developments of the drivers are illustrated for a model municipality. The developed scenario-manager enables the generation of comprehensive scenarios by combining different drivers. The scenarios are integrated into the optimisation model as input parameters. Furthermore, the result of the optimisation process - an optimal transformation strategy for water infrastructures - can have impacts on the existing fee system. General adaptation possibilities of the present fee system are presented. PMID:26942525

  4. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  5. Controlled Containment, Radioactive Waste Management in the Netherlands

    SciTech Connect

    Codee, H.

    2002-02-26

    All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

  6. Indicators of waste management efficiency related to different territorial conditions

    SciTech Connect

    Passarini, Fabrizio; Vassura, Ivano; Monti, Francesco; Morselli, Luciano; Villani, Barbara

    2011-04-15

    The amount of waste produced and the control of separate collection are crucial issues for the planning of a territorial Integrated Waste Management System, enabling the allocation of each sorted waste fraction to the proper treatment and recycling processes. The present study focuses on assessing indicators of different waste management systems in areas characterized by different territorial conditions. The investigated case study concerns the municipalities of Emilia Romagna (northern Italy), which present a rather uniform socioeconomic situation, but a variety of geographic, urban and waste management characteristics. A survey of waste generation and collection rates was carried out, and correlated with the different territorial conditions, classifying the municipalities according to altitude and population density. The best environmental performances, in terms of high separate collection rate, were found on average in rural areas in the plain, while the lowest waste generation was associated with rural hill towns.

  7. Medical wastes management in the south of Brazil

    SciTech Connect

    Silva, C.E. da

    2005-07-01

    In developing countries, solid wastes have not received sufficient attention. In many countries, hazardous and medical wastes are still handled and disposed together with domestic wastes, thus creating a great health risk to municipal workers, the public and the environment. Medical waste management has been evaluated at the Vacacai river basin in the State of Rio Grande do Sul, Brazil. A total of 91 healthcare facilities, including hospitals (21), health centers (48) and clinical laboratories (22) were surveyed to provide information about the management, segregation, generation, storage and disposal of medical wastes. The results about management aspects indicate that practices in most healthcare facilities do not comply with the principles stated in Brazilian legislation. All facilities demonstrated a priority on segregation of infectious-biological wastes. Average generation rates of total and infectious-biological wastes in the hospitals were estimated to be 3.245 and 0.570 kg/bed-day, respectively.

  8. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  9. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    SciTech Connect

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  10. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Refinery (Beaumont Refinery) to exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous...

  11. 75 FR 58315 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Direct Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... approving? EPA is approving the delisting petition submitted by Eastman to have three waste streams... waste. These waste streams are the rotary kiln incinerator (RKI) bottom ash, RKI fly ash, and RKI... produced by the RKI's air pollution control equipment is also derived from the management of several F-,...

  12. 75 FR 51678 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... CFR 261.31 and 261.32 (see 73 FR 54760). EPA is finalizing the decision to grant OxyChem's delisting... and specific types of management of the petitioned waste, the quantities of waste generated, and waste.... Statutory and Executive Order Reviews Under Executive Order 12866, ``Regulatory Planning and Review'' (58...

  13. Nuclear hazardous waste cost control management

    SciTech Connect

    Selg, R.A.

    1991-05-09

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes.

  14. A legislator`s guide to municipal solid waste management

    SciTech Connect

    Starkey, D; Hill, K

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  15. WASTE-ACC: A computer model for analysis of waste management accidents

    SciTech Connect

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy`s (DOE`s) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives.

  16. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. PMID:25194519

  17. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved.

  18. Solid industrial wastes and their management in Asegra (Granada, Spain).

    PubMed

    Casares, M L; Ulierte, N; Matarán, A; Ramos, A; Zamorano, M

    2005-01-01

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping. PMID:15936934

  19. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  20. Implementation of spatial smart waste management system in malaysia

    NASA Astrophysics Data System (ADS)

    Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Wahap, N. A.; Ismail, N. M.; Ahmad, N.

    2016-06-01

    One of the challenges to innovate and create an IoT -enabled solution is in monitoring and management of the environment. Waste collection utilizing the Internet of Things (IoT) with the technology of smart wireless sensors will able to gather fill-level data from waste containers hence providing a waste monitoring solution that brings up savings in waste collection costs. One of the challenges to the local authority is how to monitor the works of contractor effective and efficiently in waste management. This paper will propose to the local authority the implementation of smart waste management in Malaysia to improve the city management and to provide better services to the public towards smart city applications.

