Sample records for waste management technical

  1. An analysis of the technical status of high level radioactive waste and spent fuel management systems

    NASA Technical Reports Server (NTRS)

    English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.

    1977-01-01

    The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.

  2. 76 FR 3678 - Board Meeting: February 16, 2011-Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Activities Related to Managing Spent Nuclear...-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will...

  3. Technical assistance for hazardous-waste reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, F.M.; McComas, C.A.

    1987-12-01

    Minnesota's Waste Management Board has established, developed, and funded the Minnesota Technical Assistance Program (MnTAP). The MnTAP programs offers technical assistance to generators of hazardous waste by offering telephone and onsite consultation, a waste reduction resource bank, information dissemination, a student intern program, and research awards for waste reduction projects. The program has completed three years of successful operation. The increasing interest in and use of MnTAP's services by hazardous-waste generators has justified the belief that state technical assistance programs have an important role to play in helping generators to reduce their waste production.

  4. Report: Searching for a way to sustainability: technical and policy analyses of solid waste issues in Kathmandu.

    PubMed

    Dangi, Mohan B; Cohen, Ronald R H; Urynowicz, Michael A; Poudyal, Khem N

    2009-05-01

    Kathmandu Metropolitan City has attempted to reorganize its solid waste management a number of times. The German Technical and Financial Aid Organization led early efforts that were followed by a number of more recent experiments that left the city with an unsustainable solid waste management system following the termination of foreign aid. To examine this failure, the research team evaluated household surveys, field observations, interviews, and other primary and secondary information within the context of technical, social, and institutional analyses. The survey results show that the solid waste collection rates are far below the 90% claimed by the metropolis and street sweeping consumes approximately 51% of its solid waste budget. As a result of the relatively low collection rates the city residents are encouraged to dump waste into public lands. Consequently, too much of the city's resources are focused on sweeping rather than collection. Kathmandu needs to recognize informal waste picking, privatize, use local techniques, build capacity, promote bottom-up and participatory styles of management, and regulate policies to maintain solid waste management.

  5. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  6. Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.

    ERIC Educational Resources Information Center

    Richardson, John G.

    The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…

  7. Review of Waste Management Symposium 2007, Tucson, AZ, USA

    DOE PAGES

    Luna, Robert E.; Yoshimura, R. H.

    2007-03-01

    The Waste Management Symposium 2007 is the most recent in a long series that has been held at Tucson, Arizona. The meeting has become extremely popular as a venue for technical exchange, marketing, and networking involving upward of 1800 persons involved with various aspects of radioactive waste management. However, in a break with tradition, the symposium organizers reported that next year’s Waste Management Symposium would be held at the Phoenix, AZ convention center. Additionally, most of the WM07 sessions dealt with the technical and institutional issues relating to the resolution of waste disposal and processing challenges, including a number ofmore » sessions dealing with related transport activities.« less

  8. 78 FR 63251 - Board Meeting; November 20, 2013 in Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; November 20, 2013 in Washington, DC The U.S. Nuclear Waste Technical Review Board will meet to discuss DOE SNF and HLW management research and... Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting...

  9. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR CORROSIVE-CONTAINING WASTES. VOLUME 2

    EPA Science Inventory

    The Technical Resource Document (TRD) for wastes containing corrosives is one in a series of five documents which evaluate waste management alternatives to land disposal. In addition to this TRD for corrosive wastes, the other four TRDs in the series address land disposal alterna...

  10. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  11. EPA'S GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)

    The purpos...

  12. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif

    Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less

  14. Current status of waste management in Botswana: A mini-review.

    PubMed

    Mmereki, Daniel

    2018-05-01

    Effective waste management practices are not all about legislative solutions, but a combination of the environmental, social, technical, technically skilled human resources, financial and technological resources, resource recycling, environmental pollution awareness programmes and public participation. As a result of insufficient resources, municipal solid waste (MSW) in transition and developing countries like Botswana remains a challenge, and it is often not yet given highest priority. In Botswana, the environment, public health and other socio-economic aspects are threatened by waste management practices due to inadequate implementation and enforcement mechanisms of waste management policy. This mini-review paper describes the panorama of waste management practices in Botswana and provides information to competent authorities responsible for waste management and to researchers to develop and implement an effective waste management system. Waste management practices in Botswana are affected by: lack of effective implementation of national waste policy, fragmented tasks and overlapping mandates among relevant institutions; lack of clear guidelines on the responsibilities of the generators and public authorities and on the associated economic incentives; and lack of consistent and comprehensive solid waste management policies; lack of intent by decision-makers to prepare national waste management plans and systems, and design and implement an integrated sustainable municipal solid waste management system. Due to these challenges, there are concerns over the growing trend of the illegal dumping of waste, creating mini dumping sites all over the country, and such actions jeopardize the efforts of lobbying investors and tourism business. Recommendations for concerted efforts are made to support decision makers to re-organize a sustainable waste management system, and this paper provides a reference to other emerging economies in the region and the world.

  15. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two differentmore » prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)« less

  16. Hazardous and toxic waste management in Botswana: practices and challenges.

    PubMed

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  17. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, T.

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less

  18. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    ERIC Educational Resources Information Center

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  19. Technical Support for Contaminated Sites

    EPA Science Inventory

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled...

  20. 7 CFR 1775.67 - Allocation of funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURE (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.67 Allocation of funds. The maximum amount for a single applicant for a Solid Waste Management project will be 25 percent...

  1. 78 FR 25252 - Information Collection Activity; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... nonprofit corporations to fund the development of drinking water, wastewater, and solid waste disposal...), section 310B authorizes Solid Waste Management grants. Grants are made for 100 percent of the cost of assistance. The Technical Assistance and Training Grants and Solid Waste Management Grants programs are...

  2. Helping the auto repair industry manage hazardous wastes: an education project in King County, Washington.

    PubMed

    McKenrick, Laurence L; Ii, Keiko; Lawrence, Bill; Kaufmann, Michael; Marshall, Mark

    2003-11-01

    From January 1, 2000, to August 31, 2001, a team of environmental health specialists from Public Health-Seattle & King County, a partner in King County's Local Hazardous Waste Management Program, made educational visits to 981 automotive repair shops. The purpose was to give the auto repair industry technical assistance on hazardous waste management without using enforcement action. Through site inspections and interviews, the environmental health staff gathered information on the types and amounts of conditionally exempt small-quantity generator (CESQG) hazardous wastes and how they were handled. Proper methods of hazardous waste management, storage, and disposal were discussed with shop personnel. The environmental health staff measured the impact of these educational visits by noting changes made between the initial and follow-up visits. This report focuses on nine major waste streams identified in the auto repair industry. Of the 981 shops visited, 497 were already practicing proper hazardous waste management and disposal. The remaining 484 shops exhibited 741 discrepancies from proper practice. Environmental health staff visited these shops again within six months of the initial visit to assess changes in their practices. The educational visits and technical assistance produced a 76 percent correction of all the discrepancies noted.

  3. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    EPA Science Inventory

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  4. 7 CFR 1775.66 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...

  5. 7 CFR 1775.66 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...

  6. 7 CFR 1775.66 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...

  7. 7 CFR 1775.66 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Purpose. 1775.66 Section 1775.66 Agriculture... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Solid Waste Management Grants § 1775.66 Purpose. Grants may be made...) Provide technical assistance and/or training to reduce the solid waste stream through reduction, recycling...

  8. TWRS technical baseline database manager definition document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acree, C.D.

    1997-08-13

    This document serves as a guide for using the TWRS Technical Baseline Database Management Systems Engineering (SE) support tool in performing SE activities for the Tank Waste Remediation System (TWRS). This document will provide a consistent interpretation of the relationships between the TWRS Technical Baseline Database Management software and the present TWRS SE practices. The Database Manager currently utilized is the RDD-1000 System manufactured by the Ascent Logic Corporation. In other documents, the term RDD-1000 may be used interchangeably with TWRS Technical Baseline Database Manager.

  9. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Recycled Used Oil Management Standards - Federal Register Notice, May 3, 1993

    EPA Pesticide Factsheets

    This action corrects several technical errors and provides clarifying amendments to the final recycled used oil management standards rule. The final rule was published on September 10, 1992 (57 FR 41566).

  10. The Spanish General Radioactive Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, J.M.; Abreu, A.

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and othersmore » are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is based on the generation of funds up front, during the operating lifetime of the facilities, through the application of fees established by Statutory provisions. Finally, a mandatory mechanism of annual revision for both technical issues and economic and financial aspects, allows to have updated all the courses of action. (authors)« less

  11. Waste management as an effort to improve urban area cleanliness and community income (journal review)

    NASA Astrophysics Data System (ADS)

    Kinantan, Bag; Rahim Matondang, A.; Hidayati, Juliza

    2018-02-01

    The problem of urban waste has reached a point of concern. Population and economic growth are thought to be the cause of increasing the waste generation. The major problem related to this condition is the increasing of waste production which is not balance with the increase of its management capacity. Based on the Law Number 18 of 2008 that waste management starts from the source by applying the 3R approach (Reduction, Reuse, Recycle). This regulation provides a way which expect the waste management can be better, so that, the level of waste service can be improved and load on landfills (TPA) can be reduced.The cost of garbage collection and transport are 85% of the total waste management cost, so if this is optimized, it will optimize the system as a whole. Subsequent research focuses on how to optimize the garbage collection and transport sub-systems by finding the shortest route of transportation to the landfill by developing a Vehicle Routing Problem (VRP) model. The development of an urban area leads to the preparation of the best route is no longer an optimal solution. The complexity of the waste problem is not only related to the technical matters, but also the social and economic problems of the community. So, it is necessary to develop a model of waste management which does not only pay attention to the technical aspects, but also the social and economic. Waste is expected to be no longer a burden, but can also be utilized economically to increase community income.

  12. Support for designing waste sorting systems: A mini review.

    PubMed

    Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa

    2017-11-01

    This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.

  13. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management techniques in higher-priced areas, such as the New York-New Jersey area. In conclusion, the abyssal seafloor waste isolation concept is technically feasible and cost-effective for many waste sources.

  14. Healthcare waste management practice in the West Black Sea Region, Turkey: A comparative analysis with the developed and developing countries.

    PubMed

    Ciplak, Nesli; Kaskun, Songul

    2015-12-01

    The need for proper healthcare waste management has been a crucial issue in many developing countries as it is in Turkey. The regulation regarding healthcare wastes in Turkey was updated in 2005 in accordance with the European Union (EU) waste directives, but it still falls behind meeting the requirements of current waste treatment technologies. Therefore, this study aims to reveal deficiencies, inconsistencies, and improper applications of healthcare waste management in the western part of the Turkish Black Sea Region. In this study, it was revealed that nearly 1 million people live in the region, resulting in 5 million hospital admissions annually. All the healthcare waste produced (1000 tons yr(-1)) is treated in an autoclave plant. However, treating some categories of healthcare wastes in autoclave units mismatches with the EU waste regulations, as alternative treatment technologies are not technically able to treat all types of healthcare wastes. A proper waste management system, therefore, requires an internal segregation scheme to divert these wastes from the main healthcare waste stream. The existing malpractice in the region could cause serious health problems if no measure is taken urgently. It is expected that healthcare waste management in the region and then all across Turkey will be improved with the significant deficiencies and inconsistencies pointed out in this research. In developed countries, specific rules and regulations have already been implemented along with the recommendations for handling of healthcare waste. However, in Turkey, these wastes are treated in autoclave units, which mismatches with the European Union waste regulations, as alternative treatment technologies are not technically capable to treat all types of healthcare wastes. The existing malpractice could cause serious health problems if no measure is taken urgently. The authors demonstrated the existing status of Turkish waste management and revealed deficiencies, inconsistencies, and improper applications in comparison with developed and developing nations to align Turkish practice to European Union requirements.

  15. Towards the effective plastic waste management in Bangladesh: a review.

    PubMed

    Mourshed, Monjur; Masud, Mahadi Hasan; Rashid, Fazlur; Joardder, Mohammad Uzzal Hossain

    2017-12-01

    The plastic-derived product, nowadays, becomes an indispensable commodity for different purposes. A huge amount of used plastic causes environmental hazards that turn in danger for marine life, reduces the fertility of soil, and contamination of ground water. Management of this enormous plastic waste is challenging in particular for developing countries like Bangladesh. Lack of facilities, infrastructure development, and insufficient budget for waste management are some of the prime causes of improper plastic management in Bangladesh. In this study, the route of plastic waste production and current plastic waste management system in Bangladesh have been reviewed extensively. It emerges that no technical and improved methods are adapted in the plastic management system. A set of the sustainable plastic management system has been proposed along with the challenges that would emerge during the implementation these strategies. Successful execution of the proposed systems would enhance the quality of plastic waste management in Bangladesh and offers enormous energy from waste.

  16. Modelling a suitable location for Urban Solid Waste Management using AHP method and GIS -A geospatial approach and MCDM Model

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.

    2016-12-01

    Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.

  17. Hazardous waste management at the local level; The Anchorage, Alaska experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigglesworth, D.

    1989-07-01

    The need to manage hazardous wastes in the municipality of Anchorage, Alaska, has become increasingly evident in recent years. A task force, representing a broad cross-section of the community, was appointed by the mayor to develop a waste management plan that would address community concerns. Between 1984 and 1986, the Anchorage Hazardous Waste Task Force, supported by municipal staff, local consultants and volunteers from the community developed a plan emphasizing local responsibility and pollution prevention, using management capabilities and technical assistance. This paper describes the development of a non-regulatory hazardous waste management program in Anchorage, Alaska. Plan elements, program fundingmore » and the key role of the local Hazardous Waste Task Force are discussed.« less

  18. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    PubMed

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  19. Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usher, Sam

    2007-07-01

    Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social andmore » ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and Holistic assessments, coupled with an overarching deliberative approach. How this was managed and delivered to programme demonstrates how important effective integration of different issues, interests and world views can be achieved, and the paper looks forward to how the continued integration of both natural and social sciences is essential if public confidence is to be maintained through implementation stages. This paper will be particularly relevant to governments, waste owners and implementing bodies who are responsible for developing and implementing policy. (author)« less

  20. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...

  1. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to source, storage, treatment, and/or distribution. (b) Identify and evaluate solutions to waste... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to association personnel that will improve the management, operation, and maintenance of water and waste...

  2. The importance of scientific literacy to OCRWM's mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.P.

    1990-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (CRWM) has the unique mission of finding a permanent solution to the nation's high-level radioactive waste management problems. This paper explores a vital question: will OCRWM have sufficient scientific and technical resources as well as a sufficient level of public support to carry out its mission An affirmative answer to this question will require that adequate numbers of science and engineering students enter the field of radioactive waste management and that overall scientific literacy also be enhanced. This paper outlines current activities and programs within DOE and OCRWMmore » to increase scientific literacy and to recruit and develop scientists and engineers. While this paper offers only a summary inspection of the issues surrounding the solution of developing and maintaining the human technical capabilities to carry forth OCRWM's mission, it is meant to initiate a continuing examination by the American Nuclear Society, DOE, and professional and technical societies of fundamental scientific education issues.« less

  3. Disaster waste management: a review article.

    PubMed

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-01

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Disaster waste management: A review article

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less

  5. Guidelines for Local Governments on Solid Waste Management.

    ERIC Educational Resources Information Center

    National Association of Counties, Washington, DC. Research Foundation.

    This document consists of ten guides on Solid Waste Management to assist local elected and appointed policy-making officials. They are entitled: Areawide Approaches; Legal Authority, Planning, Organization Design and Operation, Financing, Technical and Financial Assistance, Citizen Support, Personnel, and Action Plan and Bibliography. The guides…

  6. Functional analysis, a resilience improvement tool applied to a waste management system - application to the "household waste management chain"

    NASA Astrophysics Data System (ADS)

    Beraud, H.; Barroca, B.; Hubert, G.

    2012-12-01

    A waste management system plays a leading role in the capacity of an area to restart after flooding, as their impact on post-crisis management can be very considerable. Improving resilience, i.e. enabling it to maintain or recover acceptable operating levels after flooding is primordial. To achieve this, we must understand how the system works for bringing any potential dysfunctions to light and taking preventive measures. Functional analysis has been used for understanding the complexity of this type of system. The purpose of this article is to show the interest behind this type of method and the limits in its use for improving resilience of waste management system as well as other urban technical systems1, by means of theoretical modelling and its application on a study site. 1In a systemic vision of the city, urban technical systems combine all the user service systems that are essential for the city to operate (electricity, water supplies, transport, sewerage, etc.). These systems are generally organised in the form of networks (Coutard, 2010; CERTU, 2005).

  7. Determining the optimum strategy of techniques from the municipal solid waste management hierarchy to maximize social value. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Still, C.M.

    1996-12-01

    The primary waste management alternatives are source reduction, recycling, composting, incineration, and landfilling. Often waste management policies are based entirely on technical considerations and ignore that actual disposal practices depend on individuals` attitudes and behaviors. This research formulated a decision analysis model that incorporates social value measures to determine the waste management strategy that maximizes the individuals` willingness to participate. The social values that are important and that were considered in the decision support model to assist with making decisions about solid waste management were convenience, feeling good about reducing waste, feeling good about leaving a good environment for futuremore » generations, and the value of recreation programs that can be provided with profit from a recycling program.« less

  8. The Role of Urban Primary and Secondary Schools in Minimizing Disease Outbreak Caused by Environmental Contamination: A Case of Chinhoyi, Zimbabwe

    ERIC Educational Resources Information Center

    Mutungwe, Edlight; Tsvere, Maria; Dondo, Beauty; Munikwa, Simbarashe

    2011-01-01

    Waste management is a major challenge facing urban councils in Zimbabwe and Chinhoyi Municipality is no exception. Lack of resources and technical and administrative know-how is hindering proper waste management. Raw sewage and industrial waste flow into streams and rivers and uncollected rubbish bins and strewn litter is a common feature in the…

  9. Assessing future scenarios for health care waste management using a multi-criteria decision analysis tool: A case study in the Turkish West Black Sea Region.

    PubMed

    Ciplak, Nesli

    2015-08-01

    The aim of this paper is to identify the best possible health care waste management option in the West Black Sea Region by taking into account economic, social, environmental, and technical aspects in the concept of multi-criteria decision analysis. In the scope of this research, three different health care waste management scenarios that consist of different technology alternatives were developed and compared using a decision-making computer software, called Right Choice, by identifying various criteria, measuring them, and ranking their relative importance from the point of key stakeholders. The results of the study show that the decentralized autoclave technology option coupled with the disposal through land-filling with energy recovery has potential to be an optimum option for health care waste management system, and an efficient health care waste segregation scheme should be given more attention by the authorities in the region. Furthermore, the discussion of the results points out multidisciplinary approach and the equilibrium between social, environmental, economic, and technical criteria. The methodology used in this research was developed in order to enable the decision makers to gain an increased perception of a decision problem. In general, the results and remarks of this study can be used as a basis of future planning and anticipation of needs for investment in the area of health care waste management in the region and also in developing countries that are dealing with the similar waste management problems.

  10. WASTE AND WATER MANAGEMENT FOR CONVENTIONAL COAL COMBUSTION: ASSESSMENT REPORT - 1979. VOLUME V. DISPOSAL OF FGC (FLUE GAS CLEANING) WASTES

    EPA Science Inventory

    The report, the fifth of five volumes, focuses on disposal of coal ash and FGD wastes which (together) comprise FGC wastes. The report assesses the various options for the disposal of FGC wastes with emphasis on disposal on land. A number of technical, economic, and regulatory fa...

  11. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL INSPECTION SERVICE FORENSIC & TECHNICAL SERVICES DIVISION - NATIONAL FORENSIC LABORATORY, DULLES, VIRGINIA

    EPA Science Inventory

    The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...

  12. 40 CFR 265.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...

  13. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  14. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less

  15. MINE WASTE TECHNOLOGY PROGRAM:HISTORICAL PERSPECTIVES. CURRENT HIGHLIGHTS, FUTURE OPPORTUNITIES

    EPA Science Inventory

    For the past 13 years, the Mine Waste Technology Program has been technically driven by the National Risk Management Research Lab. A portion of the MWTP funding has been used to perform field demonstrations of innovative technologies with the potential to address mine waste issue...

  16. DESIGN, CONSTRUCTION, AND MAINTENANCE OF COVER SYSTEMS FOR HAZARDOUS WASTE: AN ENGINEERING GUIDANCE DOCUMENT

    EPA Science Inventory

    Engineering for cover over solid hazardous waste addresses complex interactions among many technical, environmental, and economical factors. The document emphasizes the special characteristics of solid waste management as they bear on the cover system while at the same time stres...

  17. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less

  18. Solid Waste Management in Nigeria: Problems and Issues.

    PubMed

    AGUNWAMBA

    1998-11-01

    / This paper is a presentation of the problems of solid waste management in Nigeria and certain important issues that must be addressed in order to achieve success. At the core of the problems of solid waste management are the absence of adequate policies, enabling legislation, and an environmentally stimulated and enlightened public. Government policies on the environment are piecemeal where they exist and are poorly implemented. Public enlightenment programs lacked the needed coverage, intensity, and continuity to correct the apathetic public attitude towards the environment. Up to now the activities of the state environmental agencies have been hampered by poor funding, inadequate facilities and human resources, inappropriate technology, and an inequitable taxation system. Successful solid waste management in Nigeria will require a holistic program that will integrate all the technical, economic, social, cultural, and psychological factors that are often ignored in solid waste programs.KEY WORDS: Solid waste; Management; Problems; Solutions; Nigeria

  19. Environmental Restoration and Waste Management: An Introduction. Student Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This technical document focuses on the Department of Energy's (DOE) efforts to restore the environment and manage nuclear waste. This student edition was rewritten and edited by a team of high school students in order to make it "user-friendly" for high school students and the general public. The document focuses on the efforts of the…

  20. Waste-water characterization and hazardous-waste technical assistance survey, Mather AFB California. Final report, 28 November-9 December 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, S.P.; Hedgecock, N.S.

    1989-10-01

    Personnel from the AFOEHL conducted a waste-water characterization and hazardous-waste technical assistance survey at MAFB from 28 Nov to 9 Dec 1988. The scope of this survey was to characterize the waste-water, address hazardous-waste-management practices, and explore opportunities for hazardous waste minimization. The waste water survey team analyzed the base's industrial effluent, effluent from oil/water separators, and storm water. The team performed a shop-by-shop evaluation of chemical-waste-management practices. Survey results showed that MAFB needs to improve its hazardous-waste-management program. Recommendations for improvement include: (1) Collecting two additional grab samples on separate days from the hospital discharge. Analyze for EPA Methodmore » 601 to determine if the grab sample from the survey gives a true indication of what is being discharged. (2) Locate the source and prevent mercury from the hospital from discharging into the sanitary sewer. (3) Dilute the soaps used for cleaning at the Fuels Lab, Building 7060. (4) Investigate the source of chromium from the Photo Lab. (5) Clean out the sewer system manhole directly downgradient from the Photo Lab. (6) Locate the source of contamination in the West Ditch Outfall. (7) Reconnect the two oil/water separators that discharge into the storm sewerage system. (8) Investigate the source of methylene chloride coming on the base. (9) Investigate the source of mercury at Fuel Cell Repair, building 7005.« less

  1. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  2. 75 FR 15423 - U.S. Nuclear Regulatory Commission Technical Evaluation Report for the Phase 1 Decommissioning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...

  3. Approach to training of personnel to manage radioactive wastes offered by education training Centre at Moscow Sia Radon under sponsorship of IAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Dmitriev, S.A.; Ojovan, M.I.

    The availability of qualified personnel is crucial to the licensing and efficient and safe operation of waste management facilities and for the improvement of the existing waste management practices. The countries with some degree of waste management activities are of special concerns, since their narrow waste management experience and personal capabilities may be a limiting factor to manage radioactive waste in a safe and technically optimal manner. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided trainingmore » to waste management personnel for the last 10 years. During this period, more than 300 specialists from 26 European and Asian countries, (mostly) sponsored by the IAEA, have increased their knowledge and skills in radioactive waste management. The current experience of the SIA 'Radon' in the organisation of the IAEA sponsored training is summarized and an outline of some strategic educational elements, which IETC will continue to pursue in the coming years, is provided. (authors)« less

  4. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  5. Mixed waste management options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatorymore » and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.« less

  6. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1992-10-01

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  7. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  8. TECHNICAL RESOURCE DOCUMENT ON MONITORED NATURAL RECOVERY

    EPA Science Inventory

    In 2005, the United States Environmental Protection Agency (EPA) published a document entitled Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (EPA, 2005), which provides technical and policy guidance for project managers and teams making risk manageme...

  9. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  10. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  11. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  12. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  13. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  14. A review and overview of nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less

  15. System configuration management plan for 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, G.F. Jr.

    1994-10-11

    The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less

  16. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARCOT, R.A.

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less

  17. Solid waste management in Abuja, Nigeria.

    PubMed

    Imam, A; Mohammed, B; Wilson, D C; Cheeseman, C R

    2008-01-01

    The new city of Abuja provided an opportunity to avoid some of the environmental problems associated with other major cities in Africa. The current status of solid waste management in Abuja has been reviewed and recommendations for improvements are made. The existing solid waste management system is affected by unfavourable economic, institutional, legislative, technical and operational constraints. A reliable waste collection service is needed and waste collection vehicles need to be appropriate to local conditions. More vehicles are required to cope with increasing waste generation. Wastes need to be sorted at source as much as possible, to reduce the amount requiring disposal. Co-operation among communities, the informal sector, the formal waste collectors and the authorities is necessary if recycling rates are to increase. Markets for recycled materials need to be encouraged. Despite recent improvements in the operation of the existing dumpsite, a properly sited engineered landfill should be constructed with operation contracted to the private sector. Wastes dumped along roads, underneath bridges, in culverts and in drainage channels need to be cleared. Small-scale waste composting plants could promote employment, income generation and poverty alleviation. Enforcement of waste management legislation and a proper policy and planning framework for waste management are required. Unauthorized use of land must be controlled by enforcing relevant clauses in development guidelines. Accurate population data is necessary so that waste management systems and infrastructure can be properly planned. Funding and affordability remain major constraints and challenges.

  18. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less

  19. TECHNICAL GUIDANCE DOCUMENT: INSPECTION TECHNIQUES FOR THE FABRICATION OF GEOMEMBRANE FIELD SEAMS

    EPA Science Inventory

    Subtitle C of the Resource Conservation and Recovery Act (RCRA) requires the U.S. Environmental Protection Agency (EPA) to establish a Federal hazardous waste management program. This program must ensure that hazardous wastes are handled safely from generation until final dispos...

  20. Air Quality, Climate and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysis indicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availa...

  1. Effective dialogue: Enhanced public engagement as a legitimising tool for municipal waste management decision-making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, Kenisha, E-mail: k.garnett@cranfield.ac.uk; Cooper, Tim, E-mail: t.h.cooper@ntu.ac.uk

    2014-12-15

    Highlights: • A review of public engagement in waste management decision-making is undertaken. • Enhanced public engagement is explored as a means to legitimise waste decisions. • Analytical–deliberative processes are explored as a tool for effective dialogue. • Considerations for integrating public values with technical analysis are outlined. • Insights into the design of appropriate public engagement processes are provided. - Abstract: The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies andmore » sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical–deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical–deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures.« less

  2. Tank waste remediation system immobilized high-level waste storage project configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgard, K.G.

    This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes to systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.This Configuration Management Implementation Plan was developed to assist in the management of systems, structures, and components, to facilitate the effective control and statusing of changes tomore » systems, structures, and components; and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Project W-464 will take in implementing a configuration management control, to determine the rigor of control, and to identify the mechanisms for imposing that control.« less

  3. Guide to radioactive waste management literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less

  4. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Establishing and testing the "reuse potential" indicator for managing wastes as resources.

    PubMed

    Park, Joo Young; Chertow, Marian R

    2014-05-01

    This study advances contemporary ideas promoting the importance of managing wastes as resources such as closed-loop or circular material economies, and sustainable materials management by reinforcing the notion of a resource-based paradigm rather than a waste-based one. It features the creation of a quantitative tool, the "reuse potential indicator" to specify how "resource-like" versus how "waste-like" specific materials are on a continuum. Even with increasing attention to waste reuse and resource conservation, constant changes in product composition and complexity have left material managers without adequate guidance to make decisions about what is technically feasible to recover from the discard stream even before markets can be considered. The reuse potential indicator is developed to aid management decision-making about waste based not on perception but more objectively on the technical ability of the materials to be reused in commerce. This new indicator is based on the extent of technological innovation and commercial application of actual reuse approaches identified and cataloged. Coal combustion by-products (CCBs) provide the test case for calculating the reuse potential indicator. While CCBs are often perceived as wastes and then isolated in landfills or surface impoundments, there is also a century-long history in the industry of developing technologies to reuse CCBs. The recent statistics show that most CCBs generated in Europe and Japan are reused (90-95%), but only 40-45% of CCBs are used in the United States. According to the reuse potential calculation, however, CCBs in the United States have high technical reusability. Of the four CCBs examined under three different regulatory schemes, reuse potential for boiler slag and flue-gas desulfurization gypsum maintains a value greater than 0.8 on a 0-1 scale, indicating they are at least 80% resource-like. Under current regulation in the United States, both fly ash and bottom ash are 80-90% resource-like. Very strict regulation would remove many reuse options decreasing potential for these two CCBs to 30% resource-like. A more holistic view of waste and broad application of the new indicator would make clear what technologies are available and assist public and private decision makers in setting quantitative material reuse targets from a new knowledge base that reinforces a resource-based paradigm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Site Characterization and Monitoring Technical Support Center FY16 Report

    EPA Science Inventory

    SCMTSC’s primary goal is to provide technical assistance to regional programs on complex hazardous waste site characterization issues. This annual report illustrates the range and extent of projects that SCMTSC supported in FY 2016. Our principal audiences are site project manage...

  7. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure ofmore » each of the following hazardous waste management units regulated under RCRA.« less

  8. Radioactive Waste...The Problem and Some Possible Solutions

    ERIC Educational Resources Information Center

    Olivier, Jean-Pierre

    1977-01-01

    Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; Danneels, J.; Kenagy, W.D.

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less

  10. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  11. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran.

    PubMed

    Saeid, Nazemi; Roudbari, Aliakbar; Yaghmaeian, Kamyar

    2014-01-14

    The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems.

  13. Assessing knowledge, performance, and efficiency for hospital waste management-a comparison of government and private hospitals in Pakistan.

    PubMed

    Ali, Mustafa; Wang, Wenping; Chaudhry, Nawaz; Geng, Yong; Ashraf, Uzma

    2017-04-01

    Proper management of healthcare waste is a critical concern in many countries of the world. Rapid urbanization and population growth rates pose serious challenges to healthcare waste management infrastructure in such countries. This study was aimed at assessing the situation of hospital waste management in a major city of Pakistan. Simple random sampling was used to select 12 government and private hospitals in the city. Field visits, physical measurements, and questionnaire survey method were used for data collection. Information was obtained regarding hospital waste generation, segregation, collection, storage, transportation, and disposal. Data envelopment analysis (DEA) was used to classify the hospitals on the basis of their relative waste management efficiencies. The weighted average total waste generation at the surveyed hospitals was discovered to be 1.53 kg/patient/day of which 75.15% consisted of general waste and the remaining consisted of biomedical waste. Of the total waste, 24.54% came from the public hospital and the remaining came from the private hospitals. DEA showed that seven of the surveyed hospitals had scale or pure technical inefficiencies in their waste management activities. The public hospital was relatively less efficient than most of the private hospitals in these activities. Results of the questionnaire survey showed that none of the surveyed hospitals was carrying out waste management in strict compliance with government regulations. Moreover, hospital staff at all the surveyed hospitals had low level of knowledge regarding safe hospital waste management practices. The current situation should be rectified in order to avoid environmental and epidemiological risks.

  14. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less

  15. Fossil energy waste management. Technology status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includesmore » a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.« less

  16. Measuring the efficiency of a healthcare waste management system in Serbia with data envelopment analysis.

    PubMed

    Ratkovic, Branislava; Andrejic, Milan; Vidovic, Milorad

    2012-06-01

    In 2007, the Serbian Ministry of Health initiated specific activities towards establishing a workable model based on the existing administrative framework, which corresponds to the needs of healthcare waste management throughout Serbia. The objective of this research was to identify the reforms carried out and their outcomes by estimating the efficiencies of a sample of 35 healthcare facilities engaged in the process of collection and treatment of healthcare waste, using data envelopment analysis. Twenty-one (60%) of the 35 healthcare facilities analysed were found to be technically inefficient, with an average level of inefficiency of 13%. This fact indicates deficiencies in the process of collection and treatment of healthcare waste and the information obtained and presented in this paper could be used for further improvement and development of healthcare waste management in Serbia.

  17. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  18. Hazardous Waste Management System - General - Identification and Listing of Hazardous Waste - Used Oil - Federal Register Notice, May 20, 1992

    EPA Pesticide Factsheets

    EPA is today promulgating a final listing decision for used oils based upon the technical criteria provided in the Resource Conservation and Recovery Act (RCRA) sections 1004 and 3001 and in 40 CFR 261.11 (a)(1) and (a)(3).

  19. An Approach to Compare the Air Quality, Climate and Economic Impacts of Biogas Management Technologies

    EPA Science Inventory

    Anaerobically digested organic waste (e.g. manure, sewage, and municipal solid waste) produces biogas, a source of renewable energy. A recent analysisindicates that the technical resource in California could produce nearly 93 billion cubic feet per year of biomethane from availab...

  20. MARINE PROCESSES, THEIR RELATIONSHIP TO POLLUTION AND A FRAMEWORK FOR WASTE MANAGEMENT

    EPA Science Inventory

    The transport and transformation processes which influence th way in which waste materials are dispersed and incorporated into the marine environment are reviewed and summarized as a preface for appreciation of the technical papers which follow in this volume. n a similar vein th...

  1. An integrated approach for the management of demolition waste in Cyprus.

    PubMed

    Kourmpanis, Basilis; Papadopoulos, Achilleas; Moustakas, Konstantinos; Kourmoussis, Fotis; Stylianou, Marinos; Loizidou, Maria

    2008-12-01

    This study investigated the generation and management of demolition waste (DW) in Cyprus. A methodology has been developed and applied for the estimation of the quantities of the waste stream under examination, since quantitative primary data were not available. The existing situation relating to the practices applied for the management of DW was investigated and assessed. Furthermore, a multi-criteria analysis method (PROMETHEE II) was developed and applied in order to examine alternative systems that could be implemented for the management of the DW in the country. In particular, nine management systems (scenarios) were examined, evaluated and ranked according to their efficiency using seventeen individual criteria, divided into four groups (social-legislative, environmental, economic and technical). The ranking of the alternative waste management scenarios indicated that the optimum management system for possible implementation in the island included complete selective demolition procedures and transfer of mixed recyclable materials to the recycling centre and non-recyclable material to landfill.

  2. Energy Materials Coordinating Committee (EMaCC), Fiscal year 1992. Annual technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The DOE EMaCC serves to coordinate the department`s materials programs and to further effective use of materials expertise within the department. This document presents summaries of budgets and of research projects, arranged according to the offices of energy efficiency and renewable energy, energy research, environmental restoration and waste management, nuclear energy, civilian radioactive waste management, defense, and fossil energy. A directory and a keyword index are included.

  3. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Euratom Seventh Framework Programme FP7 (2007-2011)

    NASA Astrophysics Data System (ADS)

    Garbil, R.

    2010-10-01

    The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.

  5. Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less

  6. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran

    PubMed Central

    2014-01-01

    Background The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Results Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Conclusion Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems. PMID:24423020

  7. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.

    PubMed

    Ikhlayel, Mahdi

    2017-10-01

    This study aims to evaluate the environmental impacts and benefits of state-of-the-art technologies for proper e-waste handling using Jordan as a case study. Life Cycle Assessment (LCA) was employed to evaluate five advanced management systems represent state-of-the-art treatment technologies, including sanitary landfilling; proper recycling of metals, materials, and precious metals (PMs); and incineration of plastic and the hazardous portion of printed circuit boards (PCBs). Six e-waste products that contribute the most to the e-waste in Jordan were included in the assessment of each scenario, which resulted in 30 total cases of e-waste management. The findings indicated that landfills for the entire components of the e-waste stream are the worst option and should be avoided. The most promising e-waste management scenario features integrated e-waste processes based on the concept of Integrated Waste Management (IWM), including recycling materials such as non-PMs and PMs, incinerating plastic and the hazardous content of PCBs using the energy recovered from incineration, and using sanitary landfills of residues. For this scenario, the best environmental performance was obtained for the treatment of mobile phones. Incineration of the portion of hazardous waste using energy recovery is an option that deserves attention. Because scenario implementation depends on more than just the environmental benefits (e.g., economic cost and technical aspects), the study proposes a systematic approach founded on the IWM concept for e-waste management scenario selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  9. Waste to energy – key element for sustainable waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, Paul H., E-mail: paul.h.brunner@tuwien.ac.at; Rechberger, Helmut

    2015-03-15

    Highlights: • First paper on the importance of incineration from a urban metabolism point of view. • Proves that incineration is necessary for sustainable waste management. • Historical and technical overview of 100 years development of MSW incineration. - Abstract: Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of “protection of men and environment” and “resource conservation”. Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together withmore » prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas.« less

  10. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  11. Radioactive waste management treatments: A selection for the Italian scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locatelli, G.; Mancini, M.; Sardini, M.

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less

  12. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    PubMed

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  13. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State

    NASA Astrophysics Data System (ADS)

    Rankin, Matthew J.

    Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been integrated into wastewater treatment facilities nationwide for many decades to increase the economic viability of the treatment process by converting a waste stream into two valuable products: biogas and fertilizer. Thus, anaerobic digestion offers potential economic and environmental benefits of organic waste diversion and renewable energy generation. The use of biogas has many applications, including cogeneration, direct combustion, upgrading for conversion to feed a fuel cell, and compression for injection into the natural gas grid or for vehicular use. The potential benefits of waste diversion and renewable energy generation are now being realized by major organic waste generators in New York State, in particular the food manufacturing and dairy industries, thus warranting an analysis of the energy generation potential for these waste products. Anaerobic codigestion of dairy manure and food-based feedstocks reflects a cradle-to- cradle approach to organic waste management. Given both of their abundance throughout New York State, waste-to-energy processes represent promising waste management strategies. The objective of this thesis was to evaluate the current technical and economic feasibility of anaerobically codigesting existing dairy manure and food manufacturing waste feedstocks in New York State to produce high quality biogas for renewable energy generation. The first element to determining the technical feasibility of anaerobic codigestion potential in New York State was to first understand the feedstock availability. A comprehensive survey of existing organic waste streams was conducted. The key objective was to identify the volume and composition of dairy manure and liquid-phase food manufacturing waste streams available in New York State to make codigestion of multiple feedstocks in centralized anaerobic codigestion facilities an economically attractive alternative to traditional waste disposal pathways (e.g. landfill and wastewater treatment facilities). A technical and environmental assessment of processing food manufacturing wastes and dairy manure for production of electricity via cogeneration, while dependent on biogas quantity and quality as well as the proximity of the waste generators to the centralized codigestion facility, suggests that a real possibility exists for integrating dairy operations with food manufacturing facilities, dependent on the values of the parameters indicated in this thesis. The results of the environmental analysis show that considerable electricity generation and greenhouse gas emissions reductions are possible, depending primarily on feedstock availability and proximity to the centralized anaerobic digester. The initial results are encouraging and future work is warranted for analyzing the site-specific technical and economic viability of codigesting dairy manure and food manufacturing wastes to produce high quality biogas for renewable energy generation in New York State.

  14. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    PubMed

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pulp fiction - The volunteer concept (or how not to site additional LLRW disposal capacity)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, D.A.

    1995-12-31

    Experiences of compacts and of individual states throughout the nation indicate that low-level radioactive waste disposal siting processes, based from the beginning upon the volunteer concept are fraught with problems. Most apparent among these problems is that the volunteer concept does not lead to scientifically and technically based siting endeavors. Ten years have passed since the Amendments Act of 1985, and no compact or state has been - successful in providing for new LLRW disposal capacity. That failure can be traced in part to the reliance upon the volunteer concept in siting attempts. If success is to be achieved, themore » future direction for LLRW management must focus on three areas: first, a comprehensive evaluation of all LLRW management options, including reduction of waste generated and on-site storage; secondly, a comprehensive evaluation of the current as well as projected waste stream, to determine the amount of disposal capacity actually needed; and, finally, sound scientifically and technically based siting processes.« less

  16. Towards zero waste production in the minerals and metals sector

    NASA Astrophysics Data System (ADS)

    Rankin, William J.

    The production of mineral and metal commodities results in large quantities of wastes (solid, liquid and gaseous) at each stage of value-adding — from mining to manufacturing. Waste production (both consumer and non-consumer) is a major contributor to environmental degradation. Approaches to waste management in the minerals industry are largely `after the event'. These have moved progressively from foul-and-flee to dilute-and-disperse to end end-of-pipe treatments. There is now a need to move to approaches which aim to reduce or eliminate waste production at source. Modern waste management strategies include the application of cleaner production principles, the use of wastes as raw materials, the reengineering of process flowsheets to minimise waste production, and use of industrial symbioses through industrial ecology to convert wastes into useful by-products. This paper examines how these can be adopted by the minerals industry, with some recent examples. The financial, technical, systemic and regulatory drivers and barriers are also examined.

  17. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China.

    PubMed

    Zhang, Shengen; Ding, Yunji; Liu, Bo; Pan, De'an; Chang, Chein-chi; Volinsky, Alex A

    2015-11-01

    Waste electrical and electronic equipment (WEEE) has been one of the fastest growing waste streams worldwide. Effective and efficient management and treatment of WEEE has become a global problem. As one of the world's largest electronic products manufacturing and consumption countries, China plays a key role in the material life cycle of electrical and electronic equipment. Over the past 20 years, China has made a great effort to improve WEEE recycling. Centered on the legal, recycling and technical systems, this paper reviews the progresses of WEEE recycling in China. An integrated recycling system is proposed to realize WEEE high recycling rate for future WEEE recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Education activities of the US Department of Energy's Office of Civilian Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.P.

    1991-01-01

    This paper reports that science education has long been a critical element in the U.S. Department of Energy's (DOE) Civilian Radioactive Waste Management Program. OCRWM has developed educational programs aimed at improving the science literacy of students from kindergarten through college and post-graduate levels, enhancing the skills of teachers, encouraging careers in science and engineering, and developing a keener awareness of science issues among the general population. Activities include interaction with educators in the development of curricula material; workshops for elementary and secondary students; cooperative agreements and projects with universities; OCRWM exhibit showings at technical and non-technical meetings and atmore » national and regional teacher/educator conferences; the OCRWM Fellowship Program; and support for Historically Black Colleges and Universities.« less

  19. WastePlan model implementation for New York State. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visalli, J.R.; Blackman, D.A.

    1995-07-01

    WastePlan is a computer software tool that models solid waste quantities, costs, and other parameters on a regional basis. The software was developed by the Tellus Institute, a nonprofit research and consulting firm. The project`s objective was to provide local solid waste management planners in New York State responsible to develop and implement comprehensive solid waste management plans authorized by the Solid Waste Management Act of 1988, with a WastePlan model specifically tailored to fit the demographic and other characteristics of New York State and to provide training and technical support to the users. Two-day workshops were held in 1992more » to introduce planners to the existing versions; subsequently, extensive changes were made to the model and a second set of two-day workshops were held in 1993 to introduce planners to the enhanced version of WastePlan. Following user evaluations, WastePlan was further modified to allow users to model systems using a simplified version, and to incorporate report forms required by New York State. A post-project survey of trainees revealed limited regular use of software. Possible reasons include lack of synchronicity with NYSDEC planning process; lack of computer literacy and aptitude among trainees; hardware limitations; software user-friendliness; and the work environment of the trainees. A number of recommendations are made to encourage use of WastePlan by local solid waste management planners.« less

  20. Tank waste remediation system configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less

  1. Hanford Site Composite Analysis Technical Approach Description: Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. D.; Nichols, W. E.; Ali, A.

    2017-10-30

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, and DOE M 435.1 Chg 1, Radioactive Waste Management Manual, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems;more » or, to determine management alternatives, corrective actions, or assessment needs, if potential problems are identified.« less

  2. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.

    PubMed

    Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L

    2000-12-15

    The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.

  3. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  4. The U.S. Department of Energy - Office of Environmental Management Cooperation Program with the Russian Federal Atomic Energy Agency (ROSATOM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, K.D.; Holtzscheiter, E.W.

    2006-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less

  5. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A comparison of costs associated with utility management options for dry active waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornibrook, C.

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, allmore » utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less

  8. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less

  9. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 VERSION 2005.0 VOLUME 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARCOT, R.A.

    2005-04-13

    The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This report is an annual update to the SWIFT 2004.1 report that was published in August 2004. The SWIFT Report is published in two volumes. SWIFT Volume II provides detailed analyses of the data, graphical representation, comparison to previous years, and waste generator specific information. The data contained in this report are the official data for solid waste forecasting. In this revision, the volume numbers have been switched to reflect the timingmore » of their release. This particular volume provides the following data reports: (1) Summary volume data by DOE Office, company, and location; (2) Annual volume data by waste generator; (3) Annual waste specification record and physical waste form volume; (4) Radionuclide activities and dose-equivalent curies; and (5) Annual container type data by volume and count.« less

  10. FY 2017 Tribal Waste Management Capacity Building Training Grant

    EPA Pesticide Factsheets

    This notice announces the availability of funds and solicits proposals from eligible entities that will provide training, peer-to-peer technical assistance and travel scholarships to federally-recognized tribes.

  11. 75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...

  12. The Office of Technology Development technical reports. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex;more » Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.« less

  13. Tank characterization report for single-shell tank 241-C-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms ofmore » a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.« less

  14. Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovach, L.A.; Murphy, W.M.

    1995-09-01

    A Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste was held in San Antonio, Texas on July 22--25, 1991. The proceedings comprise seventeen papers submitted by participants at the workshop. A series of papers addresses the relation of natural analog studies to the regulation, performance assessment, and licensing of a geologic repository. Applications of reasoning by analogy are illustrated in papers on the role of natural analogs in studies of earthquakes, petroleum, and mineral exploration. A summary is provided of a recently completed, internationally coordinated natural analog study at Pocos de Caldas, Brazil. Papersmore » also cover problems and applications of natural analog studies in four technical areas of nuclear waste management-. waste form and waste package, near-field processes and environment, far-field processes and environment, and volcanism and tectonics. Summaries of working group deliberations in these four technical areas provide reviews and proposals for natural analog applications. Individual papers have been cataloged separately.« less

  15. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Certa, P.J.

    1998-01-07

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations,more » work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Divisionmore » operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.« less

  17. A review of legal framework applicable for the management of healthcare waste and current management practices in Ethiopia.

    PubMed

    Haylamicheal, Israel Deneke; Desalegne, Solomon Akalu

    2012-06-01

    The management of healthcare waste (HCW) requires special attention due to the risk posed by the presence of hazardous waste. The first step towards this is the issuance of national legislation complemented by policy documents, regulations and technical guidelines. In Ethiopia there is no specific legislation for healthcare waste management (HCWM). However, there are various legislations which may provide a legal framework for the management of HCW. This review assesses the various legislations that are relevant to HCWM. It also looks into the institutional arrangements put in place and waste management practices that prevail in the country. It was found that, although the existing legislations have provisions that may provide a legal framework for the management of HCW in Ethiopia, they are not comprehensive and lack specificity in terms of defining hazardous HCW and its categories; in indicating legal obligations of healthcare facilities (HCFs) in handling, transporting, treating and disposing HCW, and record keeping and reporting. There is overlapping of mandates and lackof co-ordination among various government institutions that are responsible for HCWM. The HCWM practices also do not conform to the principles of waste management in general and HCWM in particular. Thus, to better manage HCW in Ethiopia, a specific and comprehensive legislation and policy document on HCWM with clear designation of responsibilities to various stakeholders should be issued immediately. Moreover, training and awareness raising activities on proper HCWM should be undertaken targeting medical staffs, HCF administrators, waste handlers, policy and decision makers and the general public.

  18. Development of Automated Monitoring and Management System of Municipal Solid Waste Landfill Based on the Industrial OMRON Controller

    NASA Astrophysics Data System (ADS)

    Kostarev, S. N.; Sereda, T. G.

    2018-01-01

    The application of the programmable logic integrated circuits (PLC) for creating the software and hardware complexes of the medium complexity is an economically sound solution. The application of the OMRON controller to solve the monitoring and management tasks of safety of the municipal solid waste (MSW) landfill with the use of technology of the filtrate recirculation and the landfill maps irrigation is shown in the article. The article contains the technical solution connected with the implementation of the 2162059RU invention patent for the municipal solid waste landfill management in the Kurgan region of Russia. The calculation of maps and ponds was made with consideration of the limited sanitary and protection zone. The GRUNDFOS dosing and reactor equipment was proposed to use in the project.

  19. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2017-09-04

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  20. Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.

    PubMed

    Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn

    2010-01-01

    This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    PubMed Central

    Yukalang, Nachalida; Clarke, Beverley

    2017-01-01

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572

  2. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of thismore » paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.« less

  3. Hanford Site Composite Analysis Technical Approach Description: Waste Form Release.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardie, S.; Paris, B.; Apted, M.

    2017-09-14

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs,more » if potential problems are identified.« less

  4. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less

  5. Northeast Waste Management Enterprise (NEWME) 1996 annual/final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goland, A.; Kaplan, E.; Palmedo, P. Wortman, J.

    1997-10-01

    The Northeast Waste Management Enterprise was created in response to Dr. Clyde Frank`s vision of a new partnership between research, industrial, and financial sectors, with the goal of speeding development and use (particularly at U.S. Department of Energy [DOE] facilities) of environmental remediation technologies. It was anticipated that this partnership would also strengthen the international competitiveness of the U.S. environmental industry. Brookhaven National Laboratory`s (BNL) response to Dr. Frank was a proposal to create the Northeast Waste Management Alliance, later renamed the Northeast Waste Management Enterprise (NEWME). Recognizing the need to supplement its own technical expertise with acumen in business,more » financial management, and venture capital development, BNL joined forces with the Long Island Research Institute (LIRI). Since its inception at the end of FY 1993, NEWME has achieved several significant accomplishments in pursuing its original business and strategic plans. However, its successes have been constrained by a fundamental mismatch between the time scales required for technology commercialization, and the immediate need for available environmental technologies of those involved with ongoing environmental remediations at DOE facilities.« less

  6. Industrial-waste management in developing countries: the case of Lebanon.

    PubMed

    el-Fadel, M; Zeinati, M; el-Jisr, K; Jamali, D

    2001-04-01

    This paper presents a critical assessment of the existing Lebanese industrial sector, namely the current status and classification of industrial establishments based on a comparative synthesis and analysis of recent nationwide surveys and studies pertaining to industrial-waste management. Characterisation of solid and liquid industrial wastes generated, including hazardous wastes, is presented together with current and projected waste loads, recycling opportunities, and export/import practices. Institutional capacity and needs pertaining to the enforcement of relevant environmental legislation, staffing and resources, monitoring schemes, and public participation are critically evaluated. Finally, realistic options for industrial-waste management in the context of country-specific institutional economic and technical limitations are outlined. The industrial sector in Lebanon consists of small-scale industries (84% employ less than 10 persons), primarily involved in light manufacturing (96%). These industries which are distributed among 41 ill-defined zones and deficient in appropriate physical infrastructure, generate solid, liquid, and hazardous waste estimated at 346,730 tons/year, 20,169,600 m3/year and between 3000 to 15,000 tons/year, respectively. Although the growth of this sector contributes significantly to the socio-economic development of the country (industry accounts for 17% of the gross domestic product), in the absence of a comprehensive environmental management plan, this expansion may not be sustained into the coming millennium. The anticipated expansion will inevitably amplify adverse environmental impacts associated with industrial activities due to rising waste volumes and improper waste handling and disposal practices. These impacts are further aggravated by a deficient institutional framework, a lack of adequate environmental laws, and lax enforcement of regulations governing industrial-waste management.