  1. Why energy from waste incineration is an essential component of environmentally responsible waste management

    SciTech Connect

    Porteous, A. . E-mail: s.j.lumbers@open.ac.uk

    2005-07-01

    This paper outlines the key factors involved in adopting energy from waste incineration (EfWI) as part of a waste management strategy. Incineration means all forms of controlled direct combustion of waste. 'Emerging' technologies, such as gasification, are, in the author's view, 5 to 10 years from proven commercial application. The strict combustion regimen employed and the emissions therefrom are detailed. It is shown that EfWI merits consideration as an integral part of an environmentally responsible and sustainable waste management strategy, where suitable quantities of waste are available.

  2. Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program

    SciTech Connect

    Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

    1995-03-01

    This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

  3. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  4. Sandia National Laboratories, California Waste Management Program annual report.

    SciTech Connect

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  5. RFID technology for hazardous waste management and tracking.

    PubMed

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored.

  6. Management of wastes from hospitals: A case study in Pakistan.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz

    2016-01-01

    Proper management of hospital waste is a critical concern in many countries of the world. Pakistan is the sixth most populous country in the world, with one of the highest urbanisation and population growth rates in South Asia. Data and analyses regarding hospital waste management practices in Pakistan are scarce in scientific literature. This study was meant to determine waste management practices at selected hospitals in a major city in Pakistan, Gujranwala. A total of 12 different hospitals were selected for the survey, which involved quantification of waste generation rates and investigation of waste management practices. The results were analysed using linear regression. The weighted average total, general and infectious hospital waste generation rates were found to be 0.667, 0.497 and 0.17 kg bed-day(-1), respectively. Of the total, 73.85% consisted of general, 25.8% consisted of hazardous infectious and 0.87% consisted of sharps waste. The general waste consisted of 15.76% paper, 13.41% plastic, 21.77% textiles, 6.47% glass, 1.99% rubber, 0.44% metal and 40.17% others. Linear regression showed that waste generation increased with occupancy and decreased with number of beds. Small, private and specialised hospitals had relatively greater waste generation rates. Poor waste segregation, storage and transportation practices were observed at all surveyed hospitals. PMID:26628050

  7. Hospital waste management in Libya: a case study.

    PubMed

    Sawalem, M; Selic, E; Herbell, J-D

    2009-04-01

    In Libya, as in many developing countries, little information is available regarding generation, handling and disposal of hospital waste. This fact hinders the development and implementation of hospital waste management schemes. The specific objective of this study is to present an appraisal of the current situation regarding hospital waste management in Libya. Procedures, techniques, methods of handling, and disposal of waste are presented, as well as the amounts and compositions of hospital waste. This research was conducted in the form of a case study. Fourteen different healthcare facilities in three cities, Tripoli, Misurata, and Sirt, all located in the northwestern part of Libya, were selected for investigation. The investigation showed that the hospitals surveyed had neither guidelines for separated collection and classification, nor methods for storage and disposal of generated waste. This deficiency indicates the need for an adequate hospital waste management strategy to improve and control the existing situation. The average waste generation rate was found to be 1.3 kg/patient/day, comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. Sharps and pathological elements comprised 26% of the hazardous waste component.

  8. Sustainable Water Resources Management in a Complex Watershed Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Schuster, J. P.; McPhee, J.

    2007-05-01

    The Aconcagua River Basin in central Chile supplies water for over one million people, high-return agriculture, mining and hydropower industries. The Aconcagua river basin has Mediterranean/semi-arid climate, its hydrologic regime varies along its path from snow- to a rainfall-dominated, and significant stream-aquifer interaction is observed throughout the river path. A complex water market operates in the Aconcagua River Basin, where private owners hold surface and subsurface water rights independently of land ownership and/or intended use. The above yield integrated watershed management critical for the sustainability of basin operations, moreover under conditions of significant precipitation interannual variability and uncertain future climatic scenarios. In this work we propose an integrated hydrologic-operational model for the Aconcagua River in order to evaluate sustainable management scenarios under conditions of climatic uncertainty. The modeling software WEAP (Water Evaluation and Planning System) serves as the platform for decision support, allowing the assessment of diverse scenarios of water use development and hydrologic conditions. The hydrologic component of the adopted model utilizes conceptual functions for describing the relations between different hydrologic variables. The management component relies on economic valuation for characterizing the space of efficient operational policies.