  7. Joint Integration Office Independent Review Committee annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular researchmore » and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985.« less

  8. Use of a Knowledge Management System in Waste Management Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendler, D.; Boetsch, W.U.; Holzhauer, U.

    2006-07-01

    In Germany the knowledge management system 'WasteInfo' about waste management and disposal issues has been developed and implemented. Beneficiaries of 'WasteInfo' are official decision makers having access to a large information pool. The information pool is fed by experts, so called authors This means compiling of information, evaluation and assigning of appropriate properties (metadata) to this information. The knowledge management system 'WasteInfo' has been introduced at the WM04, the operation of 'WasteInfo' at the WM05. The recent contribution describes the additional advantage of the KMS being used as a tool for the dealing with waste management projects. This specific aspectmore » will be demonstrated using a project concerning a comparative analysis of the implementation of repositories in six countries using nuclear power as examples: The information of 'WasteInfo' is assigned to categories and structured according to its origin and type of publication. To use 'WasteInfo' as a tool for the processing the projects, a suitable set of categories has to be developed for each project. Apart from technical and scientific aspects, the selected project deals with repository strategies and policies in various countries, with the roles of applicants and authorities in licensing procedures, with safety philosophy and with socio-economic concerns. This new point of view has to be modelled in the categories. Similar to this, new sources of information such as local and regional dailies or particular web-sites have to be taken into consideration. In this way 'WasteInfo' represents an open document which reflects the current status of the respective repository policy in several countries. Information with particular meaning for the German repository planning is marked and by this may influence the German strategy. (authors)« less

  9. National briefing summaries: Nuclear fuel cycle and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less

  10. Prospective implementation of a software application for pre-disposal L/ILW waste management activities in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fako, Raluca; Sociu, Florin; Stan, Camelia

    Romania is actively engaged to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Considering relevant documents to be further updated, about 122,000 m{sup 3} SL-LILW are to be disposed in a near surface facility that will have room, also, for quantities of VLLW. Planned date for commissioning is under revision. Taking into account that in this moment there are initiated several actions for the improvement of the technical capability for LILW treatment and conditioning, several steps for the possible use of SAFRAN software weremore » considered. In view of specific data for Romanian radioactive waste inventory, authors are trying to highlight the expected limitations and unknown data related with the implementation of SAFRAN software for the foreseen pre-disposal waste management activities. There are challenges that have to be faced in the near future related with clear definition of the properties of each room, area and waste management activity. This work has the aim to address several LILW management issues in accordance with national and international regulatory framework for the assurance of nuclear safety. Also, authors intend to develop their institutional capability for the safety demonstration of the existent and future radioactive waste management facilities and activities. (authors)« less

  11. Discourse coalitions in Swiss waste management: gridlock or winds of change?

    PubMed

    Duygan, Mert; Stauffacher, Michael; Meylan, Grégoire

    2018-02-01

    As a complex socio-technical system, waste management is crucially important for the sustainable management of material and energy flows. Transition to better performing waste management systems requires not only determining what needs to be changed but also finding out how this change can be realized. Without understanding the political context, insights from decision support tools such as life cycle assessment (LCA) are likely to be lost in translation to decision and policy making. This study strives to provide a first insight into the political context and address the opportunities and barriers pertinent to initiating a change in Swiss waste management. For this purpose, the discourses around a major policy process are analysed to uncover the policy beliefs and preferences of actors. Discourse coalitions are delineated by referring to the Advocacy Coalition Framework (Sabatier, 1998) and using the Discourse Network Analysis (Leifeld and Haunss, 2012) method. The results display an incoherent regime (Fuenfschilling and Truffer, 2014) with divergent belief clusters on core issues in waste management. Yet, some actors holding different beliefs appear to have overlapping interests on secondary issues such as the treatment of biogenic waste or plastics. Although the current political context hinders a system-wide disruptive change, transitions can be initiated at local or regional scale by utilizing the shared interest across different discourse coalitions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less

  13. Solid waste management in Kolkata, India: practices and challenges.

    PubMed

    Hazra, Tumpa; Goel, Sudha

    2009-01-01

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less than 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.

  14. Human factors in waste management - potential and reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.S.

    There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop {open_quotes}nice to have{close_quotes} features, likemore » a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value {open_quotes}through the back door{close_quotes} on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development.« less

  15. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  16. Environmental Resource Management Issues in Agronomy: A Lecture/Laboratory Course

    ERIC Educational Resources Information Center

    Munn, D. A.

    2004-01-01

    Environmental Sciences Technology T272 is a course with a laboratory addressing problems in soil and water quality and organic wastes utilization to serve students from associate degree programs in laboratory science and environmental resources management at a 2-year technical college. Goals are to build basic lab skills and understand the role…

  17. Indonesia municiple solid waste life cycle and environmental monitoring: current situation, before and future challenges

    NASA Astrophysics Data System (ADS)

    Susmono

    2017-03-01

    Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support, both technically and non technically aspects such as new appropriate technology development, new integration management especially between formal and informal organizations, acceleration of community education/empowerment, new required regulations development and law enforcement support. Political will of government. In the beginning, government and people of Indonesia follow the paradigm that municipal solid waste management could be managed by Collecting-Transferring-Dumping system only. This paradigm is appropriate if no problem increase of land providing for solid waste dumping site. Most of local governments are not able to decide it because so many aspects and complexity of problems such as choosing an appropriate technology, finding location for solid waste transfer stations and dumping site, developing of waste management, limitation of affordability, improving people behaviour to increase their low health environment consciousness, as well as lack of professional staffs. Indonesia Ministry of Environment who is responsible for solid waste handling regulations and Ministry of Public Works who is responsible for urban infrastructures development have changed their paradigm that in municipal solid waste handling it is better to reduce as soon as possible. The new approach is to introduce 3R methods from the sources to the solid waste dumping site for minimizing cost of transportation and dumping site area. The Municipal Solid Waste Management Law no 18/2008 stated that municipal solid waste handling consists of Reduction-Reuse-Recycling of waste and running waste management services such as collection of the rest to transport, treat and dumping in the end of the system. Based on the Autonomous Law, the local governments are still the main responsible governments to handle municipal solid waste management in their administrative area. Community participation. During the last few years many solid waste communal and non-governmental organizations were grown and developed, some solid waste communal leaders were born, and solid waste handling motivation and participation of community are grown. To accelerate this situation, the government introduces many training and education to produce more municipal solid waste handling facilitators. Since 2007, environment sanitation motivation activities runs through the yearly Sanitation Jamboree that educate, short train, motivate junior school children and competition among other. Technology innovation. Local governments, with or without central government support, are being to make some improvement how to handle municipal solid waste and through Sister City Program, many innovations were developed such as in Surabaya City (home Takakura composter), Depok (waste separation and composting), Bogor City (management), Malang City, Makasar City and others. The new Closing the Loops of solid waste handling approaches should be introduced in the future to break the bottle neck that always happened in the past. Integration between solid waste management and the farming activities, land plantation rehabilitations, city landscaping and gardening is very urgent to develop, including integration of 3R stakeholders in the region. The challenges. The municipal solid waste problem in urban areas is relative more complicated compared with the same problem in the rural areas. Accurate data collection and analyzing periodically is very important. Road map development and mobilizing of all stake holders both in central government and in local government such as NGOs, private sectors, education and research institutions, civil societies and the community are very urgent. New research action is required to find our new urban municipal solid waste characteristic and our appropriate technology and management to give some input to the central government, local governments and the community or others who involve in the municipal solid waste handling due to the recent fast growing of urban people income and changing of their life style. Conclusion. For the future, the strengthening of central and local governments’ political will is still required including financial mobilization, community education and/or empowerment, law enforcement, technical innovations, management development, providing required urban and regional solid waste management infrastructures, and Public Private Partnership promotion.

  18. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  19. 76 FR 24065 - Board Workshop: June 6-7, 2011-Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...

  20. Material Recover and Waste Form Development--2016 Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Terry A.; Vienna, John; Paviet, Patricia

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less

  1. Separations and Waste Forms Research and Development FY 2013 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less

  2. TRU Waste Management Program. Cost/schedule optimization analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.; Raudenbush, M.H.; Wolaver, R.W.

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office Rockwell International (JIO/RI) during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, taskmore » guidance development, task monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short-term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. Systems models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  3. Industrial Program of Waste Management - Cigeo Project - 13033

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butez, Marc; Bartagnon, Olivier; Gagner, Laurent

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operationalmore » and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)« less

  4. Determinants of sustainability in solid waste management--the Gianyar Waste Recovery Project in Indonesia.

    PubMed

    Zurbrügg, Christian; Gfrerer, Margareth; Ashadi, Henki; Brenner, Werner; Küper, David

    2012-11-01

    According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taghipour, Hassan, E-mail: hteir@yahoo.com; Amjad, Zahra; Jafarabadi, Mohamad Asghari

    2014-07-15

    Highlights: • Heavy metals in spent compact fluorescent lamps (CFLs) determined. • Current waste management condition of CFLs in Iran assessed. • Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. • We propose extended producer responsibility (EPR) for CFLs waste management. - Abstract: From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability ofmore » sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products’ useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place.« less

  6. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less

  7. Hazard ranking systems for chemical wastes and chemical waste sites. Hazardous waste ranking systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  8. Technical Support for Contaminated Sites | Science Inventory ...

    EPA Pesticide Factsheets

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo

  9. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less

  10. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  11. Experiments and Modeling to Support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less

  12. Evaluation of healthcare waste treatment/disposal alternatives by using multi-criteria decision-making techniques.

    PubMed

    Özkan, Aysun

    2013-02-01

    Healthcare waste should be managed carefully because of infected, pathological, etc. content especially in developing countries. Applied management systems must be the most appropriate solution from a technical, environmental, economic and social point of view. The main objective of this study was to analyse the current status of healthcare waste management in Turkey, and to investigate the most appropriate treatment/disposal option by using different decision-making techniques. For this purpose, five different healthcare waste treatment/disposal alternatives including incineration, microwaving, on-site sterilization, off-site sterilization and landfill were evaluated according to two multi-criteria decision-making techniques: analytic network process (ANP) and ELECTRE. In this context, benefits, costs and risks for the alternatives were taken into consideration. Furthermore, the prioritization and ranking of the alternatives were determined and compared for both methods. According to the comparisons, the off-site sterilization technique was found to be the most appropriate solution in both cases.

  13. Sustainable Approaches for Materials Management in Remote ...

    EPA Pesticide Factsheets

    Remote, economically challenged areas in the Commonwealth of the Northern Marianas Islands (CNMI) and American Samoa in the US Pacific island territories face unique challenges with respect to solid waste management. These islands are remote and isolated, with some islands supporting only small populations, thus limiting options for pooling resources among communities in the form of regional waste management facilities, as is common on the US mainland. This isolation also results in greater costs for waste management compared to those encountered in the mainland US, a consequence of, among other factors, more expensive construction and maintenance costs because of the necessary transport of facility components (e.g., landfill liner materials) and the decreased attractiveness of waste recovery for recycling because of lower commodity prices after off-island transportation. Adding to these economic limitations, the gross domestic product and per capita income of the Pacific territories is less than half what it is in parts of the US. The first section of this report outlines a snapshot of the current state of solid waste management overall in the US Pacific island territories, primarily based on site visits.. Steps involved in this work included a review of selected existing published information related to the subject; site visits to Guam, Saipan, Tinian, Rota, Tutuila, and Apia; an assessment of the technical and economic feasibility of different solid waste

  14. Crew appliance concepts. Volume 2, appendix B: Shuttle orbiter appliances supporting engineering data. [food management and personal hygiene

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Technical data collected for the food management and personal hygiene appliances considered for the shuttle orbiter are presented as well as plotted and tabulated trade study results for each appliance. Food storage, food operation, galley cleanup, waste collection/transfer, body cleansing, and personal grooming were analyzed.

  15. Assessing Rail Yard Impact on Local Air Quality

    EPA Science Inventory

    This is a technical presentation at the Air and Waste Management Association Measurements Symposium occurring in Durham, NC in April, 2012. The presentation describes preliminary results from air pollution measurements collected surrounding a rail yard in Chicago, IL.

  16. Integrated environmental policy: A review of economic analysis.

    PubMed

    Wiesmeth, Hans; Häckl, Dennis

    2017-04-01

    Holistic environmental policies, which emerged from a mere combination of technical activities in waste management some 40 years ago, constitute the most advanced level of environmental policies. These approaches to environmental policy, among them the policies in integrated waste management, attempt to guide economic agents to an environment-friendly behaviour. Nevertheless, current holistic policies in waste management, including policies on one-way drinks containers and waste electrical and electronic equipment, and implementations of extended producer responsibility with further applications to waste electrical and electronic equipment, reveal more or less severe deficiencies - despite some positive examples. This article relates these policy failures, which are not necessarily the result of an insufficient compliance with the regulations, to missing constitutive elements of what is going to be called an 'integrated environmental policy'. This article therefore investigates - mostly from a practical point of view - constitutive elements, which are necessary for a holistic policy to serve as a well-functioning allocation mechanism. As these constitutive elements result from a careful 'integration' of the environmental commodities into the economic allocation problems, we refer to these policies as 'integrated environmental policies'. The article also discusses and illustrates the main steps of designing such a policy - for waste electrical and electronic equipment and a (possible) ban of Glyphosat in agriculture. As these policies are dependent on economic and political stability with environmental awareness sufficiently developed, the article addresses mostly waste management policies in highly industrialised countries.

  17. Constraints to healthcare waste treatment in low-income countries - a case study from Somaliland.

    PubMed

    Di Bella, Veronica; Ali, Mansoor; Vaccari, Mentore

    2012-06-01

    In low-income countries, healthcare waste is mixed with the municipal waste stream and rarely receives special attention. This paper presents the lessons learned from a pilot project targeted to improve healthcare waste management in Hargeisa (Somaliland). The interventions were carried out in three of the main hospitals in the city. Consideration was also given to improve the overall situation regarding the management of healthcare waste. Three De Montfort incinerators were built and training was provided to operators, waste workers and healthcare personnel. Although the incinerators were constructed in accordance with the required standards, major constraints were identified in the operational phase: irregular de-ashing procedures, misuse of safety equipment, and ineffective separation of healthcare waste were seen in this phase. The paper concludes that in other small hospitals in the developing world, such as those in Hargeisa, on-site incineration by use of low-cost, small-scale incinerators could be successfully applied as an interim solution, provided that an agreed and acceptable plan of operation and maintenance is in place and responsibilities for the management of the facility are clearly identified. Moreover, when replicating this experience in other settings even greater importance should be given to the technical capacity building of operators and pressure should be exercised on local administrations in order to control and supervise the whole management system.

  18. Technical specifications for mechanical recycling of agricultural plastic waste.

    PubMed

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Technical, economic and environmental feasibility of recycling nutrients in waste in Southern Thailand.

    PubMed

    Schouw, Nanette Levanius; Bregnhøj, Henrik; Mosbaek, Hans; Tjell, Jens Christian

    2003-06-01

    Technical, economic and environmental criteria were used to evaluate the feasibility of recycling plant nutrients in kitchen waste, human excreta and sullage from households in Phattalung (urban), Kuan Lang (peri urban) and Prik (rural) in Southern Thailand. The difference in situation and context of the three areas called for individual solutions, and for each area three sanitation systems were evaluated. However, in all three areas recycling human excreta and kitchen waste via composting latrines was found to be more environmental feasible than human excreta managed in septic tanks or sub surface trickle irrigation and kitchen waste disposed of at landfill sites or treated at composting plants. Sullage should in Kuan Lang and Prik be used directly on garden crops, but in Phattalung be treated in waste stabilisation ponds before discharge, to be environmentally feasible. The economic feasibility results varied among the three areas and among the involved stakeholders: farmers and Kuan Lang administration benefited from recycling waste, at the expense of other private users, Phattalung municipality and Prik municipality. The main cause of these conflicting interests was lack of cost recovery and public participation, which should therefore serve as the fundament of any future environmental and economic feasible sanitation system.

  20. Waste-water characterization and hazardous-waste technical assistance survey, Bergstrom AFB tTxas. Final report, 6-15 March 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedgecock, N.S.

    1990-01-01

    At the request of 67 Combat Support Group/DEEV the Air Force Occupational and Environmental Health Laboratory conducted a waste-water characterization and hazardous-waste technical assistance survey at Bergstrom AFB (BAFB) from 6-15 Mar 89. The scope of the waste-water survey was to characterize the effluent exiting the base and the effluent from 23 industrial facilities and 10 food-serving facilities. The scope of the hazardous-waste survey was to address hazardous-waste-management practices and explore opportunities for hazardous waste minimization. Specific recommendations from the survey include: (1) Accompany City of Austin personnel during waste-water sampling procedures; (2) Sample at the manhole exiting the mainmore » lift station rather than at the lift station wet well; (3) Split waste-water samples with the City of Austin for comparison of results; (4) Ensure that oil/water separators and grease traps are functioning properly and are cleaned out regularly; (5) Limit the quantity of soaps and solvents discharged down the drain to the sanitary sewer; (6) Establish a waste disposal contract for the removal of wastes in the Petroleum Oils and Lubricants underground storage tanks. (7) Remove, analyze, and properly dispose of oil contaminated soil from accumulation sites. (8) Move indoors or secure, cover, and berm the aluminum sign reconditioning tank at 67 Civil Engineering Squadron Protective Coating. (9) Connect 67 Combat Repair Squadron Test Cell floor drains to the sanitary sewer.« less

  1. Assessment of health-care waste management in a humanitarian crisis: A case study of the Gaza Strip.

    PubMed

    Caniato, Marco; Tudor, Terry Louis; Vaccari, Mentore

    2016-12-01

    Health-care waste management requires technical, financial and human resources, and it is a challenge for low- and middle income countries, while it is often neglected in protracted crisis or emergency situations. Indeed, when health, safety, security or wellbeing of a community is threatened, solid waste management usually receives limited attention. Using the Gaza Strip as the case study region, this manuscript reports on health-care waste management within the context of a humanitarian crisis. The study employed a range of methods including content analyses of policies and legislation, audits of waste arisings, field visits, stakeholder interviews and evaluation of treatment systems. The study estimated a production from clinics and hospitals of 683kg/day of hazardous waste in the Gaza Strip, while the total health-care waste production was 3357 kg/day. A number of challenges was identified including lack of clear definitions and regulations, limited accurate data on which to base decisions and strategies and poor coordination amongst key stakeholders. Hazardous and non-hazardous waste was partially segregated and treatment facilities hardly used, and 75% of the hazardous waste was left untreated. Recommendations for mitigating these challenges posed to patients, staff and the community in general are suggested. The outputs are particularly useful to support decision makers, and re-organize the system according to reliable data and sound assumptions. The methodology can be replicated in other humanitarian settings, also to other waste flows, and other sectors of environmental sanitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  3. The potential of household solid waste reduction in Sukomanunggal District, Surabaya

    NASA Astrophysics Data System (ADS)

    Warmadewanthi, I. D. A. A.; Kurniawati, S.

    2018-01-01

    The rapid population growth affects the amount of waste generated. Sukomanunggal Subdistrict is the densest area in West Surabaya which has a population of 100,602 inhabitants with a total area of 11.2 km2. The population growth significantly affects the problem of limited land for landfill facilities (final processing sites). According to the prevailing regulations, solid waste management solutions include the solid waste reduction and management. This study aims to determine the potential reduction of household solid waste at the sources. Household solid waste samplings were performed for eight consecutive days. The samples were then analyzed to obtain the generation rate, density, and composition so that the household solid waste reduction potential for the next 20 years could be devised. Results of the analysis showed that the value of waste is 0.27 kg/person/day, while the total household solid waste generation amounted to 27,162.58 kg/day or 187.70 m3/day. Concerning the technical aspects, the current solid waste reduction in Sukomanunggal Subdistrict has reached 2.1% through the application of waste bank, composting, and scavenging activities at the dumping sites by the garbage collectors. In the year of 2036, the potential reduction of household solid waste in Sukomanunggal Subdistrict has been estimated to reach 28.0%.

  4. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    PubMed

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less

  6. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  7. Solid waste management in Kolkata, India: Practices and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Tumpa; Goel, Sudha

    2009-01-15

    This paper presents an overview of current solid waste management (SWM) practices in Kolkata, India and suggests solutions to some of the major problems. More than 2920 ton/d of solid waste are generated in the Kolkata Municipal Corporation (KMC) area and the budget allocation for 2007-2008 was Rs. 1590 million (US$40 million), which amounts to Rs. 265/cap-y (US$6.7/cap-d) on SWM. This expenditure is insufficient to provide adequate SWM services. Major deficiencies were found in all elements of SWM. Despite 70% of the SWM budget being allocated for collection, collection efficiency is around 60-70% for the registered residents and less thanmore » 20% for unregistered residents (slum dwellers). The collection process is deficient in terms of manpower and vehicle availability. Bin capacity provided is adequate but locations were found to be inappropriate, thus contributing to the inefficiency of the system. At this time, no treatment is provided to the waste and waste is dumped on open land at Dhapa after collection. Lack of suitable facilities (equipment and infrastructure) and underestimates of waste generation rates, inadequate management and technical skills, improper bin collection, and route planning are responsible for poor collection and transportation of municipal solid wastes.« less

  8. Development of integrated radioactive waste packaging and conditioning solutions in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibley, Peter; Butter, Kevin; Zimmerman, Ian

    2013-07-01

    In order to offer a more cost effective, safer and efficient Intermediate Level Waste (ILW) management service, EnergySolutions EU Ltd. and Gesellschaft fur Nuklear-Service mbH (GNS) have been engaged in the development of integrated radioactive waste retrieval, packaging and conditioning solutions in the UK. Recognising the challenges surrounding regulatory endorsement and on-site implementation in particular, this has resulted in an alternative approach to meeting customer, safety regulator and disposability requirements. By working closely with waste producers and the organisation(s) responsible for endorsing radioactive waste management operations in the UK, our proposed solutions are now being implemented. By combining GNS' off-the-shelf,more » proven Ductile Cast Iron Containers (DCICs) and water removal technologies, with EnergySolutions EU Ltd.'s experience and expertise in waste retrieval, safety case development and disposability submissions, a fully integrated service offering has been developed. This has involved significant effort to overcome technical challenges such as onsite equipment deployment, active commissioning, conditioning success criteria and disposability acceptance. Our experience in developing such integrated solutions has highlighted the importance of working in collaboration with all parties to achieve a successful and viable outcome. Ultimately, the goal is to ensure reliable, safe and effective delivery of waste management solutions. (authors)« less

  9. A web-based Decision Support System for the optimal management of construction and demolition waste.

    PubMed

    Banias, G; Achillas, Ch; Vlachokostas, Ch; Moussiopoulos, N; Papaioannou, I

    2011-12-01

    Wastes from construction activities constitute nowadays the largest by quantity fraction of solid wastes in urban areas. In addition, it is widely accepted that the particular waste stream contains hazardous materials, such as insulating materials, plastic frames of doors, windows, etc. Their uncontrolled disposal result to long-term pollution costs, resource overuse and wasted energy. Within the framework of the DEWAM project, a web-based Decision Support System (DSS) application - namely DeconRCM - has been developed, aiming towards the identification of the optimal construction and demolition waste (CDW) management strategy that minimises end-of-life costs and maximises the recovery of salvaged building materials. This paper addresses both technical and functional structure of the developed web-based application. The web-based DSS provides an accurate estimation of the generated CDW quantities of twenty-one different waste streams (e.g. concrete, bricks, glass, etc.) for four different types of buildings (residential, office, commercial and industrial). With the use of mathematical programming, the DeconRCM provides also the user with the optimal end-of-life management alternative, taking into consideration both economic and environmental criteria. The DSS's capabilities are illustrated through a real world case study of a typical five floor apartment building in Thessaloniki, Greece. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  11. DESCRIPTION OF RISK REDUCTION ENGINEERING LABORATORY TEST AND EVALUATION FACILITIES

    EPA Science Inventory

    An onsite team of multidisciplined engineers and scientists conduct research and provide technical services in the areas of testing, design, and field implementation for both solid and hazardous waste management. Engineering services focus on the design and implementation of...

  12. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  13. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  14. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was amore » result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release.« less

  15. Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.

    PubMed

    North, D Warner

    2013-01-01

    The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.

  16. Hazard ranking systems for chemical wastes and chemical waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be theirmore » ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system.« less

  17. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less

  18. Tank waste remediation system privatization infrastructure program, configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    This Configuration Management Implementation Plan (CMIP) was developed to assist in managing systems, structures, and components (SSCS), to facilitate the effective control and statusing of changes to SSCS, and to ensure technical consistency between design, performance, and operational requirements. Its purpose is to describe the approach Privatization Infrastructure will take in implementing a configuration management program, to identify the Program`s products that need configuration management control, to determine the rigor of control, and to identify the mechanisms for that control.

  19. 76 FR 47613 - Board Meeting: September 13-14, 2011-Salt Lake City, UT; the U.S. Nuclear Waste Technical Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...