  9. [Introduction of manual for the management radioactive medical waste].

    PubMed

    Kida, Tetsuo; Iguchi, Harumi; Noma, Kazuo; Yoshimura, Masahiro; Hamazu, Masanari; Masuda, Kazutaka

    2003-04-01

    Societies concerned with radioactive rays and nuclear medicine have recently highlighted the necessity of managing radioactive medical waste resulting from nuclear medicine examinations. We introduce a manual that we have created and explain its use in decision-making and management practices aimed at the reduction of radioactive medical waste at hospitals that have not yet solved this problem. We hope that our manual will help in reducing this medical waste. PMID:12743523

  10. Reduce--recycle--reuse: guidelines for promoting perioperative waste management.

    PubMed

    Laustsen, Gary

    2007-04-01

    The perioperative environment generates large amounts of waste, which negatively affects local and global ecosystems. To manage this waste health care facility leaders must focus on identifying correctable issues, work with relevant stakeholders to promote solutions, and adopt systematic procedural changes. Nurses and managers can moderate negative environmental effects by promoting reduction, recycling, and reuse of materials in the perioperative setting.

  11. The Mixed Waste Management Facility monthly report, March 1995

    SciTech Connect

    Streit, R.D.

    1995-04-01

    This document presents details of the monthly activities of Lawrence Livermore National Laboratory in regards to the Mixed Waste Management Facility. Topics discussed include: quality assurance; regulations; program support; public participation; conceptual design; plant start-up; project management; feed preparation; molten salt, electrochemical, and wet oxidation; process transport and storage; and final waste forms.

  12. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Waste management for the USAP. 671.13 Section 671.13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...) Radioactive material. (b) USAP shall prepare and annually review and update a waste management plan...

  13. 45 CFR 671.13 - Waste management for the USAP.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 3 2011-10-01 2011-10-01 false Waste management for the USAP. 671.13 Section 671.13 Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION...) Radioactive material. (b) USAP shall prepare and annually review and update a waste management plan...

  14. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  15. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  16. LCA-IWM: a decision support tool for sustainability assessment of waste management systems.

    PubMed

    den Boer, J; den Boer, E; Jager, J

    2007-01-01

    The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars. PMID:17428653

  17. LCA-IWM: A decision support tool for sustainability assessment of waste management systems

    SciTech Connect

    Boer, J. den Boer, E. den; Jager, J.

    2007-07-01

    The paper outlines the most significant result of the project 'The use of life cycle assessment tools for the development of integrated waste management strategies for cities and regions with rapid growing economies', which was the development of two decision-support tools: a municipal waste prognostic tool and a waste management system assessment tool. The article focuses on the assessment tool, which supports the adequate decision making in the planning of urban waste management systems by allowing the creation and comparison of different scenarios, considering three basic subsystems: (i) temporary storage; (ii) collection and transport and (iii) treatment, disposal and recycling. The design and analysis options, as well as the assumptions made for each subsystem, are shortly introduced, providing an overview of the applied methodologies and technologies. The sustainability assessment methodology used in the project to support the selection of the most adequate scenario is presented with a brief explanation of the procedures, criteria and indicators applied on the evaluation of each of the three sustainability pillars.

  18. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    SciTech Connect

    Martinez-Sanchez, Veronica; Kromann, Mikkel A.

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental

  19. A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes: A case study for Central Macedonia

    SciTech Connect

    Karagiannidis, A.; Papageorgiou, A.; Perkoulidis, G.; Sanida, G.; Samaras, P.

    2010-02-15

    In Greece more than 14,000 tonnes of infectious hospital waste are produced yearly; a significant part of it is still mismanaged. Only one off-site licensed incineration facility for hospital wastes is in operation, with the remaining of the market covered by various hydroclave and autoclave units, whereas numerous problems are still generally encountered regarding waste segregation, collection, transportation and management, as well as often excessive entailed costs. Everyday practices still include dumping the majority of solid hospital waste into household disposal sites and landfills after sterilization, still largely without any preceding recycling and separation steps. Discussed in the present paper are the implemented and future treatment practices of infectious hospital wastes in Central Macedonia; produced quantities are reviewed, actual treatment costs are addressed critically, whereas the overall situation in Greece is discussed. Moreover, thermal treatment processes that could be applied for the treatment of infectious hospital wastes in the region are assessed via the multi-criteria decision method Analytic Hierarchy Process. Furthermore, a sensitivity analysis was performed and the analysis demonstrated that a centralized autoclave or hydroclave plant near Thessaloniki is the best performing option, depending however on the selection and weighing of criteria of the multi-criteria process. Moreover the study found that a common treatment option for the treatment of all infectious hospital wastes produced in the Region of Central Macedonia, could offer cost and environmental benefits. In general the multi-criteria decision method, as well as the conclusions and remarks of this study can be used as a basis for future planning and anticipation of the needs for investments in the area of medical waste management.