  20. FY 1987 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, informationmore » gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.« less

  1. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, Giovane Lopes, E-mail: giovane.ferri@aluno.ufes.br; Diniz Chaves, Gisele de Lorena, E-mail: gisele.chaves@ufes.br; Ribeiro, Glaydston Mattos, E-mail: glaydston@pet.coppe.ufrj.br

    Highlights: • We propose a reverse logistics network for MSW involving waste pickers. • A generic facility location mathematical model was validated in a Brazilian city. • The results enable to predict the capacity for screening and storage centres (SSC). • We minimise the costs for transporting MSW with screening and storage centres. • The use of SSC can be a potential source of revenue and a better use of MSW. - Abstract: This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering themore » recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes.« less

  2. The political science of radioactive waste disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobi, L.R. Jr.

    1996-06-01

    This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don`t overlook the need formore » someone to be on your side. Don`t forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn`t said in 1984? Nothing. {open_quotes}It`s deja vu all over again.{close_quotes}« less

  3. Eco-efficiency of solid waste management in Welsh SMEs

    NASA Astrophysics Data System (ADS)

    Sarkis, Joseph; Dijkshoorn, Jeroen

    2005-11-01

    This paper provides an efficiency analysis of practices in Solid Waste Management of manufacturing companies in Wales. We apply data envelopment analysis (DEA) to a data set compiled during the National Waste Survey Wales 2003. We explore the relative performance of small and medium sized manufacturing enterprises (SME; 10-250 employees) in Wales. We determine the technical and scale environmental and economic efficiencies of these organizations. Our evaluation focuses on empirical data collected from companies in a wide diversity of manufacturing industries throughout Wales. We find significant differences in industry and size efficiencies. We also find correlations that exist among environmental and economic efficiencies. These variations show that improvements can be made using benchmarks from similar and different size industries. Further pursuit of an investigation of possible reasons for these differences is recommended.

  4. Application of geographic information systems to the analysis of the solid waste production on the city of Bogotá (Colombia)

    NASA Astrophysics Data System (ADS)

    Solano Meza, Johanna; Romero Hernandez, Claudia; Rodrigo Ilarri, Javier

    2017-04-01

    One of the main environmental issues to address in the Capital City of Bogotá (Colombia) is the increasing production of solid waste. Despite significant efforts have been made to implement an integral solid waste system management, the current management methods do not provide a permanent alternative to minimize waste production. According to the most recent data, Bogotá is producing almost 2,7 Mt/year of solid waste and only 17,12% of this amount is reused. This means that 82,88% of the waste production has to be disposed on the municipal landfill which has an estimated life of 7,6 years [1]. Bogotá is nowadays running the so-called Zero Waste Program, which tries to run an adequate solid waste management scheme while updating the most recent Integral Solid Waste Management Plan (ISWMP). However, various strategies and methodologies are still needed to fulfill their objetives. The analysis of the solid waste production inside the city using geographic information systems (GIS) is one of the available strategies that may contribute to the environmental impacts minimization, acting at the same time as a decission support tool. These techniques have already been used to the analysis and optimization of the waste collection routes and the location of waste disposal sites. They allow to visualize the critical urban zones with increasing waste production so the next steps of the management process can be properly designed (collection, trasnport routes design, location of treatment facilities and final waste disposal sites). The estimation of the urban solid waste generation is done applying different mathematical and statistical methods, which are based on the relation between the total population of the city and the per capita waste production. GIS methods allow i) to determine the total amount of waste generated as a function of the population increasement and ii) provide a full view of the zones where priority actions are needed as they take into account both the geographical and spatial component. The behaviour of the waste generation is explained considering also the socieconomic stratiphication. Results show in this research are obtained using ArcGIS considering the official 2005 census population, the population estimation in 2020, the amount of waste recycled and disposed on the municipal landfill and the socioeconomical of the different urban areas following the local waste management plans and programs. [1]Technical Support document, Solid Waste Management Plan of Bogotá D.C. Alcaldía Mayor de Bogotá, November 2016.

  5. Flood resilience urban territories. Flood resilience urban territories.

    NASA Astrophysics Data System (ADS)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    The flood's impact during the last twenty years on French territory reveals our lack of preparation towards large-extended floods which might cause the stopping of companies' activity, services, or lead to housing unavailability during several months. New Orleans' case has to exemplify us: four years after the disaster, the city still couldn't get back its dynamism. In France, more than 300 towns are flood-exposed. While these towns are the mainspring of territory's development, it is likely that the majority of them couldn't get up quickly after a large-extended flood. Therefore, to understand and improve the urban territory's resilience facing floods is a real stake for territory's development. Urban technical networks supply, unify and irrigate all urban territories' constituents. Characterizing their flood resilience can be interesting to understand better urban resilience. In this context, waste management during and after floods is completely crucial. During a flood, the waste management network can become dysfunctional (roads cut, waste storage installations or waste treatment flooded). How can the mayor respect his obligation to guarantee salubrity and security in his city? In post flood the question is even more problematic. The waste management network presents a real stake for territory's restart. After a flood, building materials, lopped-of branches, furniture, business stocks, farm stocks, mud, rubbles, animal cadavers are wet, mixed, even polluted by hydrocarbons or toxic substances. The waste's volume can be significant. Sanitary and environmental risks can be crucial. In view of this situation, waste's management in post crisis period raises a real problem. What to make of this waste? How to collect it? Where to stock it? How to process it? Who is responsible? Answering these questions is all the more strategic since this waste is the mark of disaster. Thus, cleaning will be the first population's and local actor's reflex in order to forget the flood but also to restart as fast as possible (for example, the clearing of roads is a prerequisite for electricity's restoration which is a vital network for territory's functioning). While the waste management is a main stage of post crisis, these questions are still without answer. The extend of this network influence also leads us to think about the means to prevent from waste production and service's dysfunction. How to develop the territory to limit the floods' impact on the waste management network? Are there techniques or equipments allowing stakeholders to limit these impacts? How to increase population's, entrepreneur's or farmer's awareness to get ready to face floods, to limit the waste production, but also to react well during and after the floods? Throughout means of prevention and thanks to actor's technical and organizational adaptations towards the waste network, or by raising population's awareness and preparation, economic and institutional actors of urban territories might improve the waste's network flood resilience, and thus, cities' flood resilience. Through experience feedbacks about countries recently affected by large-extended floods and field reflection with local actors, the stakes of this PhD research are thus to think about means (1) to maintain the activity out of flood plains during a flood, (2) to increase the waste management network's activity in post crisis period in order to be able to deal with a new waste production both by its quality and its quantity, but also (3) to study the means to prevent this new production. This work will use the concept of urban system to describe urban territory because it allows us to study both its behaviour and functioning. The interest of this methodological choice is to take into account the impacts of the disruption of waste management networks on cities' functioning, and thus, on cities' flood resilience.

  6. Water technology for specific water usage.

    PubMed

    Frimmel, Fritz H

    2003-01-01

    Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.

  7. Waste information management system: a web-based system for DOE waste forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.

    2007-07-01

    The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less

  8. Status of Environmental Management Initiatives to Accelerate the Reduction of Environmental Risks and Challenges Posed by the Legacy of the Cold War

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-01

    Fifty years of nuclear weapons production and energy research in the United States during the Cold War generated large amounts of radioactive wastes, spent nuclear fuel (SNF), excess plutonium and uranium, thousands of contaminated facilities, and contaminated soil and groundwater. During most of that half century, the Nation did not have the environmental regulatory structure or nuclear waste cleanup technologies that exist today. The result was a legacy of nuclear waste that was stored and disposed of in ways now considered unacceptable. Cleaning up and ultimately disposing of these wastes is the responsibility of the U.S. Department of Energy (DOE).more » In 1989, DOE established the Office of Environmental Management (EM) to solve the large scale and technically challenging risks posed by the world's largest nuclear cleanup. This required EM to build a new nuclear cleanup infrastructure, assemble and train a technically specialized workforce, and develop the technologies and tools required to safely decontaminate, disassemble, stabilize, disposition, and remediate unique radiation hazards. The sites where nuclear activities produced legacy waste and contamination include the original Manhattan Project sites--Los Alamos, New Mexico; Hanford, Washington; and Oak Ridge, Tennessee--as well as major Cold War sites, such as Savannah River Site, South Carolina; the Idaho National Laboratory, Idaho; Rocky Flats Plant, Colorado; and Fernald, Ohio. Today EM has responsibility for nuclear cleanup activities at 21 sites covering more than two million acres in 13 states, and employs more than 30,000 Federal and contractor employees, including scientists, engineers and hazardous waste technicians. This cleanup poses unique, technically complex problems, which must be solved under the most hazardous of conditions, and which will require billions of dollars a year for several more decades. The EM program focus during its first 10 years was on managing the most urgent risks and maintaining safety at each site while negotiating state and Federal environmental compliance agreements. The program also concentrated on characterizing waste and nuclear materials and assessing the magnitude and extent of environmental contamination. By the late 1990s, EM had made significant progress in identifying and characterizing the extent of contamination and cleanup required and began transitioning from primarily a characterization and stabilization program to an active cleanup and closure program. During that time, EM formulated multi-year cleanup and closure plans, which contributed to cleanup progress; however, reducing the overall environmental risk associated with the cleanup program remained a challenge. In response, the Secretary of Energy directed a review of the EM program be undertaken. The resulting 'Top-to Bottom Review' re-directed the program focus from managing risks to accelerating the reduction of these risks.« less

  9. Effective dialogue: enhanced public engagement as a legitimising tool for municipal waste management decision-making.

    PubMed

    Garnett, Kenisha; Cooper, Tim

    2014-12-01

    The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies and sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical-deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical-deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpenau, Evan M.

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan formore » Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.« less

  11. Technology Catalogue. First edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, asmore » well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).« less

  12. Technical specifications for mechanical recycling of agricultural plastic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plasticmore » waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.« less

  13. SUMMARY OF THE 1994 EPA/AWMA INTERNATIONAL SYMPOSIUM

    EPA Science Inventory

    A joint conference cosponsored for the ninth year by the Atmospheric Research & Exposure Assessment Laboratory of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 3-6, 1994. he 4-day technical program cons...

  14. BROAD-BASED ENVIRONMENTAL LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    Pollution prevention through Life Cycle Assessment (LCA) is a departure from evaluating waste management options that look mainly at single issues such as recyclability or reduced toxicity. An LCA is a snapshot in time of inputs and outputs. It can be used as an objective technic...

  15. A comparison of municipal solid waste management in Berlin and Singapore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Dongqing, E-mail: dqzhang@ntu.edu.s; Keat, Tan Soon; Gersberg, Richard M.

    2010-05-15

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declinedmore » significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.« less

  16. A comparison of municipal solid waste management in Berlin and Singapore.

    PubMed

    Zhang, Dongqing; Keat, Tan Soon; Gersberg, Richard M

    2010-05-01

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfi, M.; Tondelli, S.; Bonoli, A.

    2009-10-15

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders:more » The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.« less

  18. Development of a requirements management system for technical decision - making processes in the geological disposal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama

    2007-07-01

    NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help formore » comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the initial stage including work analysis/modeling and the system conceptualization. (authors)« less

  19. Annotated bibliography of radioactive waste management publications at Pacific Northwest Laboratory, January 1978 through July 1982. [831 abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-09-01

    This bibliography lists publications (831 abstracts) from the Pacific Northwest Laboratory's Department of Energy sponsored research and development programs from January 1978 through July of 1982. The abstracts are grouped in subject categories, as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., High-Level Radioactive Wastes. Three indexes, each preceded by a brief description, are provided: personal author, subject, and report number. Cited are research reports, journal articles, books, patents, theses, and conference papers. Excluded are technical progress reports. Since 1978 the Nuclear Waste Management Quarterly Progress Report has been published undermore » the series number PNL-3000. Beginning in 1982, this publication has been issued semiannually, under the series number PNL-4250. This bibliography is the successor to two others, BNWL-2201 (covering the years 1965-1976) and PNL-4050 (1975-1978). It is intended to provide a useful reference to literature in waste management written or compiled by PNL staff.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C., E-mail: mcavoydm@ucmail.uc.edu

    Highlights: • A case study to show the benefits of waste-to-energy projects at a university. • Evaluated the technical and economic feasibilities as well as GHG reduction. • A tool for other universities/communities to evaluate waste-to-energy projects. - Abstract: This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of theirmore » implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682 L (974 gallons) of waste cooking oil to 3712 L (982 gallons) of biodiesel; (2) produce 138 tonnes of fuel pellets from 133 tonnes of waste paper (with the addition of 20.75 tonnes of plastics) to replace121 tonnes of coal; and (3) produce biogas that would be enough to replace 12,767 m{sup 3} natural gas every year from 146 tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16 months for the biodiesel, 155 months for the fuel pellet, and 74 months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO{sub 2}-eq per year, respectively.« less

  1. Radioactive Waste Management - It's Role in contributing and achieving Sustainability. R1.13 The French strategy of waste management: technical and political dimensions of sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazile, F.

    2007-07-01

    The sustainability of an energy policy depends on the manner in which it satisfies environmental, economical and social requirements. Nuclear energy is not an exception. The objectives of the future nuclear systems, as defined in the Generation IV International Forum, tend to optimize the ability of nuclear energy to satisfy sustainable development goals. In this regard, they involve strong commitments concerning waste management policy : five designs in six are based on a closed fuel cycle, in order to minimize the volume and radiotoxicity of final waste, and to recycle the fissile materials to save natural resources. Since its beginnings,more » the French civil nuclear programme has considered a long-term perspective and has developed spent fuel reprocessing. The French current industrial technology has already permitted to recycle 96% of spent fuel materials, to save 30% of natural resources, to reduce by 5 the amount of waste and to reduce by 10 the waste radiotoxicity, all these benefits for less than 6% of the kWh total cost. This strategy has always been criticized by the nuclear opponents, precisely because they saw that it was a sustainable way, and didn't accept to consider nuclear energy as a sustainable source of power. Two arguments were put forward these criticisms. First, the cost of reprocessing versus once-through cycle and second, the risk of proliferation induced by U-Pu partitioning process. These arguments were also invoked in international debates, and they have also been pleaded by the anti-nukes during the National Debate on HLLLW, at the end of 2005, preceding the vote of a new law in 2006 by the French parliament. Fortunately they have not convinced public opinion in France nor political decision-makers. A majority of people with no regard to technical background understand that recycling and saving the natural resources are sustainable principles. And, from a technical point of view, the 6% over cost does not seem significant considering the economics of nuclear power. Lastly, the risk proliferation is more related to the front-end technologies than to the back-end ones. So, the 2006 French Law 'for a sustainable radioactive waste management' has reinforced the closed-cycle strategy and has paved the way for a long-term development of nuclear energy in the 21. century and beyond, towards the third and fourth generations of nuclear systems. It has defined an R and D programme including the continuation of partitioning-transmutation of minor actinides and their recycling in 4. generation fast reactors. In parallel, the French president has committed the French Atomic Energy Commission to implement a 4. generation prototype reactor by 2020, with international cooperation, to guarantee the permanence of technology progress. In this regard, the waste management strategy can't be built without taking into account the perspectives of development of nuclear energy. These perspectives must include the best available technologies and, in the other hand, an adaptation to the political evolutions of societies. (authors)« less

  2. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  3. Environmental, technical and technological aspects of hazardous waste management in Poland

    NASA Astrophysics Data System (ADS)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  4. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less

  5. Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: some strategies for improving current conditions.

    PubMed

    Taghipour, Hassan; Amjad, Zahra; Jafarabadi, Mohamad Asghari; Gholampour, Akbar; Norouz, Prviz

    2014-07-01

    From environmental viewpoint, the most important advantage of compact fluorescent lamps (CFLs) is reduction of green house gas emissions. But their significant disadvantage is disposal of spent lamps because of containing a few milligrams of toxic metals, especially mercury and lead. For a successful implementation of any waste management plan, availability of sufficient and accurate information on quantities and compositions of the generated waste and current management conditions is a fundamental prerequisite. In this study, CFLs were selected among 20 different brands in Iran. Content of heavy metals including mercury, lead, nickel, arsenic and chromium was determined by inductive coupled plasma (ICP). Two cities, Tehran and Tabriz, were selected for assessing the current waste management condition of CFLs. The study found that waste generation amount of CFLs in the country was about 159.80, 183.82 and 153.75 million per year in 2010, 2011 and 2012, respectively. Waste generation rate of CFLs in Iran was determined to be 2.05 per person in 2012. The average amount of mercury, lead, nickel, arsenic and chromium was 0.417, 2.33, 0.064, 0.056 and 0.012 mg per lamp, respectively. Currently, waste of CFLs is disposed by municipal waste stream in waste landfills. For improving the current conditions, we propose by considering the successful experience of extended producer responsibility (EPR) in other electronic waste management. The EPR program with advanced recycling fee (ARF) is implemented for collecting and then recycling CFLs. For encouraging consumers to take the spent CFLs back at the end of the products' useful life, a proportion of ARF (for example, 50%) can be refunded. On the other hand, the government and Environmental Protection Agency should support and encourage recycling companies of CFLs both technically and financially in the first place. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Solid waste projection model: Model version 1. 0 technical reference manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, M.L.; Crow, V.L.; Buska, D.E.

    1990-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less

  7. Vermicomposting as manure management strategy for urban small-holder animal farms – Kampala case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalander, Cecilia Helena, E-mail: cecilia.lalander@slu.se; Komakech, Allan John; Department of Agricultural & Bio-systems Engineering, Makerere University, Kampala

    Highlights: • Poor manure management can increase burden of disease and environmental impact. • A low-maintenance vermicompost reactor was set-up in Kampala, Uganda. • High material reduction (45.9%) and waste-to-biomass conversion (3.6% on a TS basis). • Five year return on investment of 275% of system in Uganda. • Technically and economically viable system for improved urban manure management. - Abstract: Inadequate organic waste management can contribute to the spread of diseases and have negative impacts on the environment. Vermicomposting organic waste could have dual beneficial effects by generating an economically viable animal feed protein in the form of wormmore » biomass, while alleviating the negative effects of poor organic waste management. In this study, a low-maintenance vermicomposting system was evaluated as manure and food waste management system for small-holder farmers. A vermicomposting system using the earthworm species Eudrilus eugeniae and treating cow manure and food waste was set up in Kampala, Uganda, and monitored for 172 days. The material degradation and protein production rates were evaluated after 63 days and at the end of the experiment. The material reduction was 45.9% and the waste-to-biomass conversion rate was 3.5% in the vermicomposting process on a total solids basis. A possible increase in the conversion rate could be achieved by increasing the frequency of worm harvesting. Vermicomposting was found to be a viable manure management method in small-scale urban animal agriculture; the return of investment was calculated to be 280% for treating the manure of a 450 kg cow. The vermicompost was not sanitised, although hygiene quality could be improved by introducing a post-stabilisation step in which no fresh material is added. The value of the animal feed protein generated in the process can act as an incentive to improve current manure management strategies.« less

  8. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.W.; Storch, S.N.; Lewis, L.C.

    1998-07-07

    The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storagemore » of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.« less

  9. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less

  10. Honors

    NASA Astrophysics Data System (ADS)

    2013-01-01

    U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.

  11. Tanks Focus Area annual report FY2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for overmore » 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.« less

  12. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Terry Allen; Braase, Lori Ann

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less

  13. "Control-alt-delete": rebooting solutions for the E-waste problem.

    PubMed

    Li, Jinhui; Zeng, Xianlai; Chen, Mengjun; Ogunseitan, Oladele A; Stevels, Ab

    2015-06-16

    A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations.

  14. Meeting report: threats to human health and environmental sustainability in the pacific basin.

    PubMed

    Arnold, Robert G; Carpenter, David O; Kirk, Donald; Koh, David; Armour, Margaret-Ann; Cebrian, Mariano; Cifuentes, Luis; Khwaja, Mahmood; Ling, Bo; Makalinao, Irma; Paz-Y-Miño, César; Peralta, Genandrialine; Prasad, Rajendra; Singh, Kirpal; Sly, Peter; Tohyama, Chiharu; Woodward, Alistair; Zheng, Baoshan; Maiden, Todd

    2007-12-01

    The coastal zone of the Pacific Rim is home for about one-third of the world's population. Disproportionate growth of Far Eastern economies has produced a disproportionate share of related environmental difficulties. As the region searches for acceptable compromises between growth and environmental quality, its influence on global environmental health is certain to increase. Consequences of global environmental change such as habitat alteration, storms, and sea level rise will be particularly acute among Pacific Rim nations. Adverse health effects from arsenic exposure in Pacific Rim nations have been used to justify drinking water standards in the United States and elsewhere. As global manufacturing in the Pacific Rim increases, the centroid of global air quality and waste management issues will shift further toward Far Eastern nations. The Eleventh International Conference of the Pacific Basin Consortium (PBC) was held in September 2005 in Honolulu, Hawaii. The purpose of the conference was to bring together individuals to discuss regional challenges to sustainable growth. The historic emphasis of the conference on hazardous wastes in relation to human health makes the PBC an ideal forum for discussing technical aspects of sustainable economic growth in the Pacific region. That role is reflected in the 2005 PBC conference themes, which included management of arsenic in potable waters, air quality, climate change, pesticides, mercury, and electronics industry waste-each with emphasis on relationships to human health. Arsenic management exemplifies the manner in which the PBC can focus interdisciplinary discussion in a single technical area. The conference program provided talks on arsenic toxicology, treatment technologies, management of arsenic-bearing residuals from water treatment, and the probable societal costs and benefits of arsenic management.

  15. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  16. Helping the Public Decide: The Case of Radioactive Waste Management.

    ERIC Educational Resources Information Center

    Abrams, Nancy E.; Primack, Joel R.

    1980-01-01

    The model proposed in the article"critical review of public assessment" would encourage participation of varied publics in the review process at stages most appropriate for their own special interests and expertise. The authors suggest the outcome would be a high quality technical plan enjoying widespread public understanding and…

  17. SUMMARY OF THE 1991 EPA/AWMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS

    EPA Science Inventory

    A joint conference for the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progra...

  18. SUMMARY OF THE EPA/A&WMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC & RELATED AIR POLLUTANTS

    EPA Science Inventory

    A joint conference co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory of the U.S Environmental Protection Agency and the Air & Waste Management Association was held at Raleigh, North Carolina, May 1-4, 1990. he technical program consisted of 187 presentat...

  19. SUMMARY OF THE 1992 EPA/AWMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS

    EPA Science Inventory

    A joint conference cosponsored for the seventh year by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air & Waste Management Association was held in Durham, North Carolina, May 4-8, 1992. he technical progra...

  20. Skills Conversion Project, Chapter 13, Solid Waste Management.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    The Skills Conversion Project conducted by the National Society of Professional Engineers sought to study the transition mechanisms required to transfer available technical manpower from aerospace and defense industries into other areas of employment in private industry and public service. Fourteen study teams assessed the likelihood of future…

  1. REGULATING THE ULTIMATE SINK: MANAGING THE RISKS OF GEOLOGIC CO2 STORAGE

    EPA Science Inventory

    The paper addresses the issue of geologic storage (GS) of carbon dioxide (CO2) and discusses the risks and regulatory history of deep underground waste injection on the U.S. mainland and surrounding continental shelf. The treatment focuses on the technical and regulatory aspects ...

  2. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  3. Hanford Site Composite Analysis Technical Approach Description: Automated Quality Assurance Process Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dockter, Randy E.

    2017-07-31

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions, or assessment needsmore » if potential problems are identified.« less

  4. Hanford Site Composite Analysis Technical Approach Description: Atmospheric Transport Modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B.; Lehman, L. L.

    2017-10-02

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs,more » if potential problems are identified.« less

  5. Hanford Site Composite Analysis Technical Approach Description: Integrated Computational Framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K. J.

    2017-09-14

    The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions, or assessment needsmore » if potential problems are identified.« less

  6. Economically oriented process optimization in waste management.

    PubMed

    Maroušek, Josef

    2014-06-01

    A brief report on the development of novel apparatus is presented. It was verified in a commercial scale that a new concept of anaerobic fermentation followed by continuous pyrolysis is technically and economically feasible to manage previously enzymatically hydrolyzed waste haylage in huge volumes. The design of the concept is thoroughly described, documented in figures, and biochemically analyzed in detail. Assessment of the concept shows that subsequent pyrolysis of the anaerobically fermented residue allows among biogas to produce also high-quality biochar. This significantly improves the overall economy. In addition, it may be assumed that this applied research is consistent with previous theoretical assumptions stating that any kind of aerobic or anaerobic fermentation increases the microporosity of the biochar obtained.

  7. International development workshops. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-06

    The US Department of Energy (DOE) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) began to act on their recognition of the importance of education in nuclear literacy, specifically in radioactive waste management (RWM), several years ago. To address this Goal for nuclear literacy, the US DOE; through the Information and Education Division of the Office of Civilian Radioactive Waste Management (OCRWM) and in cooperation with the OECD/NEA, organized an ``International Workshop on Education in the Field of Radioactive Waste Management`` in Engelberg, Switzerland in June of 1991. To this end, amore » grant to support nuclear literacy and RWM was written and funded by the OCRWM and the education division of the DOE Yucca Mountain Office in 1990. The over-riding Goal of that workshop and the DOE grant was to find ways of raising the level of nuclear literacy in the general public through educational programs in radioactive waste management (RWM). The two Main Objectives of the workshop were: first, to contribute to an information base for education systems, on global aspects of radioactive waste management; and second, to achieve international consensus on the basic tools and methods required to develop the information base. These two objectives also became the principal objectives of the DOE International Workshops grant. In other words, the global and local (Nevada) objectives were one and the same. Workshop overviews and accomplishments are summarized in this report.« less

  8. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilitiesmore » Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.« less

  9. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch; Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net; Ashadi, Henki, E-mail: henki@eng.ui.ac.id

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environmentmore » is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.« less

  10. A conceptual framework for negotiating public involvement in municipal waste management decision-making in the UK.

    PubMed

    Garnett, Kenisha; Cooper, Tim; Longhurst, Philip; Jude, Simon; Tyrrel, Sean

    2017-08-01

    The technical expertise that politicians relied on in the past to produce cost-effective and environmentally sound solutions no longer provides sufficient justification to approve waste facilities. Local authorities need to find more effective ways to involve stakeholders and communities in decision-making since public acceptance of municipal waste facilities is integral to delivering effective waste strategies. This paper presents findings from a research project that explored attitudes towards greater levels of public involvement in UK waste management decision-making. The study addressed questions of perception, interests, the decision context, the means of engagement and the necessary resources and capacity for adopting a participatory decision process. Adopting a mixed methods approach, the research produced an empirical framework for negotiating the mode and level of public involvement in waste management decision-making. The framework captures and builds on theories of public involvement and the experiences of practitioners, and offers guidance for integrating analysis and deliberation with public groups in different waste management decision contexts. Principles in the framework operate on the premise that the decision about 'more' and 'better' forms of public involvement can be negotiated, based on the nature of the waste problem and wider social context of decision-making. The collection of opinions from the wide range of stakeholders involved in the study has produced new insights for the design of public engagement processes that are context-dependent and 'fit-for-purpose'; these suggest a need for greater inclusivity in the case of contentious technologies and high levels of uncertainty regarding decision outcomes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways.