  20. Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo

    SciTech Connect

    Blengini, Gian Andrea; Fantoni, Moris; Busto, Mirko; Genon, Giuseppe; Zanetti, Maria Chiara

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Life Cycle Assessment is still not fully operational in waste management at local scale. Black-Right-Pointing-Pointer Credibility of WM LCAs is negatively affected by assumptions and lack of transparency. Black-Right-Pointing-Pointer Local technical-social-economic constraints are often not reflected by WM LCAs. Black-Right-Pointing-Pointer A participatory approach can increase acceptability and credibility of WM LCAs. Black-Right-Pointing-Pointer Results of a WM LCA can hardly ever be generalised, thus transparency is essential. - Abstract: The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale.

  1. Building a new waste management strategy in Puerto Rico

    SciTech Connect

    Boltz, C.

    1995-06-01

    Puerto Rico traditionally has not had a centrally organized waste management system. Most municipalities have provided service for their own residents, and the island used 62 unlined landfills before 32 of those closed in April 1994. But waste management on this Caribbean island is changing as the government-a self-governing commonwealth associated voluntarily with the US government-begins implementing its strategy for developing efficient, state-of-the-art waste management. This strategy includes plans to build an integrated system of collection, transfer stations, and disposal sites whose centerpieces are market-drives recycling, partnerships between the public and private sectors, and public education. The details of this plan coincide with the mission statement of the Puerto Rico Solid Waste Management Authority (SWMA, San Juan), to ``develop and implement the necessary infrastructure for the efficient management of solid waste in Puerto Rico.

  2. Radioactive waste management approaches for developed countries

    SciTech Connect

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  3. A-Way with Waste. A Waste Management Curriculum for Schools. Second Edition.

    ERIC Educational Resources Information Center

    Peterson, Todd; And Others

    Designed to address the problems and solutions related to waste management, this curriculum guide contains interdisciplinary activities for K-12 students in Washington State schools. Listings of the activities are provided by concept categories (under the themes of revise, reuse, recycle, and recover); by waste management subject area (addressing…

  4. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%.

  5. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. PMID:26873911

  6. Enhanced Adaptive Management: Integrating Decision Analysis, Scenario Analysis and Environmental Modeling for the Everglades

    NASA Astrophysics Data System (ADS)

    Convertino, Matteo; Foran, Christy M.; Keisler, Jeffrey M.; Scarlett, Lynn; Loschiavo, Andy; Kiker, Gregory A.; Linkov, Igor

    2013-10-01

    We propose to enhance existing adaptive management efforts with a decision-analytical approach that can guide the initial selection of robust restoration alternative plans and inform the need to adjust these alternatives in the course of action based on continuously acquired monitoring information and changing stakeholder values. We demonstrate an application of enhanced adaptive management for a wetland restoration case study inspired by the Florida Everglades restoration effort. We find that alternatives designed to reconstruct the pre-drainage flow may have a positive ecological impact, but may also have high operational costs and only marginally contribute to meeting other objectives such as reduction of flooding. Enhanced adaptive management allows managers to guide investment in ecosystem modeling and monitoring efforts through scenario and value of information analyses to support optimal restoration strategies in the face of uncertain and changing information.

  7. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). PMID:27170193

  8. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)).

  9. Calibration and Groundwater Management Scenario Analysis with the Scott Valley Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Tolley, D. G.; Foglia, L.; Neumann, J.; Harter, T.

    2014-12-01

    Late summer streamflow for the Scott River in northern California has decreased approximately 50% since the mid 1960's, resulting in increased water temperatures and disconnection of certain portions of the stream which negatively impacts aquatic habitat of fish species such as coho and fall-run Chinook salmon. In collaboration with local stakeholders, the Scott Valley Integrated Hydrologic Model has been developed, which combines a water budget model and a groundwater-surface water model (MODLFOW) of the 200 km2 basin. The goal of the integrated model is to better understand the hydrologic system of the valley and explore effects of different groundwater management scenarios on late summer streamflow. The groundwater model has a quarter-hectare resolution with aggregated monthly stress periods over a 21 year period (1990-2011). The Scott River is represented using either the river (RIV) or streamflow routing (SFR) package. UCODE was used for sensitivity analysis and calibration using head observations for 52 wells in the basin and gain/loss observations for two sections of the river. Of 32 model parameters (hydraulic conductivity, specific storage, riverbed conductance and mountain recharge), 13 were found significantly sensitive to observations. Results from the calibration show excellent agreement between modeled and observed heads and to seasonal and interannual variations in streamflow. The calibrated model was used to evaluate several management scenarios: 1) alternative water budget which takes into account measured irrigation rates in the valley, 2) in-lieu recharge where surface-water instead of groundwater is used to irrigate fields near the river while streamflow is sufficiently high, and 3) managed recharge on agricultural fields in gulches on the eastern side of the valley in the winter months. Preliminary results indicate that alternative water management scenarios (in-lieu and managed recharge) significantly increase late summer streamflow by keeping

  10. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling.

  11. Municipal solid waste management in Nepal: practices and challenges

    SciTech Connect

    Pokhrel, D.; Viraraghavan, T. . E-mail: t.viraraghavan@uregina.ca

    2005-07-01

    Solid waste management in Kathmandu valley of Nepal, especially concerning the siting of landfills, has been a challenge for over a decade. The current practice of the illegal dumping of solid waste on the river banks has created a serious environmental and public health problem. The focus of this study was to carry out an evaluation of solid waste management in Nepal based on published information. The data showed that 70% of the solid wastes generated in Nepal are of organic origin. As such, composting of the solid waste and using it on the land is the best way of solid waste disposal. This will reduce the waste volume transported to the landfill and will increase its life.

  12. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. PMID:26704064

  13. A system dynamics approach for hospital waste management.

    PubMed

    Chaerul, Mochammad; Tanaka, Masaru; Shekdar, Ashok V

    2008-01-01

    Healthcare services provided by hospitals may generate some infectious wastes. Although a large percentage of hospital waste is classified as general waste, which has similar nature as that of municipal solid waste and, therefore, could be disposed in municipal landfills, a small portion of infectious waste has to be managed in the proper manner in order to minimize risk to public health. Many factors involved in the hospital waste management system often link to one another, which require a comprehensive analysis to determine the role of each factor in the system. In this paper, we present a hospital waste management model based on system dynamics to determine the interaction among factors in the system using a software package, Stella. A case study of the City of Jakarta, Indonesia is selected. The hospital waste generation is affected by various factors including the number of beds in the hospitals and the NIMBY (not in my back yard) syndrome. To minimize the risk to public health, we found that waste segregation, as well as infectious waste treatment prior to disposal, has to be conducted properly by the hospital management, especially when scavenging takes place in landfill sites in developing countries. PMID:17368013

  14. Certain Hospital Waste Management Practices in Isfahan, Iran

    PubMed Central

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Zeinab; Narenjkar, Parisa

    2012-01-01

    Objectives: Infected hospital wastes are among hazardous wastes, and special treatment methods are needed for their disposal. Having information about present status of medical waste management systems is of great importance in finding weak, and for future planning. Such studies have not been done for most of the hospitals in Iran. Methods: This paper reports the results of a study on the present status of medical waste management in Isfahan hospitals. A ten page researcher made questionnaire was used to collect data in terms of collection, transportation, segregation, treatment and disposal. For assessment of autoclaves, standard tests including TST (Time, Steam, and Temperature) strip test and spore tests were used. Samples were made of stack gases of incinerators. Quantity and composition of hospital wastes in Isfahan were also measured manually. Results: Of all wastes in selected hospitals, 40% were infected wastes (1.59 kg/day/bed), which is 15 to 20% higher than World Health Organization (WHO) standards. TST and Spore test results were negative in all samples. Stack gases analysis showed high concentration of CO in some samples. Besides, the combustion efficiency in some samples is less than 99.5%, which is the standard criterion in Iran. Conclusions: This study may create awareness regarding the magnitude of the problem of waste management in hospitals of Isfahan and may stimulate interests for systematic control efforts for hospital waste disposal. Hospital waste management cannot succeed without documented plans, certain equipment, defined staff trainings, and periodic evaluations. PMID:22826762

  15. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan?...