    PubMed

    Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit

    2016-02-01

    Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Anaerobic digestion of food waste - Challenges and opportunities.

    PubMed

    Xu, Fuqing; Li, Yangyang; Ge, Xumeng; Yang, Liangcheng; Li, Yebo

    2018-01-01

    The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David C., E-mail: waste@davidcwilson.com; Rodic, Ljiljana; Cowing, Michael J.

    Highlights: • Solid waste management (SWM) is a key utility service, but data is often lacking. • Measuring their SWM performance helps a city establish priorities for action. • The Wasteaware benchmark indicators: measure both technical and governance aspects. • Have been developed over 5 years and tested in more than 50 cities on 6 continents. • Enable consistent comparison between cities and countries and monitoring progress. - Abstract: This paper addresses a major problem in international solid waste management, which is twofold: a lack of data, and a lack of consistent data to allow comparison between cities. The papermore » presents an indicator set for integrated sustainable waste management (ISWM) in cities both North and South, to allow benchmarking of a city’s performance, comparing cities and monitoring developments over time. It builds on pioneering work for UN-Habitat’s solid waste management in the World’s cities. The comprehensive analytical framework of a city’s solid waste management system is divided into two overlapping ‘triangles’ – one comprising the three physical components, i.e. collection, recycling, and disposal, and the other comprising three governance aspects, i.e. inclusivity; financial sustainability; and sound institutions and proactive policies. The indicator set includes essential quantitative indicators as well as qualitative composite indicators. This updated and revised ‘Wasteaware’ set of ISWM benchmark indicators is the cumulative result of testing various prototypes in more than 50 cities around the world. This experience confirms the utility of indicators in allowing comprehensive performance measurement and comparison of both ‘hard’ physical components and ‘soft’ governance aspects; and in prioritising ‘next steps’ in developing a city’s solid waste management system, by identifying both local strengths that can be built on and weak points to be addressed. The Wasteaware ISWM indicators are applicable to a broad range of cities with very different levels of income and solid waste management practices. Their wide application as a standard methodology will help to fill the historical data gap.« less

  14. Characterization of urban waste management practices in developing Asian countries: A new analytical framework based on waste characteristics and urban dimension.

    PubMed

    Aleluia, João; Ferrão, Paulo

    2016-12-01

    This paper characterizes municipal solid waste (MSW) management practices in developing Asia, with a focus on low and middle-income countries. The analysis that is conducted supports a proposed framework that maps out the trends observed in the region in relation to two parameters, waste compositions and urban dimension, which was prepared based on a set of national and urban case studies. The management of MSW in developing Asian countries is driven, first and foremost, by a public health imperative: the collection and disposal of waste in order to avoid the spread of disease vectors from uncollected waste. This comes, however, at a high cost, with local government authorities in these countries spending up to 50% of their budgets in the provision of these services. Little or no value is derived from waste, which is typically seen as a liability and not as a resource that can be harnessed. On the other hand, in many cities in developing Asia there is an informal sector that ekes out a living from the recovery of recyclable materials found in waste. Members of this "informal waste sector" are especially active in areas that are not served by formal waste collection systems, such as slums or squatter areas. A distinctive element shared among many cities in developing Asian countries concerns the composition of the municipal solid waste. MSW in those countries tends to be richer in biodegradable organic matter, which usually accounts for more than 50% of the total waste composition, suggesting that biological methods are more appropriate for treating this organic fraction. Conversely, thermal combustion technologies, which are extensively applied in high-income countries, are technically and economically challenging to deploy in light of the lower calorific value of waste streams which are rich in organics and moisture. Specific approaches and methods are therefore required for designing adequate waste management systems in developing Asian countries. In addition, despite some common characteristics shared among cities in developing Asia, their specific circumstances can significantly vary, even within the same country, calling for the need for context-specific waste management approaches. Set against this background, this paper proposes a guiding framework in the form of a matrix that maps out approaches observed in the management of municipal solid waste in cities of developing Asian countries as a function of the city dimension, share of organics on waste streams, and wealth generated by the city. The cities of Surabaya (Indonesia), Bangalore (India), Quy Nhon (Viet Nam), and Matale (Sri Lanka) are showcased as good practices in the region in the management of solid waste, with their experiences used to illustrate the framework laid out in the matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John Robin

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, andmore » MWL-SV05) are shown in Figure 1-2« less

  16. Sewage sludge disposal strategies for sustainable development.

    PubMed

    Kacprzak, Małgorzata; Neczaj, Ewa; Fijałkowski, Krzysztof; Grobelak, Anna; Grosser, Anna; Worwag, Małgorzata; Rorat, Agnieszka; Brattebo, Helge; Almås, Åsgeir; Singh, Bal Ram

    2017-07-01

    The main objective of the present review is to compare the existing sewage sludge management solutions in terms of their environmental sustainability. The most commonly used strategies, that include treatment and disposal has been favored within the present state-of-art, considering existing legislation (at European and national level), characterization, ecotoxicology, waste management and actual routs used currently in particular European countries. Selected decision making tools, namely End-of-waste criteria and Life Cycle Assessment has been proposed in order to appropriately assess the possible environmental, economic and technical evaluation of different systems. Therefore, some basic criteria for the best suitable option selection has been described, in the circular economy "from waste to resources" sense. The importance of sewage sludge as a valuable source of matter and energy has been appreciated, as well as a potential risk related to the application of those strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 76 FR 77270 - Board Meeting; January 9, 2012, Arlington, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; January 9, 2012, Arlington, VA The U.S. Nuclear Waste Technical Review Board will meet to discuss integration efforts undertaken by DOE-NE and DOE... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Arlington...

  18. An interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India.

    PubMed

    Chauhan, Ankur; Singh, Amol; Jharkharia, Sanjay

    2018-02-01

    Increasing amount of wastes is posing great difficulties for all countries across the world. The problem of waste management is more severe in developing countries such as India where the rates of economic growth and urbanization are increasing at a fast pace. The governments in these countries are often constrained by limited technical and financial capabilities, which prevent them from effectively addressing these problems. There is a limited participation from the private players too in terms of setting up of waste recycling units. The present study aims at identifying various barriers that challenge the establishment of these units, specific to India. Further, it attempts to identify the most influential barriers by utilizing multicriterion decision-making tools of interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL). The findings of the study suggest that the lack of funds, input material, and subsidy are the most influential barriers that are needed to be addressed for the development of waste recycling infrastructure in India. This work has been carried out to address the problem of proper waste management in India. To deal with this problem, the method of waste recycling has been felt appropriate by the government of various countries, including India. Therefore, the barriers that play vital role in waste recycling for private players have been identified and their importance has been established with the help of ISM and DEMATEL methods. Doing so will assist the government to take appropriate steps for the betterment of waste recycling infrastructure in India and enhance waste management.

  19. Using social network and stakeholder analysis to help evaluate infectious waste management: A step towards a holistic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caniato, Marco, E-mail: marcocaniato@gmail.com; Vaccari, Mentore, E-mail: mentore.vaccari@unibs.it; Visvanathan, Chettiyappan, E-mail: visu@ait.ac.th

    Highlights: • Assessment of infectious waste management in Bangkok, in particular incineration. • Integration of social network and stakeholder analysis assessment methods. • Assessment of stakeholder characteristics, role, interaction and communication. • Interviewees self-evaluate their own characteristics and the system. • Non-technical aspects are important for system acceptability, and sustainability. - Abstract: Assessing the strengths and weaknesses of a solid waste management scheme requires an accurate analysis and integration of several determining features. In addition to the technical aspects, any such system shows a complex interaction of actors with varying stakes, decision-making power and influence, as well as a favourablemore » or disabling environment. When capitalizing on the knowledge and experience from a specific case, it is also crucial that experts do not “forget” or underestimate the importance of such social determinants and that they are familiar with the methods and tools to assess them. Social network analysis (SNA) and stakeholder analysis (SA) methods can be successfully applied to better understand actors’ role and actions, analyse driving forces and existing coordination among stakeholders, as well as identify bottlenecks in communication which affect daily operations or strategic planning for the future way forward. SNA and SA, appropriately adjusted for a certain system, can provide a useful integration to methods by assessing other aspects to ensure a comprehensive picture of the situation. This paper describes how to integrate SNA and SA in order to survey a solid waste management system. This paper presents the results of an analysis of On-Nuch infectious waste incinerator in Bangkok, Thailand. Stakeholders were interviewed and asked to prioritize characteristics and relationships which they consider particularly important for system development and success of the scheme. In such a way, a large quantity of information about organization, communication between stakeholders and their perception about operation, environmental and health impact, and potential alternatives for the system was collected in a systematic way. The survey results suggest that stakeholders are generally satisfied with the system operation, though communication should be improved. Moreover, stakeholders should be strategically more involved in system development planning, according to their characteristics, to prevent negative reactions.« less

  20. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  1. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  2. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.

    PubMed

    Gidarakos, E; Havas, G; Ntzamilis, P

    2006-01-01

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes, non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.

  3. PROCEEDINGS OF THE 1991 EPA/AWMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS - VOLUME II

    EPA Science Inventory

    A joint conference of the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air and Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progr...

  4. PROCEEDINGS OF THE 1991 EPA/AWMA INTERNATIONAL SYMPOSIUM: MEASUREMENT OF TOXIC AND RELATED AIR POLLUTANTS - VOLUME I

    EPA Science Inventory

    A joint conference of the sixth year co-sponsored by the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the U.S. Environmental Protection Agency and the Air and Waste Management Association was held in Durham, North Carolina, May 6-19, 1991. he technical progr...

  5. PROCEEDINGS OF: WORKSHOP ON MERCURY IN PRODUCTS, PROCESSES, WASTE AND THE ENVIRONMENT: ELIMINATING, REDUCING AND MANAGING RISKS FROM NON-COMBUSTION SOURCES

    EPA Science Inventory

    This workshop was held on March 22-23, 2000, in Baltimore, Maryland. To facilitate discussions of this issue, the workshop combined a series of presentations at plenary sessions, moderated technical sessions and panel discussions. The topics of these presentations focused on trea...

  6. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes 1st edition (Preface)

    EPA Science Inventory

    This book preface explains the needs found by the book editors for assembling the state of the art of technical and scientific knowledge relevant to chemical engineering, sustainability, and sustainable uses of wastes and materials management, and to do so in an accessible and c...

  7. Prerequisite programs at schools: diagnosis and economic evaluation.

    PubMed

    Lockis, Victor R; Cruz, Adriano G; Walter, Eduardo H M; Faria, Jose A F; Granato, Daniel; Sant'Ana, Anderson S

    2011-02-01

    In this study, 20 Brazilian public schools have been assessed regarding good manufacturing practices and standard sanitation operating procedures implementation. We used a checklist comprised of 10 parts (facilities and installations, water supply, equipments and tools, pest control, waste management, personal hygiene, sanitation, storage, documentation, and training), making a total of 69 questions. The implementing modification cost to the found nonconformities was also determined so that it could work with technical data as a based decision-making prioritization. The average nonconformity percentage at schools concerning to prerequisite program was 36%, from which 66% of them own inadequate installations, 65% waste management, 44% regarding documentation, and 35% water supply and sanitation. The initial estimated cost for changing has been U.S.$24,438 and monthly investments of 1.55% on the currently needed invested values. This would result in U.S.$0.015 increase on each served meal cost over the investment replacement within a year. Thus, we have concluded that such modifications are economically feasible and will be considered on technical requirements when prerequisite program implementation priorities are established.

  8. Status of Progress Made Toward Safety Analysis and Technical Site Evaluations for DOE Managed HLW and SNF.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; Stein, Emily; Gross, Michael B

    The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayberry, J.; Stelle, S.; O`Brien, M.

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  10. Development of an advanced spacecraft water and waste materials processing system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  11. Progress in Norwegian-Russian Regulatory Cooperation in Management of the Nuclear Legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.; Smith, G.M.

    2008-07-01

    The Norwegian Radiation Protection Authority (NRPA) and the Federal Medical-Biological Agency (FMBA) of the Russian Federation have a collaboration programme which forms part of the Norwegian government's Plan of Action to improve radiation and nuclear safety in northwest Russia. The background to the NRPA-FMBA collaboration programme has been described in previous WM presentations. This paper presents the substantial progress made within that programme, describes ongoing progress within specific projects and sets out the value arising from wider involvement in the programme of other organisations such as NATO and the technical support derived from other national agencies such as the IAEA,more » and regulatory authorities from the USA, the UK and France. The main activities of the cooperation projects are concerned with the management of the nuclear legacy in northwest Russia, in particular the remediation of facilities, and related spent fuel and radioactive waste management, at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage (STS), but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. The work has involved major technical inputs from the Russian Federation Institute of Biophysics, as well as review and advice on international recommendations and good practice in other countries provided by other technical support organisations. Projects on-going in 2007 are described which involve regulatory guidance on very Low-Level Waste management, specifically for the licensing and operation of new VLLW disposal facilities; optimisation of operational radiation protection, particularly in areas of high ambient radiation dose rate as are found in some parts of the STSs; determination of factors which can be used to identify when to apply emergency procedures before the full emergency is obvious; and development of the radio-ecological basis for identifying radiation supervision area boundaries. (authors)« less

  12. The contractor`s role in low-level waste disposal facility application review and licensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serie, P.J.; Dressen, A.L.

    1991-12-31

    The California Department of Health Services will soon reach a licensing decision on the proposed Ward Valley low-level radioactive waste disposal facility. As the first regulatory agency in the country to address the 10 CFR Part 61 requirements for a new disposal facility, California`s program has broken new ground in its approach. Throughout the review process, the Department has relied on contractor support to augment its technical and administrative staff. A team consisting of Roy F. Weston, Inc., supported by ERM-Program Management Corp., Environmental Issues Management, Inc., and Rogers and Associates Engineering Corporation, has worked closely with the Department inmore » a staff extension role. The authors have been involved with the project in contractor project management roles since 1987, and continue to support the Department`s program as it proceeds to finalize its licensing process. This paper describes the selection process used to identify a contractor team with the needed skills and experience, and the makeup of team capabilities. It outlines the management, communication, and technical approaches used to assure a smooth agency-contractor function and relationship. It describes the techniques used to ensure that decisions and documents represented the Department credibly in its role as the regulatory and licensing agency under the Nuclear Regulatory Commission (NRC) Agreement State program. The paper outlines the license application review process and activities, through preparation of licensing documentation and responses to public comments. Lessons learned in coordination of an agency-contractor team effort to review and license a low-level waste disposal facility are reviewed and suggestions made for approaching a similar license application review and licensing situation.« less

  13. Independent technical review, handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less

  14. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  15. Results of Fall 1994 sampling of gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This Technical Memorandum, was developed under Work Breakdown Structure 1.4.12.6.1.01.41.12.02. 11 (Activity Data Sheet 3301, ``WAG 1``). This document provides the Environmental Restoration Program with analytical results from liquid and sludge samples from the Gunite and Associated Tanks (GAAT). Information provided in this report forms part of the technical basis for criticality safety, systems safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation.

  16. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeyman, J.O.

    1998-01-09

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technicalmore » Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined.« less

  17. Engineering Technical Support Center Annual Report Fiscal ...

    EPA Pesticide Factsheets

    The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provides engineering expertise to Agency program and regional offices and remediation teams working at contaminated sites across the country. The ETSC is operated within ORD’s Land Remediation and Pollution Control Division (LRPCD) of the National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio. The ETSC’s mission is to provide site-specific scientific and engineering technical support to Remedial Project Managers, On-Scene Coordinators, and other remediation personnel at contaminated sites. This allows local, regional, or national authorities to work more quickly, efficiently, and cost effectively, while also increasing the technical experience of the remediation team. Since its inception, the ETSC has supported countless projects across all EPA Regions in almost all states and territories. This report highlights significant projects the ETSC supported in fiscal year 2015 (FY15). These projects addressed an array of environmental scenarios, such as remote mining contamination, expansive landfill waste, cumulative impacts from multiple contamination sources, and persistent threats from abandoned industrial sites. Constructing and testing new and innovative treatment technol

  18. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China.

    PubMed

    Liang, Sai; Zhang, Tianzhu

    2012-01-01

    Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Re-thinking incentives and penalties: economic aspects of waste management in Italy.

    PubMed

    Cossu, R; Masi, S

    2013-11-01

    This paper focuses on the dynamics the formation of operational costs of waste management in Italy and the effect of economic measures. Currently incentives and penalties have been internalized by the system no differently from other cost items and revenues. This has greatly influenced the system directing it towards solutions that are often distant from the real environmental objectives. Based on an analysis of disaggregated costs of collection treatment and recovery, we provide the basic elements to compose a picture of economic management in various technical-organizational scenarios. In the light of the considerations contained in the paper it is proposed, e.g. for controlled landfills, that the ecotax, currently based on weight, could be replaced by one based on the volume consumption. Likewise, for tax reduction on disposal system, instead a pre-treatment might ask an environmental balance of the overall system. The article presents a reflection on the last hidden costs associated with the consumption of goods and packaging, and how to reduce waste production is the necessary path to be followed in ecological and economic perspectives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. International nuclear waste management fact book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less

  1. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  2. Technical and economic assessment of different options for minor actinide transmutation: the French case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.

    Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less

  3. Geochemical Aspects of Radioactive Waste Disposal

    NASA Astrophysics Data System (ADS)

    Moody, Judith B.

    1984-04-01

    The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.

  4. Disposal and improvement of contaminated by waste extraction of copper mining in chile

    NASA Astrophysics Data System (ADS)

    Naranjo Lamilla, Pedro; Blanco Fernández, David; Díaz González, Marcos; Robles Castillo, Marcelo; Decinti Weiss, Alejandra; Tapia Alvarez, Carolina; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria

    2016-04-01

    This project originated from the need of a mining company, which mines and processes copper ore. High purity copper is produced with an annual production of 1,113,928 tons of concentrate to a law of 32%. This mining company has generated several illegal landfills and has been forced by the government to make a management center Industrial Solid Waste (ISW). The forecast volume of waste generated is 20,000 tons / year. Chemical analysis established that the studied soil has a high copper content, caused by nature or from the spread of contaminants from mining activities. Moreover, in some sectors, soil contamination by mercury, hydrocarbons and oils and fats were detected, likely associated with the accumulation of waste. The waters are also impacted by mining industrial tasks, specifically copper ores, molybdenum, manganese, sulfates and have an acidic pH. The ISW management center dispels the pollution of soil and water and concentrating all activities in a technically suitable place. In this center the necessary guidelines for the treatment and disposal of soil contamination caused by uncontrolled landfills are given, also generating a leachate collection system and a network of fluid monitoring physicochemical water quality and soil environment. Keywords: Industrial solid waste, soil contamination, Mining waste

  5. Emerging trends in informal sector recycling in developing and transition countries.

    PubMed

    Ezeah, Chukwunonye; Fazakerley, Jak A; Roberts, Clive L

    2013-11-01

    Optimistic estimates suggest that only 30-70% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along the streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These 'scavengers' as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be 'flexible'. In addition, the structure of the ISR should not be based on a 'universal' model but should instead take into account local contexts and conditions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. 48 CFR 970.5227-12 - Patent rights-management and operating contracts, for-profit contractor, advance class waiver.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... a technical field or related to a task determined by the Department of Energy to be subject to an...

  7. 48 CFR 970.5227-12 - Patent rights-management and operating contracts, for-profit contractor, advance class waiver.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... a technical field or related to a task determined by the Department of Energy to be subject to an...

  8. 48 CFR 970.5227-12 - Patent rights-management and operating contracts, for-profit contractor, advance class waiver.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fields of technology are exceptional circumstance subject inventions: (A) Uranium enrichment technology; (B) Storage and disposal of civilian high-level nuclear waste and spent fuel technology; and (C... a technical field or related to a task determined by the Department of Energy to be subject to an...

  9. Evaluation of generation 3 treatment technology for swine waste - A North Carolina's clean water management trust fund project - Technical environmental performance report

    USDA-ARS?s Scientific Manuscript database

    This project evaluated and demonstrated the viability of a third generation manure treatment technology. The technology was developed as an alternative to the lagoon/spray field system typically used to treat the wastewater generated by swine farms in North Carolina. It separates solids and liquids ...

  10. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Méndez, Jacqueline; Szarka, Nóra; Muñoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysén, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories.

  11. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less

  12. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandummore » of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.« less

  13. Cementitious Barriers Partnership - FY2015 End-Year Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Flach, G. P.; Langton, C. A.

    2015-09-17

    The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less

  15. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    PubMed

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less

  17. A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.J.; Rose, W.M.; Domenici, P.V.

    This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects ofmore » the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less

  19. PNNL Supports Hanford Waste Treatment

    ScienceCinema

    None

    2018-04-16

    For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the site’s waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.

  20. A techno-economic approach to plasma gasification

    NASA Astrophysics Data System (ADS)

    Ramos, Ana; Rouboa, Abel

    2018-05-01

    Within the most used Waste-to-Energy technologies plasma gasification is recent and therefore not yet widely commercialized. Thus, it is necessary to conduct a viability study to support the thorough understanding and implementation of this thermal treatment. This paper aims to assess some technical, environmental and economic aspects of plasma gasification paving the way for a more sustained waste management system, as well as taking advantage of the commodity assets granted by the technique. Therefore, results from previously published studies were updated and highlighted as a preliminary starting point in order to potentially evolve to a complete and systematic work.

  1. A Technical and Practical Study of Composting as a Solid Waste Management Alternative for the Air Force

    DTIC Science & Technology

    1992-09-01

    eye) until the course of the process nears its end. When they do become apparent, they appear as a blue-gray to light green powdery to somewhat...clippings 3-6 12-15 Nonlegume vegetable wastes 2.5-4 11-12 Mixed grasses 214 19 Paper nil --- Potato tops 1.5 25 Straw, wheat 0.3-0.5 128-150 Straw, oats...Certain Fungal Plant Pathogens Organisms Disease Temperature (°C) Ustilago avenae Loose oat smut 45-53 0C U. tritici Loose smut of wheat 45-480 C U. zeae

  2. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1994--March 31, 1995, Number 12. Nuclear Waste Policy Act (Section 113)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    During the first half of fiscal year 1995, most activities at the Yucca Mountain Site Characterization Project were directed at implementing the Program Plan developed by the Office of Civilian Radioactive Waste Management. The Plan is designed to enable the Office to make measurable and significant progress toward key objectives over the next five years within the financial resources that can be realistically expected. Activities this period focused on the immediate goal of determining by 1998 whether Yucca Mountain, Nevada, is technically suitable as a possible site for a geologic repository for the permanent disposal of spent nuclear fuel andmore » high-level radioactive waste. Work on the Project advanced in several critical areas, including programmatic activities such as issuing the Program Plan, completing the first technical basis report to support the assessment of three 10 CFR 960 guidelines, developing the Notice of Intent for the Environmental Impact Statement, submitting the License Application Annotated Outline, and beginning a rebaselining effort to conform with the goals of the Program Plan. Scientific investigation and analysis of the site and design and construction activities to support the evaluation of the technical suitability of the site also advanced. Specific details relating to all Project activities and reports generated are presented in this report.« less

  3. Geological Disposal of Radioactive Waste: A Long-Term Socio-Technical Experiment.

    PubMed

    Schröder, Jantine

    2016-06-01

    In this article we investigate whether long-term radioactive waste management by means of geological disposal can be understood as a social experiment. Geological disposal is a rather particular technology in the way it deals with the analytical and ethical complexities implied by the idea of technological innovation as social experimentation, because it is presented as a technology that ultimately functions without human involvement. We argue that, even when the long term function of the 'social' is foreseen to be restricted to safeguarding the functioning of the 'technical', geological disposal is still a social experiment. In order to better understand this argument and explore how it could be addressed, we elaborate the idea of social experimentation with the notion of co-production and the analytical tools of delegation, prescription and network as developed by actor-network theory. In doing so we emphasize that geological disposal inherently involves relations between surface and subsurface, between humans and nonhumans, between the social, material and natural realm, and that these relations require recognition and further elaboration. In other words, we argue that geological disposal concurrently is a social and a technical experiment, or better, a long-term socio-technical experiment. We end with proposing the idea of 'actor-networking' as a sensitizing concept for future research into what geological disposal as a socio-technical experiment could look like.