  16. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan?...

  17. 40 CFR 60.2055 - What is a waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Industrial Solid Waste Incineration Units Waste Management Plan § 60.2055 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility and the methods used to... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What is a waste management plan?...

  18. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What is a waste management plan?...

  19. 40 CFR 60.2620 - What is a waste management plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commercial and Industrial Solid Waste Incineration Units Model Rule-Waste Management Plan § 60.2620 What is a waste management plan? A waste management plan is a written plan that identifies both the feasibility... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is a waste management plan?...

  20. Management of waste from stone processing industry.

    PubMed

    Prasanna, K; Joseph, Kurian

    2007-10-01

    Characteristics of waste generated in stone processing industries, impact of its current disposal practices and waste recycling potential were assessed by field studies. The physical and chemical characteristics of waste are comparable to construction materials like sand and cement. The environmental issues due to the disposal of waste including that on ambient air quality were identified at respective disposal sites. It was found that the waste can be used to replace about 60% of sand and 10% of cement in concrete. Similarly the waste can replace 40% of clay in clay bricks with affecting its compressive strength.

  1. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  2. Vermi composting--organic waste management and disposal.

    PubMed

    Kumar, J Sudhir; Subbaiah, K Venkata; Rao, P V V Prasada

    2012-01-01

    Solid waste is an unwanted byproduct of modern civilization. Landfills are the most common means of solid waste disposal. But the increasing amount of solid waste is rapidly filling existing landfills, and new sites are difficult to establish. Alternatives to landfills include the use of source reduction, recycling, composting and incineration, as well as use of landfills. Incineration is most economical if it includes energy recovery from the waste. Energy can be recovered directly from waste by incineration or the waste can be processed to produce storable refuse derived fuel (RDF). Information on the composition of solid wastes is important in evaluating alternative equipment needs, systems, management programs and plans. Pulverization of municipal solid waste is done and the pulverized solid waste is dressed to form a bed and the bed is fed by earthworms which convert the bed into vermi compost. The obtained vermi compost is sent to Ministry of Environment & Forests (MoEF) recognized lab for estimating the major nutrients, i.e. Potassium (K), Phosphorous (P), Nitrogen (N) and Micro-nutrient values. It is estimated that 59 - 65 tons of wet waste can be collected in a town per day and if this wet waste is converted to quality compost, around 12.30 tons of vermi compost can be generated. If a Municipal Corporation manages this wet waste an income of over (see text symbol) for 0.8 9 crore per anum can be earned which is a considerable amount for providing of better services to public. PMID:23741869

  3. Sustainable waste management in the UK: the public health role.

    PubMed

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues.

  4. Sustainable waste management in the UK: the public health role.

    PubMed

    Mohan, R; Spiby, J; Leonardi, G S; Robins, A; Jefferis, S

    2006-10-01

    This paper discusses waste management in the UK and its relationship with health. It aims to outline the role of health professionals in the promotion of waste management, and argues for a change in their role in waste management regulation to help make the process more sustainable. The most common definition of sustainable development is that by the Brundtland commission, i.e. "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". Managing waste sites in a manner that minimises toxic impacts on the current and future generations is obviously a crucial part of this. Although the management of waste facilities is extremely complex, the Integrated Pollution Prevention and Control regime, which requires the input of public health professionals on the regulation of such sites, means that all waste management installations should now be operating in a fashion that minimises any toxicological risks to human health. However, the impacts upon climate change, resource use and health inequalities, as well as the effects of waste transportation, are currently not considered to be part of public health professionals' responsibilities when dealing with these sites. There is also no requirement for public health professionals to become involved in waste management planning issues. The fact that public health professionals are not involved in any of these issues makes it unlikely that the potential impacts upon health are being considered fully, and even more unlikely that waste management will become more sustainable. This paper aims to show that by only considering direct toxicological impacts, public health professionals are not fully addressing all the health issues and are not contributing towards sustainability. There is a need for a change in the way that health professionals deal with waste management issues. PMID:16962620