  4. Radwaste desk reference - Volume 3, Part 1: Processing liquid waste. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOE transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a question andmore » answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. The names of the participants and their affiliation appear in the acknowledgments. The questions were organized using the matrix which appears in the introduction and below. During the writing phase, some questions were combined and new questions added. To aid the reader, each question was numbered and tied to individual Section Contents. An extensive index provides additional reader assistance. EPRI chose authors who are acknowledged experts in their fields and good communicators. Each author focused her or his energies on specific areas of radwaste management activities, thereby contributing to one or more volumes of the Radwaste Desk Reference. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2 addresses liquid waste management.« less

  5. Treatment and disposal alternatives for health-care waste in developing countries--a case study in Istanbul, Turkey.

    PubMed

    Alagöz, B Aylin Zeren; Kocasoy, Günay

    2007-02-01

    Efficient health-care waste management is crucial for the prevention of the exposure of health-care workers, patients, and the community to infections, toxic wastes and injuries as well as the protection of the environment (Safe Management of Wastes from Health-care Activities. World Health Organization, Geneva). The amount of health-care waste produced in the Istanbul Metropolitan City in Turkey is 30 ton day(-1) in total. The method used for the final disposal of most of the health-care waste of Istanbul is incineration. However, a great portion of the infectious waste is disposed of with the domestic waste into the sanitary landfill because of improper segregation practices applied in the health-care institutions. Therefore the alternatives for the treatment and disposal of health-care waste were evaluated. The technical information related to the available treatment technologies including incineration, microwave irradiation, mobile or stationary sterilization, etc. were also investigated. The capital investment cost, transportation/operational costs for each alternative method and the different locations for installation were compared. When the data collected were evaluated, it was found that separate handling and disposal of health-care waste generated on the European and the Asian sides of the city was the most economic and practicable solution. As a result, it was concluded that the capacity of the Kemerburgaz-Odayeri incineration plant is enough to incinerate the health-care waste generated on the European side of Istanbul, the construction of a new incineration plant or a stationary sterilization unit for the disposal of health-care waste generated on the Asian side was the most effective alternative.

  6. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less

  7. Final Closeout Report University Research Program in Robotics for Environmental Restoration and Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James S. Tulenko; Carl Crane

    2004-08-24

    The report covers the 2003-04 contract period, with a retrospective of the 11 years for the contract, from 1993 to 2004. This includes personnel, technical publications and reports, plus research laboratories employed. Specific information is given in eight research areas, reporting on all technology developed and/or deployed by the University of Florida.

  8. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidarakos, E.; Havas, G.; Ntzamilis, P.

    A one-year survey was conducted in the greater region of Crete (located at the lower region of the Aegean Sea) for the purpose of identifying waste composition (including chemical and physical characterization), as well as any seasonal variation. The investigation was carried out repeatedly at seven landfills and one transfer station in Crete, in four phases. Each sampling phase corresponded to a season (autumn, winter, spring, summer). ASTM D5231-92(2003) standard method and RCRA Waste Sampling Draft Technical Guidance were used. Hand sorting was used for classifying the collected wastes into the following categories: plastics, paper, metals, aluminium, leather-wood-textiles-rubbers, organic wastes,more » non-combustibles and miscellaneous. Further analysis included proximate and ultimate analysis of combustible materials. Metals such as lead, cadmium and mercury were also investigated. The results show that there has been a significant decrease of organic wastes during the last decade due to the increase of packaging materials, as a result of a change in consumption patterns. Three main waste categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total waste in Crete. Furthermore, a high fraction of glass and a seasonal variation of aluminium indicate a strong correlation of waste composition with certain human activities, such as tourism. There is also a variation between the municipal solid waste (MSW) composition in the region of Crete (2003-2004) and MSW composition suggested in the National Solid Waste Planning (2000) [National Solid Waste Planning, 2000. Completion and particularization of Common Ministerial Act 113944//1944/1997: National Solid Waste Planning, June 2000]. The results of this survey are to be utilized by the regional solid waste authorities in order to establish an integrated waste treatment site, capable of fulfilling the regional waste management demands.« less

  9. Waste Package Component Design Methodology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and usemore » of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.« less

  10. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, R.D.; Warren, R.W.

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.« less

  11. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect thatmore » packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.« less

  12. Mechanical-biological treatment: performance and potentials. An LCA of 8 MBT plants including waste characterization.

    PubMed

    Montejo, Cristina; Tonini, Davide; Márquez, María del Carmen; Astrup, Thomas Fruergaard

    2013-10-15

    In the endeavour of avoiding presence of biodegradable waste in landfills and increasing recycling, mechanical-biological treatment (MBT) plants have seen a significant increase in number and capacity in the last two decades. The aim of these plants is separating and stabilizing the quickly biodegradable fraction of the waste as well as recovering recyclables from mixed waste streams. In this study the environmental performance of eight MBT-based waste management scenarios in Spain was assessed by means of life cycle assessment. The focus was on the technical and environmental performance of the MBT plants. These widely differed in type of biological treatment and recovery efficiencies. The results indicated that the performance is strongly connected with energy and materials recovery efficiency. The recommendation for upgrading and/or commissioning of future plants is to optimize materials recovery through increased automation of the selection and to prioritize biogas-electricity production from the organic fraction over direct composting. The optimal strategy for refuse derived fuel (RDF) management depends upon the environmental compartment to be prioritized and the type of marginal electricity source in the system. It was estimated that, overall, up to ca. 180-190 kt CO2-eq. y(-1) may be saved by optimizing the MBT plants under assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Construction materials as a waste management solution for cellulose sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less

  14. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technicalmore » reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.« less

  15. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less

  16. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less

  17. FY 1986 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents in detail a description of the activities to be performed by the Joint Integration Office/RI during FY86. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO/RI by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO/RI tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance development, taskmore » monitoring, task progress information gathering and reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of reports for DOE detailing program status. Program Analysis is performed by the JIO/RI to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. These analyses include short term analyses in response to DOE information requests, along with performing an RH Cost/Schedule Optimization report. System models will be developed, updated, and upgraded as needed to enhance JIO/RI's capability to evaluate the adequacy of program efforts in various fields. A TRU program data base will be maintained and updated to provide DOE with timely responses to inventory related questions.« less

  18. Siting and Transportation for Consolidated Used Nuclear Fuel Management Facilities: A Proposed Approach for a Regional Initiative to Begin the Dialogue - 13562

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, Alex W.; Janairo, Lisa

    2013-07-01

    The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. Themore » Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)« less

  19. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE.more » The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.« less

  20. Radioactive waste management in France and international cooperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1991-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la gestion des Dechets Radioactifs. (ANDRA), which is a public body responsible mainly for siting, design, construction, and operation of the disposal facilities for every kind of radioactive waste produced in the country. Furthermore, ANDRA has to define and control the required quality of waste packages delivered for disposal. As far as disposal is concerned, it is customary in France to classify waste in two main categories. The first category includes all the so-called short-lived low-level waste (LLW) containing mainly radioactive substances have

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, J.

    Apple pomace, the solid residue from juice production, is a solid waste problem in the Hudson Valley. This study investigates possibilities for converting it to a resource. The characteristics of the region's apple growing and processing industries are examined at length, including their potential for converting waste biomass. The properties of apple pomace are described. From interviews with Hudson Valley apple processors the following information is presented: quantities of pomace produced; seasonality of production; disposal procedures, costs, and revenues; trends in juice production; and attitudes toward alternatives. Literature research resulted in a list of more than 25 end uses formore » apple pomace of which eight were selected for analysis. Landfilling, landspreading, composting, animal feed, direct burning, gasification, anaerobic digestion (methane generation), and fermentation (ethanol production) were analyzed with regard to technical availability, regulatory and environmental impact, attitudes toward end use, and energetic and economic feasibility (See Table 19). The study recommends (1) a pilot anaerobic digestion plant be set up, (2) the possibility of extracting methane from the Marlborough landfill be investigated, (3) a study of the mid-Hudson waste conversion potential be conducted, and (4) an education program in alternative waste management be carried out for the region's industrial and agricultural managers.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies themore » close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M&O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [``Program`` refers to the CRWMS-wide activity and ``project`` refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project.« less

  3. Decommissioning the Romanian Water-Cooled Water-Moderated Research Reactor: New Environmental Perspective on the Management of Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.; Giumanca, R.

    2006-07-01

    Pre-feasibility and feasibility studies were performed for decommissioning of the water-cooled water-moderated research reactor (WWER) located in Bucharest - Magurele, Romania. Using these studies as a starting point, the preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as for the rehabilitation of the existing Radioactive Waste Treatment Plant and for the upgrade of the Radioactive Waste Disposal Facility at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and ecological reconstruction of the grounds need to be provided for, in accordance with national and international regulations. Inmore » accordance with IAEA recommendations at the time, the pre-feasibility study proposed three stages of decommissioning. However, since then new ideas have surfaced with regard to decommissioning. Thus, taking into account the current IAEA ideology, the feasibility study proposes that decommissioning of the WWER be done in one stage to an unrestricted clearance level of the reactor building in an Immediate Dismantling option. Different options and the corresponding derived preferred option for waste management are discussed taking into account safety measures, but also considering technical, logistical and economic factors. For this purpose, possible types of waste created during each decommissioning stage are reviewed. An approximate inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the recommended international basic safety standards identified in the previous phase of the project. The existing Radioactive Waste Treatment Plant (RWTP) from the Horia Hulubei Institute for Nuclear Physics and Engineering (IFIN-HH), which has been in service with no significant upgrade since 1974, will need refurbishing due to deterioration, as well as upgrading in order to ensure the plant complies with current safety standards. This plant will also need to be adapted to treat wastes generated by WWER dismantling. The Baita-Bihor National Radioactive Waste Disposal Facility consists of two galleries in an abandoned uranium mine located in the central-western part of the Bihor Mountains in Transylvania. The galleries lie at a depth of 840 m. The facility requires a considerable overhaul. Several steps recommended for the upgrade of the facility are explored. Environmental concerns have lately become a crucial part of the radioactive waste management strategy. As such, all decisions must be made with great regard for land utilization around nuclear objectives. (authors)« less

  4. Incineration or autoclave? A comparative study in isfahan hospitals waste management system (2010).

    PubMed

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-03-01

    Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator's stack gases and their analyses results were compared with WHO standards. TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator's stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn't seem rational anymore. Yet, despite the inefficiency of autoclaves in treatment of bulky wastes such as Anatomical wastes, their usage seems logic considering the very low amounts of such wastes. Also, considering the amount of generated wastes in Isfahan hospitals, a combination of centralized and non-centralized autoclaves is recommended for treatment of infected wastes. Mobile autoclaves may also be considered according to technical and economical conditions. It must not be forgotten that the priority must be given to the establishment of waste management systems particularly to personnel training to produce less wastes and to well separate them.

  5. Technical developments in the Chalk River AMS program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, H.R.; Chant, L.; Cornett, R.J.J.

    1995-12-01

    The Chalk River AMS Program is centered on measurements of {sup 36}Cl and {sup 129}I with particular emphasis on samples related to nuclear activities including environmental monitoring, high level waste management, and nuclear safeguards. We are presently pursuing improvements in the areas of the gas-filled magnet, the ion source and data handling. Progress to date in these areas will be reported.

  6. Energy from wood waste - A case study

    NASA Technical Reports Server (NTRS)

    Scola, R.; Daughtrey, K.

    1980-01-01

    A joint study has been conducted by NASA and Army installations collocated in a dense forest in southwestern Mississippi in order to determine the technical and economic feasibility of using wood waste as a renewable energy source. The study has shown that, with proper forest management, the timber on government lands could eventually support the total energy requirements of 832 billion Btu/yr. Analysis of the current conversion technologies indicates that the direct combustion spreader stoker approach is the best demonstrated technology for this specific application. The economics of the individual powerplants reveal them as attractive alternatives to fossil fueled plants. Environmental aspects are also discussed.

  7. Sustainability study of domestic communal wastewater treatment plant in Surabaya City

    NASA Astrophysics Data System (ADS)

    Bahar, E.; Sudarno; Zaman, B.

    2017-06-01

    Sanitation is one of the critical infrastructure sectors in order to improve community health status. The Ministry of Public Works of the Republic of Indonesia to define that word sanitation include: domestic waste water management, solid waste management, rain water management (drainage management) as well as the provision of clean water. Surabaya city as the capital of East Java province and Indonesia’s second largest city with a population of 2,853,661 inhabitants in 2014 (the second largest after Jakarta), but the people who have been served by the sanitation infrastructure systems were expected at 176,105 families or about 26.95 % of the population of the city is already using sanitation facilities. In the White Book Sanitation of Surabaya City in 2010, Surabaya City sanitation development mission is to realize the wastewater management of settlements in a sustainable and affordable by the community. This study aims to assess the sustainability of the wastewater treatment plant (WWTP) domestic communal in the city of Surabaya. The method in this research is quantitative method through observation, structured interviews and laboratory testing of the variables analyzed. Analyses were performed using a technique Multidisciplinary rapid appraisal (Rap-fish) to determine the level of sustainability of the management of communal WWTP based on a number of attributes that easy scored. Attributes of each dimension includes the technical, environmental quality, institutional, economic, and social. The results of this study are sustainability index of environmental quality dimension at 84.32 with highly sustainable status, technical dimension at 62.61 with fairly sustainable status, social dimension at 57.98 with fairly sustainable status, economic dimension at 43.24 with less sustainable status, and institutional dimension at 39.67 with less sustainable status.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prod'homme, A.; Drouvot, O.; Gregory, J.

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less

  9. Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  10. Impact of Capital and Current Costs Changes of the Incineration Process of the Medical Waste on System Management Cost

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-12-01

    The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.

  11. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purposemore » of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.« less

  12. Cleaner production: Minimizing hazardous waste in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratasida, D.L.

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmentalmore » management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.« less

  13. How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies.

    PubMed

    Bertanza, Giorgio; Papa, Matteo; Canato, Matteo; Collivignarelli, Maria Cristina; Pedrazzani, Roberta

    2014-05-01

    A key issue in biological Waste Water Treatment Plants (WWTPs) operation is represented by the sludge management. Mechanical dewatering is a crucial stage for sludge volume reduction; though, being a costly operation, its optimization is required. We developed an original experimental methodology to evaluate the technical (dewatering efficiency) and financial (total treatment costs) performance of dewatering devices, which might be used as a DSS (Decision Support System) for WWTP managers. This tool was then applied to two real case studies for comparing, respectively, three industrial size centrifuges, and two different operation modes of the same machine (fixed installation vs. outsourcing service). In both the cases, the best option was identified, based jointly on economic and (site-specific) technical evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.C.; Blew, R.D.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs includingmore » Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.« less

  15. Technical and Regulatory Considerations in Using Freight Containers as Industrial Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Mark B; Opperman, Erich; Natali, Ronald

    2008-01-01

    The US Department of Energy (DOE), Office of Environmental Management (EM), is actively pursuing activities to reduce the radiological risk and clean up the environmental legacy of the nation's nuclear weapons programmes. The EM has made significant progress in recent years in the clean-up and closure of sites and is also focusing on longer term activities necessary for the completion of the clean-up programme. The packaging and transportation of contaminated demolition debris and low level waste materials in a safe and cost effective manner are essential in completing this mission. Toward this end, the US Department of Transportation's Final Rulemore » on Hazardous Materials Regulation issued on 26 January 2004, included a new provision authorising the use of freight containers (e.g. 20 and 40 ft ISO containers) as industrial packages type 2 or 3. This paper will discuss the technical and regulatory considerations in using these newly authorised and large packages for the packaging and transportation of low level waste materials.« less

  16. Nuclear facility decommissioning and site remedial actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.« less

  17. Voluntarism, public engagement and the role of geoscience in radioactive waste management policy-making

    NASA Astrophysics Data System (ADS)

    Bilham, Nic

    2014-05-01

    In the UK, as elsewhere in Europe, there has been a move away from previous 'technocratic' approaches to radioactive waste management (RWM). Policy-makers have recognised that for any RWM programme to succeed, sustained engagement with stakeholders and the public is necessary, and any geological repository must be constructed and operated with the willing support of the community which hosts it. This has opened up RWM policy-making and implementation to a wider range of (often contested) expert inputs, ranging across natural and social sciences, engineering and even ethics. Geoscientists and other technical specialists have found themselves drawn into debates about how various types of expertise should be prioritised, and how they should be integrated with diverse public and stakeholder perspectives. They also have a vital role to play in communicating to the public the need for geological disposal of radioactive waste, and the various aspects of geoscience which will inform the process of implementing this, from identifying potential volunteer host communities, to finding a suitable site, developing the safety case, construction of a repository, emplacement of waste, closure and subsequent monitoring. High-quality geoscience, effectively communicated, will be essential to building and maintaining public confidence throughout the many decades such projects will take. Failure to communicate effectively the relevant geoscience and its central role in the UK's radioactive waste management programme arguably contributed to West Cumbria's January 2013 decision to withdraw from the site selection process, and may discourage other communities from coming forward in future. Across countries needing to deal with their radioactive waste, this unique challenge gives an unprecedented urgency to finding ways to engage and communicate effectively with the public about geoscience.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezeah, Chukwunonye, E-mail: C.Ezeah2@wlv.ac.uk; Fazakerley, Jak A.; Roberts, Clive L.

    Highlights: • Reviewed emerging trends in Informal Sector Recycling (ISR) in developing countries. • In some countries we found that ISR is the key factor in the recycling of waste materials. • Overall impact of ISR upon the urban economy and environment is positive. • In some instances ISR subsidises large areas of the formal sector. • Ignoring the informal sector could result in unsustainable interventions. - Abstract: Optimistic estimates suggest that only 30–70% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along themore » streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These ‘scavengers’ as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be ‘flexible’. In addition, the structure of the ISR should not be based on a ‘universal’ model but should instead take into account local contexts and conditions.« less

  19. The Cementitious Barriers Partnership Experimental Programs and Software Advancing DOE’s Waste Disposal/Tank Closure Efforts – 15436

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Heather; Flach, Greg; Smith, Frank

    2015-01-27

    The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less

  20. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.

  1. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey

    2016-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.

  2. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Brown, Christopher; Orozco, Nicole

    2014-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.

  3. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Tobias, Barry; Orozco, Nicole

    2012-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2012, and describes the technical challenges encountered and lessons learned over the past year.

  4. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  5. Status of ISS Water Management and Recovery

    NASA Technical Reports Server (NTRS)

    Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Schaezler, Ryan; Bankers, Lyndsey

    2015-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2015 and describes the technical challenges encountered and lessons learned over the past two years.

  6. Engineering Forum Issue Paper: Online Hazardous Waste Cleanup Technical Resources

    EPA Pesticide Factsheets

    This issue paper is intended to give the reader examples of some online technical resources that can assist with hazardous waste cleanups in the Superfund, Resource Conservation and Recovery Act (RCRA), and Brownfields programs.

  7. Construction demolition wastes, Waelz slag and MSWI bottom ash: a comparative technical analysis as material for road construction.

    PubMed

    Vegas, I; Ibañez, J A; San José, J T; Urzelai, A

    2008-01-01

    The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.

  8. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  9. Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts.

    PubMed

    Schmitt, Elliott; Bura, Renata; Gustafson, Rick; Cooper, Joyce; Vajzovic, Azra

    2012-01-01

    There is little research literature on the conversion of lignocellulosic rich waste streams to ethanol, and even fewer have investigated both the technical aspects and environmental impacts together. This study assessed technical and environmental challenges of converting three lignocellulosic waste streams to ethanol: municipal solid waste (MSW), low grade mixed waste paper (MWP), and organic yard waste (YW). Experimental results showed high conversion yields for all three streams using suitable conversion methods. Environmental impacts are highly dependent on conversion technology, and process conditions used. Life cycle assessment results showed that both chemicals production and waste collection are important factors to be included within a waste-to-ethanol study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Robert Wesley; Hargis, Kenneth Marshall

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreementmore » between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.« less

  11. Tritium Packages and 17th RH Canister Categories of Transuranic Waste Stored Below Ground within Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hargis, Kenneth Marshall

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is a settlementmore » agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Tritium Packages and 17th RH Canister categories; their physical and radiological characteristics; the results of the radioassays; and potential issues in retrieval and processing of the waste containers.« less

  12. Technical Guidelines for Environmental Dredging of Contaminated Sediments

    DTIC Science & Technology

    2008-09-01

    health and ecological risk assessments . • Evaluate the need for and effectiveness of source control. • Evaluate potential remedies. • Document... risk , resource damage assessments , remedy selec- tion, and remedy design). It is therefore important to consult as many data users as possible (e.g...Contaminated Sediment Risks at Hazardous Waste Sites (USEPA 2002a). Risk Management Prin- ciple Number 4 is: “Develop and refine a conceptual site model that

  13. COMMENTS CONTRIBUTED BY ALAN HUBER TO AWMA AB-3 COMMITTEE FOR POSSIBLE INCLUSION IN THE COMMITTEE'S PRESENTATION AT EPA'S 8TH CONFERENCE ON AIR QUALITY MODELING - A&WMA AB-3 COMMENTS ON NONSTANDARD MODELING APPROACHES

    EPA Science Inventory

    Technical comments are provided to the Air and waste Management Associations AB-3 committee for potential inclusion into the committee's comments to be made at EPA's 8th Conference on Air Quality Modeling. Computational Fluid Dynamics (CFD) simulations can model specific cases wh...

  14. U.S. ENVIRONMENTAL PROTECTION AGENCY RESEARCH AND TECHNICAL SUPPORT NEEDS RELATED TO CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE REACTIVE TRANSPORT MODELING OF INORGANIC CONTAMINANTS, RADIONUCLIDES, AND NUTRIENTS

    EPA Science Inventory

    EPA's Office of Research and Development is responsible to EPA's Office of Solid Waste to provide research and technical support for waste site closures and the development of technical guidance in support of environmental regulations and programmatic policies. ORD is also respo...

  15. Summary of International Waste Management Programs (LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Harris R.; Blink, James A.; Halsey, William G.

    2011-08-11

    The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less

  16. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  17. Meeting Report: Threats to Human Health and Environmental Sustainability in the Pacific Basin

    PubMed Central

    Arnold, Robert G.; Carpenter, David O.; Kirk, Donald; Koh, David; Armour, Margaret-Ann; Cebrian, Mariano; Cifuentes, Luis; Khwaja, Mahmood; Ling, Bo; Makalinao, Irma; Paz-y-Miño, César; Peralta, Genandrialine; Prasad, Rajendra; Singh, Kirpal; Sly, Peter; Tohyama, Chiharu; Woodward, Alistair; Zheng, Baoshan; Maiden, Todd

    2007-01-01

    The coastal zone of the Pacific Rim is home for about one-third of the world’s population. Disproportionate growth of Far Eastern economies has produced a disproportionate share of related environmental difficulties. As the region searches for acceptable compromises between growth and environmental quality, its influence on global environmental health is certain to increase. Consequences of global environmental change such as habitat alteration, storms, and sealevel rise will be particularly acute among Pacific Rim nations. Adverse health effects from arsenic exposure in Pacific Rim nations have been used to justify drinking water standards in the United States and elsewhere. As global manufacturing in the Pacific Rim increases, the centroid of global air quality and waste management issues will shift further toward Far Eastern nations. The Eleventh International Conference of the Pacific Basin Consortium (PBC) was held in September 2005 in Honolulu, Hawaii. The purpose of the conference was to bring together individuals to discuss regional challenges to sustainable growth. The historic emphasis of the conference on hazardous wastes in relation to human health makes the PBC an ideal forum for discussing technical aspects of sustainable economic growth in the Pacific region. That role is reflected in the 2005 PBC conference themes, which included management of arsenic in potable waters, air quality, climate change, pesticides, mercury, and electronics industry waste—each with emphasis on relationships to human health. Arsenic management exemplifies the manner in which the PBC can focus interdisciplinary discussion in a single technical area. The conference program provided talks on arsenic toxicology, treatment technologies, management of arsenic-bearing residuals from water treatment, and the probable societal costs and benefits of arsenic management. PMID:18087598

  18. Lab-scale co-digestion of kitchen waste and brown water for a preliminary performance evaluation of a decentralized waste and wastewater management.

    PubMed

    Lavagnolo, Maria Cristina; Girotto, Francesca; Hirata, Osamu; Cossu, Raffaello

    2017-08-01

    An overall interaction is manifested between wastewater and solid waste management schemes. At the Laboratory of Environmental Engineering (LISA) of the University of Padova, Italy, the scientific and technical implications of putting into practice a decentralized waste and wastewater treatment based on the separation of grey water, brown water (BW - faecal matter) and yellow water (YW - urine) are currently undergoing investigation in the Aquanova Project. An additional aim of this concept is the source segregation of kitchen waste (KW) for subsequent anaerobic co-digestion with BW. To determine an optimal mixing ratio and temperature for use in the treatment of KW, BW, and eventually YW, by means of anaerobic digestion, a series of lab-scale batch tests were performed. Organic mixtures of KW and BW performed much better (max. 520mlCH 4 /gVS) in terms of methane yields than the individual substrates alone (max. 220mlCH 4 /gVS). A small concentration of urine proved to have a positive effect on anaerobic digestion performance, possibly due to the presence of micronutrients in YW. When considering high YW concentrations in the anaerobically digested mixtures, no ammonia inhibition was observed until a 30% and 10% YW content was added under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Canadian Innovations in Siting Hazardous Waste Management Facilities

    PubMed

    Kuhn; Ballard

    1998-07-01

    / Siting hazardous waste facilities is an extremely complex and difficult endeavor. Public aversion to the construction of these facilities in or near their community often results in concerted opposition, referred to as the NIMBY syndrome. For the most part, siting processes do not fail because of inadequate environmental or technical considerations, but because of the adversarial decision-making strategies employed by the proponents. Innovative siting processes used in the provinces of Alberta and Manitoba offer tangible evidence of the successful application of an innovative siting approach based on the principles of decentralization of decision-making authority and full and meaningful public involvement. The purpose of this paper is to evaluate four Canadian siting processes from the perspective of public participation and access to decision-making authority. Examples of siting processes related to hazardous waste management facilities are provided from the provinces of Alberta, Manitoba, British Columbia, and Ontario. Siting has evolved from approaches dominated by top-down decision making to increasing decentralized and pluralistic approaches. Focusing on social and political concerns of potentially affected communities and on the process of decision making itself are fundamental to achieving siting success. In Alberta initially, and later in Manitoba, this new "open approach" to siting has resulted in the construction of the first two comprehensive hazardous waste treatment facilities in Canada.KEY WORDS: Hazardous waste facilities; Siting methodologies; Public participation

  20. Statement by Dr. Raul A. Deju to the Subcommittee on Radioactive Waste, Energy and Utilities Committee, Washington State Senate, Richland, Washington, October 21, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deju, R.A.

    1982-10-01

    The Basalt Waste Isolation Project's mission is to assess whether or not a nuclear waste repository can be sited in the basalts beneath the Hanford Site. Dr. Deju summarizes the results of the siting studies, the activities connected with waste package development, and ongoing engineering studies. In addition, he gives a glimpse of past technical reviews of the project and comments on major technical activities planned in the near future.

  1. Solid Waste Program technical baseline description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  2. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...

  3. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  4. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  5. Working towards a zero waste environment in Taiwan.

    PubMed

    Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh

    2010-03-01

    It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.

  6. Incineration or Autoclave? A Comparative Study in Isfahan Hospitals Waste Management System (2010)

    PubMed Central

    Ferdowsi, Ali; Ferdosi, Masoud; Mehrani, Mohammd Javad

    2013-01-01

    Introduction: Medical wastes are among hazardous wastes and their disposal requires special methods prior to landfilling. Medical wastes are divided into infected and non-infected wastes and the infected wastes require treatment. Incineration is one of the oldest methods for treatment of medical wastes, but their usage have faced wide objections due to emission of hazardous gases such as CO2 and CO as well as Carcinogenic gases such as Dioxins and Furans which are generated as a result of incomplete combustion of compositions like PVCs. Autoclave is one the newest methods of medical wastes treatment which works based on wet disinfection. Methods: The statistical population in this descriptive, comparative study includes hospitals located in Isfahan city and the sample hospitals were selected randomly. To environmentally evaluate the Autoclave method, TST (time, steam, temperature) and Spore tests were used. Also, samples were made from incinerator’s stack gases and their analyses results were compared with WHO standards. Findings: TST and spore tests results were negative in all cases indicating the success of treatment process. The comparison of incinerator’s stack gases with WHO standards showed the high concentration of CO in some samples indicating the incomplete combustion. Also, the incineration efficiency in some cases was less than 99.5 percent, which is the efficiency criterion according to the administrative regulations of wastes management law of Iran. No needle stick was observed in Autoclave method during the compaction of bags containing wastes, and the handlers were facing no danger in this respect. The comparison of costs indicated that despite higher capital investment for purchasing autoclave, its current costs (e.g. maintenance, etc) are much less than the incineration method. Discussion: Totally, due to inappropriate operation of incinerators and lack of air pollution control devices, the use of incinerators doesn’t seem rational anymore. Yet, despite the inefficiency of autoclaves in treatment of bulky wastes such as Anatomical wastes, their usage seems logic considering the very low amounts of such wastes. Also, considering the amount of generated wastes in Isfahan hospitals, a combination of centralized and non-centralized autoclaves is recommended for treatment of infected wastes. Mobile autoclaves may also be considered according to technical and economical conditions. It must not be forgotten that the priority must be given to the establishment of waste management systems particularly to personnel training to produce less wastes and to well separate them. PMID:23678340

  7. Civilian Radioactive Waste Management System Requirements Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.A. Kouts

    2006-05-10

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible formore » design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further defining system element functions, decomposing requirements into significantly greater detail, and developing designs of system components, facilities, and equipment. The CRD addresses the identification and control of functional, physical, and operational boundaries between and within CRWMS elements. The CRD establishes requirements regarding key interfaces between the CRWMS and elements external to the CRWMS. Project elements define interfaces between CRWMS program elements. The Program has developed a change management process consistent with DOE Order 413.3-Change 1. Changes to the Secretarial Acquisition Executive and Program-level baselines must be approved by a Program Baseline Change Control Board. Specific thresholds have been established for identifying technical, cost, and schedule changes that require approval. The CRWMS continually evaluates system design and operational concepts to optimize performance and/or cost. The Program has developed systems analysis tools to assess potential enhancements to the physical system and to determine the impacts from cost saving initiatives, scientific and technological improvements, and engineering developments. The results of systems analyses, if appropriate, are factored into revisions to the CRD as revised Programmatic Requirements.« less

  8. Global status of recycling waste solar panels: A review.

    PubMed

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development of performance indicators for municipal solid waste management (PIMS): A review.

    PubMed

    Sanjeevi, V; Shahabudeen, P

    2015-12-01

    The aim of this paper is to review papers on municipal solid waste management (SWM) systems, especially on performance indicators (PIs), and suggest practical methods to manage the same by administrators. Worldwide, about 4 billion metric tons of solid waste (SW) is generated annually; the management of SW across cities is increasingly getting more complex and the funds available for providing service to citizens are shrinking. Analysis of the non-technical research papers shows that focus areas on SW can be grouped into 18 types, one being PIs. Historically, PIs for municipal SWM (PIMS) commenced with the publication of guidelines by various government agencies, starting in 1969. This was followed by a few benchmarking studies, commencing in 1998, by various international institutions. Many published comparative studies also disseminated good practices across the cities. From the 1990s onwards, research work started defining PIMS. These initiatives by various researchers took multiple dimensions and are reviewed in this paper. In almost all studies, the PIMS is measured in terms of investment decisions, public acceptance levels, social participation and environmental needs. The multiple indicators are complex, however, and managers of cities need simple tools to use. To make it simple, five-factor PIs are arrived at, considering simplicity and covering all the factors. A research agenda is outlined for future directions in the areas of cost reduction, citizens' services, citizen involvement and environmental impact. © The Author(s) 2015.

  10. Leachate management design in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, D.A.; Broscious, J.C.; Zullo, E.G.

    1996-02-01

    As part of a project to provide solid waste master plans for 25 cities in Mexico, an American engineering firm, Paul C. Rizzo Associates (Monroeville, Pa.), was contracted to design a comprehensive leachate management system for landfills in the chosen cities. The solid waste master plan project was administered by the Mexican federal government Secretaria de Desarrollo Social (SEDESOL) with funding from the World Bank. While Paul C. Rizzo was the prime contractor for the project, which was completed in 1994, work was also subcontracted to a local Mexican engineering firm. The lack of specific design criteria for leachate managementmore » in current Mexican regulations enabled the use of a creative design for the system based on experience and technical judgment. Important design considerations included the current, primitive open-dump/burning/scavenging method of disposal and recycling of wastes, and the need for a minimal-cost solution in this developing country. The economic situation made the need for minimal expenditures to upgrade infrastructure equally important. The purpose of the design effort was to use evaporation and recirculation methods of landfill leachate management to minimize the amount of leachate that required treatment. Engineers in the project sought an ultimate goal of achieving zero excess leachate at the landfill sites.« less

  11. Criticality Safety Evaluations on the Use of 200-gram Pu Mass Limit for RHWM Waste Storage Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, P

    This work establishes the criticality safety technical basis to increase the fissile mass limit from 120 grams to 200 grams for Type A 55-gallon drums and their equivalents. Current RHWM fissile mass limit is 120 grams Pu for Type A 55-gallon containers and their equivalent. In order to increase the Type A 55-gallon drum limit to 200 grams, a few additional criticality safety control requirements are needed on moderators, reflectors, and array controls to ensure that the 200-gram Pu drums remain criticality safe with inadvertent criticality remains incredible. The purpose of this work is to analyze the use of 200-grammore » Pu drum mass limit for waste storage operations in Radioactive and Hazardous Waste Management (RHWM) Facilities. In this evaluation, the criticality safety controls associated with the 200-gram Pu drums are established for the RHWM waste storage operations. With the implementation of these criticality safety controls, the 200-gram Pu waste drum storage operations are demonstrated to be criticality safe and meet the double-contingency-principle requirement per DOE O 420.1.« less

  12. Implementing Selective Waste Collection: The Articulation between Pedagogical Theory and Practice in the Pollution and Ecology Class in the Environmental Control Technical Course

    ERIC Educational Resources Information Center

    Rocas, Giselle; Gonzalez, Wania R. Coutinho; Araujo, Flavia Monteiro de Barros

    2009-01-01

    This study focuses on the implementation of selective waste collection in a school located on the outskirts of the city of Rio de Janeiro. The participants consisted mainly of 64 students taking an Environmental Control technical course during 2007 and 2008. By addressing selective waste collection, the pedagogical proposal aimed at: a) enabling…

  13. Wastewater Management Alternatives for the Cleveland - Akron, Three Rivers Watershed Area. Technical Appendix - Phase II. System Design and Estimate of Cost.

    DTIC Science & Technology

    1973-02-01

    established. Secondly, the applicable process sequence to most economically meet these requirements under local enviromental constraints must be...concentrations are highest for receiving waters containing cold water fisheries. Allowable fecal coliform bacteria counts vary seasonally and dictate...handling system has also been modified to include gravity waste activated sludge thickening and heat conditioning of the combined raw sludge after

  14. Chemistry and Materials Science, 1990--1991. [Second annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A.

    1991-12-31

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less

  16. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and −0.3 M€/year saved on incineration.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Papers and/or abstracts of 42 papers presented at this waste management seminar are included in this volume. Separate abstracts of 27 papers have been prepared for inclusion in the Energy Data Base (EDB). There are 8 papers represented in the proceedings by abstract only and are not included separately in EDB. The subjects covered in these abstracts include: requirements and compliance for the issuance of the second round NPDES permit for the Portsmouth Plant; performance of the pollution abatement facilities at the Portsmouth Plant; the impact of the Kentucky hazardous waste regulations on the Paducah Plant; control of R-114 lossesmore » at the gaseous diffusion plants; innovative alternatives to pollution control projects; evaluating the fate and potential radiological impacts of Technetium-99 released to the environment; and technical support interfacing for the FY-1981 line item project control of water pollution and solid wastes at the Paducah Plant. There are 15 other papers which were previously input to the EDB. (RJC)« less

  18. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less

  19. A Goal Programming/Constrained Regression Review of the Bell System Breakup.

    DTIC Science & Technology

    1985-05-01

    characteristically employ. 4 .- - -. . ,. - - ;--.. . . .. 2. MULTI-PRODUCT COST MODEL AND DATA DETAILS When technical efficiency (i.e. zero waste ) can be assumed...assumming, but we believe that it was probably technical (= zero waste ) efficiency by virtue of the following reasons. Scale efficien- cy was a

  20. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueth, Joachim

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials,more » and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)« less

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program,more » Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.« less

  2. Generation, characterization and reuse of solid wastes from a biodiesel production plant.

    PubMed

    Oliveira, Fernando Jorge Santos; Santana, Daniele Dos Santos; Costa, Simone Soraya Brito; Oliveira, Lenise Diniz; Liduino, Vitor Silva; Servulo, Eliana Flávia Camporese

    2017-03-01

    The aim of this study was to identify and characterize industrial solid wastes generated by a biodiesel production plant in Brazil, as well as to present strategies for the management of these materials. This plant produces every year around 100,000tons of biodiesel from vegetable oils and animal fats. The methodology of the study included technical visits, interviews with the operational and environmental management staff as well as analysis of documents, reports and computerized data systems. An approach to reduce the generation of hazardous waste was investigated. It was take into account the amount of raw material that was processed, reduction of landfill disposal, and the maximization of the their recycling and reuse. The study also identified the sources of waste generation and accordingly prepared an evaluation matrix to determine the types of waste with the higher potential for minimization. The most important residue of the process was the filter material impregnated with oil and biodiesel, requiring, therefore, measures for its minimization. The use of these residues in the production of ceramic artefacts (light bricks) was considered to be very promising, since no significant effect on the physico-chemical and mechanical properties of the artefacts produced was observed. Phytotoxicity test using seeds of Lactuva sativa (lettuce), Brassica juncea (mustard), Abelmoschus esculentus (okra), Chrysanthemum leucanthemum (daisy), Dendranthema grandiflorum (chrysanthemum) and Allium porrum (leek) were carried out. The results clearly show incorporation of the waste material into bricks did not influence relative germination and relative root elongation in comparison to control tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enhancement of biogas production from food waste and sewage sludge - Environmental and economic life cycle performance.

    PubMed

    Eriksson, Ola; Bisaillon, Mattias; Haraldsson, Mårten; Sundberg, Johan

    2016-06-15

    Management of municipal solid waste is an efficient method to increase resource efficiency, as well as to replace fossil fuels with renewable energy sources due to that (1) waste to a large extent is renewable as it consists of food waste, paper, wood etc. and (2) when energy and materials are recovered from waste treatment, fossil fuels can be substituted. In this paper results from a comprehensive system study of future biological treatment of readily degradable waste in two Swedish regions are presented. Different collection and separation systems for food waste in households have been applied as well as technical improvements of the biogas process as to reduce environmental impact. The results show that central sorting of a mixed fraction into recyclables, combustibles, biowaste and inert is a competitive option compared to source separation. Use of pellets is beneficial compared to direct spreading as fertiliser. Fuel pellets seem to be the most favourable option, which to a large extent depends on the circumstances in the energy system. Separation and utilisation of nitrogen in the wet part of the digestion residue is made possible with a number of technologies which decreases environmental impact drastically, however to a substantial cost in some cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Teaching Managers How to Manage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hylko, J.M.

    2006-07-01

    Following graduation from a college or university with a technical degree, or through years of experience, an individual's training and career development activities typically focus on enhancing technical problem-solving skills. However, as these technical professionals, herein referred to as 'Techies', advance throughout their careers, they may be required to accept and adapt to the role of being a manager, and must undergo a transition to learn and rely on new problem-solving skills. However, unless a company has a specific manager-trainee class to address this subject and develop talent from within, an employee's management style is learned and developed 'on themore » job'. Both positive and negative styles are nurtured by those managers having similar qualities. Unfortunately, a negative style often contributes to the deterioration of employee morale and ultimate closing of a department or company. This paper provides the core elements of an effective management training program for 'Teaching Managers How to Manage' derived from the Department of Energy's Integrated Safety Management System and the Occupational Safety and Health Administration 's Voluntary Protection Program. Discussion topics and real-life examples concentrate on transitioning an employee from a 'Techie' to a manager; common characteristics of being a manager; the history and academic study of management; competition, change and the business of waste management; what to do after taking over a department by applying Hylko's Star of Success; command media; the formal and informal organizational charts; chain of command; hiring and developing high-degree, autonomous employees through effective communication and delegation; periodic status checks; and determining if the program is working successfully. These common characteristics of a strong management/leadership culture and practical career tips discussed herein provide a solid foundation for any company or department that is serious about developing an effective management training program for its employees. In turn, any employee in any work environment can begin using this information immediately if they want to become a better manager. (authors)« less

  5. Data sharing report characterization of the surveillance and maintenance project miscellaneous process inventory waste items Oak Ridge National Laboratory, Oak Ridge, TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in themore » Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.« less

  6. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  7. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  8. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  9. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  10. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  11. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  12. 10 CFR 1303.101 - Scope

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope 1303.101 Section 1303.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.101 Scope This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding public access to...

  13. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  14. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  15. 10 CFR 1303.114 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals. 1303.114 Section 1303.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PUBLIC INFORMATION AND REQUESTS § 1303.114 Appeals. (a)(1) Appeals of adverse... Executive Director: (i) By mail to: U.S. Nuclear Waste Technical Review Board, 2300 Clarendon Boulevard...

  16. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    PubMed

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  17. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review.

    PubMed

    Rai, Suchita; Wasewar, K L; Agnihotri, A

    2017-06-01

    In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO 2 , sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.

  18. Homeland Security Research Improves the Nation's Ability to ...

    EPA Pesticide Factsheets

    Technical Brief Homeland Security (HS) Research develops data, tools, and technologies to minimize the impact of accidents, natural disasters, terrorist attacks, and other incidents that can result in toxic chemical, biological or radiological (CBR) contamination. HS Research develops ways to detect contamination, sampling strategies, sampling and analytical methods, cleanup methods, waste management approaches, exposure assessment methods, and decision support tools (including water system models). These contributions improve EPA’s response to a broad range of environmental disasters.

  19. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  20. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  1. 10 CFR 61.55 - Waste classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...

  2. The evolution of the Italian EPR system for the management of household Waste Electrical and Electronic Equipment (WEEE). Technical and economic performance in the spotlight.

    PubMed

    Favot, Marinella; Veit, Raphael; Massarutto, Antonio

    2016-10-01

    In this paper we analyse the Italian collective system for the management of household Waste Electrical and Electronic Equipment (WEEE), and its evolution over time, following the European Directives on WEEE, which include the Extended Producer Responsibility (EPR). The analysis focuses on the technical and economic performance of WEEE compliance organisations (consortia), as they are the key players in the Italian EPR regime. Economic results have not usually been provided in previous studies, due to the lack of available data. This study overcomes this problem by accessing the financial statements for the years 2009-2014 of all consortia. The main conclusions of the study are: The Italian EPR system barely exceeded the technical target of the first WEEE Directive (4kg per capita). Improvements are necessary to achieve the target set for 2019 by the Recast Directive. The economic performance of the Italian EPR regime improved significantly over time. The fees charged per tonne of WEEE collected decreased by almost 43% from 652 Euro per tonne in 2009 to 374 Euro per tonne in 2014, while the fees per tonne put on the market (POM) were 134 Euro in 2009 and 104 Euro in 2014. The results prove the theory which states that, competing consortia use the learning effects to reduce the contribution fees for producers rather than to increase the quantity collected. Municipalities remain the most important actor in WEEE collection operations. Consortia compensate municipalities with a reimbursement that ranges between 28 and 38 Euros per tonne collected. These repayments cover only partially their costs. Additional studies should investigate their role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 10 CFR 61.57 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...

  4. 10 CFR 61.57 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...

  5. 10 CFR 61.57 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...

  6. 10 CFR 61.57 - Labeling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...

  7. 10 CFR 61.57 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.57 Labeling. Each package of waste must be clearly labeled to identify whether it is Class A waste, Class B waste, or Class C waste, in accordance with § 61.55. ...

  8. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.L. Mitchell

    2000-05-31

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe themore » naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).« less

  9. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less

  10. Converting campus waste into renewable energy - a case study for the University of Cincinnati.

    PubMed

    Tu, Qingshi; Zhu, Chao; McAvoy, Drew C

    2015-05-01

    This paper evaluates the implementation of three waste-to-energy projects at the University of Cincinnati: waste cooking oil-to-biodiesel, waste paper-to-fuel pellets and food waste-to-biogas, respectively. The implementation of these waste-to-energy (WTE) projects would lead to the improvement of campus sustainability by minimizing waste management efforts and reducing GHG emissions via the displacement of fossil fuel usage. Technical and economic aspects of their implementation were assessed and the corresponding GHG reduction was estimated. Results showed that on-site implementation of these projects would: (1) divert 3682L (974 gallons) of waste cooking oil to 3712L (982 gallons) of biodiesel; (2) produce 138tonnes of fuel pellets from 133tonnes of waste paper (with the addition of 20.75tonnes of plastics) to replace121tonnes of coal; and (3) produce biogas that would be enough to replace 12,767m(3) natural gas every year from 146tonnes of food waste. The economic analysis determined that the payback periods for the three projects would be 16months for the biodiesel, 155months for the fuel pellet, and 74months for the biogas projects. The reduction of GHG emission from the implementation of the three WTE projects was determined to be 9.37 (biodiesel), 260.49 (fuel pellets), and 11.36 (biogas) tonnes of CO2-eq per year, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  12. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  13. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  14. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  15. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  16. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  17. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  18. 10 CFR 1304.105 - Requests for access to records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for access to records. 1304.105 Section 1304.105 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.105 Requests for access to records.... Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington, VA 22201. (c) Requests...

  19. 10 CFR 1304.101 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Purpose and scope. 1304.101 Section 1304.101 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.101 Purpose and scope. This part sets forth the policies and procedures of the U.S. Nuclear Waste Technical Review Board (Board) regarding...

  20. 10 CFR 1304.103 - Privacy Act inquiries.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... writing may be sent to: Privacy Act Officer, U.S. Nuclear Waste Technical Review Board, 2300 Clarendon... NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.103 Privacy Act inquiries. (a) Requests... contains a record pertaining to him or her may file a request in person or in writing, via the internet, or...

  1. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  2. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  3. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  4. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  5. 10 CFR 1304.109 - Requests for correction of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1304.109 Section 1304.109 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.109 Requests for correction... Act Officer; U.S. Nuclear Waste Technical Review Board; 2300 Clarendon Blvd., Suite 1300; Arlington...

  6. Waste Isolation Pilot Plant Technical Assessment Team Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  7. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    PubMed

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and -0.3 M€/year saved on incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Environmental Science and Research Foundation annual technical report to DOE-ID, January , 1995--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    The foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain and provide environmental education and support services related to INEL natural resource issues. Also, the foundation, with its university affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including waste management, environmental restoration, spent nuclear fuels, and land management issues. Major accomplishments during CY1995 can be divided into five categories: environmental surveillance program, environmental education, environmental services and support, ecological risk assessment, and research benefitting the DOE-ID mission.

  9. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.

    The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focusmore » on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format encompassed three break-out sessions, which focused on needs and opportunities associated with the following LTM technical areas: (1) Performance Monitoring Tools, (2) Systems, and (3) Information Management. The specific objectives of the Technical Forum were to identify: (1) technical targets for reducing EM costs for life-cycle monitoring; (2) cost-effective approaches and tools to support the transition from active to passive remedies at EM waste sites; and (3) specific goals and objectives associated with the lifecycle monitoring initiatives outlined within the Roadmap. The first Breakout Session on LTM performance measurement tools focused on the integration and improvement of LTM performance measurement and monitoring tools that deal with parameters such as ecosystems, boundary conditions, geophysics, remote sensing, biomarkers, ecological indicators and other types of data used in LTM configurations. Although specific tools were discussed, it was recognized that the Breakout Session could not comprehensively discuss all monitoring technologies in the time provided. Attendees provided key references where other organizations have assessed monitoring tools. Three investment sectors were developed in this Breakout Session. The second Breakout Session was on LTM systems. The focus of this session was to identify new and inventive LTM systems addressing the framework for interactive parameters such as infrastructure, sensors, diagnostic features, field screening tools, state of the art characterization monitoring systems/concepts, and ecosystem approaches to site conditions and evolution. LTM systems consist of the combination of data acquisition and management efforts, data processing and analysis efforts and reporting tools. The objective of the LTM systems workgroup was to provide a vision and path towards novel and innovative LTM systems, which should be able to provide relevant, actionable information on system performance in a cost-effective manner. Two investment sectors were developed in this Breakout Session. The last Breakout Session of the Technical Forum was on LTM information management. The session focus was on the development and implementation of novel information management systems for LTM including techniques to address data issues such as: efficient management of large and diverse datasets; consistency and comparability in data management and incorporation of accurate historical information; data interpretation and information synthesis including statistical methods, modeling, and visualization; and linage of data to site management objectives and leveraging information to forge consensus among stakeholders. One investment sector was developed in this Breakout Session.« less

  11. Solid recovered fuels in the cement industry with special respect to hazardous waste.

    PubMed

    Thomanetz, Erwin

    2012-04-01

    Cements with good technical properties have been produced in Europe since the nineteenth century and are now worldwide standardized high-quality mass products with enormous production numbers. The basic component for cement is the so-called clinker which is produced mainly from raw meal (limestone plus clay plus sands) in a rotary kiln with preheater and progressively with integrated calciner, at temperatures up to 1450 °C. This process requires large amounts of fossil fuels and is CO₂-intensive. But most CO₂ is released by lime decomposition during the burning process. In the 1980s the use of alternative fuels began--firstly in the form of used oil and waste tyres and then increasingly by pre-conditioned materials from commercial waste and from high calorific industrial waste (i.e. solid recovered fuel (SRF))--as well as organic hazardous waste materials such as solvents, pre-conditioned with sawdust. Therefore the cement industry is more and more a competitor in the waste-to-energy market--be it for municipal waste or for hazardous waste, especially concerning waste incineration, but also for other co-incineration plants. There are still no binding EU rules identifying which types of SRF or hazardous waste could be incinerated in cement kilns, but there are some well-made country-specific 'positive lists', for example in Switzerland and Austria. Thus, for proper planning in the cement industry as well as in the waste management field, waste disposal routes should be considered properly, in order to avoid surplus capacities on one side and shortage on the other.

  12. 10 CFR 72.24 - Contents of application: Technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...

  13. Research Skills and Ethics--A Graduate Course Empowering Graduate Students for Productive Research Careers in Graduate School and Beyond

    NASA Astrophysics Data System (ADS)

    Mabrouk, Patricia Ann

    2001-12-01

    This paper describes a course for first-year graduate students that teaches the fundamental so-called "soft skills" required for success in graduate school and beyond. Topics covered are ethics, laboratory safety and waste management, chemical information retrieval and literacy, experimental design, scientific record keeping, statistics, career development, and communications, including technical writing and oral presentation. Whenever possible students are put in direct contact with local technical experts and available resources. The course, well regarded by both students and faculty, has now been taught at Northeastern University for five years in the summer academic quarter to graduate students in chemistry and related departments (pharmacy and chemical engineering) who have successfully completed their first-year course work.

  14. Architectural Framework for Addressing Legacy Waste from the Cold War - 13611

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Gregory A.; Glazner, Christopher G.; Steckley, Sam

    We present an architectural framework for the use of a hybrid simulation model of enterprise-wide operations used to develop system-level insight into the U.S. Department of Energy's (DOE) environmental cleanup of legacy nuclear waste at the Savannah River Site. We use this framework for quickly exploring policy and architectural options, analyzing plans, addressing management challenges and developing mitigation strategies for DOE Office of Environmental Management (EM). The socio-technical complexity of EM's mission compels the use of a qualitative approach to complement a more a quantitative discrete event modeling effort. We use this model-based analysis to pinpoint pressure and leverage pointsmore » and develop a shared conceptual understanding of the problem space and platform for communication among stakeholders across the enterprise in a timely manner. This approach affords the opportunity to discuss problems using a unified conceptual perspective and is also general enough that it applies to a broad range of capital investment/production operations problems. (authors)« less

  15. Statistical analysis in MSW collection performance assessment.

    PubMed

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. 77 FR 22229 - Hazardous Waste Technical Corrections and Clarifications Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... concerning this amendment from Safe Food and Fertilizer (hereafter referred to as Safe Food), a grassroots.... * * * * * (a) * * * Industry and EPA hazardous waste No. Hazardous waste Hazard code * * * * * * * Organic...