  5. Building waste management in Bulgaria: challenges and opportunities.

    PubMed

    Hadjieva-Zaharieva, R; Dimitrova, E; Buyle-Bodin, François

    2003-01-01

    Building waste recycling as aggregates is a modern approach for preventing environmental pollution through both reducing the stocks of waste and decreasing the use of natural aggregates. The reuse of building waste is a relatively new issue for Bulgaria despite the existing considerable quantity of building waste and the significant changes in the environmental rules applied. The paper discusses generated and potential waste streams in Bulgaria in the context of the social and economic restructuring and recent urban development undergone by the country. The main preliminary conditions for developing the recycling activity such as: streams of building waste, experience in recycling, technical and environmental standardization, appropriate technologies, etc. are examined. The authors analyze current practice and research activities with regard to the implementation of advanced EU building-waste recycling methods. Conclusions are drawn about existing opportunities and the priorities of the needed building waste management strategy in the country. PMID:14522194

  6. Sustainable waste management in Africa through CDM projects

    SciTech Connect

    Couth, R.; Trois, C.

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  7. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations.

  8. Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills.

    PubMed

    Mora, Juan C; Baeza, Antonio; Robles, Beatriz; Sanz, Javier

    2016-06-01

    Naturally Occurring Radioactive Materials (NORM) wastes are generated in huge quantities in several industries and their management has been carried out under considerations of industrial non-radioactive wastes, before the concern on the radioactivity content was included in the legislation. Therefore these wastes were conditioned using conventional methods and the waste disposals were designed to isolate toxic elements from the environment for long periods of time. Spanish regulation for these conventional toxic waste disposals includes conditions that assure adequate isolation to minimize the impact of the wastes to the environment in present and future conditions. After 1996 the radiological impact of the management of NORM wastes is considered and all the aspects related with natural radiations and the radiological control regarding the management of residues from NORM industries were developed in the new regulation. One option to be assessed is the disposal of NORM wastes in hazardous and non-hazardous waste disposals, as was done before this new regulation. This work analyses the management of NORM wastes in these landfills to derive the masses that can be disposed without considerable radiological impact. Generic dose assessments were carried out under highly conservative hypothesis and a discussion on the uncertainty and variability sources was included to provide consistency to the calculations. PMID:26921509

  9. Evaluating the Mexican Federal District's integrated solid waste management programme.

    PubMed

    Wismer, Susan; Lopez de Alba Gomez, Adriana

    2011-05-01

    Generation of solid waste is a problem of great environmental significance in the Mexican Federal District. With an estimated daily generation of 12 500 tons, waste management is a priority for the district government. Integrated waste management programmes have been implemented in the Mexican Federal District in the past. They have failed. This research has examined the most recent initiative in an effort to discover the causes of failure, using a case study approach. In addition to identifying barriers to and opportunities for implementation of an effective integrated waste management system in the Federal District, this research recommends options for a newly proposed waste management system with the aim of achieving the objectives desired by the government, while aiding in the pursuit of sustainable development.

  10. Scenarios of Future Water use on Mediterranean Islands based on an Integrated Assessment of Water Management

    NASA Astrophysics Data System (ADS)

    Lange, M. A.

    2006-12-01

    The availability of water in sufficient quantities and adequate quality presents considerable problems on Mediterranean islands. Because of their isolation and thus the impossibility to draw on more distant or more divers aquifers, they rely entirely on precipitation as natural replenishing mechanism. Recent observations indicate decreasing precipitation, increasing evaporation and steadily growing demand for water on the islands. Future climate change will exacerbate this problem, thus increasing the already pertinent vulnerability to droughts. Responsible planning of water management strategies requires scenarios of future supply and demand through an integrated assessment including climate scenarios based on regional climate modeling as well as scenarios on changes in societal and economical determinants of water demand. Constructing such strategies necessitates a thorough understanding about the interdependencies and feedbacks between physical/hydrological and socio-economic determinants of water balances on an island. This has to be based on a solid understanding of past and present developments of these drivers. In the framework of the EU-funded MEDIS project (Towards sustainable water use on Mediterranean Islands: addressing conflicting demands and varying hydrological, social and economic conditions, EVK1-CT-2001-00092), detailed investigations on present vulnerabilities and adaptation strategies to droughts have been carried out on Mallorca, Corsica, Sicily, Crete and Cyprus. This was based on an interdisciplinary study design including hydrological, geophysical, agricultural-, social and political sciences investigations. A central element of the study has been the close interaction with stakeholders on the islands and their contribution to strategy formulation. An important result has been a specification of vulnerability components including: a physical/environmental-, an economical/regulatory- and a social/institutional/political component. Their

  11. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2016-07-12

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  12. Sustainable waste management in Africa through CDM projects.