  17. Volatile species of technetium and rhenium during waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongsang; Kruger, Albert A.

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  18. Environmental and economic solutions: Pollution prevention technical assistance and the City of Los Angeles Hazardous and Toxic Materials Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toy-Chen, D.; Joyce, M.M.

    1994-12-31

    The City of Los Angeles faces a challenge to assist industrial facilities to minimize and manage hazardous materials in order to sustain the local economy and natural environment. Industrial facilities in Los Angeles County released into the environment or transferred off-site 103,442,074 tons of hazardous materials and waste in 1988. This enormous quantity of hazardous waste requires generators to be in compliance with several environmental regulatory agencies. The City of Los Angeles Hazardous and Toxic Materials (HTM) Office has increased the awareness, commitments, and implementation of hazardous waste at the source, the amount of toxic pollutants discharged into the City`smore » publicly owned treatment works, surface and groundwaters, soils and atmosphere can be substantially reduced. Quantifying hazardous waste minimization progress is extremely difficult and complex. However, the HTM Office anticipates that if the challenge of pollution prevention is successful, more businesses will decide to remain in the region and Los Angeles residents will feel convinced that industry is making good faith efforts to protect the environment. Pollution prevention is a long term solution for the hazardous waste crisis that society has only recently recognized.« less

  19. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less

  20. Volatile species of technetium and rhenium during waste vitrification

    DOE PAGES

    Kim, Dongsang; Kruger, Albert A.

    2017-10-26

    Volatile loss of technetium (Tc) during vitrification of low-activity wastes is a technical challenge for treating and immobilizing the large volumes of radioactive and hazardous wastes stored at the U.S. Department of Energy's Hanford Site. There are various research efforts being pursued to develop technologies that can be implemented for cost effective management of Tc, including studies to understand the behavior of Tc during vitrification, with the goal of eventually increasing Tc retention in glass. Furthermore, one of these studies has focused on identifying the form or species of Tc and Re (surrogate for Tc) that evolve during the waste-to-glassmore » conversion process. This information is important for understanding the mechanism of Tc volatilization. In this paper, available information collected from the literature is critically evaluated to clarify the volatile species of Tc and Re and, more specifically, whether they volatilize as alkali pertechnetate and perrhenate or as technetium and rhenium oxides after decomposition of alkali pertechnetate and perrhenate. The evaluated data ranged from mass spectrometric identification of species volatilized from pure and binary alkali pertechnetate and perrhenate salts to structural and chemical analyses of volatilized materials during crucible melting and scaled melter processing of simulated wastes.« less

  1. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  3. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  4. Advanced Fuels Campaign FY 2015 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  5. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  6. Issues that Drive Waste Management Technology Development for Space Missions

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Levri, Julie A.; Hogan, John A.; Wignarajah, Kanapathipillai

    2005-01-01

    Waste management technologies for space life support systems are currently at low development levels. Manual compaction of waste in plastic bags and overboard disposal to earth return vehicles are the primary current waste management methods. Particularly on future missions, continuance of current waste management methods would tend to expose the crew to waste hazards, forfeit recoverable resources such as water, consume valuable crew time, contaminate planetary surfaces, and risk return to Earth of extraterrestrial life. Improvement of waste management capabilities is needed for adequate management of wastes. Improvements include recovery of water and other resources, conversion of waste to states harmless to humans, long-term containment of wastes, and disposal of waste. Current NASA requirements documents on waste management are generally not highly detailed. More detailed requirements are needed to guide the development of waste management technologies that will adequately manage waste. In addition to satisfying requirements, waste management technologies must also recover resources. Recovery of resources such as water and habitat volume can reduce mission cost. This paper explores the drivers for waste management technology development including requirements and resource recovery.

  7. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Technical Assistance and Training Grants § 1775.36 Purpose. Grants... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to... facilities. (e) Pay the expenses associated with providing the technical assistance and/or training...

  8. Functions and requirements document for interim store solidified high-level and transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture,more » and interfaces.« less

  9. Technical viability and development needs for waste forms and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less

  10. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  11. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  12. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  13. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  14. 10 CFR 60.135 - Criteria for the waste package and its components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...

  15. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  16. STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT

    EPA Science Inventory

    EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...

  17. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  18. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  19. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  20. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  1. 10 CFR 61.56 - Waste characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Waste characteristics. 61.56 Section 61.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.56 Waste characteristics. (a) The following requirements are...

  2. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK.

    PubMed

    Yap, H Y; Nixon, J D

    2015-12-01

    Energy recovery from municipal solid waste plays a key role in sustainable waste management and energy security. However, there are numerous technologies that vary in suitability for different economic and social climates. This study sets out to develop and apply a multi-criteria decision making methodology that can be used to evaluate the trade-offs between the benefits, opportunities, costs and risks of alternative energy from waste technologies in both developed and developing countries. The technologies considered are mass burn incineration, refuse derived fuel incineration, gasification, anaerobic digestion and landfill gas recovery. By incorporating qualitative and quantitative assessments, a preference ranking of the alternative technologies is produced. The effect of variations in decision criteria weightings are analysed in a sensitivity analysis. The methodology is applied principally to compare and assess energy recovery from waste options in the UK and India. These two countries have been selected as they could both benefit from further development of their waste-to-energy strategies, but have different technical and socio-economic challenges to consider. It is concluded that gasification is the preferred technology for the UK, whereas anaerobic digestion is the preferred technology for India. We believe that the presented methodology will be of particular value for waste-to-energy decision-makers in both developed and developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Exploring social dimensions of municipal solid waste management around the globe - A systematic literature review.

    PubMed

    Ma, Jing; Hipel, Keith W

    2016-10-01

    Currently, municipal solid waste (MSW) is experiencing a massive increase in both the amount and composition throughout the world. Effective and efficient MSW management has been widely accepted as an emergent factor for future social development, which requires not only technical innovation, but also the involvement of all stakeholders as well as social, economic, and psychological components. On account of this reality, there is an urgent need for research related to the social dimensions of MSW management. In this paper, a systematic literature review was carried out to characterize and critically evaluate the published literature on the social dimensions of MSW management from 1980 to 2014 in terms of vulnerability, public participation, public attitude and behavior, and policy. A keyword search was first performed by using the Institute for Scientific Information (ISI) Web of Science, which retrieves 1843 documents. After removing the papers that were not closely related to the topic, 200 articles were retained for an in-depth review. In each category, major research issues and observations were summarized, and important insights were obtained. Besides compiling a related list of key references, the analysis results indicate that the global distribution of social dimensions reports on MSW management is inequitable and the research on the social dimensions of MSW management is insufficient, which may attract increased research interest and attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Development of consistent hazard controls for DOE transuranic waste operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, W.J.

    2007-07-01

    This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less

  6. 40 CFR 273.33 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.33 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Large Quantity Handlers of Universal Waste § 273.33 Waste management. (a) Universal waste batteries. A large quantity handler of universal waste must manage...

  7. 40 CFR 273.13 - Waste management.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste management. 273.13 Section 273...) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT Standards for Small Quantity Handlers of Universal Waste § 273.13 Waste management. (a) Universal waste batteries. A small quantity handler of universal waste must manage...

  8. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2014-01-01 2014-01-01 false Alternative requirements for waste classification and...

  9. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2012-01-01 2012-01-01 false Alternative requirements for waste classification and...

  10. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2010-01-01 2010-01-01 false Alternative requirements for waste classification and...

  11. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2013-01-01 2013-01-01 false Alternative requirements for waste classification and...

  12. 10 CFR 61.58 - Alternative requirements for waste classification and characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.58 Alternative requirements for waste classification and characteristics. The Commission may, upon request or on... 10 Energy 2 2011-01-01 2011-01-01 false Alternative requirements for waste classification and...

  13. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    PubMed

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  14. Slope failures in municipal solid waste dumps and landfills: a review.

    PubMed

    Blight, Geoffrey

    2008-10-01

    Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.

  15. 10 CFR 960.5-2 - Technical guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY Preclosure Guidelines § 960.5-2 Technical guidelines. The technical guidelines in this subpart set... repository and to the transportation of waste to a repository site. The third group includes conditions on...

  16. Comparison of scenarios for the integrated management of construction and demolition waste by life cycle assessment: A case study in Brazil.

    PubMed

    Penteado, Carmenlucia Santos Giordano; Rosado, Laís Peixoto

    2016-10-01

    Brazil, as a result of economic development and strengthening of the construction industry in recent years, is generating an increasing amount of construction and demolition waste (CDW). Hence, environmental assessment of the management systems is vital. A life cycle assessment (LCA) is presented of CDW management in a medium-sized municipality located in the southeast region of Brazil, where the impacts of leaching were not considered due to absence of consistent data. Six different proposed scenarios for the current CDW management situation have been considered. These scenarios comprised the combined use of landfilling, sorting, and recycling, and the use of CDW as paving material for landfill roads, in different percentages. Considering 0.8 ton of waste as the functional unit, the life cycle inventory was performed using primary data obtained from field survey and secondary data from the database Ecoinvent version 3.1, and from the literature. The method CML 2 baseline 2001 was used for environmental impacts evaluation. The results highlight that recycling is beneficial when efficient CDW sorting takes place at construction sites, avoiding the transport of refuse to sorting and recycling facilities, and the distance between the generation source and the recycling unit is within 30 km. Thus, our results are helpful to ensure that the decision-making processes are based on environmental and technical aspects, and not only on economic and political factors, and also provide data and support for other LCA studies on CDW. © The Author(s) 2016.

  17. Integrated and holistic suitability assessment of recycling options for masonry rubble

    NASA Astrophysics Data System (ADS)

    Herbst, T.; Rübner, K.; Meng, B.

    2012-04-01

    Our industrial society depends on continuous mining and consumption of raw materials and energy. Besides, the building sector causes one of the largest material streams in Germany. On the one hand, the building sector is connected with a high need in material and energetic resources as well as financial expenditures. On the other hand, nearly 50 % of the volume of waste arises from the building industry. During the last years, the limitation of natural resources, increasing negative environmental consequences as well as rising prices and shortages of dump space have led to a change in thinking in the building and waste industry to a closed substance cycle waste management. In consideration of the production figures of the main kinds of masonry units (clay bricks, sand-lime bricks, autoclaved aerated concrete brick, concrete blocks), a not unimportant quantity of masonry rubble (including gypsum plaster boards, renders, mortars and mineral insulating materials) of more than 20 million tons per year is generated in the medium term. With regard to a sustainable closed substance cycle waste management, these rest masses have to be recycled if possible. Processed aggregates made from masonry rubble can be recycled in the production of new masonry units under certain conditions. Even carefully deconstructed masonry units can once more re-used as masonry units, particularly in the area of the preservation of monuments and historical buildings. In addition, masonry rubble in different processing qualities is applied in earth and road construction, horticulture and scenery construction as well as concrete production. The choice of the most suitable recycling option causes technical, economical and ecological questions. At present, a methodology for a comprehensive suitability assessment with a passable scope of work does not exist. Basic structured and structuring information on the recycling of masonry rubble is absent up to now. This as well as the economic and technical constraints lead to a subordinated utilization on a rather low application level (downcycling). However, masonry rubble should also be recycled on a higher level (upcycling) in the future. For this purpose, an integrated and holistic but also practically oriented methodology for the suitability assessment of different recycling applications for masonry rubble is developed for a PhD currently. The suitability assessment includes the simultaneous evaluation of technical, economical and ecological aspects. Therefore, all recycling phases (demolition, processing, re-use) and the main kinds of masonry units (sorted or mixed) with their specific properties have to be considered.

  18. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE.

    PubMed

    Nurrokhmah, Laila; Mezher, Toufic; Abu-Zahra, Mohammad R M

    2013-01-01

    A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.

  19. CONTINUOUS MICRO-SORTING OF COMPLEX WASTE PLASTICS PARTICLEMIXTURES VIA LIQUID-FLUIDIZED BED CLASSIFICATION (LFBC) FOR WASTE MINIMIZATIONAND RECYCLING

    EPA Science Inventory

    A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...

  20. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    PubMed Central

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  1. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  2. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouzounian, P.; Palmu, Marjatta; Eng, Torsten

    2012-07-01

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel,more » high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)« less

  3. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  4. Environmental restoration and waste management: Robotics technology development program: Robotics 5-year program plan. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This plan covers robotics Research, Development, Demonstration, Testing, activities in the Program for the next five years. These activities range from bench-scale R D to fullscale hot demonstrations at DOE sites. This plan outlines applications of existing technology to near-term needs, the development and application of enhanced technology for longer-term needs, and an initiation of advanced technology development to meet those needs beyond the five-year plan. The objective of the Robotic Technology Development (RTDP) is to develop and apply robotics technologies that will enable Environmental Restoration and Waste Management operations at DOE sites to be safer, faster and cheaper. Fivemore » priority DOE sites were visited in March 1990 to identify needs for robotics technology in ER WM operations. This 5-Year Program Plan for the RTDP detailed annual plans for robotics technology development based on identified needs. This 5-Year Program Plan discusses the overall approach to be adopted by the RTDP to aggressively develop robotics technology and contains discussions of the Program Management Plan, Site Visit and Needs Summary, Approach to Needs-Directed Technical Development, Application-Specific Technical Development, and Cross-Cutting and Advanced Technology. Integrating application-specific ER WM needs, the current state of robotics technology, and the potential benefits (in terms of faster, safer, and cheaper) of new technology, the Plan develops application-specific road maps for robotics RDDT E for the period FY 1991 through FY 1995. In addition, the Plan identifies areas where longer-term research in robotics will have a high payoff in the 5- to 20-year time frame. 12 figs.« less

  5. The Challenges Of Investigating And Remediating Port Hope's Small-Scale Urban Properties - 13115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, Walter van; Case, Glenn; Benson, John

    2013-07-01

    An important component of the Port Hope Project, the larger of the two projects comprising the Port Hope Area Initiative (PHAI), is the investigation of all 4,800 properties in the Municipality of Port Hope for low level radioactive waste (LLRW) and the remediation of approximately 10% of these. Although the majority of the individual properties are not expected to involve technically sophisticated remediation programs, the large number of property owners and individually unique properties are expected to present significant logistic challenges that will require a high degree of planning, organization and communication. The protocol and lessons learned described will bemore » of interest to those considering similar programs. Information presented herein is part of a series of papers presented by the PHAI Management Office (PHAI MO) at WM Symposium '13 describing the history of the Port Hope Project and current project status. Other papers prepared for WM Symposium '13 address the large-scale site cleanup and the construction of the long-term waste management facility (LTWMF) where all of the LLRW will be consolidated and managed within an engineered, above-ground mound. (authors)« less

  6. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surfacemore » water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.« less

  7. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.

    PubMed

    Rivas-Cantu, Raul C; Jones, Kim D; Mills, Patrick L

    2013-04-01

    An assessment of recent technical advances on pretreatment processes and its effects on enzymatic hydrolysis as the main steps of a proposed citrus processing waste (CPW) biorefinery is presented. Engineering challenges and relevant gaps in scientific and technical information for reliable design, modeling and scale up of a CPW biorefinery are also discussed. Some integrated physico-chemical pretreatments are proposed for testing for CPW, including high speed knife-grinding and simultaneous caustic addition. These new proposed processes and the effect of parameters such as particle size, surface area and morphology, pore volume and chemical composition of the diverse fractions resulting from pretreatment and enzymatic hydrolysis need to be evaluated and compared for pretreated and untreated samples of grapefruit processing waste. This assessment suggests the potential for filling the data gaps, and preliminary results demonstrate that the reduction of particle size and the increased surface area for the CPW will result in higher reaction rates and monosaccharide yields for the pretreated waste material.

  8. A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...

    EPA Pesticide Factsheets

    Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE

  9. PROCESS KNOWLEDGE DATA GATHERING AND REPORTING IN SUPPORT OF DECOMMISSIONING Health Physics Society Annual Meeting West Palm Beach, Florida June 27, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2011-06-27

    Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record. 'Fun' part of PK data gathering. Often got not-so-useful information such as, 'The operations manager was a jerk and we all hated him.' PK data are used to indicate the presence or absence of contaminants. Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes. The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.« less

  10. Public concerns and behaviours towards solid waste management in Italy.

    PubMed

    Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F

    2010-12-01

    A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.

  11. 32 CFR 203.12 - Technical assistance for public participation provider qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste problems. (2) Experience in making technical presentations. (3) Demonstrated writing skills. (4... 32 National Defense 2 2010-07-01 2010-07-01 false Technical assistance for public participation... THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP...

  12. Talking with the Public about Regulating High-level Waste Disposal: Recent Progress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotra, J. P.; Leslie, B. W.

    Increasing public confidence in the U.S. Nuclear Regulatory Commission (NRC) as an effective and independent regulator is an explicit goal of the Agency (1). Consistent with long-established mechanisms and procedures, NRC provides the public access to its decision-making process. Recently, during the course of a rulemaking required by statute, NRC examined its means for inviting public access as well as the NRC staff's effectiveness in furthering public confidence in it's actions as a regulator. When developing new, site-specific regulations for the proposed geologic repository at Yucca Mountain, Nevada, NRC's Division of Waste Management found it necessary to adapt and improvemore » its efforts to inform and involve the public in NRC's decision making process. Major changes were made to the way in which technical staff prepare for speaking to general audiences. The format used for public meetings was modified to encourage dialogue with participants. Handout and presentation materials that explain NRC's role and technical topics of concern in plain language were developed and are regularly updated. NRC successfully applied these and other institutional changes as it completed final regulations for Yucca Mountain and while developing and introducing a draft license review plan for public comment.« less

  13. Matching the needs of a nation: The strategic roles of indicators for decisionmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, P.J.

    Indicators are important tools for communicating and making accessible scientific and technical information to policymakers and the general public. They therefore play an important role in transforming information into action. Worldwide, many initiatives are underway to construct indicators for a variety of purposes, including those for reporting on sustainable development. This paper briefly describes the attempts made so far, but stresses that the users of the indicators should play a greater role in indicator construction. In developing countries, a substantial lack of data has meant that specific policy formulation may develop without adequate technical input. In developed countries also, datamore » gaps may hinder policy formulation, implementation, and evaluation. However, the development of indicators as tools to assist in the management of hazardous wastes and toxic chemicals is still in the early stages of formulation. A more imaginative program of indicators and indices is required, where targets are well defined and the users clearly identified to assist in decision making, especially at the local and national levels. A broader range of pressure indicators, beyond hazardous wastes, is proposed to integrate toxic chemicals, emissions, and environmental and human health impacts. 39 refs., 3 figs.« less

  14. Mine waste management legislation. Gold mining areas in Romania

    NASA Astrophysics Data System (ADS)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National Agency for Mineral Resources (NAMR) manages, on behalf of the state, the mineral resources. Waste management framework Nowadays, Romania, is trying to align its regulation concerning mining activity to the European legislation taking into consideration waste management and their impact on the environment. Therefore the European Waste Catalog (Commission Decision 2001/118/EC) has been updated and published in the form of HG 856/2002 Waste management inventory and approved wastes list, including dangerous wastes. The HG 349/2005 establishes the legal framework for waste storage activity as well as for the monitoring of the closing and post-closing existing deposits, taking into account the environment protection and the health of the general population. Based on Directive 2000/60/EC the Ministry of Waters Administration, Forests and Environment Protection from Romania issued the GO No 756/1997 (amended by GO 532/2002 and GO 1144/2002),"Regulations for environment pollution assessment" that contains alarm and intervention rates for soil pollution for contaminants such as metals, metalloids (Sb, Ag, As, Be, Bi, B, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sn, TI, V, Zn) and cyanides. Also GO No 756/1997 was amended and updated by Law No 310/2004 and 112/2006 in witch technical instructions concerning general framework for the use of water sources in the human activities including mining industry, are approved. Chemical compounds contained in industrial waters are fully regulated by H. G. 352/2005 concerning the contents of waste water discharged. Directive 2006/21/EC of the European Parliament and of the Council relating to the management of waste from extractive industries and amending Directive 2004/35/EC is transposed into the national law of the Romanian Government under Decision No 856/2008. The 856/2008 Decision on the management of waste from extractive industries establishes "the legal framework concerning the guidelines, measures and procedures to prevent or reduce as far as possible any adverse effects on the environment, in particular water, air, soil, fauna, flora and landscape, and any health risks to the population, arising as a result of waste management in extractive industries". Based on the Commission decision 2009/339/EC concerning the waste management facilities - classification criteria - Romanian Government issued GO 2042/2010 witch states the procedures for approving the plan of waste management in extractive industries and its applications norms. Law No. 22/2001 fallows the regulations from the Espoo Convention on assessing the impact of mining on the environment sector in a cross-border context. This work is presented within the framework of SUSMIN project.

  15. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  16. Air/Superfund national technical guidance study series, Volume 2. Estimation of baseline air emission at Superfund sites. Interim report(Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This volume is one in a series of manuals prepared for EPA to assist its Remedial Project Managers in the assessment of the air contaminant pathway and developing input data for risk assessment. The manual provides guidance on developing baseline-emission estimates from hazardous waste sites. Baseline-emission estimates (BEEs) are defined as emission rates estimated for a site in its undisturbed state. Specifically, the manual is intended to: Present a protocol for selecting the appropriate level of effort to characterize baseline air emissions; Assist site managers in designing an approach for BEEs; Describe useful technologies for developing site-specific baseline emission estimatesmore » (BEEs); Help site managers select the appropriate technologies for generating site-specific BEEs.« less

  17. Understanding the role of waste prevention in local waste management: A literature review.

    PubMed

    Zacho, Kristina O; Mosgaard, Mette A

    2016-10-01

    Local waste management has so far been characterised by end-of-pipe solutions, landfilling, incineration, and recycling. End-of-pipe solutions build on a different mind-set than life cycle-based approaches, and for this reason, local waste managers are reluctant to consider strategies for waste prevention. To accelerate the transition of waste and resource management towards a more integrated management, waste prevention needs to play a larger role in the local waste management. In this review article, we collect knowledge from the scientific community on waste prevention of relevance to local waste management. We analyse the trends in the waste prevention literature by organising the literature into four categories. The results indicate an increasing interest in waste prevention, but not much literature specifically concerns the integration of prevention into the local waste management. However, evidence from the literature can inform local waste management on the prevention potential; the environmental and social effects of prevention; how individuals in households can be motivated to reduce waste; and how the effects of prevention measures can be monitored. Nevertheless, knowledge is still lacking on local waste prevention, especially regarding the methods for monitoring and how local waste management systems can be designed to encourage waste reduction in the households. We end the article with recommendations for future research. The literature review can be useful for both practitioners in the waste sector and for academics seeking an overview of previous research on waste prevention. © The Author(s) 2016.

  18. Training activities at FSUE 'RADON' and Lomonosov's Moscow state university under practical arrangements with IAEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyukhnova, O.G.; Karlina, O.K.; Neveykin, P.P.

    The International Education Training Centre (IETC) at Moscow Federal State Unitary Enterprise (FSUE) 'Radon', in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 15 years. Since 1997, the educational system of the enterprise with the support of the IAEA has acquired an international character: more than 470 experts from 35 countries - IAEA Member States completed the professional development. Training is conducted at various thematic courses or fellowships for individual programs and seminars on IAEA technical projects. In June 2008 a direct agreement (Practical Arrangements) has beenmore » signed between FSUE 'Radon' and the IAEA on cooperation in the field of development of new technologies, expert's advice to IAEA Member States, and, in particular, the training of personnel in the field of radioactive waste management (RWM), which opens up new perspectives for fruitful cooperation of industry professionals. A similar agreement - Practical Arrangements - has been signed between Lomonosov's MSU and the IAEA in 2012. In October 2012 a new IAEA two-weeks training course started at Lomonosov's MSU and FSUE 'Radon' in the framework of the Practical Agreements signed. Pre-disposal management of waste was the main topic of the courses. The paper summarizes the current experience of the FSUE 'Radon' in the organization and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)« less

  19. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, N.

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less

  20. Classification of the Inventory of Spent Sealed Sources at INSHAS Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Adham, K.; Geleel, M.A.; Mahmoud, N.S.

    2006-07-01

    The Egyptian Atomic Energy Authority (EAEA) is responsible for the recovery, transportation, conditioning, storage and disposal of all unwanted spent sealed radioactive sources (SSSs) in Egypt. Because of radioactive decay, damage, misuse or changing technical conditions, approximately 600 unwanted SSSs are now in storage at the EAEA's Hot-Laboratories Center in INSHAS. For the safe recovery, transportation, conditioning and storage of these unwanted SSSs the EAEA uses an International Atomic Energy Agency's (IAEA's) categorization system. The IAEA system classifies sealed radioactive sources (SRSs) into five categories based on potential risks to current workers and the public. This IAEA system allows Membermore » States like Egypt to apply a graded approach to the management of SRSs and SSSs. With over 600 unwanted SSSs already in storage, the EAEA is planned to dispose unwanted SSSs in near surface vault structures with solidified low- and intermediate-level radioactive wastes. The IAEA's categorization system is not designed to protect future populations from the possible long-term migration of radioactive wastes from a disposal system. This paper presents the basis of a second categorization system, designed to protect the public in Egypt from radioactive wastes that may migrate from a near-surface disposal facility. Assuming a release of radionuclides from the near-surface vaults 150 years after disposal and consumption of contaminated groundwater at the 150 m fence-line, this classification systems ranks SSSs into two groups: Those appropriate for near-surface disposal and those SSSs requiring greater isolation. Intermediate depth borehole disposal is proposed for those SSSs requiring greater isolation. Assistance with intermediate-depth borehole disposal is being provided by the Integrated Management Program for Radioactive Sealed Sources (IMPRSS) and by the IAEA through a Technical Cooperation Project. IMPRSS is a joint Egyptian / U.S. program that is greatly improving the cradle-to-grave management of SRSs and SSSs in Egypt. As a component of IMPRSS, Sandia National Laboratories is transferring knowledge to the Egyptian counterparts from implementation of the Greater Confinement Disposal boreholes in the U.S. (authors)« less

Top