    PubMed

    Couth, R; Trois, C

    2012-11-01

    Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  13. Development of a Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    A concept for a Universal Waste Management System (UWMS) has been developed based on the knowledge gained from over 50 years of space travel. It is being designed for Commercial Orbital Transportation Services (COTS) and Multi ]Purpose Crew Vehicle (MPCV) and is based upon the Extended Duration Orbiter (EDO) commode. The UMWS was modified to enhance crew interface and reduce volume and cost. The UWMS will stow waste in fecal canisters, similar to the EDO, and urine will be stowed in bags for in orbit change out. This allows the pretreated urine to be subsequently processed and recovered as drinking water. The new design combines two fans and a rotary phase separator on a common shaft to allow operation by a single motor. This change enhances packaging by reducing the volume associated with an extra motor, associated controller, harness, and supporting structure. The separator pumps urine to either a dual bag design for COTS vehicles or directly into a water reclamation system. The commode is supported by a concentric frame, enhancing its structural integrity while further reducing the volume from the previous design. The UWMS flight concept development effort is underway and an early output of the development will be a ground based UMWS prototype for manned testing. Referred to as the Gen 3 unit, this prototype will emulate the crew interface included in the UWMS and will offer a great deal of knowledge regarding the usability of the new design, allowing the design team the opportunity to modify the UWMS flight concept based on the manned testing.

  14. Development of a Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J.; Baccus, Shelley; Broyan, James L., Jr.

    2013-01-01

    NASA is working with a number of commercial companies to develop the next low Earth orbit spacecraft. The hardware volume and weight constraints are similar to or greater than those of the Apollo era. This, coupled with the equally demanding cost challenge of the proposed commercial vehicles, causes much of the Environmental Control and Life Support System (ECLSS) designs to be reconsidered. The Waste Collection System (WCS) is within this group of ECLSS hardware. The development to support this new initiative is discussed within. A WCS concept - intended to be common for all the vehicle platforms currently on the drawing board - is being developed. The new concept, referred to as the Universal Waste Management System (UWMS), includes favorable features from previous designs while improving on other areas on previous Space Shuttle and the existing International Space Station (ISS) WCS hardware, as needed. The intent is to build a commode that requires less crew time, improved cleanliness, and a 75% reduction in volume and weight compared to the previous US ISS/Extended Duration Orbitor WCS developed in the 1990s. The UWMS is most similar to the ISS Development Test Objective (DTO) WCS design. It is understood that the most dramatic cost reduction opportunity occurs at the beginning of the design process. To realize this opportunity, the cost of each similar component between the UWMS and the DTO WCS was determined. The comparison outlined were the design changes that would result with the greatest impact. The changes resulted in simplifying the approach or eliminating components completely. This initial UWMS paper will describe the system layout approach and a few key features of major components. Future papers will describe the UWMS functionality, test results, and components as they are developed.

  15. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it is subject to all applicable requirements of 40 CFR parts 260 through 272. The handler is considered the generator of the hazardous electrolyte and/or other waste and is subject to 40...

  16. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it is subject to all applicable requirements of 40 CFR parts 260 through 272. The handler is considered the generator of the hazardous electrolyte and/or other waste and is subject to 40...

  17. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it is subject to all applicable requirements of 40 CFR parts 260 through 272. The handler is considered the generator of the hazardous electrolyte and/or other waste and is subject to 40...

  18. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Transportation regulations in 49 CFR part 171 through 180 for transport of any universal waste that meets the... Requirements of the U.S. Environmental Protection Agency specified in 40 CFR part 262. Because universal waste... 49 CFR 173.2. As universal waste shipments do not require a manifest under 40 CFR 262, they may...

  19. 40 CFR 273.52 - Waste management.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Transportation regulations in 49 CFR part 171 through 180 for transport of any universal waste that meets the... Requirements of the U.S. Environmental Protection Agency specified in 40 CFR part 262. Because universal waste... 49 CFR 173.2. As universal waste shipments do not require a manifest under 40 CFR 262, they may...

  20. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 261, subpart C. (i) If the electrolyte and/or other solid waste exhibit a characteristic of hazardous waste, it is subject to all applicable requirements of 40 CFR parts 260 through 272. The handler is considered the generator of the hazardous electrolyte and/or other waste and is subject to 40...